当前位置:文档之家› 高光谱遥感实习报告

高光谱遥感实习报告

高光谱遥感实习报告
高光谱遥感实习报告

高光谱遥感实习报告

目录

一.数据预处理 (2)

1. 数据说明 (2)

2.数据转换 (3)

2.FLAASH大气校正 (4)

3.图像裁剪 (7)

二.光谱识别与地物分析 (8)

1.波段相关性分析 (8)

2.MNF变换 (8)

3.端元提取 (10)

3.1 2-D散点图法 (10)

3.2基于PPI的端元提取(N维散点图法) (13)

三.实习心得 (19)

一.数据预处理

1.数据说明

环境与灾害监测预报小卫星星座A、B星(简称环境小卫星,简写HJ-1A /1B)于2009

年3月30日开始正式交付使用,HJ-1-A星搭载了CCD相机和超光谱成像仪(HSI),HJ-1-B 星搭载了CCD相机和红外相机(IRS)。HJ-1A /1B卫星是继我国继气象、海洋、国土资源卫星之后一个全新的民用卫星。卫星投入使用后,对自然灾害、生态破坏、环境污染进行大范围、全天候、全天时的动态监测,对灾害和环境质量进行快速和科学评估,提高灾害和环境信息的观测、采集、传送和处理能力,为紧急救援、灾后救助及恢复重建和环境保护工作提高科学依据。

HSI 对地成像幅宽为50 km, 星下点像元地面分辨率为100 m,115个波段,工作谱段:459~ 956nm。具有30度侧视能力和星上定标功能。HJ-1数据应用于自然灾害、生态环境之前,需要进行几何及光谱方面的预处理。ENVI在数据读取、图像配准、精确大气校正等方面提供了非常好的工具。

2.数据转换

目前,网上免费获取的HJ-1A /1B卫星CCD和HSI影像的分发的格式主要有两种:CCD 为Geotiff,每一个波段为一个Geotiff文件,并提供一个元数据说明(.XML); HSI为HDF5格式,也提供一个元数据说明(.XML)。

使用HJ-1数据读取补丁,启动ENVI->File->Open External File->HJ-1->HJ-1A /1B Tools工具。直接读取CCD、HIS、IRS数据,之后选择Basic Tools->Convert Data(BSQ,BIL,BIP),将刚才生成的文件转成BIL储存顺序的文件。至此,已经将HSI数据转成BIL储存顺序、带有中心波长信息、波段宽度信息的ENVI格式文件。

图1.1 HJ-1A /1B Tools面板

图1.2 数据转换面板

图1.3 转换后显示的图像

2.FLAASH大气校正

大气校正的目的是消除大气和光照等因素对地物反射的影响,获得地表的真实物理模型参数,如地物反射率、辐射率、地表温度等。

遥感影像的大气校正是预处理的重要组成部分。大气对电磁辐射的影响主要是吸收和散射,并叠加在地物的反射信号上,使遥感像元处的图像清晰度和对比度下降。大气校正可以去除大气及光照对地物反射的影响,从而提高图像质量并正确地显示地物波普信息。

ENVI中操作步骤:①Basic Tool>Preprocessing >Calibration Utilities>FLAASH

②Spectral>FLAASH

③Spectral>Preprocessing>Calibration Utilities >FLAASH

ENVI大气校正模块的高光谱处理主要有以下6个方面组成:⑴输入文件准备⑵基本参数设置⑶高光谱数据参数设置⑷高级设置⑸输出文件⑹处理结果

1)HSI数据已经经过了定标,单位是100W/(m2*um*sr ),启动FLAASH工具,在输入辐射率数据时候,缩放系数填写:1000(即缩小1000倍),(符合FLAASH对辐射亮度单位的要求(μW)/(cm2*nm*sr))。

图1.4 辐射率参数设置面板

2)选择传感器类型,成像中心点经纬度,成像时间,高度信息(成像区域和传感器飞行高度)等都可以在HDF5文件中获取。选择ENVI->File->Open External File->Generic Formats->HDF5,打开.h5文件。

Latitude (°N)Jan.March May July Sept.Nov.

80SAW SAW SAW MLW MLW SAW

70SAW SAW MLW MLW MLW SAW

60MLW MLW MLW SAS SAS MLW

50MLW MLW SAS SAS SAS SAS

40SAS SAS SAS MLS MLS SAS

30MLS MLS MLS T T MLS

20T T T T T T

10T T T T T T

0T T T T T T

-10T T T T T T

-20T T T MLS MLS T

-30MLS MLS MLS MLS MLS MLS

-40SAS SAS SAS SAS SAS SAS

-50SAS SAS SAS MLW MLW SAS

-60MLW MLW MLW MLW MLW MLW

-70MLW MLW MLW MLW MLW MLW

-80MLW MLW MLW SAW MLW MLW

表1.1 六种标准的大气模型

图1.5 大气校正参数设置面板

图1.6 大气校正成功后生成的报告

图1.7 经大气校正后的影像

3.图像裁剪

在全部做过许多遍后效果都不是很理想后,首先想到的第一个改进措施是裁剪,但在几次尝试后效果并没有很大提升,便想到了数据本身的质量问题,经调整波段后发现影像前几个波段噪声太大,便想到了第二个改进措施即在裁剪时舍去前30个波段对图像进行裁剪,效果要较之前的好很多。

图1.8 裁剪后的影像

二.光谱识别与地物分析

1.波段相关性分析

在主图像窗口中选择:Tools > 2-D Scatter Plots,在随即弹出的波段选择窗口中任意选择两个波段,点击OK构成2-D散点图。这里选择的是第1、2波段。

图2.1 2-D散点图

在这幅2-D散点图上我们可以观察到,在由1和2波段组成的光谱特征空间中图像上的点大致呈线状点云分布,说明这两个波段的相关性比较强。遥感图像的某些波段之间往往存在着很高的相关性,直观上波段图像彼此很相似,从提取有用信息的角度考虑,有相当一部分数据是多余和重复的,解决这一问题的有效方法是进行特征提取和特征选择,去相关和分离噪声。在多光谱遥感图像处理中,我们会采取PC旋转,但是相比之下,MNF变换更适用于高光谱遥感数据。下面我们就用MNF变换对图像进行处理。最低噪声分数(MNF)变换用以确定图像数据的内在维度、隔离噪声以及降低后处理的计算要求。MNF变换的本质就是两个叠置的主成分变换。第一次变换(基于估计的噪声协方差矩阵)用于分离和重新调节数据中的噪声。第一步导致了转换数据的噪声个体的变异和波段与波段的不相关。第二步是标准主成分变换。

2.MNF变换

在ENVI主菜单下选择:Transform>MNF Rotation>Forward MNF>Estimate Noise Statistics from Data。

图2.2 MNF输入影像面板

图2.3 MNF参数设置面板

变换完成后得到MNF特征值曲线,其横坐标为变换后的波段数,纵坐标为特征值。

图2.4 MNF特征值曲线图2.5 MNF变换后的散点图把鼠标移到曲线上并点击左键,曲线上会出现一条以点击位置为交叉点的十字,同时在窗口左下角显示当前的波段数和其特征值。特征值越高说明信息量越丰富。

另外,我们还可以利用2-D散点图检查去相关的情况。以同样的方法打开2-D散点图,但需要注意的是我们要用MNF图像的第1、2波段,也就是信息最集中的两个波段构成散点图。由图可见,经过MNF变换后的图像波段之间的相关性有效地降低了,并且出现了多个拐点,这些拐点就是我们要找的端元——Endmembers。

3.端元提取

3.1 2-D散点图法

在打开的散点图上点击鼠标中键会出现一个红色的小方块,在主图像窗口中对应这个小方块区域中的点同时呈现红色;在主图像窗口中点击鼠标左键,在散点图上对应点击位置的像素同时呈现红色。这一功能方便我们察看图上像素点与散点图上的像素点的相互对应位置。

端元对应图像上的“纯”像元,是否能很好地提取它对于我们的分类是十分重要的。下面的操作就是利用MNF处理后图像2-D散点图选择端元生成样本区用以分类的过程。在打开的2-D散点图上利用ROI制图功能将点云拐角零散的几个点圈起来,并且不同的ROI用不同的颜色表示。同时在图上这些ROIs也显示了出来。

图2.6 在2D散点图上提取纯净像元图2.7 主窗口中对应像元被标记

在散点图窗口中选择:Options > Export All 将选择的区域输出为ENVI的ROIs,显示如下窗口:

图2.8 ROI窗口

在此为了便于区分,双击每个样本区的名称更名为其颜色的名称。选好了样本区后还要对样本区中的点进行训练。接下来要进行的操作就是要通过链接2-D散点图和Z-剖面图察看样本区中点的光谱特征曲线,删除差别显著的点,达到训练样本区的目的。在2-D散点图窗口中选择Options > Z-Profile,在文件列表中选择反射数据BLC,随即显示一个空白波段图。在2-D散点图窗口中点击鼠标右键,在空白的2-D散点图窗口中就会出现当前的像素剖面图及其坐标值,将差别显著的点删去(用白色画样本区即可删除)。

图2.9 光谱特征曲线

训练完成后,在2-D散点图窗口中选择:Options > Mean All提取各样本区的平均波谱曲线

图2.10 平均波谱曲线

我们现在已经得到了五类地物,但还没有确定它们的种类。在此,我们可以运用ENVI 的波谱分析功能来解决。波谱分析首先需要打开一个波谱库,然后将未知波谱与波谱库中的波谱进行匹配处理,并得出一系列匹配系数,系数越大就说明与这种地物越匹配。下面就进行具体的说明。在ENVI主菜单下选择:Spectral>Spectral Analyst,在弹出的窗口中选择波谱库,在此我们选择USGS(美国地质调查局)波谱库,点击OK,在弹出的“Edit Identify Methods Weighting”窗口中设定计算参数后点击OK,随即弹出波谱分析窗口,点击Apply,在弹出的输入波段列表中选择我们要鉴别的波谱。选择一个待鉴别的波谱后波谱分析窗口中就会显示这一波谱与波谱库中的波谱匹配分析的结果。

然而多次努力做出的结果都无法实现匹配,各种矿物得分都相同,努力了很久问题都没

有得到解决,只好进行下面的操作。

图2.11 分类结果

以上介绍的是通过2-D散点图定义样本区的方法,对于高光谱遥感来说由于其数据特点,考虑到运用n-D散点图分析效果可能会更好。此外在得到MNF处理图像以后通常还用到其它一些处理方法,下面就一一介绍。

3.2基于PPI的端元提取(N维散点图法)

像素纯度指数(PPI)是一种在多光谱和高光谱图像中寻找波谱最纯的像元的方法。波谱最纯像元与混合的端元相对应。像素纯度指数通过迭代将N-D散点图影射为一个随机单位向量。每次影射的极值像元被记录下来,并且每个像元被标记为极值的总次数也记下来。一幅“像素纯度图像”被建立,在这幅图像上,每个像素的DN值与像元被标记为极值的次数相对应。

MNF变换后,在ENVI主菜单中,选择Spectral-> Pixel Purity Index->[FAST] New Output Band。在打开的Pixel Purity Index Input File对话框中,选择MNF变换结果,单击Spectral Subset按钮,选择前面10个波段(MNF后面波段基本为噪声),单击OK。

图2.12 PPI处理进程中

图2.13迭代过程中的PPI曲线

图2.13 的PPI图像是前面的MNF图像经过一万次迭代得到的结果,图像上像素点的值表明了它在迭代过程中有多少次作为极值像元被记录下来。这些数值显示了每个像素周围的数据云的局部突面程度以及每个像素和数据的突起外壳的亲近程度。简言之,值越高越接近n-D散点图的数据源拐角,拥有这些值的数据,其纯度比值低的像素高。零值像素是从未被作为极值的像素。

图2.13 迭代后的PPI影像

越亮的像素说明它被标记为极值的次数越多相应地也越纯;相反,暗一些的图像纯度就低。在主图像窗口中选择:Enhance > Interactive Stretching 尝试不同的交互式拉伸以理解PPI图像的直方图和数据分类。

图2.14 输入和输出直方图的比较窗口

上图显示的是一个输入和一个输出直方图的比较窗口,在图中显示了当前的输入数据和各自拉伸的结果。两条垂直的星布线标志着当前拉伸的最小值和最大值。在窗口的底部列出了拉伸类型和直方图的来源。拖拽星布线的最大值和最小值,然后点击“Apply”,拉伸将自动执行。

下面要执行的操作是由PPI图像生成样本区。在ROIs Tool对话框中选择Options > Band Threshold to ROI 建立一个只包含拥有高PPI值像素的ROI。选择输入的PPI文件,在弹出的对话框中输入最小极限值:

图2.15 Band Threshold to ROI窗口

生成包含在迭代过程中100次以上作为极值的最纯像素的ROI。从下图中可以看出有3290个符合条件的点被提取出来,生成了红色的样本区。

图2.16 PPI图像图2.17 ROI窗口

生成的ROI包含最纯像素的位置,但却没有区分它们相应的端元。N维空间观察仪可以帮我们解决这个问题。波谱可以被认为是n-D散点图中的点(其中n是波段数)。n-D空间中的点坐标由n个值组成,它们只是一个给定像元的每个波段中波谱辐射或反射值。这些点在n-D空间中的分布可以用来估计波谱的端元数以及它们的纯波谱信号数。N维观察仪为N 维空间中选择端元提供了一个交互式工具。n-D观察仪用于连接最小噪声分数转换(MNF)和要定位、识别的纯净像元指数,并收集数据集中最纯的像元和极值波谱反应。n-D观察仪允许数据在N维空间中交互式旋转,选择像元组进行分类,以及聚集类,使其它类的选择更容易。选择的类可以输出到ROIs,并用作分类、不混溶和匹配的滤波技术的输入。

在ENVI主菜单中选择Spectral>n-Dimensional Visualizer>Visualize with New Data,在弹出的对话框中选择前面处理好的MNF文件,选择其前十个波段进行观察。这里默认使用刚才生成的只拥有高PPI值的ROI。如果有多个可选择的ROIs,它会让你选择用哪一个。点击ROI后将弹出可以选择1到10波段的N维控制对话框和N维散点图窗口。选择前五个波段构成n-D散点图。并选择n-D控制对话框中的Options>Show Axes选项。随后在n-D控制窗口中点击Start进行旋转:

图2.18 N维空间散点图

这是一个N维空间散点图的任意位置的动态显示功能,在这个模型中,小于输入波段数的任意多的波段都能同时被检查。在这一过程中我们可以切实感受到N维数据在空间中的分布,可以确定数据真的是高维的,可见对于处理高光谱图像数据二维散点图是无法满足要求的。(1)在n-D Controls面板中,设置适当的速度(Speed),单击Start按钮,在n-D Visualizer 窗口中的点云随机旋转,当在n-D Visualizer窗口中的点云有部分聚集在一块时,单击Stop 按钮。(2)在n-D Visualizer窗口中,用鼠标左键勾画“白点”集中区域,选择的点被标示颜色。(3)在n-D Controls面板中,选择Class->Items 1:20->White(用于删除点),单击Start 按钮,当看到有部分选择的点云分散时候,单击Stop按钮,在n-D Visualizer窗口中选择分散的点,自动会将选择的点删除。借助<-,->,New按钮可以一帧帧从不同视角浏览以辅助删除分散点。(4)在n-D Visualizer窗口中,单击右键选择New Class快捷菜单,重复(1)~(3)选择其他“白点”集中区域。

运用Z-剖面图进行样本区的训练,之后输出样本区。(1)在n-D Controls面板中,选择Options->Mean All,在Input File Associated with n-D Scatter Plot对话框中选择原图像,单击OK。(2)获取的平均波谱曲线绘制在n_D Mean绘图窗口中。(3)识别每条波谱曲线对应的地物类型。(4)在n_D Mean绘图窗口中,选择File->Save Plot As->Spectral Library(或者ASCII),将端元波谱保存为波谱库文件或者文本文件。

图2.19 波谱曲线

在分类的过程中又遇到了和第一种方法同样的问题,无法从光谱库中匹配到相应的矿物且不同矿物出现得分相等的情况。

在n-D控制窗口中选择Options>Class Controls弹出n-D分类控制窗口,在窗口中可以任意改变每一类的颜色,开启或关闭类,以及对类值片断的控制。

点击窗口中的颜色块可以激活此类,并可对此类的显示符号进行修改,同时可以对其进行计算统计图表、平均波谱、划分类、清除或输出操作。

四、丰度解混(以线性光谱解混为例)

(1)Spectral ->Mapping Method->spectral angle mapper打开要分类的图像

图2.20 输入影像

(2)在端元选择器中打开光谱库 Import->form ROI/EVF from input File

(3)选择所有端元

(4)Apply后,填写保存路径即可。

图2.21 结果影像

三.实习心得

在实习过程中,在全部做过许多遍后效果都不是很理想后,首先想到的第一个改进措施是裁剪,但在几次尝试后效果并没有很大提升,便想到了数据本身的质量问题,经调整波段后发现影像前几个波段噪声太大,便想到了第二个改进措施即在裁剪时舍去前30个波段对图像进行裁剪,效果要较之前的好很多。但是多次尝试后都没有与矿物匹配成功,只好简单的进行了分类工作。

通过这次高光谱遥感实习,使我较为熟练的掌握了ENVI这个软件的使用,这次实习题目都是对我们上高光谱遥感课程的知识的巩固和动手能力的提高,让我对高光谱遥感的基本知识和操作有了更深层次的认识。通过实践对理论知识有了更加深刻的理解,受益颇多。感谢沈老师对我们的指导和帮助。

高光谱遥感复习总结

1.高光谱分辨率遥感:用很窄(0.01波长)而连续的光谱通道对地物持续遥感成像的技术。在可见光、近红外、短波红外和热红外波段其光谱分辨率高达纳米(nm)数量级,通常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是连续的。 2.高光谱遥感特点:波段多,数据量大;光谱范围窄(高光谱分辨率);在成像范围内连续成像;信息冗余增加 3. 高光谱遥感的发展趋势(1)遥感信息定量化(2)“定性”、“定位”一体化快速遥感技术 4.光谱特征的产生机理:在绝对温度为0K以上时,所有物体都会发射电磁辐射,也会吸收、反射其他物体发射的辐射。高光谱遥感准确记录电磁波与物质间的这种作用随波长大小的变化,通过反映出的作用差异,提供丰富的地物信息,这种信息是由地物的宏观特性和微观特性共同决定的。宏观特性:分布、粗糙度、混杂微观特性:物质结构 6.典型地物反射:水体的反射主要在蓝绿光波段,其他波段吸收都很强,特别到了近红外波段,吸收就更强,所以水体在遥感影像上常呈黑色。 植被的反射波谱特征:①可见光波段有一个小的反射峰,位置在0.55um处,两侧 0.45um(蓝)和0.67um(红)则有两个吸收带。这一特征是叶绿素的影响。②在近红外波段(0.7-0.8um)有一反射的“陡坡”(被称为“红边”),至1.1um附近有一“峰值”,形成植被的独有特征。这一特征由于植被结构引起。③在中红外波段(1.3-2.5um) ,反射率大大下降,特别以1.45um和1.95um为中心是水的吸收带,形成低谷。 土壤:由于土壤反射波谱曲线呈比较平滑的特征,所以在不同光谱段的遥感影像上,土壤的亮度区别不明显.自然状态下土壤表面的反射率没有明显的峰值和谷值,一般来讲土质越细反射率越高,有机质含量越高和含水量越高反射率越低,此外土类和肥力也会对反射率产生影响。 6.野外光谱测量的影响因素(1)大气透射率(2)水蒸气3)风(4)观测几何 7.地面光谱的测量方法:实验室测量,野外测量 8.垂直与野外测量的区别:垂直测量:为使所有数据能与航空、航天传感器所获得的数据进行比较,一般情况下测量仪器均用垂直向下测量的方法,以便与多数传感器采集数据的方向一致。由于实地情况非常复杂,测量时常将周围环境的变化忽略,认为实际目标与标准板的测量值之比就是反射率之比。 野外测量(非垂直测量):在野外更精确的测量是测量不同角度的方向反射比因子。 凝视时间:探测器的瞬时视场角扫过地面分辨单元的时间称为凝视时间(dwell time)。探测器的凝视时间在数值上等于行扫描时间除以每行的像元个数。凝视时间越长,进入探测器的能量越多,光谱响应越强,图像信噪比越高。 光谱图像立方体:空间平面:O-XY平面;线光谱平面:O-XZ,O-YZ平面 9.高光谱遥感图像数据表达:A.光谱图像立方体 B.二维光谱曲线 C. 三维光谱曲面 10.空间成像方式:(1)摆扫型成像光谱仪:定义:它由光机左右摆扫和飞行平台向前运动完成二维空间成像,其线列探测器完成每个瞬时视场像元的光谱维获取。原理:45斜面的扫描镜,电机进行360旋转,旋转水平轴与遥感平台前进方向平行,扫描镜扫描运动方向与遥感平台运动方向垂直,光学分光系统形成色散光源再汇集到探测器上,这样成像光谱仪所获取的图像就具有了两方面的特性:光谱分辨率与空间分辨率。 (2)推扫型成像光谱仪:定义:采用一个面阵探测器,其垂直于运动方向在飞行平台向前运动中完成二维空间扫描;平行于平台运动方向,通过光栅和棱镜分光,完成光谱维扫描。它的空间扫描方向就是遥感平台运动方向。原理:垂直于运动方向完成空间维扫描,平行于运动方向完成光谱维扫描。 (3)两者的优缺点:摆扫型成像光谱仪的优点:A.FOV 大;B.探测元件定标方便,数据稳

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 35 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为 21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。

高光谱遥感

高光谱遥感

? ? ? ?
高光谱遥感的基本概念 高光谱遥感器及平台简介 高光谱遥感技术 高光谱应用概况

高光谱遥感的基本概念
? 高光谱分辨率(简称为高光谱)遥感或成像光 谱遥感技术的发展是过去二十年中人类在对地 观测方面所取得的重大技术突破之一,是当前 遥感的前沿技术。它是指利用很多很窄的电磁 波波段获取许多非常窄且光谱连续的图像数据 的技术,融合了成像技术和光谱技术,准实时 地获取研究对象的影像和每个像元的光谱分布。

国际遥感界认为光谱分辨率在10-1λ数量级范围内的为多 光谱(Multispectral),这样的遥感器在可见光和近红外光谱区 只有几个波段,如美陆地卫星TM和法国SPOT卫星等; 光谱分 辨率在10-2λ的遥感信息称之为高光谱(Hyperspectral)遥感。由 于其光谱分辨率高达纳米(nm)数量级,往往具有波段多的特 点,即在可见到近红外光谱区其光谱通道多达数十甚至超过 100以上。随着遥感光谱分辨率的进一步提高,在达到10-3λ 时,遥感即进入了超高光谱(Ultraspectral)阶段 、
光谱区域(nm) : 400 700 1100 2500 5500 14000
VIS VNIR
PIR
MIR
Sunlight 光谱分辨率 波段数 多光谱 高光谱 5-10 100-200 Δλ/λ 0.1 0.01 VNIR 50-100 5-20
IRT
MIR 100-200 10-50
IRT 1000-2000 100-500

高光谱遥感期末考复习材料

1、地面光谱测量的作用: ①地面光谱辐射计在成像光谱仪过顶时,常用于地面野外或实验室同步观测,获取下 行太阳辐射,以用于遥感器定标。 ②在一些反射率转换模型中,需要引入地面光谱辐射计测取得地面点光谱来完成 DN 值图像到反射率图像的转换。 ③地面光谱辐射计可以为图像识别获取目标光谱和建立特征项。但是,这时地面光谱 测量要在空间尺度上与图像像元尺度相对应,且要具有代表性;另外,地面光谱测 量要与高光谱图像获取条件相一致。 ④通过地面光谱辐射计测量数据和地面模拟,可以帮助人们了解某一地物被高光谱遥 感探测的可能性,理解其辐射特性,确定需要采用的探测波长、光谱分辨率、探测 空间分辨率、信噪比、最佳遥感探测时间等重要参数。 ⑤地面光谱辐射计还可以勇于地面地质填图。它可以用于矿物的光谱吸收特征,识别 地面矿物或矿物的集合,从而直接完成野外矿物填图。 ⑥可以用来建立地物的表面方向性光谱反射特性。 ⑦建立目标地面光谱数据与目标特性间的定量关系。 2、高光谱成像特点: ①高光谱分辨率。高光谱成像光谱仪能获得整个可见光、近红外、短波红外、热红外 波段的多而窄的连续光谱,波段多至几十甚至数百个,其分辨率可以达到纳米级, 由于分辨率高,数十、数百个光谱图像可以获得影像中每个像元的精细光谱。 ②图谱合一。高光谱遥感获取的地表图像包含了地物丰富的空间、辐射和光谱三重信 息,这些信息表现了地物空间分布的影像特征,同时也可能以其中某一像元或像元 组为目标获得他们的辐射强度以及光谱特征。 ③光谱波段多,在某一光谱段范围内连续成像。成像光谱仪连续测量相邻地物的光谱 信号,可以转化城光谱反射曲线,真实地记录了入射光被物体所反射回来的能量百 分比随波长的变化规律。不同物质间这种千差万别的光谱特征和形态也正是利用高 光谱遥感技术实现地物精细探测的应用基础。 3、高光谱遥感图像数据表达: ①图像立方体——成像光谱信息集。 ②二维光谱信息表达——光谱曲线。 ③三维光谱信息表达——光谱曲线图。(书本44页) 4、成像光谱仪的空间成像方式: (1)摆扫型成像光谱仪。摆扫型成像光谱仪由光机左右摆扫和飞行平台向前运动完成二维空间成像,其线列探测器完成每个瞬时视场像元的光谱维获取。扫描镜对地左右平行扫描成像,即扫描的运动方向与遥感平台运动方向垂直。其优点:可以得到很大的总视场,像元配准好,不同波段任何时候都凝视同一像元;在每个光谱波段只有一个探测元件需要定标,增强了数据的稳定性;由于是进入物镜后再分光,一台仪器的光谱波段范围可以做的很宽,比如可见光一直到热红外波段。其不足之处是:由于采用光机扫描,每个像元的凝视时间相对就很短,要进一步提高光谱和空间分辨率以及信噪比比较困难。 (2)推扫型成像光谱仪。是采用一个垂直于运动方向的面阵探测器,在飞行平台向前运动中完成二维空间扫描,它的空间扫描方向是遥感平台运动方向。其优点是:像元的凝视

高光谱遥感技术及发展

遥感技术与系统概论 结课作业 高光谱遥感技术及发展

高光谱遥感技术及发展 摘要:经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的 发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技 术为主的时代。本文系统地阐述了高光谱遥感技术在分析技 术及应用方面的发展概况,并简要介绍了高光谱遥感技术主 要航空/卫星数据的参数及特点。 关键词:高光谱,遥感,现状,进展,应用 一、高光谱遥感的概念及特点 遥感是20 世纪60 年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通 常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可

探测的物质,在高光谱中能被探测。 同其它传统遥感相比,高光谱遥感具有以下特点: ⑴波段多。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。 ⑵光谱分辨率高。成像谱仪采样的间隔小,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 ⑶数据量大。随着波段数的增加,数据量呈指数增加[2]。 ⑷信息冗余增加。由于相邻波段的相关性高,信息冗余度增加。 ⑸可提供空间域信息和光谱域信息,即“图谱合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。近二十年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术。 二、发展过程 自80 年代以来,美国已经研制了三代高光谱成像光谱仪。1983 年,第一幅由航空成像光谱仪

高光谱应用研究综述

浙江师范大学 研究生课程论文封面 课程名称:遥感理论与技术 开课时间: 2014-2015年第一学期 学院地理与环境科学学院学科专业自然地理学 学号2014210580 姓名张勇 学位类别全日制硕士 任课教师陈梅花 交稿日期2015年1月21日 成绩 评阅日期 评阅教师 签名 浙江师范大学研究生学院制

高光谱遥感应用研究综述 张勇 (浙江师范大学地理环境与科学学院,浙江金华321004) 摘要:高光谱遥感是近二十年发展起来的谱像和一的遥感前沿技术。虽然发展时间不长,但由于其本身的特点,使其获得了广泛的重视和应用。本文阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上,概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。 关键字:高光谱遥感;应用;成像光谱以;研究综述 Conclusion application of hyperspectral remote sensing Zhang Yong (Geography and environmental sciences, Zhejiang Normal University, Jinhua 321004) Abstract:Hyperspectral remote sensing, developed in the late twenty years, is the advanced technology of remote sensing. Because of its characters, Hyperspectral Remote Sensing has been attached importance to and used widly. The characteristics and advantages of hyperspectral remote sensing, and development situation are presented in the fields of aviation and aerospace. Several typical hyperspectral imager optical system principle and the main technical indicators are particularized. At the same time, the applications with hyperspectral remote sensing in vegetation ecology, atmospheric science ,geology and mineral resources, marine and military fields are summarized. The suggestions for the future development trend of hyperspectral remote sensing are given in the end,including the remote sensing of low reflectivity target, high signal-to-noise ratio, high spatial resolution and wide coverages. Keywords: hyperspectral remote sensing;application;imaging spectrometer 1 引言 遥感是20世纪60年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技术为主的时代。本文系统地阐述了高光谱遥感技术在分析技术及应用方面的发展概况,并简要介绍了高光谱遥感技术主要航空/卫星数据的参数及特点。 1.1高光谱遥感简介 高光谱遥感技术又称为成像光谱技术,是指利用很多很窄的电磁波波段从感兴趣的物体

高光谱遥感的发展与应用_张达

第11卷 第3期2 013年6月光学与光电技术 OPTICS &OPTOELECTRONIC  TECHNOLOGYVol.11,No.3  June,2013收稿日期 2012-09-29; 收到修改稿日期 2012-12- 13作者简介 张达(1981-) ,男,博士,副研究员,硕士生导师,主要从事空间光学遥感仪器的研制、空间光学成像,以及光谱探测技术方面的研究。E-mail:zhangda@ciomp .ac.cn基金项目 国防预研基金(SA050),国家863高技术研究发展计划(2010AA1221091001) ,吉林省科技发展计划(201101079 )资助项目文章编号:1672-3392(2013)03-0067- 07高光谱遥感的发展与应用 张 达 郑玉权 (中国科学院长春光学精密机械与物理研究所,吉林长春130033) 摘要 阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上, 概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。关键词 高光谱遥感;发展;应用;成像光谱仪中图分类号 TP70 文献标识码 A 1 引 言 遥感技术是20世纪60年代发展起来的对地 观测综合性技术[1] ,随着20世纪80年代成像光谱 技术的出现, 光学遥感进入了高光谱遥感阶段。从20世纪90年代开始, 高光谱遥感已成为国际遥感技术研究的热门课题和光电遥感的最主要手段。 高光谱遥感技术作为对地观测技术的重大突破[ 2] ,其发展潜力巨大。 高光谱遥感实现了遥感数据图像维与光谱维信息的有机融合,在光谱分辨率上有巨大优势,是遥感发展的里程碑。随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛,已渗透到国民经济的各个领域,如环境监测、资源调查、工程建设等,对于推动经济建设、社会进步、环境的改善和国防建设起到了重大的作用。本文主要阐述高光谱遥感的特点、优势以及在航空及航天领域的发展情况,概括了高光谱遥感在植被生态、大气环境、地质矿产, 海洋军事等领域的应用情况。2 高光谱遥感特点与优势 高光谱遥感是高光谱分辨率遥感(Hypersp ec-tral Remote Sensing) 的简称[3] ,它是在电磁波谱的紫外、可见光、近红外、中红外和热红外波段范围 内,获取许多非常窄且光谱连续的影像数据的技 术,是在传统的二维遥感的基础上增加了光谱维,形成的一种独特的三维遥感。对大量的地球表面物质的光谱测量表明, 不同的物体会表现出不同的光谱反射和辐射特征,这种特征引起吸收峰和反射峰的波长宽度在5~50nm左右,其物理内涵是不同的分子、 原子和离子的晶格振动,引起不同波长的光谱发射和吸收,从而产生了不同的光谱特征。运用具有高光谱分辨率的仪器,通过获取图像上任何一个像元或像元组合所反映的地球表面物质的光谱特性, 经过后续数据处理,就能达到快速区分和识别地球表面物质的目的[ 4] 。高光谱遥感的成像光谱仪具有光谱分辨率高(5~10nm),光谱范围宽(0.4μm~2.5μm) 的显著特点,可以分离成几十甚至数百个很窄的波段来接收信息, 所有波段排列在一起能形成一条连续的完整的光谱曲线,光谱的覆盖范围从可见光、近红外到短波红外的全部电磁辐射波谱范围。高光谱数据是一个光谱图像的立方体,其空间图像维描述地表二维空间特征,其光谱维揭示图像每一像元的光谱曲线特征,由此实现了遥感数据图像维与光谱 维信息的有机融合[ 5] 。高光谱遥感在光谱分辨率方面的巨大优势,使得空间对地观测时可获取众多连续波段的地物光谱图像, 从而达到直接识别地球表面物质的目的。地物光谱维信息量的增加为遥感对地观测、地物识别及地理环境变化监测提供了

高光谱遥感及其发展与应用综述

高光谱遥感及其发展与应用综述 摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。在此基础上,概述了高光谱遥感在地质矿产、植被生态、大气科学、海洋、农业等领域的应用。 关键词:高光谱遥感;发展;应用 1高光谱遥感 高光谱分辨率遥感是指利用很多很窄的电磁波波段从感兴趣的物体获取有关数据。它的基础是测谱学。测谱学早在20世纪初就被用于识别分子和原子及其结构,20世纪80年代才开始建立成像光谱学。它是在电磁波谱的紫外、可见光、近红外和中红外区域,获取许多非常窄且光谱连续的图像数据的技术。成像光谱仪为每个象元提供数十至数百个窄波段光谱信息,能产生一条完整而连续的光谱曲线。 1.1高光谱遥感的特点 (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。 (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。(4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2高光谱的优势 高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势: (1)蕴含着近似连续的地物光谱信息。高光谱影像经过光谱反射率重建,能获取

高光谱遥感影像的光谱匹配算法研究概要

https://www.doczj.com/doc/356641299.html, 中国科技论文在线高光谱遥感影像的光谱匹配算法研究 蔡燕1,梅玲2作者简介:蔡燕,(1984-),女,硕士研究生,主要研究方向:高光谱遥感 通信联系人:梅玲,(1984-),女,助理工程师,主要研究方向:水文地质. E-mail: meilingcumt@https://www.doczj.com/doc/356641299.html, (1. 中国矿业大学环境与测绘学院,江苏徐州 221008; 2. 江苏煤炭地质勘探四队,南京 210046) 摘要:在高光谱遥感影像处理中,光谱匹配技术是高光谱地物识别的关键技术之一。本文主要围绕光谱匹配算法的研究展开,分析讨论了常用的几种光谱匹配技术的特点,根据先验知识建立了多种地物标准光谱库,并将其读入程序存储,基于Visual C++平台实现了最小距离匹配,光谱角度匹配,四值编码匹配法,最后基于混淆矩阵对分类图像进行精度比较分析并对三种编码匹配法进行比较。 关键词:高光谱;光谱匹配;最小距离匹配;光谱角度匹配;四值编码 中图分类号:TP751 The Study on the Spectral Matching Technique of hyperspectral romote sensing Cai Yan1, Mei Ling2 (1. School Of Environment Science and Spatial Informatics China University of Mining and Technology, JiangSu XuZhou 221008;

2. JiangSu Geological Prospecting Team Four, NanJing 210046 Abstract: In the hyperspectral image processing, the spectral match technique is one of key techniques to identify and classify materials in the image. This paper addresses some issues of spectral matching methods. Several algorithms are analyzed and compared, such as minimum distance matching, spectral angle mapping and quad-encoding. According to the prior knowledge, standard spectral library including typical land-cover types is built, which is stored and used for spectral matching. All of work is done in the programming environment of Visual C++. Finally, the experimental results are tested and compared when classification accuracies are computed based on confusion matrixes. Keywords:hyperspectral; spectral match; minimum distance matching; spectral angle mapping; quad-encoding 0 引言 高光谱遥感技术的发展和广泛应用是20世纪最具有标志性的科学技术成就之一,与传统的多光谱遥感技术相比,高光谱分辨率遥感的核心特点是图谱合一,即能获取目标的连续窄波段的图像数据[1]。高光谱遥感信息的分析处理集中于光谱 维上进行图像信息的展开和定量分析。 高光谱影像分类与地物识别是建立在传统的遥感图像分类算法基础之上,结合高光谱数据特点,对高光谱图像数据进行目标识别,是对遥感图像基本分类方法的扩展与延伸。高光谱遥感影像有着很高的光谱分辨率,且光谱通道连续,因此对于影像中的任一像元均能获取一条平滑而完整的光谱曲线,将其与地物波谱库中的光谱曲线进行匹配运算,实现地物识别与定量反演[2-4]。光谱匹配技术是成像光谱地物识别的关键技术之一,主要通过对地物光谱与参考光谱的匹配或地物光谱与数据库的比较,求算他们之间的相似性或差异性,突出特征谱段,有小提取光谱维信息,以便对地物特征进行详细分析[5]。本文紧紧围绕光谱匹配的算法分析了最小 距离法,光谱角度匹配法,以及四值编码法,进行精度分析与方法比较。

高光谱图像分类讲解学习

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 2111603035 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。 高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。波段维数的增加不仅加重了数据的存储与传输的负担,同时也加剧了数据处理过程的复杂性,并且由于波段与波段间存在着大量的冗余信息,从而使得传统图像分类算法并不适用于高光谱遥感图像的分类。传统

高光谱遥感数据处理基础

泛函分析概括 高光谱遥感应用中,如何度量光谱间的相似性一直高光谱图象处理的核心问题,因而我们有必要先交代下度量空间的一些概念。 度量空间:所谓度量空间,就是指对偶(,)X d ,其中X 是一个集合,d 是X 上的一个度量(或X 上的距离函数),即d 是定义在X X ?上且对所有,,X ∈x y z 满足以下四条公理的函数: (1) d 是实值、有限和非负的。 (2) 当且仅当=x y 时,(,)0d =x y 。 (3) (,)(,)d d =x y y x (对称性)。 (4) (,)(,)(,)d d d ≤+x y x z z y (三角不等式)。 度量空间给出来空间中元素“距离”的度量,因而使得空间中的元素可比较。但是,仍需要在空间中引入代数结构,使得元素之间可进行代数运算。因而,这里需要引入线性空间。 线性空间:所谓域(K R 或C)上的线性空间是指一个非空集合X ,且其元素,,x y (称为矢量)关于X 和K 定义了两种代数运算。这两种运算分别叫做矢量的加法与标量的乘法。 矢量的加法是,对于X 中的每一对矢量(,)x y ,与其相联系的一个矢量+x y ,叫做矢量之和。按这种方式它还具有下述性质:矢量加法是可交换的和可结合的,即对所有矢量都有 ()()+=+++=++x y y x x y z x y z 此外存在零矢量,X ∈0并对每个矢量x ,存在有-x ,使得对一切矢量有 ()+=+-=x 0x x x 0 矢量与标量的乘法是,对于每个矢量x 和每个标量α,与其相联系的一个矢量αx ,叫做α与x 之积。按这种方式对一切,x y 和标量,,αβ具有

()()1αβαβ==x x x x 和分配律 ()()ααααβαβ+=++=+x y x y x x y 在很多情况下因为线性空间X 上定义了度量d ,所以X 同时也是一个度量空间。然而,如果X 的代数结构与度量没有什么关系的话,我们就不能指望把代数的概念和度量的概念结合在一起。为了保证X 的代数性质与几何性质有如此的关系,我们首先需要引入一个辅助的所谓“范数”的概念,其中要用到线性空间的代数运算。然后再用范数诱导出我们希望的度量d ,这一想法就导出了赋范空间的概念。简单的说,赋范空间把线性空间的代数结构和其作为度量空间的度量紧密结合在一起。 赋范空间:所谓赋范空间X ,就是指在其上定义了范数的线性空间X 。而所谓线性空间X 上的范数,就是指定义在X 上的一个实值函数,它在X ∈x 的值记为x ,并且具有如下性质: (1)0≥x (2)0=?=x x 0 (3)αα=x x (4)+≤+x y x y 其中,x y 是X 中的任意矢量,α为任意标量。 巴拿赫空间:所谓巴拿赫空间就是完备的赋范空间(这里的完备性是按范数定义的度量来衡量的,见下面公式) (,)d =-x y x y ,X ∈x y 此度量叫做由范数所诱导的度量。 由范数所诱导的度量具备以下基本性质: 引理(平移不变性):在赋范空间X 上,由范数诱导的度量d ,对所有的,X ∈x y 及每个标量α,都满足

高光谱遥感基本概念

高光谱遥感基本概念 高光谱遥感用很窄而连续的光谱通道对地物持续遥感成像的技术。在可见光到短波红外线波段其光谱分辨率高达纳米数量级,通常具有波段多特点,光谱通道数多达数十甚至上百以上,而且各光谱通道间往往是连续的,因此又称成像光谱遥感。 地物光谱特征:自然界中任何地物都具有其自身的电磁辐射规律,如具有反射、吸收,外来的紫外线、可见光、红外线和微波的某些波段的特性,他们有都具有发射某些红外线、微波的特性;少数地物还具有透射电磁波的特性。 混合像元的分解:从一个像元的实际光谱数据(一般为地物光谱混合的数据)中提取各种地物成分所占的比例的法。 成像光谱:就是在特定光谱域以高光谱分辨率同事获得连续的地物光谱图像,这使得遥感应用可以在光谱维上进行空间展开,定量分析地球表层生物理化过程与参数。 高光谱:它是一种图谱合一的成像方式,常用于遥感或同时获取图像和光谱信息的应用。 地物光谱:地物的反射率随入射波长而变化的规律。数据融合⑴概念:遥感数据融合包括不同传感器、不同空间分辨率、不同时相图像的融合,以及遥感数据与其他辅助数据如地形数据、物化探数据的融合。 ⑵三个层次:像素级,特征级,决策级。 植被指数:当光照射在植物上时,近红外波段的光大部分被植物反射回来,可见光波段的红光则大部分被植物吸收,通过对近红外和红波段反

射率的线性或非线性组合,可以消除土地光谱的影响,得到的特征指数称为。 表观光学量AOP:指随入射光场变化而变化的水体光学参数。 固有光学量IOP:指不随入射光场变化而变化,仅与水体成分有关的光学量。水色遥感:就是利用光学量来反演出水体成分的浓度。 几何校正:消除几何畸变,即定量的确定图像上的像元坐标(图像坐标)与目标物的地理坐标(地图坐标)的对应关系。 为什么要进行几何校正?遥感影像的总体变形(相对于地面真实形态而言)是平移、缩放、旋转、偏扭、弯曲及其他变形综合作用的结果。产生畸变的图像给定量分析及位置配准造成困难,因此遥感数据接收后,首先由接收部门进行校正,这种校正往往根据遥感平台、地球、传感器的各种参数进行处理。而用户拿到这种产品后,由于使用目的不同或投影及比例尺的不同,仍旧需要作进一步的几何校正。 几何校正的两个步骤:1、像元坐标转换的两种方法 ①直接纠正法:从原始图象阵列出发,依次对其中每一个像元分别计算其在输出(纠正)图像的坐标。②间接纠正法:从原始图象阵列出发,依次计算每个像元P(X, Y)在原始图象中的位置P(x, y),然后将该点的灰度值计算后返送给P(X, Y)。2、像元灰度值重新计算计算每一点的亮度值。由于计算后的(x,y)多数不在原图的像元中心处,因此必须重新计算新位置的亮度值。一般来说,新点的亮度值介于邻点亮度值之间,所以常用内插法计算。通常有三种方法:最近邻法双向线性内插法三次卷积内插法。

利用SVM_CRF进行高光谱遥感数据分类

第36卷第3期2011年3月武汉大学学报 信息科学版 Geo matics and Info rmat ion Science of W uhan U niver sity V ol.36N o.3M ar ch 2011 收稿日期:2011 01 27。 项目来源:国家自然科学基金资助项目(40901234);中国科学院知识创新工程青年人才领域前沿项目专项资助项目 (O8S01100CX)。 文章编号:1671 8860(2011)03 0306 05文献标志码:A 利用SVM CRF 进行高光谱遥感数据分类 李祖传 1,2 马建文1 张 睿 2,3 李利伟 1 (1 中国科学院对地观测与数字地球科学中心,北京市中关村北一条9号,100190) (2 中国科学院研究生院,北京市玉泉路甲19号,100049)(3 中国科学院遥感应用研究所,北京市大屯路甲20号,100101) 摘 要:提出了一种改进的随机场模型SV M CRF ,它以支持向量机作为条件随机场的一阶势能项,结合了支持向量机和条件随机场的优点。采用A V IRIS 高光谱遥感数据进行实验,对SV M CRF 模型进行了分析,结果表明,在分类精度上SV M CRF 优于支持向量机和传统条件随机场模型。关键词:支持向量机;条件随机场;高光谱数据中图法分类号:P237.4;T P753 高光谱遥感数据包含丰富的光谱信息,能够对目标进行精细分类。传统的基于像元的高光谱遥感数据分类方法,如支持向量机(support v ec tor machine,SVM )[1],假定数据是独立同分布的[2,3]。但是,遥感数据,特别是高光谱遥感数据,在类别和观测数据上存在很强的相关性,即所谓的上下文信息,不满足独立同分布的假设[4,5] 。同时,如果能有效利用这些上下文信息,可以有效地提高分类精度。 马尔柯夫随机场(Markov random fields,MRF)是传统的描述上下文信息的概率模型,它认为类别的分布满足Gibbs 分布 [6] 。但是,基于 计算可行性考虑,M RF 假定观测数据是条件独立的。对于遥感数据而言,相邻像素之间的观测数据并不独立,存在很强的相关性,特别是高光谱遥感数据。因此,对于遥感数据而言,MRF 条件独立的假设太强。为了解决这个问题,一种新的概率模型 条件随机场(conditio nal random fields,CRF)得到了越来越多的关注[7 10] 。CRF 是一种判别式概率模型,直接把后验概率建模为Gibbs 分布,放宽了M RF 的条件。但是,传统CRF 模型定义的简单一阶势能项(特征的简单线性组合),不适合高光谱遥感数据分类。首先,由于高光谱数据维度很高而且样本有限,因此,传统 CRF 模型对!维度灾难?问题敏感。此外,高光谱遥感数据特征空间极其复杂,一般线性不可分,通过简单的一阶势能项不能得到理想分类结果[11]。针对这些问题,本文提出了一种改进的适用于高光谱遥感数据分类的随机场模型 支持向量机条件随机场(support v ector m achine co nditional random field,SVM CRF)。 1 S VM C RF SVM 是一种基于结构风险最小的小样本统计学习方法,非常适合于高光谱遥感数据分类。因此,SVM CRF 采用SVM 作为一阶势能项,采用CRF 的方法描述上下文信息。因此,SVM CRF 结合了SVM 和CRF 的优点。根据CRF 的定义,SVM CRF 的定义为: P (y |x )=1Z exp { #i ?S SP i (y i ,x i )+ #i ?S #j ? i I ij (y i ,y j ,x ,v)} (1) 式中,SP i (y i ,x i )表示点i 只考虑当前观测值的后验概率。 SVM 是一种判别式分类器,最终的输出结果不带后验概率。但是,可以通过组合所有的二类

高光谱遥感影像分类算法 - SVM

高光谱遥感影像分类算法——SVM 1高光谱遥感简介 20 世纪 80 年代以来,遥感技术的最大成就之一就是高光谱遥感技术的兴起[1]。高光谱遥感技术又称成像光谱遥感技术,始于成像光谱仪的研究[2]。所谓高光谱遥感(Hyperspectral Remote Sensing)通俗地说就是指利用很多很窄的电磁波波段从感兴趣的物体中获取有关数据的方法。高光谱遥感的最大特点是,在获得目标地物二维空间影像信息的同时,还可以获得高分辨率的可表征其地物物理属性的光谱信息,即人们常说的具有“图谱合一”的特性。可见,与全色、彩色和多光谱等图像数据相比,高光谱影像革命性地把地物的光谱反射信息、空间信息和地物间的几何关系结合在了一起[3]。因此,可以很客观地说,高光谱遥感是代表遥感最新成就的新型技术之一,同时也是目前国内外学者,特别是遥感领域的学者的研究热点之一[4-5]。 2高光谱遥感研究背景 在以美国为代表的成像光谱仪研制成功,并获得高光谱影像数据后,高光谱遥感影像由于其蕴含了丰富的信息(包括地物的空间位置、结构以及光谱特性等信息)使得人们对地物的识别有了显著的提高,并且在许多方面和领域(比如,农业、林业、地质勘探与调查和军事等)都体现出了潜在的巨大应用价值[6]。虽然高光谱影像数据的确为我们的提供了丰富的对地观测信息,但也正是因为高光谱庞大的数据量和高维数的问题使得我们目前对高光谱数据的处理能力显得较为低效,而这也在一定程度上制约了高光谱数据在现实生产和生活的广泛应用与推广[7-8]。因此,为了响应人们对高光谱影像数据处理方法所提出的新的迫切要求,也为了充分利用高光谱数据所包含的丰富信息以最大程度地发挥高光谱的应用价值,我们必须针对高光谱数据的独有特点,在以往遥感图像数据处理技术的基础上,进一步改善和发展高光谱遥感影像处理分析的方法与技术。 3高光谱遥感分类研究 3.1分类的意义 分类是人类了解和认识世界的不可或缺的基本手段。人类的日常生活和生产实践都离不开,也不可能离开分类活动。面对海量数据,人类需要借助计算机来对自身感兴趣的数据进行自动、高效和准确地分类。这一迫切需求已体现在各个

简述高光谱遥感及其进展与应用综述

高光谱遥感及其进展与应用综述 摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。在此基础上,概述了高光谱遥感在植被生态、大气科学、地质矿产、海洋、农业等领域的应用。 关键词:高光谱遥感;发展;应用 高光谱遥感(Hyperspectral Remote Sensing)的兴起是20世纪80年代遥感技术发展的主要成就之一,是当前遥感的前沿技术。高光谱遥感在光谱分辨率上具有巨大的优势,被称为遥感发展的里程碑。世界各国对此类遥感的发展都十分重视,随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛。本文系统地阐述了高光谱遥感及其发展的概况,并简要介绍了高光谱遥感技术的主要应用。 1 高光谱遥感 孙钊在《高光谱遥感的应用》中提到,高光谱遥感是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,利用成像光谱仪获取许多非常窄的光谱连续的影像数据的技术。[1] 高光谱遥感具有较高的光谱分辨率,通常达到10~2λ数量级。[2] 1.1 高光谱遥感特点 综合多篇关于高光谱的期刊文章,总结高光谱具有如下特点: (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。 [3]与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。[4] (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。[5]成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。 (4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2 高光谱遥感的优势

相关主题
文本预览
相关文档 最新文档