最优化方法参考答案
- 格式:pdf
- 大小:1.09 MB
- 文档页数:4
1 2( ( ⎨最优化方法部分课后习题解答1.一直优化问题的数学模型为:习题一min f (x ) = (x − 3)2 + (x − 4)2⎧g (x ) = x − x − 5 ≥ 0 ⎪ 11 2 2 ⎪试用图解法求出:s .t . ⎨g 2 (x ) = −x 1 − x 2 + 5 ≥ 0 ⎪g (x ) = x ≥ 0 ⎪ 3 1 ⎪⎩g 4 (x ) = x 2 ≥ 0(1) 无约束最优点,并求出最优值。
(2) 约束最优点,并求出其最优值。
(3) 如果加一个等式约束 h (x ) = x 1 −x 2 = 0 ,其约束最优解是什么? *解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0(2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是在约束集合即可行域中找一点 (x 1 ,x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可以看出,当 x *=15 , 5 ) 时, f (x ) 所在的圆的半径最小。
4 4⎧g (x ) = x −x − 5 = 0⎧ 15 ⎪x 1 = 其中:点为 g 1 (x) 和 g 2 (x ) 的交点,令 ⎪ 1 1 2 ⎨2 求解得到: ⎨ 45即最优点为 x *= ⎪⎩g 2 (x ) = −x 1 −x 2 + 5 = 015 , 5 ) :最优值为: f(x * ) = 65 ⎪x =⎪⎩ 2 44 48(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为:max f (x ) = x 1x 2 x 3⎧x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S ⎪ s .t . ⎪x 1 > 0⎪x 2 > 0 ⎪⎩x 3 > 0该优化问题属于三维的优化问题。
最优化方法习题答案最优化方法习题答案最优化方法是数学中一门重要的学科,它研究如何找到使函数取得最大值或最小值的方法。
在实际问题中,最优化方法被广泛应用于经济学、工程学、管理学等领域。
本文将为读者提供一些最优化方法习题的答案,希望能够帮助读者更好地理解和应用这一学科。
一、单变量函数的最优化问题1. 求函数f(x) = x^2 - 2x + 1在区间[0, 3]上的最小值。
解:首先,我们需要找到函数f(x)的驻点。
计算f'(x) = 2x - 2,并令其等于零,得到x = 1。
然后,我们计算f''(x) = 2,发现在x = 1处,f''(x)大于零,说明该点是函数的极小值点。
接下来,我们需要检查区间的端点和驻点,找到函数f(x)在这些点的函数值。
f(0) = 1,f(1) = 0,f(3) = 4。
由于f(1)是最小的函数值,因此函数f(x)在区间[0, 3]上的最小值为0。
2. 求函数f(x) = e^x - 2x在整个实数轴上的最小值。
解:首先,我们计算f'(x) = e^x - 2,并令其等于零,得到x = ln(2)。
然后,我们计算f''(x) = e^x,发现在x = ln(2)处,f''(x)大于零,说明该点是函数的极小值点。
接下来,我们需要检查整个实数轴上的函数值。
由于函数f(x)在x趋近负无穷大时趋于负无穷大,而在x趋近正无穷大时趋于正无穷大,因此函数f(x)在整个实数轴上没有最小值。
二、多变量函数的最优化问题1. 求函数f(x, y) = x^2 + y^2 - 2x - 4y在闭区域D={(x, y)|0≤x≤2, 0≤y≤3}上的最小值。
解:首先,我们需要找到函数f(x, y)的驻点。
计算f_x(x, y) = 2x - 2和f_y(x, y) = 2y - 4,并令它们同时等于零,得到x = 1和y = 2。
最优化方法部分课后习题解答习题一1.一直优化问题的数学模型为:22121122123142min ()(3)(4)5()02()50..()0()0f x x xg x x x g x x x s t g x x g x x =−+−⎧=−−≥⎪⎪⎪=−−+≥⎨⎪=≥⎪=≥⎪⎩试用图解法求出:(1)无约束最优点,并求出最优值。
(2)约束最优点,并求出其最优值。
(3)如果加一个等式约束,其约束最优解是什么?12()0h x x x =−=解:(1)在无约束条件下,的可行域在整个平面上,不难看出,当=(3,4)()f x 120x x *x 时,取最小值,即,最优点为=(3,4):且最优值为:=0()f x *x *()f x (2)在约束条件下,的可行域为图中阴影部分所示,此时,求该问题的最优点就是()f x 在约束集合即可行域中找一点,使其落在半径最小的同心圆上,显然,从图示中可12(,)x x 以看出,当时,所在的圆的半径最小。
*155(,)44x =()f x 其中:点为和的交点,令求解得到:1()g x 2()g x 1122125()02()50g x x x g x x x ⎧=−−=⎪⎨⎪=−−+=⎩1215454x x ⎧=⎪⎪⎨⎪=⎪⎩即最优点为:最优值为:=*155(,)44x =*()f x 658(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为S,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题.解:列出这个优化问题的数学模型为:该优化问题属于三维的优化问题。
123122313123max ()220..00f x x x x x x x x x x S x s t x x =++≤⎧⎪>⎪⎨>⎪⎪>⎩32123sx y z v⎛⎞=====⎜⎟⎝⎠习题二3.计算一般二次函数的梯度。
习题二包括题目: P36页5(1)(4)5(4)习题三包括题目:P61页1(1)(2); 3; 5; 6;14;15(1)1(1)(2)的解如下3题的解如下5,6题14题解如下14。
设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。
解:已知 (1)(4,6)T x =-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15。
用DFP 方法求下列问题的极小点(1)22121212min353x x x x x x ++++ 解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x xδ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+-其中,111011126.3096,247.3380T T T H δγγγγγ===11 1.1621 1.39451.3945 1.6734T δδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776d H f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用(1)(1)()0df x d d αα+=,求得 10.5727α=- 所以 (2)(1)(1)0.77540.57270.8535x x d ⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599xx δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ= 220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T T H H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α= 所以 (3)(2)(2)11xx d ⎛⎫=+= ⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止(3)(1,1)T x =-即为最优解。
最优化方法孙文瑜课后答案【篇一:81010218《最优化算法》教学大纲】xt>课程编号: 81010218课程名称:最优化算法英文名称:optimization algorithm 总学时:32 学分:2适用对象: 信息与计算科学本科专业先修课程:数学分析(1-3),高等代数(1-2),运筹学一、课程性质、目的和任务《最优化算法》课程是信息与计算科学专业的一门主要专业选修课。
本课程的目的是使学生理解最优化理论与方法的基本概念,掌握最优化的基本理论和常见的优化算法,为学习后继课程和解决实际问题打下扎实的基础,培养学生用数学知识解决实际问题的兴趣、意识,以及分析问题和解决问题的能力。
二、教学内容、方法及基本要求1.非线性规划基本概念教学内容:多元函数极值理论。
基本要求:理解非线性规划问题概念,一般形式,最优解的情况。
理解梯度、海赛矩阵等概念,掌握极值点的必要条件,充分条件。
理解凸函数概念,掌握凸函数的判定条件和方法。
理解凸规划概念。
2. 一维搜索教学内容:一维搜索。
基本要求:掌握求解非线性规划问题搜索法的基本思想。
掌握一维搜索的斐波那契方法和0.618法。
3.求解无约束非线性规划问题的解析法教学内容:梯度法,广义牛顿法,共轭梯度法,变度量法。
基本要求:理解梯度法,广义牛顿法,共轭梯度法,变度量法的基本思想,掌握四种方法的迭代步骤,了解四种方法的收敛定理。
4. 求解无约束非线性规划问题的直接法教学内容:步长加速法,方向加速法,单纯形法。
基本要求:理解步长加速法,方向加速法,单纯形法的基本思想,掌握三种方法的迭代步骤,了解三种方法的收敛准则。
了解解析法与直接法的优缺点。
5. 求解约束非线性规划问题的逐步线性逼近法教学内容:逐步线性逼近法。
基本要求:理解约束非线性规划问题一般模型。
理解逐步线性逼近法基本思想,掌握逐步线性逼近法的求解步骤。
6. 求解约束非线性规划问题的拉格朗日乘子法教学内容:拉格朗日乘子法。
《最优化方法》1一、填空题:1. _______________________________________________________ 最优化问题的数学模型一般为:_____________________________________________ ,其中___________ 称为目标函数,___________ 称为约束函数,可行域D可以表示为_______________________________ ,若 ________________________________ ,称/为问题的局部最优解,若为问题的全局最优解。
2.设f(x)= 2斤+2“2-兀|+5花,则其梯度为__________ ^x = (l,2)r?6/ = (l,0)r,则f(x)在壬处沿方向d的一阶方向导数为___________ ,几何意义为_____________________________________ ,二阶方向导数为____________________ ,几何意义为_____________________________3.设严格凸二次规划形式为:min /(%) = 2兀]2 + 2x; - 2兀]-x2s.t. 2%! 4- x2 < 1> 0x2 > 0则其对偶规划为_______________________________________________min%(d ) = f (x k +ad k )的最优步长为务=—叫)F.d kT Gd k2. (10分)证明凸规划min/(x ),x G D (其中子(兀)为严格凸函数,D 是凸集)的最优解是唯一的3. (13分)考虑不等式约束问题min /(x )s.t. c i (x ) < 0, Z G / = {1,2,…,加}其中/(x ),6 (兀)a e /)具有连续的偏导数,设X 是约束问题的可行点,若在元处 d 满足巧(计<0,VC,(元)(可则d 是元处的可行下降方向。
习题一1.1利用图解法求下列线性规划问题: (1)21x x z max +=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 5x 2x 2x x 3.t .s 212121 解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在A 点取得最优值,最优值z=5(2)21x 6x z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+0x ,x 7x x 1x x 2.t .s 212121 解:图中阴影部分表示可行域,由图可知原问题在点A 处取得最优值,最优值z=-6.(3)21x 2x 3z max +=⎪⎪⎩⎪⎪⎨⎧≥-≥-≤+-0x ,x 4x 2x 1x x .t .s 212121 解:如图所示,可行域为图中阴影部分,易得原线性规划问题为无界解。
(4)21x 5x 2z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 2x x 6x 2x .t .s 212121 解:由图可知该线性规划可行域为空,则原问题无可行解。
1.2 对下列线性规划问题,找出所有的基解,基可行解,并求出最优解和最优值。
(1)4321x 6x 3x 2x 5z min -+-=⎪⎪⎩⎪⎪⎨⎧≥=+++=+++0x ,x ,x ,x 3x 2x x x 27x 4x 3x 2x .t .s 432143214321 解:易知1x 的系数列向量⎪⎪⎭⎫ ⎝⎛=21p 1,2x 的系数列向量⎪⎪⎭⎫ ⎝⎛=12p 2,3x 的系数列向量⎪⎪⎭⎫⎝⎛=13p 3,4x 的系数列向量⎪⎪⎭⎫⎝⎛=24p 4。
①因为21p ,p 线性无关,故有⎪⎩⎪⎨⎧--=+--=+43214321x 2x 3x x 2x 4x 37x 2x ,令非基变量为0x x 43==,得⎪⎪⎩⎪⎪⎨⎧=-=311x 31x 21,所以得到一个基解)0,0,311,31(x )1(-=是非基可行解; ②因为31p ,p 线性无关,可得基解)0,511,0,52(x)2(=,543z 2=;③因为41p ,p 线性无关,可得基解611,0,0,31(x )3(-=,是非基可行解;④因为32p ,p 线性无关,可得基解)0,1,2,0(x )4(=,1z 4-=;⑤因为42p ,p 线性相关,42x ,x 不能构成基变量; ⑥因为43p ,p 线性无关,可得基解)1,1,0,0(x )6(=,3z 6-=;所以)6()4()2(x ,x ,x是原问题的基可行解,)6(x 是最优解,最优值是3z -=。
习题二包括题目: P36页 5〔1〕〔4〕 5〔4〕习题三包括题目:P61页 1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下 3题的解如下 5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。
解: (1)(4,6)T x=-,由题意得∴(1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴(1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭∴(1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15〔1〕解如下15. 用DFP 方法求以下问题的极小点〔1〕22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法一样2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x x δ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭其中,111011126.3096,247.3380T T TH δγγγγγ===11 1.1621 1.39451.3945 1.6734T δδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以 令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535x x d ⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599x x δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=所以 令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α= 所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停顿 (3)(1,1)T x =-即为最优解。
《最优化方法》参考答案及评分标准1. 某文教用品厂用原材料白坯纸生产原稿纸、日记本和练习本三种产品。
该厂现有工人100人,每月白坯纸供应量为30 000 kg.已知工人的劳动生产率为:每人每月可生产原稿纸30捆,或生产日记本30打,或练习本30箱。
已知原材料消耗为:每捆原稿纸用白坯纸133kg,每打日记本用白坯纸1133kg,每箱练习本用白坯纸2263kg.又知每生产一捆原稿纸可获利2元,生产一打日记本获利3元,生产一箱练习本获利1元。
试确定:(a)现有生产条件下获利最大的方案;(b)如白坯纸的供应数量不变,当工人数不足时可招收临时工,临时工工资支出为每人每月40元,则该厂要不要招收临时工,招多少临时工最合适? 解:(a )分别用123,,x x x 代表原稿纸、日记本和练习本的每月生产量。
(2分) 建立线性规划模型(4分)⎪⎪⎩⎪⎪⎨⎧≥≤++≤++++0,3000038034031010030/30/30/32max 32,1321321321x x x x x x x x x x x x (b )临时工影子价格高于市场价格,故应招收。
用参数规划计算确定招200人为最适宜。
(5分)2. 求解下列产销平衡的运输问题,表中列出的为产地到销地之间的运价。
(1)用左上角法、最小元素法、沃格尔法求初始基本可行解。
(2)由上面所得的初始方案出发,应用表上作业法求最优方案,并比较初始方案需要的迭代次解:3. 用动态规划求解下面的问题解:(1)建立动态规划模型:①阶段变量k=1,2,3。
(1分) ②状态变量s k 表示第k 阶段初各决策变量之积,则s 3=27。
(1分) ③决策变量x k 分别表示第k 阶段的x 的值 (1分) ④状态转移方程s k+1=s k /x k 。
(1分) ⑤指标函数v k (s k ,x k )表示第k 阶段的总成本,即x 1+x 2+…+x k (1分)由已知可得k k k k x x s v =),((1分)⑥基本方程为⎪⎩⎪⎨⎧=+=++≤≤0)()}(),({max )(441160s f s f x s v s f k k k k k x k k k (2分) (2)用动态规划的正向或反向推理算法求解可得:(12分)()()9)(min 333321==x f x x x评分标准:以上的推理过程,每一阶段的计算正确得3分(共3个阶段),其中,列写出s 或x 的范围得1分,列写出决策表得1分,列写出最优决策表得1分,每出现一处错误,扣0.5分,至扣完本项分值为止。
《最优化方法》(研究生)期末考试练习题答案二.简答题1.;0, ,843 ,2 2-,3 34 s.t. ,95- min 2121212121≤=--≥+≥++y y y y y y y y y y 2.,065 6143≥+x x (以1x 为源行生成的割平面方程) 注意:在1x 为整数的情况下,因为3x ,04≥x ,该方程自然满足,这是割平面的退化情形,2141 41 43≥+x x (以2x 为源行生成的割平面方程)3.6648.31854.1*2)854.1()(2131.01146.1*2)146.1()(854.13*618.00)(618.0146.13*382.00)(382.03,031311111111111=+-==+-==+=-+==+=-+===μϕλϕμλa b a a b a b a 0.927.21.8540]1.8540[854.1,0)()(,*2211=+===≤x b a 近似的最优解:。
,初始的保留区间为即:。
所以,不经计算也可以看出事实上μϕλϕ4.令1.01.0)(4.04.0)(11)(7.27.2)(222222221)2(*111)1(*111)0(*121)1(*11-=-=-=-=-=-=-=-=-------x x x x x x x e x e x x f ex ex x f x e x x f e x e x x f拟合问题等价于求解下列最小二乘问题:∑=412))((mini ix f三.计算题1.分别用最速下降方法和修正的牛顿法求解无约束问题 22214)(min x x x f +=。
取初始点()()Tx 2,21=,.1.0=ε()().1641642,2821121⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫⎝⎛=∇=⎪⎪⎭⎫⎝⎛=∇d f x x x f T方向为:从而最速下降法的搜索,在初始点,解:()()()()直至满足精度。
继续迭代方向为:从而最速下降法的搜索,,在从而求解得到:其中满足最优步长,.48/6565/19248/65-65/19265/6,65/96)65/6,65/96((-4,-16)*130/172,2 130,/17.)162(4)42()162,42()()(min )(122221)1(1)1(1*)1(*⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=∇-=-=+==-+-=--=++=+d f x x f d x f d x f d x f TTT Tλλλλλλλλλλ()()2-2- 1648/1002/1 8/1002/1,8002 2,21111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=∇-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==--f G d G G x T索方向为:从而修正的牛顿法的搜,在初始点()()()()即为所求的极小点。
练习题一1、建立优化模型应考虑哪些要素“答:决策变量、目标函数和约束条件。
2、讨论优化模型最优解的存在性、迭代算法的收敛性及停顿准则。
答:针对一般优化模型,讨论解的可行域,假设存在一()()min ()..0,1,2, 0,1,,i j f x s t g x i m h x j p≥===L L D 点,对于均有则称为优化模型最优解,最优解存在;*X D ∈X D ∀∈*()()f X f X ≤*X 迭代算法的收敛性是指迭代所得到的序列,满足,(1)(2)(),,,K X X X L L (1)()()()K K f X f X +≤则迭代法收敛;收敛的停顿准则有,,(1)()k k x x ε+-<(1)()()k k k x x xε+-<,,等等。
()()(1)()k k f x f x ε+-<()()()(1)()()k k k f x f x f x ε+-<()()k f x ε∇<练习题二1、*公司看中了例2.1中厂家所拥有的3种资源R 1、R2、和R 3,欲出价收购〔可能用于生产附加值更高的产品〕。
如果你是该公司的决策者,对这3种资源的收购报价是多少?〔该问题称为例2.1的对偶问题〕。
解:确定决策变量对3种资源报价作为本问题的决策变量。
123,,y y y 确定目标函数问题的目标很清楚——“收购价最小〞。
确定约束条件资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。
因此有如下线性规划问题:123min 170100150w y y y =++*2、研究线性规划的对偶理论和方法〔包括对偶规划模型形式、对偶理论和对偶单纯形法〕。
答:略。
3、用单纯形法求解以下线性规划问题:〔1〕⎪⎪⎩⎪⎪⎨⎧≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ;〔2〕⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min 53243232132 i x x x x x x x x x x t s x x z i 解:〔1〕引入松弛变量*4,*5,*6c j →1-11C B基b*1*2*3*4*5*60*421[1]-21000*532110100*64-101001c j -z j1-11因检验数σ2<0,故确定*2为换入非基变量,以*2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量*4作为换出的基变量。
最优化方法及其应用课后答案1. 最优化方法的分类包括哪些方面?最优化方法可分为三类:数学规划、非数学规划和元启发式方法。
2. 线性规划的标准形式是什么?线性规划的标准形式为:max cTxsubject toAx ≤ bx ≥ 0其中,cTx表示优化目标,Ax≤b表示约束条件,x≥0表示非负约束条件。
3. 拉格朗日乘数法是如何解决带有等式约束的优化问题的?拉格朗日乘数法是通过构建拉格朗日函数来解决带有等式约束的优化问题的。
具体地,拉格朗日函数L(x,λ)定义为:L(x,λ)=f(x)+λTh(x)其中,f(x)是优化目标函数,h(x)是等式约束函数,λ是拉格朗日乘数。
然后,通过求解L(x,λ)的梯度和等于0的条件,得到原问题的解。
4. 什么是梯度下降法?梯度下降法是一种迭代求解方法,用于优化无约束的多次可微函数。
该方法通过向负梯度方向下降来逐步逼近优化目标的最小值。
具体地,梯度下降法的迭代公式为:x(k+1)=x(k)-αk∇f(x(k))其中,x(k)是第k次迭代后的解,αk是步长,∇f(x(k))表示f(x(k))的梯度。
5. 遗传算法是如何实现优化的?遗传算法是一种元启发式方法,它基于模拟生物进化过程来实现优化。
算法先随机生成一组初始的个体,然后对这些个体进行遗传操作(交叉、变异),以产生新的个体,并按照适应度函数的大小保留一部分个体,舍弃一部分个体。
通过多次迭代,逐步优化得到最优解。
6. 模拟退火算法的基本思想是什么?模拟退火算法是一种元启发式方法,它基于物理中的退火现象进行优化。
算法维护一个当前解,然后随机生成一个新的解,并计算当前解到新解的能量差。
如果新解比当前解更优,则直接接受它。
若不是,则以一定概率接受新解,并降低概率参数T,然后继续下一步迭代。
通过多次迭代,逐步优化得到最优解。
7. 最大熵模型的基本原理是什么?最大熵模型是一种概率模型,它通过最大化经验熵与先验熵之和来实现分类或回归问题的优化。
《最优化方法》1一、填空题:1.最优化问题的数学模型一般为:____________________________,其中___________称为目标函数,___________称为约束函数,可行域D 可以表示为_____________________________,若______________________________,称*x 为问题的局部最优解,若_____________________________________,称*x 为问题的全局最优解。
2.设f(x)= 212121522x x x x x +-+,则其梯度为___________,海色矩阵___________,令,)0,1(,)2,1(T T d x ==则f(x)在x 处沿方向d 的一阶方向导数为___________,几何意义为___________________________________,二阶方向导数为___________________,几何意义为____________________________________________________________。
3.设严格凸二次规划形式为:012..222)(min 2121212221≥≥≤+--+=x x x x t s x x x x x f则其对偶规划为___________________________________________。
4.求解无约束最优化问题:n R x x f ∈),(min ,设k x 是不满足最优性条件的第k 步迭代点,则:用最速下降法求解时,搜索方向k d =___________ 用Newton 法求解时,搜索方向k d =___________ 用共轭梯度法求解时,搜索方向k d =___________________________________________________________________________。
习题二包括题目:P36页5(1)(4)5(4)习题三包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1)1(1)(2)的解如下3题的解如下5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。
解:已知 (1)(4,6)T x=-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15. 用DFP 方法求下列问题的极小点(1)22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x xδ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+-其中,111011126.3096,247.3380T T TH δγγγγγ===11 1.1621 1.39451.3945 1.6734T δδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776d H f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535x x d ⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599xx δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T T H H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α= 所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止 (3)(1,1)T x =-即为最优解。