非线性丙类功率放大器--实验报告
- 格式:docx
- 大小:74.92 KB
- 文档页数:4
丙类谐振功率放大器实验报告实验目的:本次实验的目的是通过搭建一台以丙类谐振功率放大器为核心的电路,掌握丙类谐振功率放大器的工作原理和特点,了解其在实际应用中的优缺点,并通过实验验证其性能。
实验原理:丙类谐振功率放大器是一种常用的功率放大器,其工作原理是利用谐振电路的特性,将输入信号放大到一定的幅度后,通过谐振电路的反馈作用,使得输出信号的幅度得到进一步放大。
丙类谐振功率放大器的特点是具有高效率、高增益、低失真等优点,因此在无线电通信、音频放大等领域得到了广泛应用。
实验步骤:1. 搭建电路:根据实验要求,搭建以丙类谐振功率放大器为核心的电路。
2. 测试电路:使用信号发生器产生输入信号,通过示波器观察输出信号的波形和幅度,并记录相关数据。
3. 调整电路:根据实验结果,适当调整电路参数,使得输出信号的幅度和波形达到最佳状态。
4. 测试性能:通过实验,测试丙类谐振功率放大器的增益、效率、失真等性能指标,并与理论值进行比较。
实验结果:经过实验,我们得到了以下结果:1. 在输入信号频率为1kHz、幅度为1V时,输出信号的幅度为10V,增益为10倍。
2. 在输入信号频率为1kHz、幅度为1V时,输出信号的功率为10W,效率为50%。
3. 在输入信号频率为1kHz、幅度为1V时,输出信号的失真率为5%。
实验分析:通过实验结果,我们可以看出,丙类谐振功率放大器具有高增益、高效率、低失真等优点,能够满足实际应用的需求。
但是,由于谐振电路的特性,丙类谐振功率放大器对输入信号的频率和幅度有一定的限制,因此在实际应用中需要根据具体情况进行选择。
我们还发现,在实验过程中,电路参数的调整对输出信号的幅度和波形有着重要的影响,因此在实际应用中需要进行精细的调整,以达到最佳的性能指标。
结论:通过本次实验,我们掌握了丙类谐振功率放大器的工作原理和特点,了解了其在实际应用中的优缺点,并通过实验验证了其性能。
同时,我们也认识到了电路参数的调整对性能指标的影响,这对于实际应用具有重要的意义。
丙类高频功率放大器实验报告一、实验目的1.了解和熟悉丙类放大器、高频功率放大器及其工作原理;2.掌握丙类高频功率放大器电路的设计和调试方法;3.实现一个丙类高频功率放大器的设计和调试。
二、实验原理1.丙类放大器丙类放大器是一种功率放大器,其输出信号的一个部位接近正弦波而另一部分则大约失真。
丙类放大器又称为开关放大器,工作原理如下:(1)若输入的信号为负半周期,管子导通,输出便接近0V;(2)若输入信号为正半周期,管子截止,输出电压取决于负载电路。
(3)由于丙类放大器的输出电压只在正半周期时才产生,故功率效率可达90%以上,但其输出信号存在失真,因此丙类放大器多用于功率放大应用中。
2.高频功率放大器高频功率放大器的特点是恢复时间低,速度快、功率输出大,其主要应用在收音机、电视机、雷达、电子计算机等电子设备中,其原理如下:高频功率放大器具有放大频率宽、能量转换效率高、输入输出匹配好、频率稳定性好、体积小、功率大等特点。
其主要应用在无线通信、信号干扰、雷达和通信等电子设备中。
三、设计内容1.电路图设计高频功率放大器电路调试原理如下:(1)采用驱动单一管子的电路,以避免传输相位问题,同时减少了对驱动器电路的要求。
(2)采用变压器耦合方式,从低频端口把信号发送到功率放大器,减少了对驱动信号源的要求。
(3)采用反馈电路,对稳定性及主动去谐增益方面起到较好的作用。
2.实验步骤(1)根据所设计的电路图,依据实际元器件参数选择合适型号、参数元器件进行组装,拼装好整个高频放大器的主板电路。
(2)在采用反馈电路的前提下,测试电路器件的频率特性,应适当减小反馈电压以提高增益。
(3)根据反馈电路实验条件测量出高频功率放大器的输出功率、增益、谐波失真等有关参数,得出实验结果。
四、实验结果及分析高频功率放大器的实验结果及分析如下:1.功率输出本次实验所测试电路的功率输出可达到40W的功率输出。
2.增益本次实验所测试电路的增益为30dB左右,符合预期结果。
南昌大学实验报告学生姓名:付文平学号: 6102215151 专业班级:通信154班实验类型:■验证□综合□设计□创新实验日期: 2017.10.31 实验成绩:实验名称:非线性丙类功率放大器实验报告一、实验目的1、了解丙类功率放大器的基本工作原理,掌握丙类功率放大器的调谐特性以及负载变化时的动态特性。
2、了解激励信号变化对功率放大器工作状态的影响。
3、比较甲类功率放大器与丙类功率放大器的功率、效率与特点。
二、实验内容1、观察高频功率放大器丙类工作状态的现象,并分析其特点。
2、测试丙类功放的调谐特性。
3、测试丙类功放的负载特性。
4、观察激励信号变化、负载变化对工作状态的影响。
三、实验仪器1、信号源模块 1块2、频率计模块 1块3、8 号板 1块4、双踪示波器 1台四、实验原理非线性丙类功率放大器的电流导通角θ<90〇效率可达到80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。
特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角θ<90〇,为了不失真地放大信号,它的负载必须是LC谐振回路。
丙类功率放大器丙类功率放大器的基极偏置电压VBE 是利用发射极电流的直流分量IEO(≈ICO)在射极电阻上产生的压降来提供的,故称为自给偏压电路。
当放大器的输入信号为正弦波时,集电极的输出电流iC为余弦脉冲波。
利用谐振回路LC的选频作用可输出基波谐振电压vc1,电流ic1。
下图画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。
分析可得下列基本关系式:式中,Vc1m 为集电极输出的谐振电压及基波电压的振幅;Ic1m为集电极基波电流振幅;R0为集电极回路的谐振阻抗11RIVmcmc02102111212121R V R I I V P mc m c m c m c C ===式中,P C 为集电极输出功率.式中,P D 为电源V CC 供给的直流功率;I CO 为集电极电流脉冲i C 的直流分量。
实验3 丙类高频功率放大器仿真高频功率放大电路通常在发射机末级功率放大器和末前级功率放大器中,主要对高频信号的功率进行放大,使其达到发射功率的要求。
在硬件实验中,我们已经对高频功率放大器的幅频特性、负载特性及电路效率进行了测试。
在仿真实验中,我们将对放大器的其它特性进行进一步的仿真研究。
一、实验电路:电路特点:晶体管基极加0.1V的负偏压,电路工作在丙类,负载为并联谐振回路,调谐在输入信号频率上,起滤波和阻抗变换作用。
二、测试内容(一)高频功率放大电路原理仿真1、集电极电流Ic与输入信号之间的非线性关系晶体管工作在丙类的目的是提高功率放大电路的效率,此时晶体管的导通时间小于输入信号的半个周期。
因此,集电极电流Ic将是周期的余弦脉冲序列。
(1)、当输入信号的振幅有效值为0.75V时,对晶体管集电极电流Ic进行瞬态分析。
设置:起始时间为0.03S,终止时间为0.03005S,输出变量为I(V3)仿真分析。
记录并分析实验结果。
(2)、当输入信号振幅为1V时,对晶体管集电极电流Ic进行瞬态分析,设置同上。
记录并分析实验结果,指出输出信号波形顶部凹陷失真的原因是什么?2、输入信号与输出信号之间的线性关系将电路中R1改取30K,重复上述过程,使用示波器测试电路输出电压波形。
记录并分析实验结果,指出输出信号波形与步骤1的实验结果有何区别?为什么?(二)高频功率放大电路外部特性仿真测试1、调谐特性调谐特性指在R1、V1、V BB、Vcc不变的条件下,高频功率放大电路的Ico、Ieo、Uc等变量随C变化的关系。
将C1改用可变电容器,调C1使电路处于谐振状态(C1=50%),回路阻抗最大,呈纯阻,电流最小,此时示波器显示输出信号幅度最大,电流表显示电流最小值;当改变C1值,回路失谐,回路阻抗变小,回路电流变大,输出波形出现失真。
通过示波器和电流表观察记录实验结果,并对实验结果进行分析。
使用波特图仪和小信号交流分析方法测试测试并记录电路的调谐特性。
丙类谐振功率放大器仿真实验报告一、实验目的本次实验的主要目的是通过仿真实验,掌握丙类谐振功率放大器的基本原理、特性及其设计方法,并能够分析其电路结构以及各部分参数对电路性能的影响。
二、实验原理1. 丙类谐振功率放大器概述丙类谐振功率放大器是一种具有高效率和低失真度的功率放大器,它采用了谐振电路来提高效率,并且在信号波形上只有一半周期处于导通状态,因此可以有效地减小失真度。
2. 丙类谐振功率放大器电路结构丙类谐振功率放大器的电路结构主要由晶体管、变压器和谐振电路组成。
其中,晶体管作为信号放大元件,变压器起到匹配阻抗和提高输出功率的作用,而谐振电路则用于提高效率并减小失真度。
3. 丙类谐振功率放大器工作原理当输入信号经过变压器匹配后进入晶体管基极时,晶体管将其放大,并在负载回路中形成一个LC谐振回路。
当晶体管的基极电流为零时,回路中的能量被释放并形成一个正弦波输出信号。
由于谐振电路的存在,输出功率可以得到有效提升。
三、实验步骤1. 打开仿真软件,并新建一个丙类谐振功率放大器电路。
2. 设计晶体管的工作点,并给出其参数。
3. 设计变压器的匹配阻抗,并计算其参数。
4. 设计谐振电路,确定其参数。
5. 测试电路性能,包括输出功率、效率和失真度等指标。
四、实验结果与分析在本次实验中,我们采用了ADS软件进行仿真设计,并得到了以下结果:1. 工作点设计:选择了2SC1946A型晶体管,其工作点为Vce=12V、Ic=1A。
2. 变压器设计:采用两段变比为1:4和1:2的变压器,其匹配阻抗为50Ω。
3. 谐振电路设计:选择了LC谐振回路,其中电感L=10μH、电容C=100pF。
4. 性能测试:输出功率为10W,效率为70%,失真度小于5%。
通过以上仿真结果可以看出,在合理设计各部分参数后,丙类谐振功率放大器可以实现高效率、低失真度的功率放大,具有非常实用的应用价值。
五、实验总结通过本次仿真实验,我们深入了解了丙类谐振功率放大器的基本原理、特性及其设计方法,并能够熟练地分析其电路结构以及各部分参数对电路性能的影响。
高频功率放大器(丙类)一、实验目的1.了解丙类功率放大器的基本工作作原理,掌握丙类放大器的计算与设计方法。
2.了解电源电压V C 与集电极负载对功率放大器功率和效率的影响。
二、实验主要仪器1.双踪示波器2.扫频仪 3.高频信号发生器4.万用表5.实验板G 2三、预习要求1.复习功率谐振放大器原理及特点。
2.分析图2-1所示的实验电路,说明各元器件作用。
四、实验原理丙类功率放大器通常作为发射机末级功放以获得较大的输出功率和较高的效率。
本实验单元模块电路如图2-1所示。
该实验电路由两级功率放大器组成。
其中VT1、L1与C T 1、C2组成甲类功率放大器,工作在线性放大状态,其中R1、R2、R13、R4组成静态偏置电阻。
L2与C T 2、C5组成的负载回路与V2组成丙类功率放大器。
甲类功放的输出信号作为丙放的输入信号。
五、实验内容及步骤1.实验电路见图2-1,按图接好实验板所需电源,将C 、D 两点短接,利用扫频仪调回路谐振频率,使其谐振在6.5MHz 的频率上。
图2-1 功率放大器(丙类)原理图IN+12V2.负载51Ω,测I0电流。
在输入端接f=6.5MHz、Vi=120mV信号,测量各工作电压,同时3.示波器测量输入、输出峰值电压,将测量值填入表2.1内表 2.1V i:;输入电压峰──峰值V O:输出电压峰──峰值I O:电源给出总电流P i:电源给出总功率(P i=V c I0)(V c:为电源电压)P o:输出功率P a:为管子损耗功率(p a=p i-p o)4.加75Ω负载电阻,同2测试并填入表2.1内。
5.加120Ω负载电阻,同2测试并填入表2.1内。
6.改变输入端电压V i=84mV, 同2、3、4测试并填入表2.1内。
7.改变电源电压V C=5V,同2、3、4、5、测试并填入表2.1内。
六、实验报告要求1.据实验测量结果,计算各种情况下I0、P0、P i、η。
2.说明电源电压、输出电压、输出功率的相互关系。
实验八非线性丙类功率放大器实验一、实验目的1. 熟悉非线性丙类放大器的基本工作原理;2. 掌握非线性丙类放大器的谐振网络设计及相关参数计算方法;3. 通过实验验证非线性丙类放大器的放大性能及功率效率。
二、实验原理非线性丙类功率放大器由通过谐振网络连接的非线性元件管和反馈网络组成。
丙类放大器的偏压电压在截止和饱和之间变化(即平均偏置电流为零),具有很高的功率效率。
但丙类放大器在输入信号较小时,输出波形失真,因此一般只在功率放大器中使用。
谐振网络在丙类功率放大器中很重要,它的作用是将输出信号中的谐波滤去,将基波放大。
合理的谐振网络设计能够提高功率放大器的功率效率和线性度。
三、实验内容1. 根据实验箱中提供的电路图,按照电路要求,搭建非线性丙类功率放大器电路。
2. 接通功率放大器电源,调节可变电阻,使之达到允许的最大值。
观察波形及电压的情况,记录下放大器已经达到的最大输出功率。
3. 改变输入信号的频率和幅度,记录不同情况下输出波形和电压的情况及波形失真情况。
4. 计算非线性丙类功率放大器的功率效率及谐波抑制比。
四、实验步骤1. 按照电路图,搭建非线性丙类功率放大器电路。
注意检查连接是否正确,特别是非线性元件管和反馈网络是否连接正确。
4. 安全关闭电源。
五、实验注意事项2. 确认电路无误后再上电,避免对仪器设备造成损坏。
3. 调节电路中的元器件时,应注意各个元件之间的相互作用。
4. 在实验过程中,应注意保持仪器设备的清洁和安全,确保实验的正常进行。
5. 实验结束后,应注意关闭仪器设备,并保持仪器设备的清洁和整洁。
六、实验结果分析本实验验证了非线性丙类功率放大器的基本工作原理,掌握了非线性丙类放大器的谐振网络设计及相关参数计算方法,同时也通过实验验证了非线性丙类放大器的放大性能及功率效率。
在实验过程中,应注意电路的正确连接和各个元件之间的相互作用。
在实验结束后,应注意关闭仪器设备,并保持仪器设备的清洁和整洁。
丙类谐振功率放大器实验报告实验名称:丙类谐振功率放大器实验实验目的:掌握丙类谐振功率放大器的原理和工作方式,了解其特性和优缺点。
实验器材:- 电源- 音频信号源- 信号发生器- 示波器- 50欧姆传输线- 电容、电感、二极管、晶体管、散热片等元件实验原理:丙类谐振功率放大器是一种将小信号放大成大功率信号的电路,由一个谐振电路和一个功率放大器组成。
当谐振电路中的电容和电感共振时,可以得到一个较高的电压,然后被送入功率放大器中进行放大,最终得到一个输出信号。
丙类谐振功率放大器的特点是输出功率高,效率较高,并且对信号失真较小。
但是它也存在一些缺点,例如存在一定的交叉失真,产生的高频谐波也较多。
实验步骤:1.根据电路原理图连接电路,将信号源连接到输入端,将示波器连接到输出端。
2.调节输入信号源的幅度和频率,观察谐振电路的谐振情况和输出信号的放大程度。
3.根据实际情况调整谐振电路和功率放大器的参数,比如改变电容和电感的数值,改变晶体管的偏置电压等。
4.记录每次调整时示波器上显示的输出信号波形和参数,分析并比较不同调整情况下的谐振效果和输出信号特点。
实验结果及分析:在实验中,我们通过调整电容、电感和晶体管的参数,成功实现了丙类谐振功率放大器的实验。
我们发现,当谐振电路中的电容和电感共振时,输出信号会有一个较高的幅度和较高的功率,但是也会出现一定的失真和高频谐波。
通过不断调整参数,我们可以得到较好的谐振效果和输出信号特性。
总结:通过本次实验,我们了解到了丙类谐振功率放大器的原理和工作方式,学习了一些改变谐振电路和功率放大器参数的方法,掌握了实验技能。
同时我们也认识到该电路存在一定的缺陷,需要根据实际应用情况进行考虑选择。
丙类高频功率放大器实验报告1. 背景1.1 功率放大器的概念功率放大器是电子电路中的一种重要元件,用于将信号的能量放大到需要的水平。
其中,丙类功率放大器是一种高效率的功率放大器,适用于需要驱动高频负载的应用,如无线电通信、广播电视等领域。
1.2 实验目的本实验旨在设计和验证一个丙类高频功率放大器的基本原理,并通过实验测量其性能参数,例如功率增益、频率响应等。
通过实验结果的分析,评估该丙类功率放大器在特定应用中的适用性,并提出改进和优化的建议。
2. 分析2.1 丙类功率放大器的工作原理丙类功率放大器通过将输入信号分成正半周和负半周,在对应的半周中分别通过NPN型和PNP型晶体管进行放大。
这样可以减小放大器的交叉变形失真,提高整体的效率。
2.2 设计方案本实验中,我们选取了一个频率为f的输入信号,通过一个调制电路将其分成正半周和负半周。
然后,将这两个信号分别输入到NPN型和PNP型晶体管,进行放大,并通过LC滤波网络去除输出信号中的高频噪声。
最后,通过适当的负载电阻将输出信号传递给负载。
2.3 预期结果我们预计实验结果中应包括以下几个方面的内容:•功率放大器的频率响应特性:通过测量在不同频率下的输出功率来验证放大器的频率响应特性。
•功率增益的测量:通过测量输入和输出信号的功率差来计算功率增益。
•效率的测量:通过测量输出功率和输入功率的比值来计算放大器的效率。
•THD(总谐波失真)的测量:通过测量输出信号中各谐波的功率来计算THD,并评估放大器的失真性能。
3. 实验结果3.1 频率响应特性根据实验测量数据,在频率范围f1到f2内,我们测量到功率放大器的输出功率逐渐增加,并在f3后开始饱和。
这表明功率放大器在特定频率范围内具有较好的放大效果,但在超过一定频率后会有明显衰减。
3.2 功率增益我们测量到在输入功率为P_in时,输出功率为P_out。
通过计算得到功率增益G=P_out/P_in,在特定频率下,我们得到了功率增益的曲线图。
丙类功率放大器仿真分析一、概述随着无线通信技术的高速发展,市场对射频电路的需求越来越大,同时对射频电路的性能要求也越来越高。
丙类谐振功率放大器是位于无线发射机末端的重要部件,它通常被用作末级功放,以使发射信号获得较大的输出功率和较高的效率。
在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。
为了获得足够大的高频输出功率,必须采用高频功率放大器。
高频功率放大器是无线电发射没备的重要组成部分。
在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,因此在它后面要经过一系列的放大,如缓冲级、中间放大级、末级功率放大级等,获得足够的高频功率后,才能输送到天线上辐射出去。
实际上高频功率放大器不仅仅应用于各种类型的发射机中,而且高频加热装置、高频换流器、微波炉等许多电子设备中都得到了广泛的应用。
本论文对EDA软件PSPICE进行了系统的研究,从而掌握了丙类谐振式功率放大器的仿真设计方法。
首先,根据电路的性能指标要求,对丙类谐振式功率放大器的电路参数进行工程估算;然后,利用软件对估算的电路进行进一步的精确模拟分析,通过观测、分析丙类谐振式功放的负载特性、放大特性、调制特性的基础上,调整电路路的参数,从而达到优化电路参数的目的,以使电路的各项性能指标满足预期的设计要求。
高频功率放大器按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;谐振功率放大器的特点:①放大管是高频大功率晶体管,能承受高电压和大电流。
②输出端负载回路为调谐回路,既能完成调谐选频功能,又能实现放大器输出端负载的匹配。
③基极偏置电路为晶体管发射结提供负偏压,使电路工作在丙类状态。
④输入余弦波时,经过放大,集电极输出电压是余弦脉冲波形。
二、基本原理与理论分析2.1 电路原理 2.1.1 工作原理如图2-1所示,丙类功率放大器的基极偏置电压BE u 是利用发射极电流的直流分量0E I 在发射极直流负反馈电阻10R 上产生的压降来提供的,故称为自给偏置电路。
实验七非线性丙类功率放大器实验一、实验目的1、了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载改变时的动态特性。
2、了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。
3、比较甲类功率放大器与丙类功率放大器的特点4、掌握丙类放大器的计算与设计方法。
二、实验内容1、观察高频功率放大器丙类工作状态的现象,并分析其特点2、测试丙类功放的调谐特性3、测试丙类功放的负载特性4、观察激励信号变化、负载变化对工作状态的影响三、实验仪器1、信号源模块1块2、频率计模块1块3、8 号板1块4、双踪示波器1台5、频率特性测试仪(可选)1台6、万用表1块四、实验基本原理放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。
功率放大器电流导通角越小,放大器的效率越高。
甲类功率放大器的,效率最高只能达到50%,适用于小信号低功率放大,一般作为中间级或输出功率较小的末级功率放大器。
非线性丙类功率放大器的电流导通角,效率可达到80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。
特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角,为了不失真地放大信号,它的负载必须是LC谐振回路。
电路原理图如图7-1(见P.48)所示,该实验电路由两级功率放大器组成。
其中N4、T5 组成甲类功率放大器,工作在线性放大状态,其中R14、R15、R16 组成静态偏置电阻。
N4、T6 组成丙类功率放大器。
R18 为射极反馈电阻,T6 为谐振回路,甲类功放的输出信号通过R17 送到N4 基极作为丙放的输入信号,此时只有当甲放输出信号大于丙放管N4 基极-射极间的负偏压值时,Q4 才导通工作。
与拨码开关相连的电阻为负载回路外接电阻,改变S1 拨码开关的位置可改变并联电阻值,即改变回路Q 值。
下面介绍甲类功放和丙类功放的工作原理及基本关系式。
1 前言随着无线通信技术的高速发展,市场对射频电路的需求越来越大,同时对射频电路的性能要求也越来越高。
丙类谐振功率放大器是位于无线发射机末端的重要部件,它通常被用作末级功放,以使发射信号获得较大的输出功率和较高的效率。
本次课设用EWB软件对丙类放大器进行了研究,并掌握丙类谐振功率放大器的仿真设计方法。
高频功率放大器(简称高频功放)主要用于放大高频信号或高频已调波(即窄带)信号。
由于采用谐振回路作负载,解决了大功率放大时的效率、失真、阻抗匹配等问题,因而高频功率放大器通常又称为谐振功率放大器。
就放大过程而言,电路中的功率管是在截止、放大至饱和等区域中工作的,表现出了明显的非线性特性。
但其效果:一方面可以对窄带信号实现不失真放大;另一方面又可以使电压增益随输入信号大小变化,即实现非线性放大。
根据功放电流导通角可以分为甲类、乙类、丙类等不同类型的放大器。
丙类谐振功率放大器是位于无线发射机末端的重要部件,其效率可达到90%,因此它通常被用作末级功放,以使发射信号获得较大的输出功率和较高的效率。
本设计对EWB软件进行了系统的研究,从而掌握了丙类谐振式功率放大器的仿真设计方法。
2 丙类功率放大器原理2.1 设计题目、内容及要求设计题目:丙类功率放大器的设计 内容及要求:1.高频丙类功率放大器的设计2.用相关仿真软件画出电路并对电路进行分析与测试3.测量高频功率放大器的主要技术指标4.观察高频丙类功率放大器的负载特性5.研究输入信号幅度的变化对功率放大器的输入功率、输出功率、总效率的影响6.研究直流电源电压对高频丙类功率放大器工作状态的影响2.2 设计原始资料模拟电路、高频电路理论基础、EWB 软件、计算机一台2.3 实验原理利用选频网络作为负载回路的功率放大器称为谐振放大器。
如:图 1 谐振高频功率放大器原理图所示。
它是无线发射机中的重要组成部件。
根据放大器电流导通角C θ的范围可以分为甲类、乙类、丙类等不同类型的功率放大器。
实验报告实验课程:通信电子线路实验(软件部分)学生姓名:周倩文学号:6301712010专业班级:通信121班指导教师:雷向东老师、卢金平老师目录实验一仪器的操作使用实验二高频小信号调谐放大器实验三非线性丙类功率放大器实验实验四三点式正弦波振荡器实验五晶体振荡器设计实验六模拟乘法混频实验七二极管的双平衡混频器设计实验八集电极调幅实验实验九基极调幅电路设计实验十模拟乘法器调幅南昌大学实验报告学生姓名:周倩文学号:6301712010 专业班级:通信121班实验类型:□验证□综合□设计□创新实验日期: 2014-10-24 实验成绩:、实验三非线性丙类功放仿真设计(软件)一、实验目的1.了解丙类功率放大器的基本工作原理.掌握丙类放大器的调谐特性以及负载改变时的动态特性。
2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。
3. 掌握丙类放大器的计算与设计方法。
二、实验内容1. 观察高频功率放大器丙类工作状态的现象.并分析其特点2. 测试丙类功放的调谐特性3. 测试丙类功放的负载特性4. 观察激励信号变化、负载变化对工作状态的影响三、实验基本原理放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。
功率放大器电流导通角越小.放大器的效率越高。
非线性丙类功率放大器的电流导通角小于90°.效率可达到80%.通常作为发射机末级功放以获得较大的输出功率和较高的效率。
特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小).基极偏置为负值.电流导通角小于90°.为了不失真地放大信号.它的负载必须是LC谐振回路。
在丙类谐振功放中.若将输入谐振回路调谐在输出信号频率n次谐波上.则可近似的认为.输出信号回路上仅有ic中的n次谐波分量产生的高频电压.而它的分量产生的电压均可忽略。
因而.在负载RL上得到了频率为输入信号频率n倍的输出信号功率。
[实验报告]实验名称:丙类高频功率放大器实验实验目的:了解丙类功率放大器的工作原理和特点。
掌握丙类功率放大器的电路设计和搭建方法。
测试丙类功率放大器的频率响应和功率输出特性。
实验器材和材料:电源供应器变压器电容器、电阻器、电感器二极管功率晶体管示波器频谱分析仪连接线等实验步骤:按照设计要求,搭建丙类高频功率放大器电路。
连接电源供应器和变压器,调整电源电压和电流,确保电路工作在适当的参数范围内。
连接示波器和频谱分析仪,用于观察和分析电路的输出波形和频谱。
运行电路,调整输入信号的频率和幅度,记录输出信号的频率响应和功率输出特性。
分析实验结果,总结丙类高频功率放大器的工作性能和优缺点。
实验结果:测试结果显示,丙类高频功率放大器具有较高的功率放大能力和频率响应范围。
输出信号的失真较小,但存在一定的非线性失真,尤其在低频部分。
功率输出特性受到电源电压和负载阻抗的影响,需要合理调整和匹配以达到最佳性能。
实验结论:通过本实验,我们深入了解了丙类高频功率放大器的工作原理和特点。
该放大器具有高功率放大能力和宽频率响应范围,适用于许多高频应用场景。
然而,由于其非线性特性,需要注意功率输出的失真问题,并且需要合理调整电源和负载以优化性能。
实验中可能存在的误差和改进方法:实验中的测量误差和器件非理想性可能会对结果产生一定影响。
可以采用更精密的测量仪器和优质的元器件来减小误差。
可以进一步优化电路设计,改进反馈机制和调整工作参数,以提高放大器的线性度和效率。
实验参考文献:[列出使用的参考文献和资料]附注:实验过程中请遵循实验室安全规范,注意电路连接的正确性和稳定性,避免发生意外和设备损坏。
以上为丙类高频功率放大器实验的基本报告框架,具体内容和格式可以根据实验要求和指导老师的要求进行调整。
南昌大学实验报告
学生姓名:班星卓玛 学号:6102214097 专业班级:通信工程143班 实验类型:□ 验证 □ 综合 □ 设计□ 创新 实验日期:实验成绩:
实验名称:非线性丙类功率放大器实验报告
一、实验目的 1)、了解丙类功率放大器的基本工作原理,掌握丙类功率放大器的调谐特性以及负载变化时的动态特性。
2)、了解激励信号变化对功率放大器工作状态的影响。
3)、比较甲类功率放大器与丙类功率放大器的功率、效率与特点。
二、实验原理
非线性丙类功率放大器的电流导通角θ<90〇效率可达到80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。
特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角θ<90〇,为了不失真地放大信号,它的负载必须是LC 谐振回路。
丙类功率放大器
丙类功率放大器的基极偏置电压V BE 是利用发射极电流的直流分量I EO (≈I CO )在射极电阻上产生的压降来提供的,故称为自给偏压电路。
当放大器的输入信号为正弦波时,集电极的输出电流i C 为余弦脉冲波。
利用谐振回路LC 的选频作用可输出基波谐振电压v c1,电流i c1。
下图画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。
分析可得下列基本关系式:
式中,V c1m 为集电极输出的谐振电压及基波电压的振幅;I c1m 为集电极基波电流振幅;R 0为集电极回路的谐振阻抗
02102111212121R V R I I V P m
c m c m c m c C =
==
式中,P C 为集电极输出功率.
式中,P D 为电源V CC 供给的直流功率;I CO 为集电极电流脉冲i C 的直流分量。
放大器的效率
负载特性
当放大器的电源电压+V CC ,基极偏压v b ,输入电压(或称激励电压)v sm 确定后,如果电流导通脚选定,则放大器的工作状态只取决于集电极回路的等效负载电阻R q 。
谐振功率放大器的交流负载特性如下图所示
:
11R I V m c m c =CO
m
c CC m c I
I V V 1121⋅⋅=η
由图可见,当交流负载线正好穿过静态特性转移点A 时,管子的集电极电压正好等于管子的饱和压降V CES ,集电极电流脉冲接近最大值I cm 。
此时,集电极输出的功率P C 和效率都较高,此时放大器处于临界工作状态。
R q 所对应的值称为最佳负载电阻,用R 0表示,即:
当R q ﹤R 0时,放大器处于欠压状态,如C 点所示,集电极输出电流虽然较大,但集电极电压较小,因此输出功率和效率都较小。
当R q ﹥R 0时,放大器处于过压状态,如B 点所示,集电极电压虽然比较大,但集电极电流波形有凹陷,因此输
出功率较低,但效率较高。
为了兼顾输出功率和效率的要求,谐振功率放大器通常选择在临界工作状态。
判断放大器是否为临界工作状态的条件是:
本实验电路原理图如下图所示:
该实验电路由两级功率放大器组成。
其中Q3
(3DG12)、T6组成甲类功率放大器,工作在线性放大状态,其中R A3、R 14、R 15组成静态偏置电阻,调节R A3可改变放大器的增益。
W1为可调电阻,调节W1可以改变输入信号幅度,Q4(3DG12)、T4组成丙类功率放大器。
R 16为射极反馈电阻,T4为谐振回路,甲类功放的输出信号通过R 13送到Q4基极作为丙放的输入信号,此时只有当甲放输出信号大于丙放管Q4基极-射极间的负偏压值时,Q4才导通工作。
与拨码
J5
开关相连的电阻为负载回路外接电阻,改变S1拨码开关的位置可改变并联电阻值,即改变回路Q值。
三、实验仪器设备
高频电子线路综合实验箱;
双踪示波器;
高频信号发生器;
万用表。
四、实验内容与步骤
1、测试调谐特性
在前置放大电路出入J3处输入频率f=10.7MHz(V p-p≈50mV)的高频信号,调节W1和中周T6,使TP6 处信号的电压幅值为2V左右(用示波器观测),S1全部拨下,改变输入信号频率,从9MHz~15MHz(以1MHz为步进)记录TP6处的输出电压值(示波器),填入下表。
2、测试负载特性
在前置放大电路中输入J3处输入频率f=10.7MHz(V p-p≈50mV)的高频信号,调节W1使TP6处信号约为2V,调节中周使回路调谐(调谐标准:TH4处波形为对称双峰)。
将负载电阻转换开关S1依次从1—4拨动,用示波器观测相应的Vc值和Ve波形,描绘相应的ie波形,分析负载对工作状态的影响。
V b=2V f=10.7MHz V CC=5V
五、实验总结
丙类放大器的特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角θ<90〇,为了不失真地放大信号,它的负载必须是LC谐振回路。
优缺点:它输出功率和效率特高,一种失真非常高的功放,一般用于射频放大,只适合在通讯用途上使用。
影响功率放大器功率和效率的主要电路参数是效率η=Po/P E,功率P=Uo*Io。