MS611-15-中文版
- 格式:doc
- 大小:124.00 KB
- 文档页数:6
邻苯二甲酸二丁酯高效降解菌的分离、鉴定及降解特性杨统一;高俊贤;刘琦;连梓竹【摘要】从土壤中分离出1株能够以邻苯二甲酸二丁酯为碳源和能源生长的细菌XHYG.经形态观察、生理生化鉴定、16S rDNA序列及系统发育分析,鉴定该菌株为无色杆菌(Achromobacter insolitus).对该菌株的降解条件进行优化,确定最佳降解条件为:温度30℃,pH =6.5 ~8.0.在最佳降解条件下,其在48 h内对400 mg/L DBP降解率达到90.67%,为邻苯二甲酸二丁酯的高效降解菌.底物降解广谱性试验表明,该菌株对邻苯二甲酸二辛脂(DOP)、邻苯二甲酸(2-乙基已基)酯(DEHP)都具有良好的降解能力,表明具备良好的底物降解广谱性,说明该菌株在处理邻苯二甲酸酯类化合物的污染治理中有独特的应用潜力.【期刊名称】《江苏科技大学学报(自然科学版)》【年(卷),期】2015(029)006【总页数】5页(P607-611)【关键词】邻苯二甲酸二丁酯;降解特性;生物降解;降解条件;16S rDNA【作者】杨统一;高俊贤;刘琦;连梓竹【作者单位】江苏科技大学环境与化学工程学院,江苏镇江212018;江苏科技大学环境与化学工程学院,江苏镇江212018;江苏科技大学环境与化学工程学院,江苏镇江212018;江苏科技大学环境与化学工程学院,江苏镇江212018【正文语种】中文【中图分类】X172邻苯二甲酸酯类(phthalic acid esters,PAEs)是一类重要的有机化合物,被广泛用作塑料助剂、油漆溶剂、合成橡胶增塑剂及化妆品、香味品、润滑剂等生产原料中[1].然而,由于邻苯二甲酸酯增塑剂并非与树脂共价连接,因此极易扩散到环境中.目前,PAEs在环境中已到了普遍检出程度,包括在陆地生态系统及水域生态系统等都能检测到PAEs的存在[2].近期研究表明,PAEs具有致畸性、致突变性、致癌性及生殖毒性,可在极低浓度下干扰人和动物的内分泌系统,导致其发育紊乱[3].且在环境研究领域,邻苯二甲酸酯类被中国环境监测总站、美国国家环保局(EPA)和欧盟列为优先控制污染物[4].PAEs在自然界中的降解分为生物降解和非生物降解两种,而微生物降解是其降解的主要途径[5].目前国内外有关PAEs微生物降解的研究有很多[6-7],如Delfia sp.[8],Sphingomonsa sp.[9],Arthrobacter sp.[10],Paenibacillus sp.[11]等.但已报道的菌株能降解DBP且能降解多种邻苯二甲酸酯类化合物的还较少,因此有必要筛选高效广谱的DBP降解菌,丰富降解菌种类.本研究从镇江市江苏科技大学西校区垃圾处理站土样中分离到了1株能够高效降解邻苯二甲酸二丁酯的细菌,采用生理生化及16S rDNA序列分析等手段对该菌进行了鉴定,并研究其生长和降解特性,以期为PAEs污染物的治理及土壤修复提供一定的科学依据.1.1 实验材料实验土样取自镇江市江苏科技大学西校区垃圾处理站附近土壤.基础无机盐(MSM)培养基(g/L):K2HPO45.8,KH2PO44.5,(NH4)2SO42.0,MgCl20.16,CaCl20.02,Na2MoO4·2H2O 0.002 4,FeCl30.001 8,MnCl2·2H2O 0.001 5,pH=7.0,于121℃湿热灭菌20 min.固体培养基为含DBP的液体培养基加琼脂20 g/L.富集培养基(g/L):牛肉膏5.0,蛋白胨10.0,NaCl 5.0,pH=7.0,于121℃湿热灭菌20 min.主要试剂:邻苯二甲酸二丁酯(DBP,分析纯);邻苯二甲酸(2-乙基已基)酯(DEHP,分析纯);邻苯二甲酸二辛脂(DOP,分析纯);环己烷(色谱级),甲醇(色谱级).1.2 实验方法1.2.1 DBP降解菌的筛选与纯化称取10 g土壤样品,加入20 ml无菌水,剧烈振荡混合均匀后于4 000 r/min离心机中离心5 min,取上清液;接着重复此步骤2次,最后取上清液获得土壤溶液.取分别稀释100倍、1 000倍、10 000倍的土壤溶液,涂布在固体MSM培养基(含DBP 100 mg/L)于30℃培养箱内培养7 d.然后挑取筛选的菌落接种于含DBP 200 mg/L的液体MSM培养基,150 r/min、30℃ 的摇床培养7 d,再用划线法划线于固体MSM培养基(含DBP 200 mg/L)于30℃培养箱内培养7 d,进一步分离单菌落.重复上述两步并逐步提高培养基中DBP含量依次为200,250,300,350,400 mg/L.最后将分离出的单菌用富集培养基富集.1.2.2 菌株的生理生化鉴定降解菌株形态及生理生化特性鉴定参照常见细菌系统鉴定手册[12]等文献.1.2.3 菌株DNA的鉴定降解菌株分子生物学鉴定采用16S rDNA序列分析.首先提取分离的降解菌DNA作为模板,利用16S rDNA基因通用引物F27和R1492进行PCR扩增.其中,引物F27为5’-AGA GTT TGA TCC TGG CTC AG-3’,引物R1492为5’-GGC TAC CTT GTT ACG ACT T-3’.PCR扩增条件为:94℃预变性5 min;94℃变性40 s;55℃退火40 s;72℃延伸90 s,30个循环; 72℃最终延伸7 min,4℃保存.PCR产物经1%琼脂糖凝胶电泳检测后,送上海生工生物工程技术服务有限公司完成测序工作.将测序结果提交GenBank,获得序列号KM598778,并同GenBank数据库中的基因序列进行BLAST比对,以获得相似性较高的相关菌株,采用MEGA6.0软件进行多序列比对,并构建系统进化树.1.2.4 溶液中PAEs的含量测定采用高效液相色谱法检测溶液中PAEs,具体处理方法如下:待测溶液于超声波振荡器中振荡10 min后取10 ml加入20 ml环己烷,剧烈振荡后放入超声波振荡器中振荡5 min,后倒入离心管在高速离心机(5 000 r/min)中离心分离取上层有机相,再用孔径为0.22 μm的有机相过滤器过滤后上机测定.高效液相色谱条件:色谱柱为5μm Eclipse XDB-C18柱;流动相为甲醇∶水=90∶10;检测器波长为228 nm;柱温为35℃;柱压为15 bar;流速0.5 mL/min;进样量为10 μL;保留时间为11 min.1.2.5 生物量测定方法测定菌株的生物量,采用721型可见分光光度计在600 nm处测量培养基的光密度OD600.1.3 降解菌底物广谱性测试在基础无机盐培养基中分别加入邻苯二甲酸二辛脂(400 mg/L);邻苯二甲酸(2-乙基已基)酯(400 mg/L)于121℃湿热灭菌20 min.以2%的接种量将降解菌种子液接种到100 mLMSM中,160 r/min、30℃摇床培养.培养5 d后取样,用高效液相色谱法测定不同邻苯二甲酸酯的残留量.1.4 菌株的降解特性研究1.4.1 降解菌对DBP的降解曲线及生长曲线将菌液离心分离获取菌体,再用MSM培养基重悬,调整菌液浓度OD600=1.0.然后将上述菌液1 ml接种到液体MSM培养基(DBP含量为400 mg/L) 25 ml中,在150 r/min、30℃ 的摇床培养,并设置一组液体MSM培养基(DBP含量为400 mg/L)不加入菌液作为对照.每24 h定时取样用高效液相色谱法测定其中DBP的含量,并测定其OD600值.1.4.2 DBP高效降解菌的降解条件优化1)温度将菌株的菌液离心分离获取菌体,再用MSM培养基重悬,调整菌液浓度OD600=1.0.然后取上述菌液5份,每份1 ml分别接种到液体MSM培养基(DBP含量为400 mg/L)25 ml中,在150 r/min、温度分别为25,30,35,40,45℃ 的摇床培养5 d,并设置一组液体MSM培养基(DBP含量为400 mg/L)不加入菌液作为对照.用高效液相色谱法测定其中DBP的含量.2)pH将菌株的菌液离心分离获取菌体,再用MSM培养基重悬,调整菌液浓度OD600=1.0.然后取上述菌液5份,每份1 ml分别接种到液体MSM培养基(DBP含量为400 mg/L)25 ml中,将5份培养基pH分别调整为6.0,7.0,8.0,9.0,10.0在150 r/min、30℃ 的摇床培养5 d,并设置一组液体MSM培养基(DBP含量为400 mg/L)不加入菌液作为对照.用高效液相色谱法测定其中DBP的含量. 2.1 菌株XHYG的分离及部分生理生化特征经过富集培养,分离得到1株能够在DBP含量为400 mg/L的MSM培养基中很好生长的降解菌,此菌株能以DBP为唯一碳源很好地生长,将其命名为XHYG.XHYG菌株在MSM平板上于30℃恒温培养箱中培养5 d后,菌落呈圆形,不透明,黄色,中央部分突起,边缘部分光滑,质地致密且有光泽,不含水溶性色素,在显微镜下观察为球状.生理生化测试发现,菌株XHYG为革兰氏阴性菌,接触酶呈阳性反应,淀粉水解酶呈阴性反应,不产硫化氢气体,明胶液化反应、甲基红反应均呈阴性反应,能够发酵葡萄糖(详见表1).2.2 降解菌底物广谱性测试接种5 d后观察菌株XHYG都能很好地利用DOP和DEHP,根据图1所示,菌株XHYG对DOP的降解较DEHP要好.这与文献[13]中邻苯二甲酸脂类的生物降解效果与碳链长度和复杂程度呈反比相一致.2.3 菌株XHYG的16S rDNA分子鉴定与系统发育分析测序结果提交 GenBank的登录号为KM598778.在GenBank中进行BLAST比对分析,结果发现与菌株XHYG的16S rDNA序列相似性最高的是Achromobacter insolitus,其相似性达到99%.结合其形态学和生理生化特征,可以初步确定XHYG为无色杆菌(Achromobacter insolitus).选取部分文献报道的PAEs降解菌,用MEGA 6.0软件包构建系统发育树(图2),对比降解菌的系统进化关系.由图2可以看出,文中筛选的XHYG菌株与无色杆菌(Achromobacter insolitus)处于同一分支,具有相同的进化距离,因而更进一步说明菌株XHYG为无色杆菌属.从图2还可看出,部分PAEs降解菌与XHYG菌株进化距离较远,说明PAEs降解基因广泛分布在不同种属.2.4 菌株XHYG的生长曲线和降解曲线菌株XHYG的生长和降解曲线如图3.由图3可以看出,在0~1 d时,菌株XHYG生长缓慢,DBP的降解率较低,培养基呈现淡淡的乳白色;菌株在1~3 d为迟滞期;3~5 d为对数生长期;5 d后进入平衡期;从降解曲线上来看,菌株在48 h时对400 mg/L DBP降解率达到90.67%,在3~6 d,菌株XHYG以DBP为唯一碳源和能源迅速繁殖生长,在培养基底部逐渐产生灰白色悬浮颗粒物即菌体,而DBP也被大量降解,培养基颜色逐渐澄清;在5~6 d时期,菌株的生长进入平衡期,其OD600稳定在1.2左右,菌株的生长量逐渐达到最大值,DBP的残留量仅为4.09 mg/L,降解率达到98.99%.因此,确认菌株XHYG为DBP的高效降解菌.2.5 温度对菌株XHYG降解DBP的影响由图4看出,菌株XHYG对DBP的降解效果先随温度的升高而升高,达到最大值后,随着温度的升高而降低,菌株XHYG的最适生长温度为30℃,在温度超过35℃后降解活性大大降低.由此表明,温度过高或过低都会使菌株XHYG的生长受到抑制,降解活性降低.这与文献[11]的研究结果一致.这可能由于当温度过低时,菌体内酶的活性在低温下大大降低,导致菌株对DBP的降解效率降低;当温度过高时酶活性失活导致降解效率降低.2.6 pH对菌株XHYG降解DBP的影响由图5可以看出菌株XHYG的最适生长pH值在6.5~8.0左右,菌株的降解率能达到85%以上,而当pH值过低或者过高时菌株的生长均受到抑制,降解活性降低.由此表明,中性环境更利于这株菌株对DBP的降解.这与文献[16]分离出的HS-B1菌株相似,该菌株被鉴定为不动杆菌(Acinetobacter sp.),当pH>8.0,菌株的降解效率大大降低.1)从土壤中分离得到了一株能够以DBP为碳源和能源生长的细菌XHYG,经过形态学特征、生理生化特征和16S rDNA序列系统学分析,初步鉴定该菌株为无色杆菌(Achromobacter insolitus).2)XHYG生长和降解DBP的最佳培养条件为:温度30℃,pH 7.0;在此条件下,菌株迅速利用DBP作为碳源和能源进行生长,能够在DBP浓度为400 mg·L-1的无机盐培养基中生长良好,有较高的耐受性和降解效率.【相关文献】[1]Blount B C,Milgram K E,Silva M J,et al.Quantitative detection of eight phthalate metabolites in human urine usingHPLC-APCI-MS/MS[J].Analytical Chemistry,2000,72(17):4127-4134.[2]Zolfaghari M,Drogui P,Seyhi B,et al.Occurrence,fate and effects of Di(2-ethylhexyl)phthalate in wastewater treatment plants:a review[J].Environmental Pollution,2014,194:281-293.[3]Gu J D,Li J,Wang Y.Biochemical pathway and degradation of phthalate esterisomers by bacteria[J].Water Science Technology,2005,52(8):241-248.[4]骆祝华,黄翔玲,叶德赞.环境内分泌干扰物:邻苯二甲酸酯的生物降解研究进展[J].应用与环境生物学报,2008,14(6):890-897.Luo Zhuhua,Huang Xiangling,Ye Dezan.Advances in research of biodegradation of environmental endocrine disruptors-phthalate esters [J].Chinese Journal of Applied&Environmental Biology,2008,14(6): 890-897.(in Chinese)[5]Staples C A,Peterson RT.F.The environmental fate of phthalate esters:a literature review[J].Chemosphere,1997,35(4):667-749.[6]Fang C,Long Y,Shen D.Removal of dibutyl phthalate from refuse from different phases of landfill in the presence of its dominant bacterial strains[J].Ecological Engineering,2014,71:87-93.[7]Fang C,Yao J,Zheng Y,et al.Dibutyl phthalate degradation by Enterobacter sp.T5 isolated from municipal solid waste in landfill bioreactor[J].International Biodeterioration&Biodegradation,2010,64(6):442-446.[8]刘洋,马保华,王兆梅,等.食品塑料包装中邻苯二甲酸酯类增塑剂的调查分析[J].现代食品科技,2013,29(1):181-185.Liu Yang,Ma Baohua,Wang Zhaomei,et al.Investigation of phthalates contamination in the market-sold plastic food packages[J].Modern Food Science and Technology,2013,29(1):181-185.(in Chinese)[9]周洪波,胡培磊,刘飞飞,等.DBP降解菌株XJ1的分离鉴定及其降解特性[J].生物技术,2008,18 (2):64-67.Zhou Hongbo,Hu Peilei,Liu Feifei,et al.Isolation and identification of DBP-degrading strain XJ1 and its degradation characters[J].Biotechnology,2008,18 (2):64-67.(in Chinese)[10]Jin D C,Liang R X,Dai Q Y,et al.Biodegradation of di-n-butyl phthalate by Rhodococcus sp.JDC-11 and molecular detection of 3,4-phthalate dioxygenase gene [J].Journal of Microbiol Biotechnol,2010,20 (10):1440-1445.[11]金雷,陈瑜,严忠雍,等.邻苯二甲酸二丁酯高效降解菌H-2的分离鉴定及其降解特性[J].食品科学,2014,35(15):202-206.Jin Lei,Chen Yu,Yan Zhongyong,et al.Isolation and identifi cation of a di-n-butyl phthalate(DBP)-degrading strain H-2 and its degradation characteristics[J].Food Science,2014,35(15):202-206.(in Chinese) [12]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.[13]Chang B V,Yang C M,Cheng C H,et al.Biodegradation of phthalate esters by two bacteria strains[J].Chemosphere,2004,55(4):533-538.[14]吴学玲,金德才,赵维良,等.4株邻苯二甲酸二丁酯降解菌的分离鉴定及其相关降解基因的克隆[J].环境科学,2009,30(9):2722-2727.Wu Xueling,Jin Decai,Zhao Weiliang,et al.Isolation and identification of four DBP-degrading strains and molecular cloning of the degradation genes[J].Environmental Science,2009,30(9):2722-2727.(in Chinese) [15]金雷,严忠雍,施慧,等.邻苯二甲酸二丁酯DBP降解菌S-3的分离、鉴定及其代谢途径的初步研究[J].农业生物技术学报,2014,22(1):101-108.Jin Lei,Yan Zhongyong,Shi Hui,et al.Identification of a dibutyl phthalate(DBP)-degrading strain S-3 and preliminary studies on the metabolicpathway[J].Journal of Agricultural Biotechnology,2014,22(1): 101-108.(in Chinese)[16]陈湖星,杨雪,张凯,等.1株高效BBP降解菌的分离与特性研究[J].环境科学,2013,34(7):2882-2888.Chen Huxing,Yang Xue,Zhang Kai,et al.Isolation and characterization of a highly efficient BBP-degrading bacterium[J].Environmental Science,2013,34(7): 2882-2888.(in Chinese)。
Technical Data SheetATI 610™/ATI 611™Stainless Steel: Austenitic(UNS S30600/ UNS S30601)GENERAL PROPERTIESATI 610™ and ATI 611™ alloys are low-carbon, silicon-containing, austenitic stainless steels. These alloys are typically used for applications in the chemical industry. The high silicon content provides them with very good resistance to oxidizing environments, such as concentrated nitric acid, over a wide range of temperatures. Because of its higher alloy content, ATI 611™ material will be more resistant to highly concentrated (98.5%) nitric acid than ATI 610™ alloy.TYPICAL COMPOSITIONTable 1 lists the compositions of ATI 610™ (UNS S30600) and ATI 611™ (UNS S30601) material as required by ASTM Standard A240-97A.ElementASTM A240 Specificationfor UNS S30600 (ATI 610™)ASTM A240 Specificationfor UNS S30601 (ATI 611™)C 0.018 max. 0.015 max.Mn 2.00 max. 0.50 to 0.80Si 3.70 to 4.30 5.00 to 5.60P 0.020 max. 0.030 max.S 0.020 max. 0.013 max.Cr 17.0 to 18.5 17.0 to 18.0Ni 14.0 to 15.5 17.0 to 18.0Cu 0.50 max. 0.35 max.Fe Balance BalanceTable 1 Composition ranges of ATI 610™ and ATI 611™ per ASTM A240.PHYSICAL PROPERTIESThe density of the ATI 610™ alloy is 0.277 lb/in (7.674 g/cm3).The density of the ATI 611™ alloy is 0.274 lb/in (7.589 g/cm3).MECHANICAL PROPERTIESTypical room temperature mechanical properties of ATI 610™ and ATI 611™ material are shown in Table 2, along with the requirements of ASTM Standard A240-97A for these grades.Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification Allegheny Technologies IncorporatedTechnical Data Sheet0.2%Offset YieldStrengthKsi (MPa)Ultimate TensileStrengthKsi (MPa)Elongation in2 inchesRockwell HardnessTypical ATI 610™ Alloy 46.8(323)103(710)58% 86 RBASTM A240 Specification for UNS S3060035 min.(240)78 min.(540)40% min. -Typical ATI 611™ Alloy 52.2(360)103(710)63% 91 RBASTM A240 Specification for UNS S3060137 min.(255)78 min.(540)30% min. -Table 2 Typical room temperature mechanical properties of ATI 610™ and ATI 611™ material and requirements of ASTM A240. Table 3 shows the results of elevated temperature tensile tests performed on ATI 610™ and ATI 611™ specimens.TemperatureATI 610™ATI 611™YieldStressTensileStressElongation2 in”YieldStressTensileStressElongation2 in”°F°C ksi MPa ksi MPa%ksi MPa ksi MPa%70 21 47 324 103 710 58 52 359 103 710 63200 93 40 276 92 634 54 45 310 98 676 65400 204 37 255 82 565 45 38 262 90 621 61600 316 34 234 79 545 42 34 234 83 572 70800 427 31 214 76 524 40 34 234 81 558 671000 538 30 207 73 503 39 33 228 74 510 551200 649 28 193 59 407 61 30 207 63 434 511400 760 23 159 34 234 104 22 152 34 234 531600 871 12 83 16 110 128 11 76 17 117 1371800 982 5 35 9 62 120 5 35 9 62 1392000 1093 2 14 4 28 104 - - - - -Table 3 Elevated temperature tensile tests of ATI 610™ and ATI 611™ specimens.WELDABILITYATI 610™ and ATI 611™ alloys are readily weldable by a gas-shielded arc welding procedure, such as gas tungsten arc welding. The use of filler metal having a composition within the range specified for the base alloy is recommended. However, since it is more highly alloyed than ATI 610™ material, ATI 611™ weld wire may also be used as filler metal when welding ATI 610™ material. It is important to minimize any sources of carbon or nitrogen contamination during welding, through good cleaning prior to welding and good shielding during welding. It is also recommended that the heat input during welding be kept low enough to prevent the formation of second phase precipitates, which could lower corrosion resistance. GTA welded tubes have been made from these alloys on the same equipment and using the same procedures as are used for more conventional austenitic grades. Welded constructions using ATI 610™ and ATI 611™ steels are addressed in Code Cases 1953-2 and 2125-1 of the ASME Boiler and Pressure Vessel Code, respectively.Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification Allegheny Technologies IncorporatedTechnical Data SheetCORROSION RESISTANCEBecause of their high chromium and silicon contents, ATI 610™ and ATI 611™ alloys are very resistant to oxidizing environments, such as concentrated nitric acid. Table 4 displays the average corrosion rate for each alloy in 98.5%Alloy Test Duration Test TemperatureAverage Corrosion Rate MPY mm/aATI 610™168 hours 68° F (20° C) 0.0094 0.00024 168 hours 100° F (38° C) 0.291 0.00740 168 hours 122° F (50° C) 1.229 0.0312 92.5 hours 180° F (82° C) 15.881 0.403ATI 611™168 hours 68° F (20° C) 0.0000 0.0000 168 hours 100° F (38° C) 0.0091 0.00023 168 hours 122° F (50° C) 0.0762 0.00193 92.5 hours 180° F (82° C) 10.461 0.266Table 4 The average corrosion rate for AL610™ and ATI 611™ alloys in 98.5% nitric acid.nitric acid. The data shows that, while both alloys have excellent corrosion resistance at 100°F in 98.5% nitric acid, the ATI 611™ alloy performs better at this concentration. At lower concentrations, other alloys may be more appropriate for nitric acid service. For example, Figure 1 shows that an alloy such as Type 304L has superior corrosion resistance at concentrations near 65%.Additional corrosion data available for ATI 610™ sheet is presented in Table 5.Both ATI 610™ and ATI 611™ alloys are resistant to Stress Corrosion Cracking (SCC) after 1000 hour exposures in boiling MgCl2 or in boiling acidified NaCl solutions. Be-cause of their low carbon contents, both alloys are also resistant to intergranular corrosion.Figure 1 A schematic diagram showing the relative corrosion performance of alloys ATI 610™, ATI 611™ and T 304L as a function of nitric acid concentration.Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification Allegheny Technologies IncorporatedTechnical Data SheetSolution*Average Corrosion Rate MPY mm/aTypical ATI 610™ Alloy32.3 0.82ASTM A262 Practice C65% Nitric Acid16.3 0.41ASTM A262 Practice ECopper–Copper Sulfate–Sulfuric Acid3.0 0.0820% Acetic Acid0.00 0.0045% Formic Acid116.4 2.961% Hydrochloric Acid684.2 17.3810% Oxalic Acid267.8 6.8020% Phosphoric Acid7.3 0.18*Concentrations are given in percent by weight. All solutions are boilingTable 5 Weight change of ATI 610™ and ATI 611™ alloys after 100hours at temperature.OXIDATION RESISTANCEThe oxidation data summarized in Table 6 and Figure 2 are representative of ATI 610™ and ATI 611™ materials. Specimens prepared from standard mill–finish production material were degreased, cleaned and dried prior to exposure. Specimens were placed in inert ceramic crucibles and exposed in still laboratory air for 100 hours at temperature in a continuous oxidation test. All data reflect the average results from a minimum of two different test specimens. Since oxidation rates are greatly affected by the conditions of actual exposure, the data presented in this publication can only serve as approximate guidelines. Personnel at Allegheny Ludlum’s Technical Center can discuss specific applications and environments.Temperature Specific Weight change after 100hours (mg/cm2)°F°C ATI 610™ATI 611™1200 649 0.0224 -1300 704 0.0035 -0.00371400 760 0.0525 0.04351500 816 0.1293 0.11961600 871 0.1110 0.15501800 982 0.2562 0.32252000 1093 -1.0608 0.3922Table 6 Weight change of ATI 610™ and ATI 611™ alloys after 100hours at temperature.Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification Allegheny Technologies IncorporatedTechnical Data SheetFigure 2 Weight change of ATI 610™ and ATI 611™ alloys compared to that of 310S material after 100 hours at temperature.Figure 3 is a plot (760°C) for times of weight change as a function of time for ATI 610™ and ATI 611™ at 1300°F (704°C) and 1400°F of up to 3000 hours.Figure 3 Weight change as a function of time for ATI 610™ and ATI 611™ alloys at 1300° F (704°C) and 1400°F (760°C).Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification Allegheny Technologies IncorporatedTechnical Data SheetTYPICAL APPLICATIONSATI 610™ and ATI 611™ alloys are generally useful for the fabrication of any item that will be in contact with highly concentrated nitric acid. Typical applications include vessels, heat exchangers, piping, valves, pumps and other items associated with the production and storage of highly concentrated nitric acid.PRODUCT FORMSATI 610™ and ATI 611™ alloys can be produced to plate sizes from 3/16” up to 7/8" x 72" x 240". Sheet and strip are also available.Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification Allegheny Technologies Incorporated。
适用范围:全部适用工程标准页码:1/5制成处:材料技术研究组材料规范规格编号:MS 611-15 标题:电子锌和锌合金电镀规格(三价铬)目次1. 适用范围2. 种类和符号3. 品质4. 试验法5. 标记6. 其他EMS50550 内识性变更全部05/12/09 崔再翁EMS40166 PELEASED 全部2001.04.1 崔再翁符号EO 编号变更描述关联页改定日期制成者制订日期:1982年1月6日参考资料:区分编写人:审核人:批准人:文件保管处IPIS (ES/MS)管理系统职责担当W/G长组长裁决研究员崔再翁05/12/06承认郑凡渠05/12/06首席任钟代05/12/06技术标准规格编号:MS 611-15页码: 2/6工程标准规格:MS 611-15页码: 3/6(注3)热冲击说的是在150度的烘烤1小时,热冲击前/后的内识性基准时间要全部满足。
3.3氢脆性去除处理(1)淬火,回火的情况HRC35以上热处理的钢制品,举例来说bolt,screw,spring washer,spring clip,pin 此外机械机能部品适当的部品原则性的在电镀后,8小时以内氢脆性去除不做不可。
3.4增粘剂没有特别指定的情况4.4项进行弯曲试验,电镀薄膜不应剥离。
3.5电镀层成分锌镍合金电镀层的镍含量根据【表3】【表3】镍含量(wt%)备注锌-镍镀金12~18 高镍类型3.6重金属使用规则(1)部品或材料上납,镉,水银,6期镉不能使用。
(2)3价铬处理的产品根据ISO 3613:2000或者KS D ISO 3613分析,确认6价镉的有无。
4.试验方法4.1试验的全处理试料是用在适当的用材表面脱脂和清洁,涂装等已实施的情况试验前完全去除后进行试验。
4.2 厚度试验厚度试验是KS D 0246的显微镜单面试验方法,电解式试验方法,磁力式试验方法,显光X线式试验方法等来进行。
工程标准规格:MS 611-15页码: 6/64.3盐雾试验盐雾试验以KS D 9502(烟雾试验方法)为准。
SOCOPAC 65H用于飞机结构的 高效渗透型长效防腐化合物产品技术说明书最新认证AIR FRANCE标准FITS 93044-04AIRBUS AIMS 09.08.003 III类型Gr.2材质,IPS 09-08-003-01/ 维护应用法则 12ADB1/CML 15-009X AIRBUS CANADA A2MS 565-006 Type II (conform for A220)ALSTOM DTRF 150 611ATR条款05-027QBOEING标准BMS 3-35及3-29(NTO)(符合)BOMBARDIER标准BAMS 565-006 II类型(符合 - A220)COMAC标准CMS-CT-503(符合)DASSAULT AVIATION标准DGQT 1.7.0.0103 Rev ADGA (French Army)识别和使用说明书4214号/航空用资质证书177号EADS CASA Z11505EMBRAER MEP 10-063 (Code E1281491 & Code E7431096)ROLLS-ROYCE标准oMat 1082SAFRAN AIRCRAFT ENGINES标准DMR 75-621(formerly SNECMA)SAFRAN HELICOPTER ENGINES标准CCT 00706(formerly TURBOMECA)SNCF (French Railways)STM 801Viking Air VAMS 565-006 Type I,II,IV防腐化合物,可隔离水分,为持久提供防腐蚀保护。
可广泛用于各种涂层或金属表面。
其主要应用是在航空、铁路和汽车工业中保护表面、空心结构物体、框架等。
SOCOPAC 65H在降低与腐蚀有关的维护费用方面非常有效;它具有绝佳的驱水性和长效的防腐保护。
这种性能的结合有助于提高材料的寿命和可靠性,保护结构,保持新材料的外观和质量。
Power Distribution ControllersISL6115, ISL6116, ISL6117, ISL6120This family of fully featured hot swap power controllers targets applications in the +2.5V to +12V range. The ISL6115 is for +12V control, the ISL6116 for +5V , the ISL6117 for +3.3V and the ISL6120 for +2.5V control applications. Each has a hard wired undervoltage (UV) monitoring and reporting threshold level approximately 80% of the aforementioned voltage.The ISL6115 has an integrated charge pump allowing control of up to +16V rails using an external N-Channel MOSFET whereas the other devices utilize the +12V bias voltage to fully enhance the N-Channel pass FET . All ICs feature programmable overcurrent (OC)detection, current regulation (CR) with time delay to latch-off and soft-start.The current regulation level is set by 2 externalresistors; R ISET sets the CR Vth and the other is a low ohmic sense element across, which the CR Vth is developed. The CR duration is set by an external capacitor on the CTIM pin, which is charged with a 20µA current once the CR Vth level is reached. If the voltage on the CTIM capacitor reaches 1.9V the IC then quickly pulls down the GATE output latching off the pass FET .This family although designed for high side switch control the ISL6116, ISL6117, ISL6120 can also be used in a low side configuration for control of much higher voltage potentials.Features•HOT SWAP Single Power Distribution Control(ISL6115 for +12V , ISL6116 for +5V , ISL6117 for +3.3V and ISL6120 for +2.5V)•Overcurrent Fault Isolation•Programmable Current Regulation Level •Programmable Current Regulation Time to Latch-Off •Rail-to-Rail Common Mode Input Voltage Range (ISL6115)•Internal Charge Pump Allows the Use of N-Channel MOSFET for +12V Control (ISL6115)•Undervoltage and Overcurrent Latch Indicators •Adjustable Turn-On Ramp •Protection During Turn-On•Two Levels of Overcurrent Detection Provide Fast Response to Varying Fault Conditions •1µs Response Time to Dead Short •Pb-Free Available (RoHS Compliant)Applications•Power Distribution Control •Hot Plug Components and CircuitApplication Circuits- High Side ControllerApplication Two - Low Side Controller+12V-+PWRONLOADPGOODOC12348765ISL6115+V SUPPLY TO BE CONTROLLEDISL6116ISL6117ISL6120LOAD12V REG+VBUSOC12348765PWRONISL6116ISL6117ISL6120Simplified Block DiagramPin ConfigurationISL6115, ISL6116, ISL6117, ISL6120(8 LD SOIC)TOP VIEW+-I SETI SENGATEV SSV DDCTIMPGOODPWRONCLIMWOCLIMENABLEOC10µAFALLING EDGE DELAY18V+- V REF+- 1.86V12V+-RR SQN QENABLEPORV DD 8VRISING EDGE PULSE+-+- UV18V20µA7.5k+-+-20µAUV DISABLEISL61xx ISET ISEN GATE VSS12348765PWRON PGOOD CTIM VDDOrdering InformationPART NUMBERPART MARKINGTEMP. RANGE (°C)PACKAGE PKG.DWG. #ISL6115CB (Note 1)ISL61 15CB 0 to +858 Ld SOICM8.15ISL6115CBZA (Notes 1, 2)6115 CBZ 0 to +858 Ld SOIC (Pb-free)M8.15ISL6116CBZA (Notes 1, 2)6116 CBZ 0 to +858 Ld SOIC (Pb-free)M8.15ISL6117CBZA (Notes 1, 2)6117 CBZ 0 to +858 Ld SOIC (Pb-free)M8.15ISL6120CBZA (Notes 1, 2)6120 CBZ0 to +858 Ld SOIC (Pb-free)M8.15ISL6115EVAL1Z Evaluation PlatformNOTES:1.Please refer to TB347 for details on reel specifications. Add “-T” suffix for tape and reel.2.These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attachmaterials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.3.For Moisture Sensitivity Level (MSL), please see device information page for ISL6115. For more information on MSL please see techbrief TB363.Pin DescriptionsPIN #SYMBOL FUNCTION DESCRIPTION1ISET Current Set Connect to the low side of the current sense resistor through the current limiting set resistor.This pin functions as the current limit programming pin.2ISEN Current Sense Connect to the more positive end of sense resistor to measure the voltage drop across thisresistor.3GATE External FET GateDrive Pin Connect to the gate of the external N-Channel MOSFET. A capacitor from this node to ground sets the turn-on ramp. At turn-on this capacitor will be charged to V DD +5V (ISL6115) and to V DD (ISL6116, ISL6117, ISL6120) by a 10µA current source.4 VSS ChipReturn5VDD Chip Supply12V chip supply. This can be either connected directly to the +12V rail supplying theswitched load voltage or to a dedicated V SS +12V supply.6CTIM Current Limit TimingCapacitor Connect a capacitor from this pin to ground. This capacitor determines the time delay between an overcurrent event and chip output shutdown (current limit time-out). The duration of current limit time-out is equal to 93kΩ x C TIM.7 PGOOD Power Good Indicator Indicates that the voltage on the ISEN pin is satisfactory. PGOOD is driven by an opendrain N-Channel MOSFET and is pulled low when the output voltage (VISEN) is less thanthe UV level for the particular IC.8 PWRON Power-ON PWRON is used to control and reset the chip. The chip is enabled when PWRON pin isdriven high to a maximum of 5V or is left open. Do not drive this input >5V. After acurrent limit time-out, the chip is reset by a low level signal applied to this pin. This inputhas 20µA pull-up capability.Absolute Maximum Ratings T A = +25°C Thermal InformationV DD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +16V GATE . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to V DD + 8V ISEN, PGOOD, PWRON, CTIM, ISET . . . -0.3V to V DD + 0.3V ESD RatingHuman Body Model . . . . . . . . . . . . . . . . . . . . . . . . . 5kV Operating ConditionsV DD Supply Voltage Range (ISL6115). . . . . . . . +12V ±15% V DD Supply Voltage Range (ISL6116, 17, 20) . . +12V ±25% Temperature Range (T A). . . . . . . . . . . . . . . . 0°C to +85°C Thermal Resistance (Typical, Note 4)θJA (°C/W) 8 Ld SOIC Package. . . . . . . . . . . . . . . . . . .98 Maximum Junction Temperature (Plastic Package) . .+150°C Maximum Storage Temperature Range . . . -65°C to +150°C Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . .see link below /pbfree/Pb-FreeReflow.aspCAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.NOTES:4.θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech BriefTB379 for details.5.All voltages are relative to GND, unless otherwise specified.Electrical Specifications V DD = 12V, T A = T J = 0°C to +85°C, Unless Otherwise Specified. Temperature limitsestablished by characterization and are not production tested. Boldface limits apply over theoperating temperature range, -40°C to +85°C.PARAMETER SYMBOL TEST CONDITIONSMIN(Note 7)TYPMAX(Note 7)UNITSCURRENT CONTROLISET Current Source I ISET_ft18.52021.5µA ISET Current Source I ISET_pt T J = +15°C to +55°C192021µA Current Limit Amp Offset Voltage Vio_ft V ISET - V ISEN-606mV Current Limit Amp Offset Voltage Vio_pt V ISET - V ISEN, T J = +15°C to+55°C-202mV GATE DRIVEGATE Response Time to Severe OC pd_woc_amp V GATE to 10.8V-100-ns GATE Response Time to Overcurrent pd_oc_amp V GATE to 10.8V-600-ns GATE Turn-On Current I GATE V GATE to = 6V8.41011.6µA GATE Pull-Down Current OC_GATE_I_4V Overcurrent4575-mA GATE Pull-Down Current (Note 6)WOC_GATE_I_4V Severe Overcurrent0.50.8-A ISL6115 Undervoltage Threshold12V UV_VTH9.29.610V ISL6115 GATE High Voltage12VG GATE Voltage V DD + 4.5V V DD + 5V-V ISL6116 Undervoltage Threshold5V UV_VTH 4.0 4.35 4.5V ISL6117 Undervoltage Threshold3V UV_VTH 2.4 2.6 2.8V ISL6120 Undervoltage Threshold2V UV_VTH 1.8 1.85 1.9V ISL6116, ISL6117, ISL6120 GATEHigh VoltageVG GATE Voltage V DD - 1.5V V DD-V BIASV DD Supply Current I VDD-35mA V DD POR Rising Threshold V DD_POR_L2H VDD Low to High7.88.49V V DD POR Falling Threshold V DD_POR_H2L VDD High to Low7.58.18.7V V DD POR Threshold Hysteresis V DD_POR_HYS V DD_POR_L2H - V DD_POR_H2L0.10.30.6V Maximum PWRON Pull-Up Voltage PWRN_PUV Maximum External Pull-upVoltage-5-VDescription and OperationThe members of this IC family are single power supply distribution controllers for generic hot swapapplications across the +2.5V to +12V supply range. The ISL6115 is targeted for +12V switchingapplications whereas the ISL6116 is targeted for +5V , the ISL6117 for +3.3V and the ISL6120 for +2.5V applications. Each IC has a hardwired undervoltage (UV) threshold level approximately 17% lower than the stated voltages.These ICs feature a highly accurate programmable current regulation (CR) level with programmable time delay to latch-off, and programmable soft-start turnHon ramp all set with a minimum of external passive components. The ICs also include severe OC protection that immediately shuts down the MOSFET switch should a rapid load current transient such as with a dead short cause the CR Vth to exceed the programmed level by 150mV . Additionally, the ICs have a UV indicator and an OC latch indicator . The functionality of the PGOOD feature is enabled once the IC is biased, monitoring and reporting any UV condition on the ISEN pin.Upon initial power-up, the IC can either isolate the voltage supply from the load by holding the external N-Channel MOSFET switch off or apply the supply rail voltage directly to the load for true hot swap capability. The PWRON pin must be pulled low for the device to isolate the power supply from the load by holding the external N-Channel MOSFET off. With the PWRON pin held high or floating the IC will be in true hot swap mode. In both cases the IC turns on in a soft-start mode protecting the supply rail from sudden in-rush current.At turn-on, the external gate capacitor of the N-Channel MOSFET is charged with a 10µA current source resulting in a programmable ramp (soft-start turn-on). The internal ISL6115 charge pump supplies the gate drive for the 12V supply switch driving that gate to ~V DD +5V , for the other three ICs the gate drive voltage is limited to the chip bias voltage, VDD.Load current passes through the external current sense resistor . When the voltage across the sense resistor exceeds the user programmed CR voltage threshold value, (see T able 1 for R ISET programming resistor value and resulting nominal currentregulation threshold voltage, V CR ) the controller enters its current regulation mode. At this time, the time-out capacitor , on CTIM pin is charged with a 20µA current source and the controller enters the current limit time to latch-off period. The length of the current limit time to latch-off duration is set by the value of a single external capacitor (see T able 2) for C TIM capacitor value and resulting nominal current limited time-out to latch-off duration placed from the CTIM pin (pin 6) to ground. The programmed current level is held until either the OC event passes or the time-out period expires. If the former is the case then the N-Channel MOSFET is fully enhanced and the C TIM capacitor is discharged. Once C TIM charges to 1.87V signaling that the time-out period has expired, an internal latch is set whereby the FET gate is quickly pulled to 0V turning off the N-Channel MOSFET switch, isolating the faulty load.PWRON Pull-Up Voltage PWRN_V PWRON Pin Open2.73.2-V PWRON Rising Threshold PWR_Vth 1.4 1.7 2.0V PWRON Hysteresis PWR_hys 130170250mV PWRON Pull-Up CurrentPWRN_I91725µACURRENT REGULATION DURATION/POWER GOOD C TIM Charging CurrentC TIM _ichg0V CTIM = 0V162023µA C TIM Fault Pull-Up Current (Note 6)-20-mA Current Limit Time-Out Threshold VoltageC TIM _Vth CTIM Voltage 1.3 1.8 2.3V Power Good Pull Down Current PG_IpdV OUT = 0.5V-8-mANOTES:6.Limits established by characterization and are not production tested.7.Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified.Electrical SpecificationsV DD = 12V , T A = T J = 0°C to +85°C, Unless Otherwise Specified. Temperature limitsestablished by characterization and are not production tested. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)PARAMETERSYMBOL TEST CONDITIONS MIN (Note 7)TYP MAX(Note 7)UNITSThis IC responds to a severe overcurrent load (defined as a voltage across the sense resistor >150mV over the OC Vth set point) by immediately driving theN-Channel MOSFET gate to 0V in about 10µs. The gate voltage is then slowly ramped up turning on theN-Channel MOSFET to the programmed current regulation level; this is the start of the time-out period. Upon a UV condition, the PGOOD signal will pull low when tied high through a resistor to the logic or VDD supply. This pin is a UV fault indicator. For an OC latch-off indication, monitor CTIM, pin 6. This pin will rise rapidly from 1.9V to VDD once the time-out period expires.See Figures 12 through 16 for waveforms relevant to text.The IC is reset after an OC latch-off condition by a low level on the PWRON pin and is turned on by the PWRON pin being driven high.Application Considerations Design applications where the CR Vth is set extremely low (25mV or less), there is a two-fold risk to consider.•There is the susceptibility to noise influencing the absolute CR Vth value. This can be addressed with a 100pF capacitor across the R SENSE resistor.•Due to common mode limitations of the overcurrent comparator, the voltage on the ISET pin must be 20mV above the IC ground either initially (from I SET*R SET) or before C TIM reaches time-out (from gate charge-up). If this does not happen, the IC may incorrectly report overcurrent fault at start-up when there is no fault. Circuits with high load capacitance and initially low load current are susceptible to this type of unexpected behavior.Do not signal nor pull-up the PWRON input to > 5V. Exceeding 6V on this pin will cause the internal charge pump to malfunction.During the soft-start and the time-out delay duration with the IC in its current limit mode, the V GS of the external N-Channel MOSFET is reduced driving the MOSFET switch into a (linear region) high r DS(ON) state. Strike a balance between the CR limit and the timing requirements to avoid periods when the external N-Channel MOSFETs may be damaged or destroyed due to excessive internal power dissipation. Refer to the MOSFET SOA information in the manufacturer’s data sheet.When driving particularly large capacitive loads a longer soft-start time to prevent current regulation upon charging and a short CR time may offer the best application solution relative to reliability and FET MTF. Physical layout of R SENSE resistor is critical to avoid the possibility of false overcurrent occurrences. Ideally, trace routing between the R SENSE resistors and the IC is as direct and as short as possible with zero current in the sense lines (see Figure 1).. Using the ISL6116 as a -48V Low Side Hot Swap Power ControllerT o supply the required V DD, it is necessary to maintain the chip supply 10V to 16V above the -48V bus. This may be accomplished with a suitable regulator between the voltage rail and pin 5 (VDD). By using a regulator, the designer may ignore the bus voltage variations. However, a low-cost alternative is to use a Zener diode (see Figure 2 for typical 5A load control); this option is detailed in the following.Note that in this configuration the PGOOD feature (pin7) is not operational as the I SEN pin voltage is always < UV threshold.See Figures 17 through 20 for waveforms relevant to -48V and other high voltage applications.TABLE 1.R ISET PROGRAMMING RESISTOR VALUER ISET RESISTOR NOMINAL CR VTH10kΩ200mV4.99kΩ100mV2.5kΩ50mV750Ω15mV NOTE:Nominal Vth = R ISET x 20µA.TABLE 2.C TIM CAPACITOR VALUEC TIM CAPACITOR NOMINAL CURRENT LIMITEDPERIOD0.022µF2ms0.047µF 4.4ms0.1µF9.3msNOTE:Nominal time-out period = C TIM x 93kΩ.CORRECTTO ISEN ANDCURRENTSENSE RESISTORINCORRECTFIGURE 1.SENSE RESISTOR PCB LAYOUTR ISETBiasing the ISL6116T able 3 gives typical component values for biasing the ISL6116 in a ±48V application. The formulas andcalculations deriving these values are also shown in the following equations.When using the ISL6116 to control -48V , a Zener diode may be used to provide the +12V bias to the chip. If a Zener is used then a current limit resistor should also be used. Several items must be taken into account when choosing values for the current limit resistor (R CL ) and Zener Diode (DD1):•The variation of the V BUS (in this case, -48V nominal)•The chip supply current needs for all functional conditions •The power rating of R CL .•The current rating of DD1FormulasSizing R CL is expressed in Equation 1:Power Rating of R CL is expressed in Equation 2:DD1 current rating is expressed in Equation 3:Example:A typical -48V supply may vary from -36 to -72V . Therefore:V BUS,MAX = -72V V BUS,MIN = -36V I CHIP = 15mA (Max)Sizing R CL is expressed in Equation 4:Power rating of R CL is expressed in Equation 5:DD1 current rating is expressed in Equation 6:TABLE 3.TYPICAL VALUES FOR A -48V HOT SWAPAPPLICATION SYMBOL PARAMETERR CL 1.58k Ω, 1WDD112V Zener Diode, 50mA Reverse CurrentV BUSLOAD12348765ISL6116PWRONNCFIGURE 2.TYPICAL 5A LOAD CONTROL-48VR CL DD112V1.58k Ω1W0.01µF0.047µF1.47k Ω0.0051%0.001µF2k Ω1%R CL V BUS MIN ()12–I CHIP------------------------------------------=(EQ. 1)(EQ. 2)P RCL I C V BUS MAX ()12–()=(EQ. 3)I DD1V BUS MAX ()12–()R CL-------------------------------------------------=(EQ. 4)R CL V BUS MIN ()12–()I C-----------------------------------------------=R CL 3612–0.015------------------=R CL 16k ΩTypicalValue 1.58k Ω=[]=(EQ. 5)P RCL I C V BUS MAX ()12–()=P RCL 0.015()7212–()=P RCL 0.9W TypicalValue 1W =[]=(EQ. 6)I DD1V BUS MAX ()12–()R CL -------------------------------------------------=I DD17212–()1.58k Ω-----------------------=I DD138mA TypicalValue 12Vrating, 50mA reverse current =[]=Typical Performance CurvesFIGURE 3.V DD BIAS CURRENT FIGURE 4.I SET SOURCE CURRENTFIGURE 5.C TIM CURRENT SOURCEFIGURE 6.C TIM OC VOLTAGE THRESHOLDFIGURE 7.ISL6115, ISL6116 UV THRESHOLDFIGURE 8.ISL6117, ISL6120 UV THRESHOLD4.54.03.53.02.52.020305080100TEMPERATURE (°C)5.0S U P P L Y C U R R E N T (m A )104060709020.2TEMPERATURE (°C)I S E T C U R R E N T (µA )020305080100104060709020.019.019.219.419.619.820.5020.3220.0019.66C T I M = 0V , C U R R E N T S O U R C E (µA )TEMPERATURE (°C)20305080100104060709019.5020.1619.82CTIM - 0V1.891.881.871.861.851.83C T I M O C V O L T A G E T H R E S H O LD (V )TEMPERATURE (°C)2030508010010406070901.84TEMPERATURE (°C)I S L 6115, 12V U V T H R E S H O L D (V )203050801001040607090I S L 6116, 5V U V T H R E S H O L D (V )9.769.749.754.374.354.36ISL6116ISL6115TEMPERATURE (°C)I S L 6117, 3.3V U V T H R E S H O L D (V )203050801001040607090I S L 6120, 2.5V U V T H R E S H O L D (V )2.702.651.8601.8501.855ISL61172.60ISL6120FIGURE 9.GATE CHARGE CURRENT FIGURE 10.GATE DRIVE VOLTAGE, V DD = 12VFIGURE 11.POWER-ON RESET VOLTAGE THRESHOLD FIGURE 12.ISL6115 +12V TURN-ONFIGURE 13.ISL6116 +5V TURN-ON FIGURE 14.ISL6115 ‘LOW’ OVERCURRENT RESPONSETEMPERATURE (°C)203050801001040607090G A T E C H A R G E C U R R E N T (µA )9.69.79.89.910.010.110.217.20017.18317.16617.15017.13317.10012.0011.9911.9811.9711.9611.9511.94TEMPERATURE (°C)I S L 6116,17,20 G A T E D R I V E (V )I S L 6115, G A T E D R I V E (V )20305080100104060709017.116P O W E R O N R E S E T (V )TEMPERATURE (°C)2030508010010406070908.08.58.18.28.38.4VDD LO TO HIVDD HI TO LO5V/DIV 0.5A/DIV 1ms/DIVGATE VOUTPWRONIOUTPGOOD2V/DIV 0.5A/DIV 1ms/DIVGATEVOUTPWRONIOUTPGOOD5V/DIV 0.5A/DIV 1ms/DIVCTIMIOUTPGOODVOUTGATEFIGURE 15.ISL6115 ‘HIGH’ OVERCURRENT RESPONSE FIGURE 16.ISL6116 ‘HIGH’ OVERCURRENT RESPONSEFIGURE 17.+50V LOW SIDE SWITCHINGCGATE =100pF FIGURE 18.-50V LOW SIDE SWITCHINGCGATE =1000pFFIGURE 19.+350V LOW SIDE SWITCHINGCGATE =100pF FIGURE 20.+350V LOW SIDE SWITCHINGCGATE =1000pF5V/DIV 0.5A/DIV 1ms/DIVI OUTGATEC TIMPGOODV OUT I OUTC TIMGATE V OUT PGOOD2V/DIV 0.5A/DIV 1ms/DIV5ms/DIVVDRAIN 10V/DIV +50VPWRON 5V/DIV0V 0VVGATE 5V/DIVI OUT 1A/DIV5ms/DIVI OUT 1A/DIV0V0VVGATE 5V/DIVEN 5V/DIV-50VVDRAIN 10V/DIV 2ms/DIV+350V0VI OUT 1A/DIVVDRAIN 50V/DIVVGATE 5V/DIVPWRON 5V/DIV2ms/DIV+350V0VI OUT 1A/DIVPWRON 5V/DIVVGATE 5V/DIVVDRAIN 50V/DIVISL6115EVAL1Z BoardThe ISL6115EVAL1Z is default provided as a +12V high side switch controller with the CR level set at ~1.5A. See Figure 21 for ISL6115EVAL1Z schematic and T able 4 for BOM. Bias and load connection points are provided along with test points for each IC pin. With J1 installed the ISL6115 will be biased from the +12V supply (V IN ) being switched. Connect the load to VLOAD+. PWRON pin pulls high internally enabling the ISL6115 if not driven low via PWRON test point or J2.With R 3 = 750Ω the CR Vth is set to 15mV and with the 10m Ω sense resistor (R 1) the ISL6115EVAL1Z has a nominal CR level of 1.5A. The 0.01µF delay time to latch-off capacitor results in a nominal 1ms before latch-off of output after an OC event.Also included with the ISL6115EVAL1Z board are one each of the ISL6116, ISL6117 and ISL6120 for evaluation of those ICs in a high side application.Remove J1 and provide a separate +12V IC bias supply via V BIAS test point.Reconfiguring the ISL6115EVAL1Z board for a higher CR level can be done by changing the R SENSE and/or R ISET resistor values as the provided FET is rated for a much higher current.ISL6116EVAL1 BoardThe ISL6116EVAL1 is default configured as a negative voltage low side switch controller with a ~2.4A CR level. See Figure 22 for ISL6116EVAL1 schematic and T able 4 for BOM and component description. This basic configuration is capable of controlling both larger positive or negative potential voltages with minimal changes.Bias and load connection points are provided inaddition to test points, TP1 to TP8 for each IC pin. The terminals, J1 and J4 are for the bus voltage and return, respectively, with the more negative potential being connected to J4. With the load between terminals J2 and J3 the board is now configured for evaluation. The device is enabled through LOGIN, TP9 with a TTL signal. ISL6116EVAL1 includes a level shifting circuit with an opto-coupling device for the PWRON input so that standard TTL logic can be translated to the -V reference for chip control.When controlling a positive voltage, PWRON can be accessed at TP8.The ISL6116EVAL1 is provided with a high voltage linear regulator for convenience to provide chip bias from ±24V to ±350V . This can be removed andreplaced with the zener and resistor bias scheme as discussed earlier . High voltage regulators and power discrete devices are no longer available from Intersil but can be purchased from other semiconductor manufacturers.Reconfiguring the ISL6116EVAL1 board for a higher CR level can be done by changing the R SENSE and R ISET resistor values as the provided FET is 75A rated. If evaluation at >60V , an alternate FET must be chosen with an adequate BV DSS .FIGURE 21.ISL6115EVAL1Z HIGH SIDE SWITCHAPPLICATION FIGURE 22.ISL6116EVAL1 NEGATIVE VOLTAGE LOWSIDE CONTROLLER56874321ISL6115U1R3R2C1C3R4J1V BIASVIN+12V C2R1PWRON V BIASAGNDVLOAD+U2VOUTC TIMJ2PGOOD56874321ISL6116Q2R2R7C1R5D2C3R1LOADDD13.3V+VBUS-VBUSOT1R9R8HI J2J3 LOR6R11R10ONOFF 0V to U1J1J4PWRONTP8LOGIN TP9R G 15VTABLE 4.BILL OF MATERIALS, ISL6115EVAL1Z, ISL6116EVAL1COMPONENTDESIGNATOR COMPONENT NAME COMPONENT DESCRIPTIONISL6115EVAL1ZU1N-FET11.5mΩ, 30V, 11.5A Logic Level N-Channel Power MOSFET or equivalent R1Load Current Sense Resistor WSL-2512 10mΩ 1W Metal Strip ResistorR2Gate Stability Resistor20Ω 0603 Chip Resistor750Ω 0603 Chip Resistor (Vth = 15mV)R3Overcurrent Voltage Threshold SetResistorR4PGOOD Pull up Resistor10kΩ 0603 Chip ResistorC1Gate Timing Capacitor0.001µF 0402 Chip Capacitor (<2ms)C2IC Decoupling Capacitor0.1µF 0402 Chip CapacitorC3Time Delay Set Capacitor0.01µF 0402 Chip Capacitor (1ms)J1Bias Voltage Selection Jumper Install if switched rail voltage is = +12V. Remove and provide separate+12V bias voltage to U2 via V BIAS if ISL6116, ISL6117 or ISL6120 isbeing evaluated.J2PWRON Disable Install J2 to disable U2. Connects PWRON to GND.ISL6116EVAL1Q2N-FET10mΩ, 80V, 75A N-Channel Power MOSFET or equivalentR1Load Current Sense Resistor WSL-2512 10mΩ 1W Metal Strip Resistor1.21kΩ 805 Chip Resistor (Vth = 24mV)R2Overcurrent Voltage Threshold SetResistorR7Gate to Drain Resistor2kΩ 805 Chip ResistorC1Gate Timing Capacitor0.001µF 805 Chip Capacitor (<2ms)C3IC Decoupling Capacitor0.1µF 805 Chip CapacitorR5LED Series Resistors 2.32kΩ 805 Chip ResistorD2Fault Indicating LEDs Low Current Red SMD LEDDD1Fault Voltage Dropping Diode 3.3V Zener Diode, SOT-23 SMD 350mWOT1PWRON Level Shifting Opto-Coupler PS2801-1 NECR8Level Shifting Bias Resistor 2.32kΩ 805 Chip ResistorR9Level Shifting Bias Resistor 1.18kΩ 805 Chip ResistorR10Level Shifting Bias Resistor200Ω 805 Chip ResistorRG1HIP5600IS High Voltage Linear RegulatorR6Linear Regulator RF1 1.78kΩ 805 Chip ResistorR11Linear Regulator RF215kΩ 805 Chip ResistorIntersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as notedin the quality certifications found at /design/qualityIntersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.For information regarding Intersil Corporation and its products, see For additional products, see /product_treeSmall Outline Plastic Packages (SOIC)NOTES:1.Symbols are defined in the “MO Series Symbol List” in Sec-tion2.2 of Publication Number 95.2.Dimensioning and tolerancing per ANSI Y14.5M -1982.3.Dimension “D” does not include mold flash, protrusions orgate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.4.Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.5.The chamfer on the body is optional. If it is not present, a vi-sual index feature must be located within the crosshatched area.6.“L” is the length of terminal for soldering to a substrate.7.“N” is the number of terminal positions.8.Terminal numbers are shown for reference only.9.The lead width “B”, as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maxi-mum value of 0.61mm (0.024 inch).10.Controlling dimension:MILLIMETER. Converted inch dimen-sions are not necessarily exact.M8.15 (JEDEC MS-012-AA ISSUE C)8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGESYMBOLINCHESMILLIMETERS NOTESMIN MAX MIN MAX A0.05320.0688 1.35 1.75-A10.00400.00980.100.25-B 0.0130.0200.330.519C 0.00750.00980.190.25-D 0.18900.1968 4.80 5.003E 0.14970.1574 3.80 4.004e 0.050 BSC 1.27 BSC-H0.22840.2440 5.80 6.20-h 0.00990.01960.250.505L 0.0160.0500.401.276N887a0°8°0°8°-Rev. 1 6/05。
238:0负载旋转 1 上电239新的回参考点或调整仅在必要时0 立即开始 241激活回转轴模数变换 1 上电242模数范围回转轴360.000 degrees上电250激活直接测量系统0 上电318:0动态滞后量监控公差36.000 degrees立即开始 320定位监控时间1000.0 ms立即开始 321定位窗口 1.440 degrees立即开始 325静止状态监控时间400.0 ms立即开始 326静止状态窗口7.200 degrees立即开始 607模拟额定值KL56.x/14.x0 立即开始 608逆转KL56.x/14.x0 立即开始 609KL56.x/14.x的滤波时间0.0 ms立即开始 610KL56.x/14.x漂移/偏置补偿0.0 mV(pk)立即开始 612模拟额定值KL24.x/20.x0 立即开始 613逆转KL24.x/20.x0 立即开始 614KL24.x/20.x的滤波时间0.0 ms立即开始 615KL24.x/20.x漂移/偏置补偿0.0 mV(pk)立即开始 618标准化电压转速额定值9.00 V(pk)立即开始 619标准化电压力矩额定值10.00 V(pk)立即开始 620标准化电压力矩减小/功率降低10.00 V(pk)立即开始 623转速实际值DAU标准化100.0 %立即开始 624电机负载DAU标准化100.0 %立即开始 625扭矩额定值DAU标准化100.0 %立即开始 626信号编号模拟输出KL75.x/1534 立即开始 627位移因数模拟输出KL75.x/150 立即开始 628偏置模拟输出KL75.x/150 立即开始 629段地址模拟输出KL75.x/150 立即开始893WSG-零脉冲偏置0.00 degrees上电894WSG输入信号形状0 上电915:0PZD-额定值分配PROFIBUS0 立即开始 916:0PZD-实际值分配PROFIBUS0 立即开始 918PROFIBUS-用户地址13 上电922电文选择PROFIBUS105 上电1000电流控制器周期 4 31.25μs上电1001速度控制器周期 4 31.25μs上电1004配置结构0100h Bits->F4上电1005IM编码器线数2048 上电1006IM编码器代码编号 2 上电1007DM编码器线数0 上电1008IM编码器相位故障补偿0.00 degrees立即开始1009位置控制周期32 31.25μs上电1010插补脉冲128 31.25μs上电1011IM实际值采集配置0000h Bits->F4上电1012功能开关1105h Bits->F4立即开始1014V/f方式有效0 上电1015激活PE MSD0 上电1016变换角度偏置0.000 degrees上电1018IM旋转变压器极对数0 上电1019电流转子位置标志12.0 %立即开始1020转子位置识别最大扭转10.00 degrees立即开始1021IM绝对值编码器多圈分辨率0 上电1022IM绝对值编码器单圈分辨率0 上电1025IM序列号低位部分0000h 上电1026IM序列号高位部分0000h 上电1027IM编码器配置0000h Bits->F4上电1113力矩常数 1.37 Nm/A上电1114电压常数87.50 V(rms)上电1115电枢电阻0.650 欧姆上电1116电枢电感7.70 mH上电1117电机转动惯量0.001510 kgm2立即开始1118电机零速度电流8.00 A(rms)上电1120电流控制器的P增益29.2 V/A立即开始1121电流控制器复位时间2000 μs立即开始1122电机限定电流21.00 A(rms)上电1123:0负载惯性矩0.000000 kgm2立即开始1124对称参考模式电流控制0.50 立即开始1125V/f 模式的启动时间1 5.00 s立即开始1128最佳转子起动角90.0 degrees立即开始1136电机零速度电流15.70 A(rms)立即开始1142速度弱磁阀值4857 rev/min立即开始1145故障力矩削减系数75 %立即开始1146电机最大速度6600 rev/min上电1147速度限制3300 rev/min立即开始1149磁阻力矩常数0.00 mH立即开始1161DC母线-固定电压0 V(pk)立即开始1162最小DC母线电压0 V(pk)立即开始1163最大DC母线电压800 V(pk)立即开始1180电流下限调整 4.00 %立即开始1181电流上限调整100.00 %立即开始1182电流控制器匹配系数45.00 %立即开始1200:0电流设定的滤波器数量 3 立即开始1201:0电流设定滤波器类型0006h Bits->F4立即开始1202:0电流设定滤波器1自然频率2000.00 Hz立即开始1203:0电流设定滤波器1的阻尼0.70 立即开始1204:0电流设定点滤波器2自然频率0.00 Hz立即开始1205:0电流设定滤波器2的阻尼 1.00 立即开始1206:0电流设定点滤波器3自然频率0.00 Hz立即开始1207:0电流设定滤波器3的阻尼 1.00 立即开始1208:0电流设定点滤波器4自然频率0.00 Hz立即开始1209:0速度设定滤波器4的阻尼 1.00 立即开始1210:0电流设定滤波器1截止频率3500.00 Hz立即开始1211:0电流设定滤波器1带宽500.00 Hz立即开始1212:0计数器带宽电流额定值滤波器10.00 Hz立即开始1213:0电流设定滤波器2截止频率656.25 Hz立即开始1214:0电流设定滤波器2带宽328.13 Hz立即开始1215:0计数器带宽电流额定值滤波器20.00 Hz立即开始1216:0电流设定滤波器3截止频率1214.84 Hz立即开始1217:0电流设定滤波器3带宽607.42 Hz立即开始1218:0计数器带宽电流额定值滤波器30.00 Hz立即开始1219:0电流设定滤波器4截止频率3500.00 Hz立即开始1220:0电流设定滤波器4带宽500.00 Hz立即开始1221:0计数器带宽电流额定值滤波器40.00 Hz立即开始1222:0电流额定值滤波器1的BSP固有频率100.00 %立即开始1223:0电流额定值滤波器2的BSP固有频率100.00 %立即开始1224:0电流额定值滤波器3的BSP固有频率100.00 %立即开始1225:0电流额定值滤波器4的BSP固有频率100.00 %立即开始1230:0 1. 第一力矩限定值350.0 %立即开始1233:0再生限定100.0 %立即开始1235:0 1. 第一功率限定值350.0 %立即开始1237再生的最大输出100.00 kW立即开始1240:0偏置力矩额定值(转速调节的)0.000 Nm立即开始1241:0标准化力矩额定值21.92 Nm立即开始1242:0偏置力矩额定值(力矩控制的)0.000 Nm立即开始1243:0标准化力矩减小/功率降低100.0 %立即开始1244力矩减小/功率降低特性曲线类型。
ipc-611配置标准
IPC-611配置标准为一种工业级嵌入式计算机,主要应用于工业自动化控制、数据采集等领域。
其配置包括以下内容:
处理器:搭载英特尔Bay Trail-I处理器,低功耗,高性能,主频可达1.83GHz;
内存:最大支持4GB DDR3L SDRAM;
存储:搭载32GB eMMC存储器,并支持SATA接口连接2.5英寸硬盘;
接口:具备多种接口,包括1个VGA、1个HDMI、1个RS-
232/422/485、4个USB2.0、2个千兆网口及音频接口等;
扩展性:尺寸紧凑,支持多种扩展,包括Mini PCIe接口、SIM 卡插槽和SD卡插槽,可灵活配置;
操作系统:支持Windows 7/8.1/10、Linux等操作系统。
以上为IPC-611配置标准的主要内容,具体配置可根据实际需求定制。
Ethernet module for use with C440, XTOE, ZEB, S611 and as Stand-alone I/O(Modbus TCP & EtherNet/IP)InstallationThe Ethernet module is designed to be used in industrial applications and installed in accordance with this document. The device is intended for use in clean, dry environments.Mount the moduleThe device has both #10 screw mounting feet and a 35mm din rail spring mount feature.To mount the adapter to a din rail place the top of the device on the rail first then apply gentle down-ward force while pushing the device flat against the din rail.Ethernet Port ConnectionsConnect the Ethernet cable to one of the Ethernet ports. This adapter has an internal embedded switch which provides two Ethernet ports. The two ports provide the ability to create a linear or ring configuration. In the star configuration either port can be used.This adapter supports Modbus TCP, EtherNet/IP and HTTP.Set the IP AddressThe IP address is selected using the DIP switches. See table one for DIP switch behavior.T able 1. DIP Switch SettingsDIP switchsetting Behavior0Use the static IP address of 192.168.1.2541 to 253Combine the upper three octets stored inNVMemory with the DIP switch setting.Example: If the static IP address programmedfrom the network is100.100.100.0 and the DIPswitch is set to 5, the fi nal IP address will be100.100.100.5.254Use the full IP address stored in NVMemory.The default NVMemory value is192.168.1.254.255DHCP is used to defi ne the IP address.(Default)Web Page AccessTo configure or monitor the device through a web browser, type the devices IP address into the web browser address bar.Standalone IOVendor ID0x44 (68d)Device Type0x07 (7d) IOProduct Code0x112A - 24Vdc IO0x112B - 120Vac IOC440 Solid State OverloadVendor ID0x44 (68d)Device Type0x03 (3d) OverloadProduct Code0x1130 - 24Vdc IO0x1131 - 120Vac IOS611 SoftstarterVendor ID0x44 (68d)Device Type0x17 (23d) SoftstarterProduct Code0x1133 - 24Vdc IO0x1134 - 120Vac IO2 Instruction Leafl et IL04209009E February 2012Ethernet module for use with C440, XTOE, ZEB,S611 and as Stand-alone I/O(Modbus T CP & EtherNet/IP)EATON CORPORATION Default EtherNet/IP AssembliesTable 2. EtherNet/IP - C440 Default AssembliesDefault Input Assembly 0x78(120d)Word Data 0Device status 1Latched Fault Bits 2RMS Current Avg 3Thermal Mem%Default Output Assembly 0x69 (105d)Byte Data Control Byte Bit Bit Definition 0Output11Output22Fault Reset 3Reserved 4Reserved 5Remote Trip 6-7Reserved*See Manual for full CIP Object Model.Table 3. EtherNet/IP - S611 Default AssemblyDefault Input Assembly 0x79 (121d)Word Data0Device Status 1RMS Current Avg 2RMS Voltage Avg 3Overload Thermal Pile Default Output Assembly 0x6A (106d)Byte Data 0Control Byte Bit Bit Definition 0Run 11Permissive 2Fault Reset 3-5Reserved 6Out 17Out 2Modbus Register Summary Table 4. Modbus Registers - Adapter IOModbus RegisterR/WDescription1R Adapter Inputs 101R/WAdapter Relay Outputs** See Manual for full Modbus register map.Table 5. Modbus Registers - C440Modbus Register R/W Description 300RMotor State: 0 = Stopped 1 = Running 2 = Tripped 301R Phase A RMS Current 302R Phase B RMS Current 303R Phase C RMS Current 304R Average RMS Current 305R Thermal Memory Percentage 332R/WCommand Register: Bit 0 = 1 -> Trip Bit 1 = 1 -> Reset** See Manual for full Modbus register map.Table 6. Modbus Registers - S611Modbus Register R/W Description 300R Motor Control Status 301R Current Scale Factor 302R Phase A RMS Current 303R Phase B RMS Current 304R Phase C RMS Current 305R Average RMS Current 306R Phase A RMS Voltage (L1-L2)307R Phase A RMS Voltage (L2-L3)308R Phase A RMS Voltage (L3-L1)309R Average RMS Voltage 310R Motor Power (KW)314R Motor Thermal Capacity %400R/WMotor Control** See Manual for full Modbus register map.3Instruction Leafl et IL04209009EFebruary 2012Ethernet module for use with C440, XTOE, ZEB, S611 and as Stand-alone I/O(Modbus T CP & EtherNet/IP)EATON CORPORATION SourceFigure 2. C441V 24 Vdc Input Specifi cation - IsolatedRS485Pin 12EthernetFigure 3. C441V 24 Vdc input Specifi cation - Non-IsolatingT able 9. 24 Vdc InputsSpecificationValue Number of inputs 4Nominal voltage 24Vdc Nominal current 5 mATypeCurrent SinkingInput typeIEC 61131-2, type 1 digitalTable 7. EtherNet/IP - S611 Default AssemblyDefault Input Assembly 0x79 (121d)Word Data0Device Status 1RMS Current Avg 2RMS Voltage Avg 3Overload Thermal Pile Default Output Assembly 0x6A (106d)Byte Data 0Control Byte Bit Bit Definition 0Run 11Permissive 2Fault Reset 3-5Reserved 6Out 17Out 2*See Manual for full CIP Object Model.RS485EthernetFigure 1. C441U - 120 Vac Input Specifi cationT able 8. 120 Vac Inputs SpecificationValue Number of inputs 4Nominal voltage 120Vac Nominal current 15 mAType50/60 HzInput typeIEC 61131-2, type 1 digitalEaton CorporationElectrical Sector1000 Cherrington Parkway Moon Township, PA 15108 United States877-ETN-CARE (877-386-2273)© 2012 Eaton CorporationAll Rights ReservedPublication No. IL04209009E / Rev 005 February 2012PowerChain Management is a registered trademark of Eaton Corporation.All other trademarks are property of their respective owners.Instruction Leafl et IL04209009E January 2012Ethernet module for use with C440, XTOE, ZEB,S611 and as Stand-alone I/O(Modbus T CP & EtherNet/IP)CertificationsAgency certifications UL® 508cUL® (CSA® C22.2 No. 14)CE (low voltage directive)EtherNet/IP conformance tested T able 10. Environmental Ratings of the Module Description RatingTransportation and Storage Temperature-40°C to 85°C (-40°F to 185°F) Humidity5-95% non condensingOperating Temperature-20°C to 55°C (-4°F to 131°F)Humidity5-95% non condensingAltitude Above 6600 ft (2000m)Consult factoryShockIEC 60068-2-2715G any direction for 11 msVibrationIEC 60068-2-65-150 Hz, 3G, 0.42mm peak-to-peakPollutionDegree3T able 11. Module Electrical RequirementsDescription RequirementVoltage range18–30 VdcCurrent draw Approx. 50 mAotes:NFor use with Eaton UL Listed Power Supply Catalog Nos. PSS55A,PSS55B, PSS55C or PSS160E.Any UL Listed isolated power supply with a maximum of 30 Vdc output may be used, provided that a UL Listed or Recognized Fuse rated no more than 3 A maximum be installed.ReferenceC441/Standalone I/O Manual MN04201001E S611 Manual MN03902011E。
SIMODRIVE 611 universal_ “Speed/torque setpoint ”mod(e速度/扭矩设定点模式) :在这个模式下,模块主要用于闭环速度控制,开环扭矩控制_ ”Positioning ”mode:最大64 个定位点,各个点可以进行自由的参数定义,参数中除了点的编号,还包含有目标位置、加速度、速度、命令和使能电路在模块上具有以下接口:每个驱动具有两个模拟量接口(±10V );角度编码器接口;每个驱动有四个数字量输入和四个数字量输出;每个驱动有两个模拟量的输出;以下电机可以用在611U 驱动上:_ 1FK6, 1FT6 伺服电机,最大至140 Nm_ 1FE1 永磁同步电机_ 1PH 异步电机,最大至100 kW (1PH6, 1PH4, 1PH2, 1PH7)_ 不带编码器的异步电机_ 标准1LA 异步电机,最大至100 kW_ 1FN 直线电机X421 :信号终端,启动制约(常闭),脉冲使能(T663 )后打开,从端子663 取得反馈信号;AS1 和AS2 这个信号是电源模块所需要的,开始的时候常闭,保证电源模块上9和48端子接通,电源模块主开关吸合,提供DC600V 电源给驱动模块,当驱动模块脉冲使能后,再断开。
X431 :Terminals for supply and pulse enable (X431) 电源以及脉冲使能P24 X431.1 External power supply for digital outputs(+24 V)M24 X431.2 Reference for the external supply9 X431.3 Enable voltage(+24 V)663 X431.4 Pulse enable(+24 V)19 X431.5 Reference(Reference for all digital inputs) 如果使能信号的控制电压来自外部而不是来自9,则必须将此端子接地。
SIEMENS SIMODRIVE 611 伺服驱动系统故障诊断说明(11) 2012-02-04 13:28:40楼主614 对于电动机的迟滞停机(P1602/1603)原因: 电动机的温度(通过温度感应器KTY 84被感应出来并且通过电动机编码器电缆找到合适的模块)被越过的温度在P1602上比在P1603上的时间长.排除: 一避免一些迅速的一个接一个的加速和制动操作一电动机超载?一当驱动时,检查电动机的输出是否足够,或者用一个更有动力的电动机,可连接一个较高等级的电源部分一检查电动机数据,由于不正确的电动机数据,电流可能过高一检查温度感应器一检查电动机的风扇一检查电动机编码器电缆一电动机编码器的不完善一检查并有可能降低P1230或者P1235电动机的温度监控器失效,此时P1601的二进制数的第14位等于1对于线性化的电动机一检查电动机温度监控器的参数P1602(报警门槛,电动机的极限温度)等于120℃P1603(计时,电动机温度报警)等于240秒P1607(暂时关闭限定,电动机温度)等于155℃P1608(固定的温度)等于零℃当P1608等于零,此时温度感应是活性的当P1608大于零,此时固定温度是活性的一如果温度监控器是由一个额外的PLC独自实现的,那么固定的温度必须达到P1608(例如 :80℃).这样温度监控器将无效.一检查电动机的电源接头一在电源电缆末端处检查温度传感器耦合电缆的连接;在20℃时,大约580欧姆被测到一随着测量系统接头的撤走(X411),在20℃时编码器的13和25管脚之间大约有580欧姆一检查测量系统的接头是不是正确的插在驱动器(X411)上一为了驱动器的平行,仅有KTY可被连接一是否温度开关和温度传感器是串联的, (NC触点)的温度传感器可能被响应了,或者温度开关被损坏确认: 故障存储器重新置位响应停止: 参数化615 DM 编码器的限定频率被超出原因: 直接测量系统的速度实际值越出了编码器可允许的限定频率一不适当的编码器一P1007同编码器的脉冲数量不一致一编码器的不完善一不完善的编码器电缆或者不正确的保留一没有连接编码器电缆的防护体一不完善的控制模块排除: 一输入正确的编码器数据/替换编码器一检查编码器的脉冲数量(P1007)一正确保留编码器的电缆/替换一连接编码器电缆的防护体一降低输入速度的起始点一替换控制模块确认: 故障存储器重新置位响应停止: 参数化680 非法的电动机代码号码原因: 一个电动机的代码(P1102)被输入为没有提供的数据排除: 再次启动并且输入正确的电动机代码数(P1102)确认: 电源开启响应停止: 停止Ⅱ(SRM,SLM) ,停止Ⅰ(ARM)681 非法的电源部分的代码数:原因: 一个电源部分的代码(P1106)被输入为没有提供的数据排除: 一输入正确的电源模块的代码(P1106)一对于电源模块采用自动识别,升级固件确认: 电源启动响应停止: 停止Ⅱ(SRM,SLM) ,停止Ⅰ(ARM)682 在P\%U中非法的编码器代码数原因: 在P1006或P1036,一个编码器代码数被输入为没有提供的数据尽管编码器在P1036中没指定,但直接测量系统(P0250/P0879.12)是有活力的排除: 输入正确的编码器代码,或者在P1006(P1036)中为第三方的编码器(99)输入代码激活直接测量系统(P0250/P0870.12)确认: 电源启动响应停止: 停止Ⅱ(SRM,SLM) ,停止Ⅰ(ARM)683 首次启动(P\%)运算控制器的数据是不成功的原因: 首次启动中,一个错误在运算控制的数据中产生了.在失败的条件下,电流控制器,流量控制器以及速度控制器不能达到最优的赋值.排除: 从P1080中逐条读出错误并且消除错误.然后随着P1080=1再次启动运算控制数据重复这个操作,直到在P1080上没有错误显示.然后存入FEPROM并且完成电源的重起在P1080中的错误代码所提供的信息:一15 磁性电抗(P1141=0)一16 漏泄电抗(P1139/P1140)=0一17 旋转电动机频率(P1134)=0一18 转子电阻(P1138)=0一19 电动机瞬间惯性(P1117)=0一21 衰耗领域的极限速度(P11142)=0一22 电动机的静止电流(P1118)=0一23 最大电动机电流(P1104)和电动机恒定电流(P1118)的比例远大最大的扭矩限定(P1230)和动力限定(P1235)之间的比例一24 转动电动机的频率(P1134)和转动电动机速度(P1400)的比例是不准许的(成队数)确认: 电源启动响应停止: 停止Ⅱ(SRM,SLM) ,停止Ⅰ(ARM)703 无效的电流控制器循环原因: 在P1000中一个非法的值被输入排除: 在P1000中输入一个有效值对于P1000可允许的值对于单轴安置或输入速度起始点应为2(62.5us)在每次操作模式中应为4(125us)确认: 电源启动响应停止: 停止Ⅱ(SRM,SLM) ,停止Ⅰ(ARM)704 无效速度控制器循环原因: 在P1001中输入一个非法的值排除: 在P1001中输入一个有效的值对于P1001可允许的值为2(62.5us),4(125us),8(250us),16(500us)对于单轴操作,仅2(62.5us)是允许的值而且,P1001必须大于等于P1000.确认: 电源启动响应停止: 停止Ⅱ(SRM,SLM) ,停止Ⅰ(ARM)705 控制器循环的位置错误原因:在允许的界线范围外控制循环(P1009)被监控作用确定。
适用范围:全部适用工程标准页码:1/6制订人:材料技术分析组材料规范规格:MS 619-08标题:锌铝复合涂层目录1. 范围2. 类型和符号3. 质量4. 试验法5.指示法6. 其他EMS80020 内容变更2、3、5/5 2008年3月18日J.W.CHOIEMS60171 内容变更2、3/5 2006年8月17日M.S.CHOIEMS50425 内容变更全部2005年9月16日M.S.CHOIEMS50086 发布全部2005年2月21日M.S.CHOI SYM EO NO 修订说明修订页码修订日期修订人2005年2月21日制定参见:THJL-CP-2008-03-0054报告起草人(签名):J.W.CHOI2008年3月7日审核人(签名):B.G.JUNG2008年3月7日批准人(签名):J.M.KIM2008年3月7日文件来源见IPIS (ES/MS)管理系统工程标准规格:MS 619-08页码:2/61. 范围本规范详细规定了无铬锌铝复合涂层。
无铬锌铝复合涂层主要用于保护黑色金属材质的汽车部件(以下简称为“涂层”)。
2.类型和符号涂层的类型和符号规定见表1。
表1种类(注1)符号复合涂层表面涂层颜色适用部件涂层/烘烤涂层重量(g/dm2)厚度涂层/烘烤涂层重量(g/dm2)厚度类1 HZFC-A 2C2B 至少0.20 至少6.0μm - - - 银钢板制品等不允许进行喷砂处理的部件(包括小于1.0吨的部件)类3 HZFC-C 2C2B - - - 银大尺寸部件和对外观很重要的部件(即需托架作业的部件)类4 HZFC-D 2C2B 1C1B(注2)至少0.020 至少1.0μm银螺栓或螺母等五金件(即需扭矩管理的部件、需电镀防腐的部件、夹子和小托架)类6 HZFC-F 2C2B 2C2B 至少0.080 至少3.0μm 黑需托架作业的大尺寸部件和外观部件类7 HZFC-G 2C2B 2C2B 至少0.080 至少3.0μm 黑螺栓或螺母等五金件、夹子和小托架等(即有外部质量要求的部件)类8 HZFC-H 3C3B 至少0.30 至少9.0μm 1C1B 至少0.020 至少1.0μm银烧结的ABS车轮(不允许喷砂处理)类9 (注3)HZFC-K 1C1B 至少0.10 至少3.0μm1C1B 至少0.020 至少1.0μm银烧结的ABS车轮(注1)用本规范中的类4取代旧版规范中的类2(HZFC-B),用类7取代旧版规范中的类5(HZFC-E)。
适用范围:
全部适用
工程标准
页码:1/5
制成处:
材料技术研究组
材料规范规格编号:MS 611-15 标题:电子锌和锌合金电镀规格(三价铬)
目次
1. 适用范围
2. 种类和符号
3. 品质
4. 试验法
5. 标记
6. 其他
EMS50550 内识性变更全部05/12/09 崔再翁
EMS40166 PELEASED 全部2001.04.1 崔再翁符号EO 编号变更描述关联页改定日期制成者
制订日期:
1982年1月6日
参考资料:区
分
编写人:审核人:批准人:
文件保管处IPIS (ES/MS)管理系统职
责
担当W/G长组长
裁
决
研究员
崔再翁
05/12/06
承认
郑凡渠
05/12/06
首席
任钟代
05/12/06
技术标准规格编号:MS 611-15页码: 2/6
工程标准规格:MS 611-15页码: 3/6
(注3)热冲击说的是在150度的烘烤1小时,热冲击前/后的内识性基准时间要全部满足。
3.3氢脆性去除处理
(1)淬火,回火的情况HRC35以上热处理的钢制品,举例来说bolt,screw,spring washer,spring clip,pin 此外机械机能部品适当的部品原则性的在电镀后,8小时以内氢脆性去除不做不可。
3.4增粘剂
没有特别指定的情况4.4项进行弯曲试验,电镀薄膜不应剥离。
3.5电镀层成分
锌镍合金电镀层的镍含量根据【表3】
【表3】
镍含量(wt%)备注
锌-镍镀金12~18 高镍类型
3.6重金属使用规则
(1)部品或材料上납,镉,水银,6期镉不能使用。
(2)3价铬处理的产品根据ISO 3613:2000或者KS D ISO 3613分析,确认6价镉的有无。
4.试验方法
4.1试验的全处理
试料是用在适当的用材表面脱脂和清洁,涂装等已实施的情况试验前完全去除后进行试验。
4.2 厚度试验
厚度试验是KS D 0246的显微镜单面试验方法,电解式试验方法,磁力式试验方法,显光X线式试验方法等来进行。
工程标准规格:MS 611-15页码: 6/6
4.3盐雾试验
盐雾试验以KS D 9502(烟雾试验方法)为准。
单,试验品在铬处理后使用经过24小时后的。
4.4弯曲试验
宽度 25mm,长度100mm,소지厚度1mm的试料KS B 0804根据(金属材料弯曲试验)进行弯曲试验。
5. 指示法
在图纸上应按如下方法指出本规范:
Ex) P F Z n 8 – D - H(MS630-1,电沉积法)
氢脆性去除处理进行情况附加
铬种类#(3)(黑色铬)
电镀厚度(8)
电镀种类(锌电镀)
소지金属种类(铁소지)
电镀(plating)
*(注3):B、C和D的含义如一下。
B:bringht(光泽)Chromate处理(白色)
C:颜色(有色)Chromate处理(黄色或白色接近的黄色)
D:Daek Chromate处理(黑色)
6. 其他
如对本规范有任何疑问,则联系现代汽车公司和起亚汽车金属研究所。