二级分流式减速器设计
- 格式:doc
- 大小:1.99 MB
- 文档页数:50
精选全文完整版(可编辑修改)目录第一章:传动方案的拟定及说明 (2)第二章:电动机的选择 (2)第三章:计算传动装置的运动和动力参数 (3)一.传动比分配二.运动和动力参数计算第四章:带传动设计 (4)一.带传动设计二.V带的结构图第五章:齿轮设计 (6)一.高速级齿轮传动设计二.低速级齿轮传动设计三.齿轮结构图四.齿轮设计归纳总结第六章:减速器装配草图设计 (14)一.减速器零件的位置尺寸二.减速器装配草图第七章:轴的设计计算 (15)一.高速轴的设计计算二.中间轴的设计计算三.低速轴的设计计算第八章:滚动轴承的选择及计算 (18)第九章:键连接的选择及校核计算 (19)一.中间轴上键的选择及校核计算二.低速轴上键的选择及校核计算第十章:联轴器的选择 (20)第十一章:减速器箱体和附件的选择 (20)第十二章:润滑与密封 (21)第十三章:设计小结 (21)第十四章:参考文献………………………………………………………………22 第一章:传动方案的拟定及说明已知:带式输送机驱动卷筒的转速为w n =71r/min ,减速器的输出功率w P =5.2kw ,该设备的使用年限为29年,一年工作365天,工作制为单班制(8小时),工作中有轻微振动。
传动方案的拟定为双级圆柱齿轮减速器,采用高速级分流式。
齿轮相对于轴承为对称布置,沿齿宽载荷分布较均匀。
减速器结构较复杂,但可用于大功率,变载荷场合。
第二章:电动机的选择一:电动机容量 1. 工作机所需功率w P已知:w P =5.2kw,转速w n =71r/min 2.电动机的输出功率d P 由表2-4得:V 带传动效率1η=0.96,弹性联轴器传动效率2η=0.99,闭式圆柱齿轮传动效率4η,6η,8η=0-97,滚动轴承传动效率3η,5η,7η=0.99,考虑传动装置的功率损耗,电动机输出功率为η=1η2η4η6η8η3η5η7η=0.84故电动机的输出功率d P =P wη=5.2kw /0.84=6.19KW3.电动机的额定功率edP根据计算出的输出功率查表20-1可得电动机额定功率edP =7.5kw 。
二级减速器课程设计说明书一、设计任务设计一个用于特定工作条件的二级减速器,给定的输入功率、转速和输出转速要求,以及工作环境和使用寿命等限制条件。
二、传动方案的拟定经过对各种传动形式的比较和分析,最终选择了展开式二级圆柱齿轮减速器。
这种方案结构简单,尺寸紧凑,能够满足设计要求。
三、电动机的选择1、计算工作机所需功率根据给定的工作条件和任务要求,计算出工作机所需的功率。
2、确定电动机的类型和型号综合考虑功率、转速、工作环境等因素,选择合适的电动机类型和型号。
四、传动比的计算1、总传动比的计算根据电动机的转速和工作机的转速要求,计算出总传动比。
2、各级传动比的分配合理分配各级传动比,以保证减速器的结构紧凑和传动性能良好。
五、齿轮的设计计算1、高速级齿轮的设计计算根据传动比、功率、转速等参数,进行高速级齿轮的模数、齿数、齿宽等参数的设计计算。
2、低速级齿轮的设计计算同理,完成低速级齿轮的相关设计计算。
六、轴的设计计算1、高速轴的设计计算考虑扭矩、弯矩等因素,确定高速轴的直径、长度、轴肩尺寸等。
2、中间轴的设计计算进行中间轴的结构设计和强度校核。
3、低速轴的设计计算完成低速轴的设计计算,确保其能够承受工作中的载荷。
七、滚动轴承的选择与计算根据轴的受力情况和转速,选择合适的滚动轴承,并进行寿命计算。
八、键的选择与校核对连接齿轮和轴的键进行选择和强度校核,以确保连接的可靠性。
九、箱体结构的设计考虑减速器的安装、润滑、密封等要求,设计合理的箱体结构。
包括箱体的壁厚、加强筋、油标、放油螺塞等的设计。
十、润滑与密封1、润滑方式的选择根据齿轮和轴承的转速、载荷等因素,选择合适的润滑方式。
2、密封方式的选择为防止润滑油泄漏和外界灰尘进入,选择合适的密封方式。
十一、设计总结通过本次二级减速器的课程设计,对机械传动系统的设计过程有了更深入的理解和掌握。
在设计过程中,充分考虑了各种因素对减速器性能的影响,通过计算和校核确保了设计的合理性和可靠性。
二级减速器的设计毕业设计毕业设计说明书二级减速器的设计班姓名:学专指导教师:2014年 6 月二级减速器的设计摘要减速器是一种利用封闭在刚性壳内的齿轮的速度转换装置。
它已经有很长的应用历史了,作为传动机械行业中的一个重要的分支,减速器在很多行业中扮演了越来越重要的角色。
随着现代工业的快速发展,人们对减速器提出了很多更高的要求,其主要是针对更高的功率容量、更短的研发周期、转矩范围大、设计形式多样、高寿命高可靠性等。
但是当前减速器普遍存在着体积大、重量大,或者传动比大而机械效率过低的问题。
国外的减速器,以丹麦、日本和德国等国家处于领先地位,尤其是在材料和制造工艺等方面占有很大的优势,是器减速器的可靠性和使用寿命的性能受广泛好评。
国内减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。
同时,由于材料品质和工艺水平相对较弱,使减速器(尤其是大型减速器)存在较多问题,使用寿命较短。
所以,发展减速器技术对于发展我国机械工业有着至关重要的意义。
随着中国从“制造大国”向“制造强国”的转变,国民经济重点行业核心制造领域对装备制造设备的要求更高,则对机械制造设备中的减速器的要求也就更高。
本文介绍了减速器的概念及意义和参数化设计的概念及意义,完成了对二级减速器的设计,主要设计内容如下:首先,从二级减速器传动方案整体设计出发对电动机进行选择、并计算传动装置的运动和动力参数;其次,分别对二级减速器的相关部件进行设计,包括传动件的设计计算,轴的设计计算、滚动轴承的选择及计算、键联接的选择及校核计算、联轴器的选择、减速器附件的选择和润滑与密封等。
根据设计计算的结果和设计期间所得的资料进行归纳、分析,得出了自己的结论和见解。
关键词:减速器,传动比,电动机,齿轮,中速轴The secondary gear reducer designAbstractReducer is a kind of using closed in rigid shell gear speed conversion device. It already has a long history of the application, as an important branch of transmission in the machinery industry, reducer played a more and more important role in many industries. With the rapid development of modern industry, people puts forward much higher requirements on speed reducer, it is mainly aimed at higher power capacity, shorter development cycle, large torque range, design a variety of forms, long service life of the high reliability, etc. But there is a widespread volume, weight, big current reducer, or big transmission ratio and the problem that the low mechanical efficiency. Foreign reducer to Denmark, Japan and Germany and other countries in a leading position, especially in such aspects as material and manufacturing process has great superiority, is the reliability of the gear reducer and the service life of the performance by the wide acclaim. And more domestic gear to gear transmission, worm drive is given priority to, but the common power and weight ratio is small, or large, the problem of low efficiency of mechanical transmission ratio. At the same time, due to relatively weak level of material quality and technology, make the problems more reducer (especially large-scale reducer), short service life. Therefore, development of reducer technology for the development of our country mechanical industry has crucial significance. As China from the "manufacturing power" to "manufacturing power", the core manufacturing key industries of the national economy to greater demands of the equipment manufacturingequipment, the speed reducer of mechanical manufacturing equipment requirements are higher.This paper introduces the concept of speed reducer and the meaning and the concept and significance of parametric design, completed the design of secondary reducer, the main design content is as follows: first, starting from the secondary reducer drive plan overall design was carried out on the motor selection, and calculate the transmission of movement and dynamic parameters; Second, the relevant parts of the secondary reducer design respectively, including the design and calculation of transmission devices, the design of the shaft calculation, selection of rolling bearing and calculation, the selection and checking calculation of linkage, coupling, reducer fittings and lubrication and sealing, etc. According to the design and calculation of results and data obtained during the design of induction, analysis, draw conclusions and my own ideas.Keywords:Reducer,Transmission ratio,Electromotor,Gear,Intermediate shaft目录1 引言 (1)2 确定传动方案及技术任务书设计 (4)2.1 确定传动方案 (4)2.2 技术任务书设计 (4)2.2.1 设计任务书 (4)2.2.2 主要技术指标和重要技术参数 (4)3 确定设计方案 (5)4 选择电动机,传动系统运动和动力参数计算 (6)4.1 选择电动机 (6)4.1.1 确定电动机的容量 (6)4.1.2 确定电动机转速 (6)4.2 确定传动装置总传动比以及各级传动比的分配 (7)4.3 运动参数和动力参数计算 (7)5 V带传动的设计 (9)5.1 V带的基本参数 (10)5.2 带轮的材料 (13)6 渐开线斜齿圆柱齿轮设计 (14)6.1 高速级斜齿圆柱齿轮设计计算表 (14)6.2 低速级斜齿圆柱齿轮设计计算表 (24)6.3 斜齿轮设计参数表 (35)7 轴的设计计算 (36)7.1 高速轴的结构设计 (36)7.2 中速轴的结构设计 (41)7.3 高速轴的结构设计 (44)7.4 校核中速轴的强度 (47)8 轴承的选择和校核 (52)8.1 中速轴轴承的选择 (52)8.2 校核中速轴轴承是否满足工作要求 (52)9 键联接的选择和校核 (55)9.1 中速轴大齿轮键的选择 (55)9.2 中速轴大齿轮键的校核 (55)10 减速器的润滑、密封和润滑牌号的选择 (56)10.1 传动零件的润滑 (56)10.2 减速器密封 (56)11 箱体主要设计尺寸 (57)12 减速器附件的选择及简要说明 (63)13 使用说明书(SM) (64)13.1 主要参数 (64)13.2 二级斜齿轮减速器的结构 (64)13.3 驱动机构 (64)14 标准化审核报告(BS) (65)14.1 产品图样的审查 (65)14.2 产品技术文件的审查 (65)14.3 标注件的使用情况 (65)14.4 审查结果 (65)15 结论 (66)参考文献 (67)致谢 (68)1引言减速器是一种动力传达机构,它是利用齿轮的速度转换器,可以将电机(马达)的回转数减速到用户所要的回转数,并且得到较大转矩的机械机构[1]。
二级减速器课程设计完整版IntroductionThe two-level reduction gear is a mechanical design used to reduce and control the rotational speed and torque of a machine. The mechanism comprises two sets of gears arranged in a series, where the first set reduces the speed while the second set preserves it. The gearboxes are used in various applications in industries, including power transmission, construction, automotive, and aerospace. The design of the gearbox is critical in ensuring that the machine operates efficiently and effectively. This document presents a comprehensive design of the two-level reduction gear course.ObjectiveThe objective of this course is to provide students with a functional understanding of the two-level reduction gear gearboxes' design and application. The course aims to equip students with the skills and knowledge to design and analyze gear systems for various applications in industry. The course will cover critical topics such as gear ratio calculation, kinematics and dynamics analysis, lubrication, and material selection.Course OutlineThe course will run for ten weeks, with two contact hours per week. The course outline includes:Week 1- Introduction to the Two-level Reduction gear- Gearbox design and applications- Types of gears- Concept of gear ratio and its importance- Difference between a two-level reduction gear and a single-level gearWeek 2- Gear Design Principles- Gearing calculations (Lewis equation, AGMA standard)- Design considerations for gear properties (Strength, wear, and contact stress)Week 3- Design of Gear Train- Gear train configurations (simple, compound, and planetary)- The concept of of gear stage and reduction ratio- Mechanics of gear systems- Optimization of gear arrangement for specific applicationsWeek 4- Gear Quality and Precision- Metrics for evaluating gear quality (Material properties, machining tolerances, manufacturing errors)- Gear noise and vibration analysis- Understanding Gear Quality Charts (AGMA 2000)Week 5- Lubrication and Bearing Design- Lubricants and lubrication mechanisms (Boundary, Elastic, Hydrodynamic)- Bearing selection and designWeek 6- Kinematics and Dynamics Analysis of Gear Systems-Learn various kinematic and Dynamic analysis techniques- Familiarize yourself with software used for gear analysisWeek 7- Basic Gear Finite Element Analysis- Applying finite element method to gear design- Objective of FEM Simulation in Gear DesignWeek 8- Non-Standard Gear Applications- Helical, Hypoid gears, and spiral bevel gears- Selecting gear types for specific applicationsWeek 9- Material selection for Gearbox Components- Designing for strength and durability- Materials used in gearbox manufacturing- Heat treatmentWeek 10- Review of the entire course(wrap-up)The course will include Lab sessions and design projects to support the students learning. The lab sessions will focus on developing the practical skills to measure and analyze gear systems. The design projects will challenge the students to apply the knowledge they have acquired throughout the course and design functional gearboxes for specific industrial applications.ConclusionThis course design provides an in-depth understanding of the two-level reduction gear system, which is essential for engineering students' industrial applications. The course will equip students with the skills, knowledge, and experience to design efficient gear systems used in various industries. The course design is flexible and can be customized to suit various academic levels and professional training contexts.。
二级减速器课程设计完整版1. 引言减速器是机械传动系统中常见的关键部件之一,用于降低传动装置的转速并提高扭矩输出。
二级减速器作为一种常见的减速器类型,具有广泛的应用范围。
本文旨在通过设计一个完整的二级减速器课程,介绍二级减速器的原理、设计和应用。
2. 二级减速器原理介绍2.1 主要结构组成二级减速器通常由输入轴、输出轴、两级齿轮传动系统和壳体组成。
其中,输入轴将动力源的旋转运动传递给第一级齿轮组,第一级齿轮组再将运动传递给第二级齿轮组,最终通过输出轴输出。
2.2 工作原理当输入轴旋转时,第一级齿轮组将动力传递给第二级齿轮组,通过齿轮的啮合关系实现速度的减速和输出转矩的增大。
第一级齿轮组的齿比用于实现初级减速,第二级齿轮组的齿比则用于实现次级减速。
3. 二级减速器设计步骤3.1 确定设计参数根据具体的应用需求和要求,确定二级减速器的输入转速、输出转矩、减速比等设计参数。
3.2 齿轮选择和设计根据确定的设计参数,选择适当的齿轮材料和规格,并进行齿轮的设计计算。
考虑到齿轮的强度和耐久性,要确保齿轮的模数和齿数满足设计要求,并进行齿形的优化设计。
3.3 轴的设计根据齿轮的参数和要求,设计输入轴和输出轴,并选择适当的材料和尺寸。
在轴的设计过程中,要考虑到扭矩传递和轴的刚度等因素,确保轴能够稳定运行并传递足够的扭矩。
3.4 壳体设计根据齿轮和轴的尺寸,设计适当的壳体结构和外形,并考虑到装配、润滑和散热等因素。
壳体的设计需要保证齿轮和轴可以正确安装和定位,同时提供良好的密封性和机械强度。
4. 二级减速器应用案例以工业搅拌机为例,介绍二级减速器在实际应用中的情况。
工业搅拌机通常需要较大的转矩和较低的转速,因此二级减速器是一种理想的传动选择。
通过连接电动机和搅拌机装置,二级减速器能够将高速低扭矩的电动机输出转换为低速高扭矩的搅拌机运动。
5. 总结通过对二级减速器的课程设计,我们全面了解了二级减速器的原理、设计和应用。
目录机械设计任务书机械课程设计任务书 (1)机械课程设计第一阶段1.1、确定传动方案 (2)1.2、电动机选择 (3)1.3、传动件的设计 (5)机械课程设计第二阶段2.1装配草图设计第一阶段说明 (12)2.2轴的设计及校核 (12)2.3键和联轴器的选择 (35)机械课程设计第三阶段3.1、减速器箱体及附件的设计 (23)3.2、润滑方式、润滑剂及密封装置的选择 (24)机械课程设计小结4.1、机械课程设计小结 (40)附1:参考文献机械课程设计任务书一、课程设计的内容题目:E06悬挂式输送机传动装置设计设计悬挂式输送机传动装置(见图1)。
二、课程设计的要求与数据1、设计条件:1)机器功用通用生产线中传送半成品、成品用,被用送物品悬挂在传送链上;2)工作情况单向连续运输,轻度震动;3)运动要求输送链运动速度误差不超过5%;4)使用寿命8年,每年350天,每天16小时;5)检修周期一年小修,两年大修;6)生产批量中批生产;7)生产厂型中、大型通用机械厂。
2、原始数据主动星轮圆周力(N):5500主动星轮速度(m/s):1.1主动星轮齿数:11主动星轮节距(mm):863、设计任务1)设计内容1、电动机选型;2、链传动设计;3、减速器设计;4、联轴器选型设计;5、其他。
2)设计工作量1、减速器装配图1张;2、零件图2张(具体零件由指导老师指定);3、设计计算说明书一份。
4、设计要求1)带传动、链传动或开式齿轮传动只参与传动比分配,不作具体设计;2)减速器内高速级齿轮传动采用斜齿圆柱齿轮传动;3)、a同轴式推荐采用一对变为齿轮;b展开式推荐两级都用斜齿轮;c分流式高速级采用对称布置得两对斜齿轮η2η3η5η4η1IIIIIIIVPdPw一、机械课程设计第一阶段1.1 确定传动方案(1)传动方案:方案:电动机直通过联轴器直接和减速器的输入轴相连,减速器的输出轴通过链连接的方式与星轮链接,主动星轮通过链条将挂在链条上的成品或半成品进行运输。
机械设计基础课程设计二级分流式减速器计算说明书题目运输带传动设计指导教师张旦闻院系机电工程系班级 B100303学号 B********姓名张阳羊目录目录 (2)第一章设计任务书 (3)第二章传动方案拟定 (4)第三章电动机的选择 (5)3.1选择电动机类型 (5)3.2选择电动机的容量计算 (5)3.3电动机转速选择及型号确定 (5)第四章传动装置总体设计 (7)4.1计算传动比及分配各级传动比总传动比 (7)4.2计算传动装置的运动和动力参数 (7)第五章皮带轮设计 (9)第六章齿轮传动设计 (11)6.1高速级齿轮传动设计 (11)6.2 低速级齿轮传动设计 (15)第七章轴的设计 (20)7.1中速轴(II)的设计 (20)7.2高速轴(I)的设计 (23)7.3低速轴(Ⅲ)设计 (26)第八章轴的校核 (30)第九章轴承的选择和校核计算 (32)9.1高速轴Ⅰ上的轴承选择与计算 (32)9.2中速轴Ⅱ上的轴承选择与计算 (32)9.3低速轴Ⅲ上的轴承选择与计算 (33)第十章键连接的选择与校核计算 (34)第十一章减速器附件设计 (36)第十二章润滑方式及密封形式的选择 (37)第十三章箱体设计 (38)第十四章总结 (39)第十五章参考文献 (40)第二章传动方案拟定卷筒由电动机驱动,电动机1通过V带2将动力传入减速器3,在经联轴器4传至输送机滚筒5,带动输送带6工作。
传动系统中采用两级分流式圆柱齿轮减速器,结构较复杂,高速级齿轮相对于轴承位置对称,沿齿宽载荷分布较均匀,高速级和低速级分别为斜齿圆柱齿轮和直齿圆柱齿轮传动.传动方案见图1。
两级分流式圆柱斜齿轮减速器28~40i=[1]表13-2得卷筒转速wn电动机转速可选范围2118057.322410057.3166.89120542d d a--⨯--⨯=>查[3]0)cPP K Kα1288.92=cos cos150.966β=150.966知,软齿面、对称分布取:cos15/2==2691.52=cos14.7154.2 cos14.71191.79=mm2 cos16.39⨯⨯1.85/m s第七章轴的设计7.1中速轴(II)的设计已知中速轴的传递功率 4.6P kwII=,转速187.87/minn rII=,转矩233.88T N mII=⋅,齿轮2和2'分度圆直径2192d mm=,齿轮宽度245b mm=,齿轮3分度圆直径398d mm=,齿轮宽度285b mm=1.求作用在齿轮上的力312112cos234.610cos16.391229.2354t tTF F N Ndβ⨯⨯⨯︒====121tan tan201229.23466.35cos cos16.39t nr rFF F N Nαβ︒︒===⨯=211tan1229.23tan16.39361.55a a tF F F N Nβ︒===⨯=33322233.88104773.198IItTF Nd⨯⨯===33tan201737.25r tF F N==轴上力的方向如下图7-1所示图7-1轴上力的方向21229.23tF N=2466.35rF N=2361.55aF N=34773.1tF N=31737.25rF N=2.初步确定轴的最小直径根据式3Pd C mmn≥初步确定轴的最小直径,选取轴的材料为45钢,调质处理。
机械设计课程设计二级减速器设计说明书一、设计任务设计一个二级减速器,用于将电动机的高转速降低到所需的工作转速。
减速器的技术参数如下:输入轴转速:1400rpm输出轴转速:300rpm减速比:4.67工作条件:连续工作,轻载,室内使用。
二、设计说明书1.总体结构二级减速器主要由输入轴、两个中间轴、两个齿轮、输出轴和箱体等组成。
输入轴通过两个中间轴上的齿轮与输出轴上的齿轮相啮合,从而实现减速。
2.零件设计(1)齿轮设计根据减速比和转速要求,计算出齿轮的模数、齿数、压力角等参数。
选择合适的齿轮材料和热处理方式,保证齿轮的强度和使用寿命。
同时,要进行轮齿接触疲劳强度和弯曲疲劳强度的校核。
(2)轴的设计根据齿轮和轴承的类型、尺寸,计算出轴的直径和长度。
采用适当的支撑方式和轴承类型,保证轴的刚度和稳定性。
同时,要进行轴的疲劳强度校核。
(3)箱体的设计箱体是减速器的支撑和固定部件,应具有足够的强度和刚度。
根据减速器的尺寸和安装要求,设计出合适的箱体结构。
同时,要考虑到箱体的散热性能和重量等因素。
3.装配图设计根据零件设计结果,绘制出减速器的装配图。
装配图应包括所有零件的尺寸、配合关系、安装要求等详细信息。
同时,要考虑到维护和修理的方便性。
4.设计总结本设计说明书详细介绍了二级减速器的设计过程,包括总体结构、零件设计和装配图设计等部分。
整个设计过程严格遵循了机械设计的基本原理和规范,保证了减速器的性能和使用寿命。
通过本课程设计,提高了机械设计能力、工程实践能力和创新思维能力。
二级减速器的设计毕业设计二级减速器的设计毕业设计毕业设计说明书二级减速器的设计班级:学号:姓名:软件学院学院:软件工程专业:袁文武李秀玲指导教师:2014年 6 月二级减速器的设计摘要减速器是一种利用封闭在刚性壳内的齿轮的速度转换装置。
它已经有很长的应用历史了,作为传动机械行业中的一个重要的分支,减速器在很多行业中扮演了越来越重要的角色。
随着现代工业的快速发展,人们对减速器提出了很多更高的要求,其主要是针对更高的功率容量、更短的研发周期、转矩范围大、设计形式多样、高寿命高可靠性等。
但是当前减速器普遍存在着体积大、重量大,或者传动比大而机械效率过低的问题。
国外的减速器,以丹麦、日本和德国等国家处于领先地位,尤其是在材料和制造工艺等方面占有很大的优势,是器减速器的可靠性和使用寿命的性能受广泛好评。
国内减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。
同时,由于材料品质和工艺水平相对较弱,使减速器(尤其是大型减速器)存在较多问题,使用寿命较短。
所以,发展减速器技术对于发展我国机械工业有着至关重要的意义。
随着中国从“制造大国”向“制造强国”的转变,国民经济重点行业核心制造领域对装备制造设备的要求更高,则对机械制造设备中的减速器的要求也就更高。
本文介绍了减速器的概念及意义和参数化设计的概念及意义,完成了对二级减速器的设计,主要设计内容如下:首先,从二级减速器传动方案整体设计出发对电动机进行选择、并计算传动装置的运动和动力参数;其次,分别对二级减速器的相关部件进行设计,包括传动件的设计计算,轴的设计计算、滚动轴承的选择及计算、键联接的选择及校核计算、联轴器的选择、减速器附件的选择和润滑与密封等。
根据设计计算的结果和设计期间所得的资料进行归纳、分析,得出了自己的结论和见解。
关键词:减速器,传动比,电动机,齿轮,中速轴The secondary gear reducer designAbstractReducer is a kind of using closed in rigid shell gear speed conversion device. It already has a long history of the application, as an important branch of transmission in the machinery industry, reducer played a more and more important role in many industries. With the rapid development of modern industry, people puts forward much higher requirements on speed reducer, it is mainly aimed at higher power capacity, shorter development cycle, large torque range, design a variety of forms, long service life of the high reliability, etc. But there is a widespread volume, weight, big current reducer, or big transmission ratio and the problem that the low mechanical efficiency. Foreign reducer to Denmark, Japan and Germany and other countries in a leading position, especially in such aspects as material and manufacturing process has great superiority, is the reliability of the gear reducer and the service life of the performance by the wide acclaim. And more domestic gear to gear transmission, worm drive is given priority to, but the common power and weight ratio is small, or large, the problem of low efficiency ofmechanical transmission ratio. At the same time, due to relatively weak level of material quality and technology, make the problems more reducer (especially large-scale reducer), short service life. Therefore, development of reducer technology for the development of our country mechanical industry has crucial significance. As China from the "manufacturing power" to "manufacturing power", the core manufacturing key industries of the national economy to greater demands of the equipment manufacturing equipment, the speed reducer of mechanical manufacturing equipment requirements are higher.This paper introduces the concept of speed reducer and the meaning and the concept and significance of parametric design, completed the design of secondary reducer, the main design content is as follows: first, starting from the secondary reducer drive plan overall design was carried out on the motor selection, and calculate the transmission of movement and dynamic parameters; Second, the relevant parts of the secondary reducer design respectively, including the design and calculation of transmission devices, the design of the shaft calculation, selection of rolling bearing and calculation, the selection and checking calculation of linkage, coupling, reducer fittings and lubrication and sealing, etc. According to the design and calculation of results and data obtained during the design of induction, analysis, draw conclusions and my own ideas.Keywords:Reducer,Transmission ratio,Electromotor,Gear,Intermediate shaft目录1 引言 (1)2 确定传动方案及技术任务书设计 (4)2.1 确定传动方案 (4)2.2 技术任务书设计 (4)2.2.1 设计任务书 (4)2.2.2 主要技术指标和重要技术参数 (4)3 确定设计方案 (5)4 选择电动机,传动系统运动和动力参数计算 (6) 4.1 选择电动机 (6)4.1.1 确定电动机的容量 (6)4.1.2 确定电动机转速 (6)4.2 确定传动装置总传动比以及各级传动比的分配 (7)4.3 运动参数和动力参数计算 (7)5 V带传动的设计 (9)5.1 V带的基本参数 (10)5.2 带轮的材料 (13)6 渐开线斜齿圆柱齿轮设计 (14)6.1 高速级斜齿圆柱齿轮设计计算表 (14)6.2 低速级斜齿圆柱齿轮设计计算表 (24)6.3 斜齿轮设计参数表 (35)7 轴的设计计算 (36)7.1 高速轴的结构设计 (36)7.2 中速轴的结构设计 (41)7.3 高速轴的结构设计 (43)7.4 校核中速轴的强度 (47)8 轴承的选择和校核 (52)8.1 中速轴轴承的选择 (52)8.2 校核中速轴轴承是否满足工作要求 (52)9 键联接的选择和校核 (55)9.1 中速轴大齿轮键的选择 (55)9.2 中速轴大齿轮键的校核 (55)10 减速器的润滑、密封和润滑牌号的选择 (56) 10.1 传动零件的润滑 (56)10.2 减速器密封 (56)11 箱体主要设计尺寸 (57)12 减速器附件的选择及简要说明 (63)13 使用说明书(SM) (64)13.1 主要参数 (64)13.2 二级斜齿轮减速器的结构 (64)13.3 驱动机构 (64)14 标准化审核报告(BS) (65)14.1 产品图样的审查 (65)14.2 产品技术文件的审查 (65)14.3 标注件的使用情况 (65)14.4 审查结果 (65)15 结论 (66)参考文献 (67)致谢 (68)1引言减速器是一种动力传达机构,它是利用齿轮的速度转换器,可以将电机(马达)的回转数减速到用户所要的回转数,并且得到较大转矩的机械机构[1]。
1.箱体初步设计二级齿轮减速器的箱体采用铸铁(HT200)制成,为了保证齿轮啮合的质量,采用剖分式结构,箱体上下部分采用67is H 配合。
(1)在机体外增加肋条,外轮廓为长方形,增强了轴承座的刚度(2)考虑到机体内零件的润滑、密封和散热,采用浸油润滑,同时为了避免运行时沉渣溅起,齿顶到油池底面的距离H 大于40mm(3)为保证机座与机盖连接处密封,联接凸缘应该有足够的宽度,联接表面应精创,其表面粗糙度为 3.6。
(4)为保证机体结构有良好工艺性,铸件壁厚为9mm ,圆角半径R=5.机体外型较简单,拔模方便.2.箱体附件设计 (1)检查孔及检查孔盖在机盖顶部开有检查孔,能看到机体内部传动零件啮合区的未知,并保证有足够的空间,便于伸入进行操作。
检查孔有盖板,用垫片加强密封,盖板用铸铁制成,紧固螺栓选用M6。
(2)油螺塞放油孔位于油池最底部,并安排在减速器远离其他部件的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应该凸起一块,由机械加工成螺塞头部的支承面,并用封油圈加以密封。
(3) 油标油标设置在便于观察减速器油面并且油面稳定之处。
油尺安置的位置不能太低,防止油进入油尺座孔从而溢出。
(4)通气孔由于减速器运转时机体内温度升高,气压增大。
为便于排气,在机盖顶部的检查孔改上安装通气器,以保证箱体内压力平衡。
(5)盖螺钉启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。
钉杆端部要做成圆柱形状,以免破坏螺纹.(6)位销为了保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一个圆锥定位销,用以提高定位精度。
(7)吊钩在箱座上直接铸出吊钩,用以搬运或起吊较重的物体.3.箱体的结构尺寸见《机械设计课程设计手册》表11—1,可知多级传动时,a取低速级中心距,a=235mm。
4.减速器的润滑与密封(1)因为变速器是封闭式齿轮传动,齿轮的圆周速度小于4。
5m/s,所以采用浸油润滑的润滑方式.轴承利用大齿轮的转动把油溅到箱壁的油槽里输送到轴承进行润滑。
机械设计基础课程设计二级分流式减速器计算说明书题目运输带传动设计指导教师张旦闻院系机电工程系班级 B100303学号 B10030322姓名张阳羊目录目录 (2)第一章设计任务书 (3)第二章传动方案拟定 (4)第三章电动机的选择 (5)3.1选择电动机类型 (5)3.2选择电动机的容量计算 (5)3.3电动机转速选择及型号确定 (5)第四章传动装置总体设计 (7)4.1计算传动比及分配各级传动比总传动比 (7)4.2计算传动装置的运动和动力参数 (7)第五章皮带轮设计 (9)第六章齿轮传动设计 (11)6.1高速级齿轮传动设计 (11)6.2 低速级齿轮传动设计 (15)第七章轴的设计 (20)7.1中速轴(II)的设计 (20)7.2高速轴(I)的设计 (23)7.3低速轴(Ⅲ)设计 (26)第八章轴的校核 (30)第九章轴承的选择和校核计算 (32)9.1高速轴Ⅰ上的轴承选择与计算 (32)9.2中速轴Ⅱ上的轴承选择与计算 (32)9.3低速轴Ⅲ上的轴承选择与计算 (33)第十章键连接的选择与校核计算 (34)第十一章减速器附件设计 (36)第十二章润滑方式及密封形式的选择 (37)第十三章箱体设计 (38)第十四章总结 (39)第十五章参考文献 (40)第二章传动方案拟定卷筒由电动机驱动,电动机1通过V带2将动力传入减速器3,在经联轴器4传至输送机滚筒5,带动输送带6工作。
传动系统中采用两级分流式圆柱齿轮减速器,结构较复杂,高速级齿轮相对于轴承位置对称,沿齿宽载荷分布较均匀,高速级和低速级分别为斜齿圆柱齿轮和直齿圆柱齿轮传动.传动方案见图1。
两级分流式圆柱斜齿轮减速器第七章轴的设计7.1中速轴(II)的设计已知中速轴的传递功率 4.6P kwII=,转速187.87/minn rII=,转矩233.88T N mII=⋅,齿轮2和2'分度圆直径2192d mm=,齿轮宽度245b mm=,齿轮3分度圆直径398d mm=,齿轮宽度285b mm=1.求作用在齿轮上的力312112cos234.610cos16.391229.2354t tTF F N Ndβ⨯⨯⨯︒====121tan tan201229.23466.35cos cos16.39t nr rFF F N Nαβ︒︒===⨯=211tan1229.23tan16.39361.55a a tF F F N Nβ︒===⨯=33322233.88104773.198IItTF Nd⨯⨯===33tan201737.25r tF F N==轴上力的方向如下图7-1所示图7-1轴上力的方向21229.23tF N=2466.35rF N=2361.55aF N=34773.1tF N=31737.25rF N=2.初步确定轴的最小直径根据式3Pd C mmn≥初步确定轴的最小直径,选取轴的材料为45钢,调质处理。
目录1. 设计任务 (2)2. 传动系统方案的拟定 (2)3. 电动机的选择 (3)3.1选择电动机的结构和类型 (3)3.2传动比的分配 (5)3.3传动系统的运动和动力参数计算 (5)4. 减速器齿轮传动的设计计算 (7)4.1高速级斜齿圆柱齿轮传动的设计计算 (7)4.2低速级直齿圆柱齿轮传动的设计计算 (11)5. 减速器轴及轴承装置的设计 (16)5.1轴的设计 (16)5.2键的选择与校核 (23)5.3轴承的的选择与寿命校核 (25)6. 箱体的设计 (28)6.1箱体附件 (28)6.2铸件减速器机体结构尺寸计算表 (29)7. 润滑和密封 (30)7.1润滑方式选择 (30)7.2密封方式选择 (30)参考资料目录 (30)滚筒直径: 450mm1.3工作条件二班制,空载起动,有轻微冲击,连续单向运转,大修期三年;三相交流电源,电压为380/220V 。
2. 传动系统方案的拟定 带式输送机传动系统方案如下图所示: 带式输送机由电动机驱动。
电动机1通过联轴器2将动力传入两级齿轮减速计算及说明结果器3,再经联轴器4将动力传至输送机滚筒5带动输送带6工作。
传动系统中采用两级展开式圆柱齿轮减速器,高速级为斜齿圆柱齿轮传动,低速级为直齿圆柱齿轮传动,高速级齿轮布置在远离转矩输入端,以减轻载荷沿齿宽分布的不均匀。
展开式减速器结构简单,但齿轮相对于轴承位置不对称,因此要求轴有较大的刚度。
3. 电动机的选择3.1选择电动机的结构和类型按设计要求及工作条件,选用Y 系列三相异步电动机,卧式封闭结构,电压380V 。
3.1.1选择电动机的容量根据已知条件计算,工作机所需要的有效功率900 2.4 2.1610001000w Fv P kW ⨯===设:η4w ——输送机滚筒轴至输送带间的传动效率;3 Y132S-6 3 960 9.42通过对以上方案比较可以看出:方案1选用的电动机转速最高、尺寸最小、重量最低、价格最低,总传动比为28.26。
二级减速器课程设计说明书目录一、设计任务书 (2)二、减速箱传动方案的拟定及说明 (3)三、运动参数计算 (3)一、电机的选择 (3)二、传动比的分配 (4)三、传动件运动和动力参数计算 (5)四、各传动零件的设计计算 (6)一、皮带轮的设计计算 (6)二、齿轮的设计 (8)三、各轴的设计 (12)四、减速器的箱体(箱盖)设计 (25)五、减速器的润滑 (27)六、减速器附件 (28)四、设计小结 (31)参考资料 (32)一、设计任务书带式运输机两级斜齿轮圆柱齿轮减速箱传动方案1、输送胶带2、传动滚筒3、两级圆柱齿轮减速器4、V带传动5、电动机原始数据:1. 带式运输机上圆周力F=6000N;2. 带式运输机上圆周速度V=0.75m/s;3. 带式运输机直径D=300mm;4. 工作情况:两班制,连续单向运转,载荷平稳5. 工作年限:10年(每年按300天计算)6. 工作环境:室内,清洁;7. 动力来源:电力,三相交流,电压380V;8. 检修间隔期:四年一次大修,两年一次中修;半年一次小修;9. 制造条件及生产批量:一般机械厂生产,中批量生产。
二、减速箱传动方案的拟定及说明一、工作机器特征的分析由设计任务书可知:该减速箱用于带式运输机,工作速度不高(V=0.75m/s),圆周力不大(P=6000N),因而传递的功率也不会太大。
由于工作运输机工作平稳,转向不变,使用寿命10年,故减速箱应尽量设计成闭式。
箱体内用油液润滑,轴承用脂润滑。
要尽可能使减速箱外形及体内零部件尺寸小,结构简单紧凑,造价低廉,生产周期短,效率高。
二、传动方案的拟定及说明根据设计任务书中已给定的传动方案及传动简图,分析其有优缺点如下:优点:(1)、电动机与减速器是通过皮带进行传动的,在同样的张紧力下,三角皮带较平带传动能产生更大的摩擦力,而且三角皮带允许的中心中距较平带大,传动平稳,结构简单,使用维护方便,价格低廉。
故在第一级(高速级)采用三角皮带传动较为合理,这样还可以减轻电动机因过载产生的热量,以免烧坏电机,当严重超载或有卡死现象时,皮带打滑,可以起保护电机的作用。
二级分流式减速器计算说明机械设计基础课程设计机械设计基础课程设计二级分流式减速器计算说明书题目运输带传动设计指导教师张旦闻院系机电工程系班级 B100303学号 B10030322姓名张阳羊目录目录 (2)第一章设计任务书 (3)第二章传动方案拟定 (4)第三章电动机的选择 (5)3.1选择电动机类型 (5)3.2选择电动机的容量计算 (5)3.3电动机转速选择及型号确定 (5)第四章传动装置总体设计 (7)4.1计算传动比及分配各级传动比总传动比 (7)4.2计算传动装置的运动和动力参数 (7)第五章皮带轮设计 (9)第六章齿轮传动设计 (11)6.1高速级齿轮传动设计 (11)6.2 低速级齿轮传动设计 (15)第七章轴的设计 (20)7.1中速轴(II)的设计 (20)7.2高速轴(I)的设计 (23)7.3低速轴(Ⅲ)设计 (26)第八章轴的校核 (30)第九章轴承的选择和校核计算 (32)9.1高速轴Ⅰ上的轴承选择与计算 (32)9.2中速轴Ⅱ上的轴承选择与计算 (32)9.3低速轴Ⅲ上的轴承选择与计算 (33)第十章键连接的选择与校核计算 (34)第十一章减速器附件设计 (36)第十二章润滑方式及密封形式的选择 (37)第十三章箱体设计 (38)第十四章总结 (39)第十五章参考文献 (40)第二章传动方案拟定卷筒由电动机驱动,电动机1通过V带2将动力传入减速器3,在经联轴器4传至输送机滚筒5,带动输送带6工作。
传动系统中采用两级分流式圆柱齿轮减速器,结构较复杂,高速级齿轮相对于轴承位置对称,沿齿宽载荷分布较均匀,高速级和低速级分别为斜齿圆柱齿轮和直齿圆柱齿轮传动.传动方案见图1。
两级分流式圆柱斜齿轮减速器n=卷筒转速w电动机转速可选范围2122410057.3166.89542a-⨯--⨯=>cosβ0.9662691.52==cos14.71191.792⨯⨯第七章轴的设计7.1中速轴(II)的设计已知中速轴的传递功率 4.6P kwII=,转速187.87/minn rII=,转矩233.88T N mII=⋅,齿轮2和2'分度圆直径2192d mm=,齿轮宽度245b mm=,齿轮3分度圆直径398d mm=,齿轮宽度285b mm=1.求作用在齿轮上的力312112cos234.610cos16.391229.2354t tTF F N Ndβ⨯⨯⨯︒====121tan tan201229.23466.35cos cos16.39t nr rFF F N Nαβ︒︒===⨯=211tan1229.23tan16.39361.55a a tF F F N Nβ︒===⨯=33322233.88104773.198IItTF Nd⨯⨯===33tan201737.25r tF F N==轴上力的方向如下图7-1所示图7-1轴上力的方向21229.23tF N=2466.35rF N=2361.55aF N=34773.1tF N=31737.25rF N=2.初步确定轴的最小直径根据式3Pd C mmn≥初步确定轴的最小直径,选取轴的材料为45钢,调质处理。
二级减速器课程设计说明书一、设计任务本次课程设计的任务是设计一个用于特定工作条件的二级减速器。
该减速器需要将输入的转速降低到指定的输出转速,并传递一定的扭矩。
二、设计要求1、确定传动方案,包括齿轮类型、轴的布置等。
2、完成零部件的设计计算,如齿轮、轴、轴承等。
3、绘制装配图和零件图。
三、传动方案的确定1、考虑到传动比、效率和结构紧凑性等因素,选择了展开式二级圆柱齿轮减速器。
2、第一级为斜齿圆柱齿轮传动,第二级为直齿圆柱齿轮传动。
3、电机通过联轴器与高速轴相连,低速轴通过联轴器输出动力。
四、电机的选择1、根据工作机的功率要求和工作条件,初选电机型号。
2、计算电机的转速,以确定传动比的分配。
五、传动比的分配1、综合考虑齿轮的强度、尺寸和润滑等因素,合理分配各级传动比。
2、计算实际总传动比,并与理论传动比进行比较。
六、齿轮的设计计算1、第一级斜齿圆柱齿轮确定齿轮的材料、精度等级。
按齿面接触强度进行初步设计计算。
按齿根弯曲强度进行校核计算。
确定齿轮的主要参数,如模数、齿数、螺旋角等。
2、第二级直齿圆柱齿轮同样按照上述步骤进行设计和校核计算。
七、轴的设计计算1、高速轴初步估算轴的直径。
进行轴的结构设计,确定轴上各段的长度和直径。
进行强度校核计算,包括弯扭合成强度和疲劳强度校核。
2、中间轴和低速轴重复上述步骤进行设计和校核。
八、轴承的选择与校核1、根据轴的受力情况,选择合适类型的轴承。
2、计算轴承的寿命,确保其满足使用要求。
九、键的选择与校核1、选择合适尺寸的键,用于连接轴与齿轮等零件。
2、对键进行强度校核。
十、箱体及附件的设计1、设计箱体的结构和尺寸,保证足够的强度和刚度。
2、选择合适的密封方式、通气器、油标等附件。
十一、装配图的绘制1、按照机械制图标准,绘制减速器的装配图。
2、清晰表达各零部件的装配关系和结构形状。
十二、零件图的绘制1、选取重要的零件,如齿轮、轴等,绘制零件图。
2、标注尺寸、公差、表面粗糙度等技术要求。
二级减速器课程设计完整版一、课程设计的目的二级减速器课程设计是机械设计课程中的重要实践环节,其目的在于通过对二级减速器的设计,让我们更深入地理解机械传动系统的工作原理和设计方法,培养我们综合运用所学机械知识进行工程设计的能力,包括结构设计、强度计算、绘图表达等方面。
同时,也有助于提高我们的创新思维和解决实际问题的能力。
二、设计任务与要求本次设计的任务是设计一个用于特定工作条件下的二级减速器。
给定的工作条件包括输入功率、输入转速、工作机的转速要求以及工作环境等。
具体要求如下:1、选择合适的传动方案,确定各级传动比。
2、对齿轮、轴、轴承等主要零部件进行设计计算和强度校核。
3、绘制减速器的装配图和主要零件图。
4、编写设计说明书,清晰阐述设计思路和计算过程。
三、传动方案的选择在选择传动方案时,需要考虑多种因素,如传动效率、结构紧凑性、成本等。
常见的二级减速器传动方案有圆柱齿轮减速器、圆锥齿轮减速器、蜗杆减速器等。
经过比较分析,我们选择了圆柱齿轮减速器,因为它具有传动效率高、结构简单、成本较低等优点。
四、主要参数的计算1、确定总传动比根据输入转速和工作机转速要求,计算出总传动比。
2、分配各级传动比考虑到齿轮的齿数和模数等因素,合理分配两级齿轮的传动比。
3、计算各轴的转速、功率和转矩五、齿轮的设计计算1、选择齿轮材料根据工作条件和使用要求,选择合适的齿轮材料。
2、按齿面接触疲劳强度计算确定齿轮的主要参数,如齿数、模数、分度圆直径等。
3、按齿根弯曲疲劳强度校核六、轴的设计计算1、初步估算轴的直径根据传递的转矩和转速,初步估算轴的最小直径。
2、轴的结构设计根据安装零件的要求,确定轴的各段直径和长度,以及轴上的键槽等结构。
3、轴的强度校核对轴进行弯扭合成强度校核和疲劳强度校核。
七、轴承的选择与校核根据轴的受力情况,选择合适的轴承类型,并进行寿命计算和校核。
八、键的选择与校核选择合适的键连接,并对其强度进行校核。
九、减速器的润滑与密封确定减速器的润滑方式和润滑油的种类,以及选择合适的密封方式和密封件。
机械设计课程设计计算说明题目两级(分流式)圆柱齿轮减速器院(系):汽车与交通学院专业班级:车辆工程***班学号:设计人:指导老师:韦丹柯完成时间:2013年1月19日目录一.设计任务书………………………………二、传动方案拟定…………….……………………………….三、电动机的选择……………………………………….…….四、计算总传动比及分配各级的传动比………………………五、运动参数及动力参数计算…………………………………六、传动零件的设计计算………………………………………七、轴的设计计算………………………………………………八、滚动轴承的选择及校核计算………………………………九、键联接的选择及计算………………………………………十、联轴器的选择………………………………………………..十一、润滑与密封…………………………………………………..十二、参考文献…………………………………………………十三、附录(零件及装配图)………………………………一. 设计任务书(一)设计题目:设计带式运输机的两级(分流式)圆柱齿轮减速器(如下图),用于装配车间,双班制工作,工作比较平稳,使用寿命为8年(轴承寿命为3年以上)。
其原始数据如下:参数题号滚筒直径D(mm)输送带速度v(m/s)输送带从动轴所需扭矩T(N·m)6 370 0.8 500(二)设计内容(1)确定传动装置的类型,画出机械系统传动方案简图;(2)选择电动机,进行传动装置的运动和动力参数计算;(3)传动系统中的传动零件设计计算;(4)手绘减速器装配图1张(A1或以上,比例1:1);'hL=12000hF=5500NV=1.2m/sD=400mm分流式二级圆柱齿轮减速器二、传动装置总体设计方案:输送机由电动机驱动,电动机1通过带传动2将动力传入减速器3,再经联轴器4传至输送机滚筒5,带动输送带6工作。
传动系统中采用两级分流式圆柱齿轮减速器,高速级和低速级分别为斜齿圆柱齿轮和直齿圆柱齿轮传动。
目录
机械设计任务书
机械课程设计任务书 (1)
机械课程设计第一阶段
1.1、确定传动方案 (2)
1.2、电动机选择 (3)
1.3、传动件的设计 (5)
机械课程设计第二阶段
2.1装配草图设计第一阶段说明 (12)
2.2轴的设计及校核 (12)
2.3键和联轴器的选择 (35)
机械课程设计第三阶段
3.1、减速器箱体及附件的设计 (23)
3.2、润滑方式、润滑剂及密封装置的选择 (24)
机械课程设计小结
4.1、机械课程设计小结 (40)
附1:参考文献
机械课程设计任务书
一、课程设计的内容
题目:E06悬挂式输送机传动装置设计
设计悬挂式输送机传动装置(见图1)。
二、课程设计的要求与数据
1、设计条件:
1)机器功用通用生产线中传送半成品、成品用,被用送物品悬挂在传送链
上;
2)工作情况单向连续运输,轻度震动;
3)运动要求输送链运动速度误差不超过5%;
4)使用寿命8年,每年350天,每天16小时;
5)检修周期一年小修,两年大修;
6)生产批量中批生产;
7)生产厂型中、大型通用机械厂。
2、原始数据
主动星轮圆周力(N):5500
主动星轮速度(m/s):1.1
主动星轮齿数:11
主动星轮节距(mm):86
3、设计任务
1)设计内容1、电动机选型;2、链传动设计;3、减速器设计;4、联轴器选型设计;5、其他。
2)设计工作量1、减速器装配图1张;2、零件图2张(具体零件由指导老师指定);3、设计计算说明书一份。
4、设计要求
1)带传动、链传动或开式齿轮传动只参与传动比分配,不作具体设计;2)
减速器内高速级齿轮传动采用斜齿圆柱齿轮传动;3)、a同轴式推荐采用
一对变为齿轮;b展开式推荐两级都用斜齿轮;c分流式高速级采用对称
布置得两对斜齿轮
端面与半联轴器右端面的距离为=l 35mm ,故取m m 40L III II =-
5)取齿轮距箱体内壁的距离为△=16mm ,并且密封圈的厚度为7mm 。
两个斜齿轮之间的距离取110mm ,斜齿轮到轴承的距离为22mm 。
(3)轴上零件的周向定位 半联轴器与轴的周向定位采用平键连接,按m m 25d II I =-由表6-1
查得平键截面mm 7mm 8h b ⨯=⨯,键槽用键槽铣刀加工,长度为35mm ,同时为了保证联轴器与轴配合具有良好的对中性,所以选择
齿轮轮毂与轴的配合为6
n 7
H 。
滚动轴承与轴的轴向定位是由过渡配
合来保证的,此处选轴的尺寸公差约为n6. (4)确定轴上圆角和倒角尺寸
5.求轴上的载荷
首先根据轴的结构图 每处倒角的半径mm 1R =
5.求轴上的载荷
首先根据轴的结构图做出轴的计算见图
72 N·mm
T = 314357 N·mm
W = 6 400 mm 3
W T =12 800 mm 3 2b 15.03N mm σ/=
224.56N mm τ/=
2
a 15.03N mm σ/= 21mm N 275/σ=-
21mm N 155/τ=-
05.0,1.0==τσϕϕ
k σ =1.94,k τ =1.39 (轴肩圆角处) K σ=3.45,K τ =2.488 (配合处)
k σ=1.492,k τ =1.608
(键槽处) εσ =0.88,ετ =0.81 βσ
=βτ=0.88
K σ = 3.45
K τ =2.488
2a m 12.28N mm ττ/==0m =σ
2。