当前位置:文档之家› 大学生创新实验报告—制备纳米材料

大学生创新实验报告—制备纳米材料

大学生创新实验报告—制备纳米材料
大学生创新实验报告—制备纳米材料

大学生创新实验报告

实验项目名称溶胶-凝胶法制备纳米SnO?

学生团队成员

指导教师

所在学院

实验完成学期

干摩擦对铜亚表层微观结构的影响

一、实验目的

1.初步了解纳米概念和特点

2.学习并掌握一种全新的利用滑动摩擦实现表面纳米化技术。

3.了解和掌握纳米材料的制备与检测的一些基本方法。

二、实验方案

1.实验背景

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。

纳米材料的制备主要通过以下三个基本途径:

(1)惰性气体下蒸发凝聚法。通常由具有清洁表面的、粒度为1-100nm的微粒经高压成形而成,纳米陶瓷还需要烧结。国外用上述惰性气体蒸发和真空原位加压方法已研制成功多种纳米固体材料,包括金属和合金,陶瓷、离子晶体、非晶态和半导体等纳米固体材料。我国也成功的利用此方法制成金属、半导体、陶瓷等纳米材料。

(2)化学方法:1水热法,包括水热沉淀、合成、分解和结晶法,适宜制备纳米氧化物;2水解法,包括溶胶-凝胶法、溶剂挥发分解法、乳胶法和蒸发分离法等。

(3)综合方法。结合物理气相法和化学沉积法所形成的制备方法。

本次试验将采用借助机械力将材料超细化的方法得到纳米材料。

2.实验设计思想

滑动摩擦可以产生极高的应变和应变率,导致金属表层强烈塑性变形。经过摩擦处理后,纯铜表层发生严重塑性变形。纯铜塑性变形层厚度为200~400μm 之间,变形层深度随载荷、速率升高而增加,在200cycles即接近饱和。变形层沿深度方向呈梯度变化分布,其亚表层呈梯度结构,分别为塑性流动层、变形层

和基体。最表层晶粒尺寸达到纳米量级。

3. 实验原理

1)干摩擦使金属表面纳米化的原理

金属材料的摩擦行为会在金属表面引起磨损、变形和能量的变化等,使金属表层结构组成发生变化,从而对金属材料的整体性能产生很大的影响。在摩擦过程中,由于摩擦副表面为凸起的存在,两摩擦表面的实际接触面积非常小,受摩擦的表层会在载荷和速率等因素的共同作用下产生极高的应变和应变率。其必然会引起金属材料表面强烈的塑性变形,致使表层微观组织细化,最终实现表面纳米化。

2)光学显微镜工作原理

光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜相当于投影仪的镜头,物体通过物镜成倒立、放大的实像。目镜相当于普通的放大镜,该实像又通过目镜成正立、放大的虚像。反光镜用来反射,照亮被观察的物体。反光镜一般有两个反射面:一个是平面,在光线较强时使用;一个是凹面,在光线较弱时使用。

3)高温摩擦磨损试验机工作原理

高温高速摩擦磨损试验机是进行高温高速摩擦磨损试验的有效设备,广泛运

用于对各种高速刀具的高温摩擦磨损性能进行测试和评价,是高速切削和新型刀具材料研制开发和应用的必备设备。

本试验机可做各种金属材料及非金属材料(尼龙、塑料等)在滑动摩擦、滚动摩擦、滚滑复合摩擦和间歇接触摩擦等多种状态下的耐磨性能试验,用于评定材料的摩擦机理和测定材料的摩擦系数。该机采用计算机控制系统,可实时显示试验力、摩擦力矩、摩擦系数、试验时间等参数,并可记录实验过程中摩擦系数—时间曲线。

三、实验过程

1. 仪器与试剂

试剂:酒精、Fecl3、FeNO3

仪器:高温摩擦磨损实验机、线切割机、砂纸、抛光机、超镜透显微镜2. 实验过程

将铜板切为圆形加载荷进行摩擦,经过摩擦处理后,纯铜表层发生严重塑性变形。纯铜塑性变形层厚度为200~400μm之间,变形层深度随载荷、速率升高

而增加,在200cycles即接近饱和。变形层沿深度方向呈梯度变化分布,其亚表层呈梯度结构,分别为塑性流动层、变形层和基体。最表层晶粒尺寸达到纳米量级。

3.实验步骤

1)线切割

将长200mm、宽200mm、高6mm的铜板用线切割机切割出四个直径为60mm、高6mm的圆形铜板。

图为线切割机;

2)使用高温摩擦磨损机进行摩擦磨损试验

将四块试样分别以不同的加工条件进行摩擦磨损,由于我们在检验时需要一个平面,而实验设备只能摩擦出一个圆环,所以我们选择在一定的半径范围内进行实验,每次推进1mm,做出一个半径5mm的圆环平面,方便试验后期的检验工作。

图为正在进行摩擦磨损实验:

试样的加工参数:

试样一:载荷:1540克;电动机频率:10;电机转速:560转/分;摩擦半径:10~5mm;时间:5分/圈

试样二:载荷:1400克;电动机频率:10;电机转速:560转/分;摩擦半径:8~3mm;时间:30分/圈

试样三:载荷:1300克;电动机频率:10;电机转速:560转/分;摩擦半径:8~3mm;时间:20分/圈

图为计算机描绘出的摩擦系数与温度时间曲线:

3)线切割

将磨损好的试样进行线切割,将圆形试样切割为四个扇形试样。

图为线切割:

4)抛光

从每份试样中选取一块试样对其中一个平面进行抛光。试样为扇形,我们选择摩擦面的横截面进行抛光,最终检测的是边缘晶粒的晶粒大小是否为纳米量级的晶粒。

抛光时先用砂纸进行粗磨,然后再抛光机上进行抛光之后用水清洗然后吹干。

图为切割好的试样:

5)浸蚀

将抛光好的试样用Fecl3、FeNO3交替浸蚀,每次用镊子夹起沾有试剂的棉球在抛光好的表面来回摩擦4~5下,用水冲洗好后撒些许酒精吹干。

图为浸蚀时所用的试剂:

6)显微镜下观察组织

在400倍显微镜下进行初步观察晶体是否清晰显现,若晶体没有清晰显现,则进行二次浸蚀。

7)拍晶体组织照片

用超镜透显微镜在2000倍下观察晶体尺寸且拍照

四、结果与分析

1.照片

1)试样一边部,即样品摩擦磨损的标变晶粒照片

2)试样一心部晶粒照片

3)试样二边部,即样品摩擦磨损的标变晶粒照片

4)试样二心部晶粒照片

2.分析

试样一由于摩擦时间较短,纯铜摩擦效果不够,所以边部晶粒大小没有达到纳米量级,但是表层晶粒大小与心部晶粒大小有差别且有明显的细化,可以说明纯铜经滑动摩擦表面处理后,表层晶粒可细化。试样在抛光时有划痕所以照片效果不好。

试样二由于摩擦时间足够,纯铜摩擦效果较好,所以边部晶粒大小或许达到纳米量级,表层晶粒大小与心部晶粒大小有很大差别且有明显的细化,可以说明纯铜经滑动摩擦表面处理后,表层晶粒可细化。试样二抛光较好,照出照片效果较好。

3.结论

1)纯铜经滑动摩擦表面处理后,亚表层厚度可达200~400μm,表层晶粒可细化,试样二晶粒可能已经达到纳米量级,但是由于设备原因无法进一步观察。

2)与普通粗晶铜相比, 铜纳米晶表层在干摩擦滑动条件下, 显示出优异的耐磨性, 主要是由于纳米结构高硬度, 以及氧化物屑易形成稳定的机械混合

层等因素。

五、实验体会

本学期我们参与了“纳米材料制备”创新实验,由最开始的制备方法的确定到后来一个多月的实验,到最后实验的总结,我们在老师的带领下都有了一些收获,而且增强了合作的意识。

大学生创新性实验计划项目实施强调自主性、探索性、实践性和协作性,遵循“兴趣驱动、自主试验、重在过程”的原则。注重创新性实验项目的实施过程讲究长远效益,强调项目实施过程中在创新思,维和创新实践方面的收获,重点培养学生的创新意识和创新能力,不急功近利,不为成果而设计,重在实施过程中得到的锻炼和培养,在整个过程中,我们不仅学到了实验本身所带来的动手能力以及实践能力的提高,而且学到了认真仔细、坚持不懈,善于思考总结的可贵精神,并对“大学生创新性实验计划”有了更深入的体会。

创新实验不是基础化学课上的实验,只要按着老师讲的步骤做就行了。做的课题对于我们来说,可能是一个没有接触过的新领域,没有人告诉我们一步步该怎么做。需要自己去找文献查资料,去弄明白实验的原理,然后确定要创新的方向。按照这个方向一点点努力,所以每一步都需要独立思考。其中会遇到很多困难,这个时候除了寻找帮助,最重要的还是自己思考。在研究方面,最深的体会就是要善于勤于思考,主动动手动脑。

实验最开始老师给了我们一个大的主题,即制备纳米材料。我们首先自己确定了制备纳米材料的选题,我们上网查了很多资料,在学校图书馆期刊室翻阅了许多近期的杂志,最后确定了利用对纯铜的摩擦磨损使表面细晶粒化得到纳米层。这种方法是比较冒险的,因为借助机械力将材料超细化难以得到微米级以下的纳米粒子,粒子形状不规则,而且容易混入杂质并发生剧烈的氧化反应。但是创新实验就是要用于创新,在老师的鼓励下我们确定了此次实验的主题。

接着,我们开始购买纯铜板,由于缺乏经验,买到的铜板比实验室需要用到的铜板多出了一倍,这也是给我们敲了警钟,即做事情前一定要仔细规划。然后我们正式开始进入制备阶段。我们在和实验室的老师沟通之后,确定了切割铜板以及做摩擦磨损的时间,然后我们考虑实验室所能提供的设备且结合资料上一些

成功的实验样例,制定了实验步骤以及实验时所需要的参数。最开始做摩擦磨损实验时由于没有考虑到载荷的问题,所以做出的效果不甚理想。后来我们更改了摩擦磨损的时间,即降低载荷增加了时间,做了第二个试样,其中有一次因为没有考虑纯铜的硬度较低,在安装机器时没有进行加固,导致机器在实验途中对磨材料轴承钢脱落,试样报废。之后我们在实验中每进行一次实验即对机器进行加固。通过这次实验,我们认为在做事时一丝不苟才是上上之选。

之后的线切割、抛光是按照计划一步步进行。在这途中我们发现与老师的沟通是必不可少的。此次实验既锻炼了课题组人员的动手动脑能力,也提高了我们的创新意识和创新能力以及解决问题的能力。在创新方面,首先要确定创新的方向和目标。方向和目标是贯穿整个实验的核心,只有明确方向,围绕这个方向努力下去,才可能有结果。创新点可以从很多方面确定,不一定是很高深很前沿的东西。只要不是照搬别人已经做过的东西,在自己力所能及的范围内就好。当然,能做出更大的成就最好。有时思维可能会出现“停滞不前”的现象,好像只能思考到这个程度了。这时要用发散思维多方位的考虑,作出大胆的猜测。但要始终围绕创新点,不能偏离主题,也不能随意猜测,而要有根据有目的地做出假想,再一步步实践去论证自己的猜测。其实,每一个伟大的成就都是这样“平凡”地一步步得出来的。

另外,由于时间仓促和课题研究人员水平的限制,本课题还存在一些不足,由于实验条件,实验室条件以及实验者本身条件的限制,使得实验还存在一定的局限性,没有达到预期的效果。

最后感谢各位老师和师兄师姐在我们实验过程中的指导与帮助。

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

纳米材料学总结

《纳米材料》 一、名称解释 纳米材料:指在三维空间中至少有一维处于纳米尺度范围(1-100)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。久保理论:关于金属粒子电子性质的理论,是针对金属超微颗粒面附近电子能级状态分布而提出的。 量子尺寸效应: 自组装:基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。在自组装的过程中,基本结构单元在基于非共价键的相互作用下自发的组织或聚集为一个稳定、具有一定规则几何外观的结构。 团簇:由几个乃至上千个原子、分子或离子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体,其物理和化学性质随所含的原子数目而变化。 二、简答 列举几个材料或化学类的期刊;列举说明几种表征手段;列举几个研究纳米材料的研究小组 三、纳米材料不同于其它材料的物理化学性质; 四、列举几种材料的制备方法 五、抑制团聚的措施 六、光催化原理 光催化剂纳米粒子在一定波长的光线照射下受激发生成电子-空穴对(当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子()和空穴()),空穴分解催化剂表面吸附的水产生氢氧自由基,电子使其周围的氧还原成活性离子氧,从而具备极强的氧化-还原作用,能将绝大多数的有机物氧化至最终产物二氧化碳和水,甚至对一些无机物也能彻底分解。 第二章纳米微粒的基础 1. 量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象。 2. 小尺寸效应:当超细微粒的尺寸与光波波长,德布罗意波长以及超导态的相干长度或者透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米微粒的颗粒表面层附近原子密度减小。 3. 表面效应:纳米微粒尺寸小,表面能大,表面原子配位不足,活性强。 4. 宏观量子隧道效应:微观粒子具有贯穿势垒的能力。 第三章纳米微粒结构与物理性质

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

纳米科技与纳米材料课程总结

西南科技大学 纳米科技与纳米材料课程 总 结 报 告 报告人:理学院光信息1102班杨星 时间:2012.4.9

早在1959年,美国著名的物理学家,诺贝尔奖金获得者费曼就设想:“如果有朝一日人们能把百科全书存储在一个针尖大小的空间内并能移动原子,那么这将给科学带来什么!”这正是对纳米科技的预言,也就是人们常说的小尺寸大世界。 纳米科技是研究尺寸在0.1~100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。 纳米材料和技术是纳米科技领域最富有活力、研究内涵十分丰富的学科分支。“纳米”是一个尺度的度量,最早把这个术语用到技术上的是日本在1974年底,但是以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1~100nm范围。 可以说纳米技术是前沿科学,有很大的探索空间和发展领域,比如:医疗药物、环境能源、宇航交通等等。而今纳米时代正走向我们,从古文明到工业革命,从蒸汽机到微电子技术的应用,纳米时代的到来将不会很远。

这门课程我最深刻的内容是:第二讲扫描隧道显微镜及其应用 引言: 在物理学、化学、材料学和生物研究中,物质真实表面状态的研究具有重要意义。常用的手段有: 1.光学显微镜:由于可见光波长所限,光学显微镜的分别率非常 有限(一般1000nm,分辨率高的可到250nm,理论极限为200nm)。 2.扫描电镜:虽然给表面观察及分析提供了有力的工具,但由于 高能电子束对样品有一定穿透深度,所得的信息也不能反映 “真实”表面状态,分辨率3nm。 3.透射电镜:虽有很高的分辨率,但它所获得的图像实际上是很 薄样品的内部信息,用于表面微观观察及分析几乎是不可能的。 分辨率0.1nm。 4.针对这一问题,宾尼与罗雷尔于1982年发明了扫描隧道显微镜。 在不到5年的时间内,分辨率就达到了原子水平。分辨率0.01nm。 扫描隧道显微镜的基本原理: 1982年,国际商业机器公司(IBM)苏黎世研究所的 Gerd Binnig 和 Heindch Rohrer及其同事们成功地研制出世界上第一台新型的表面分析仪器,即扫描隧道显微镜(Scanning Tunneling Microscope,STM)。它使人类第一次能够直接观察到物质表面上的单个原子及其排列状态,并能够研究其相关的物理和化学特性。因此,它对表面物理和化学、材料科学、生命科学以及微电子技术等研究领域有着十分重大的意义和广阔的应用前景。STM的发明被国际科学界公认为20世

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

块状纳米材料的制备方法总结

块状纳米材料的制备方法总结 块体纳米材料是晶粒尺寸小于100 NM 的多晶体, 其晶粒细小, 晶界原子所占的体积比很大, 具有巨大的颗粒界面, 原子的扩散系数很大等独特的结构特征, 其表现出一系列奇异的力学及理化性能。 1、惰性气体凝聚原位加压成型法 其装置主要由蒸发源、液氮冷却的纳米微粉收集系统、刮落输运系统及原位加压成型系统组成1 这种制备方法是在低压的氩、氦等惰性气体中加热金属, 使其蒸发后形成超微粒( < 1 000 NM) 或纳米微粒[ 1] 1 由惰性气体蒸发制备的纳米金属或合金微粒, 在真空中由四氟乙烯刮刀从冷阱上刮下, 经低压压实装置轻度压实后,再在高压下原位加压, 压制成块状试样1 实验装置如图1所示。其优点是: 纳米颗粒具有清洁的表面,很少团聚成粗团聚体, 块体纯度高, 相对密度高, 适用范围广[ 2 ] ,但工艺设备复杂, 生产率低, 特别是制备的纳米材料中存在大量孔隙, 致密度仅为75% ~90%。 2、高能机械研磨法(MA) 利用粉末粒子与高能球之间相互碰撞、挤压, 反复熔结、断裂、再熔结使晶粒不断细化,直至达到纳米尺寸1 纳米粉通过热挤压、热等静压等技术加压后, 制得块状纳米材料。该法成本低、产量大、工艺简单, 在难熔金属的合金化、非平衡相的生成及开发特殊使用合金等方面显示出较强的活力, 可以制备纯金属纳米块体材料、不互溶体系纳米合金、纳米金属间化合物及纳米尺度的金属- 陶瓷粉复合材料等1 但其研磨过程中易产生杂质、污染、氧化, 很难得到洁净的纳米晶体界面。 3、大塑性变形方法(SPD) 由于大塑性变形具有将粗晶金属的晶粒细化到纳米量级的巨大潜力, 已引起人们的极大关注。块纳米金属和合金最快捷的生产方法之一便是大塑性变形加工。高能球磨是在机械力的作用下, 粉末颗粒被反复地破碎、焊合, 将粗大晶粒细化到微米或纳米量级的一种有效手段。但是与高能球磨和非晶晶化法制备纳米材料的不同之处在于, 大塑性变形是通过剧烈的塑性变形, 使粗大晶粒破碎、细化, 从而直接获得块体纳米材料。近年来出现了一些大塑性变形方法, 如等径角挤压(Equal channel angular pressing, ECAP)、高压扭转(High pressure and torsion, HPT)、叠轧合技术(Accumulative roll bonding, ARB)、反复折皱一压直法(Repetitive corrugation and straightening.RCS)等。在发展多种塑性变形方法的基础上, 已成功地制备了晶粒尺寸为20~200nm 的纯Fe、Fe-1.2C 钢、Fe- C-Mn- Si—V 低合金钢、A1- Li—Zr、Mg—Mn- Ce 等合金的块体纳米晶材料。 4、非晶晶化法 该法通过控制非晶态固体的晶化过程, 可以使晶化的产物为纳米尺寸的晶粒。该法主要包括两部分: 获得非晶态固体和将非晶固体晶化。非晶态固体可通过熔体激冷、高速直流溅射、固态反应法等技术制备, 最常用的是单辊或双辊旋淬法。但以上方法只能获得非晶粉末、丝及条带等低维材料, 因而还需采用热压、高压烧结方法合成块状样品。非晶态合金的制备技术经过几十年的发展已非常成熟, 可以成功地制备出块状非晶态合金。由于非晶态合金在热力学上是不稳定的, 在受热或辐射等条件下会出现晶化现象, 即非晶态向晶态转变。晶化通常采用等温退火方法, 近年来还发展了分级退火、激波诱导等方法。此法在纳米软磁材料的制备方面应用最为广泛。目前利用该法已制备出Ni、Fe、Co、Pt 基等多种合金系列的纳

低维纳米材料总结

低维纳米材料的制备与性能研究 创新实践课 徐成彦 材料科学与工程学院 微系统与微结构制造教育部重点实验室 课时安排 共32学时,授课及讨论20学时,实践教学12学时2-9周 授课:周四、周六,A513 实践课:微纳米中心(科学园B1栋314) 联系方式 办公室:材料楼502房间 电话:86412133 E-mail: cy_xu@https://www.doczj.com/doc/4a18259766.html, Homepage: https://www.doczj.com/doc/4a18259766.html,/pages/cyxu 一.纳米材料导论 1.纳米:长度计量单位,1nm=10-9 m。 2.纳米结构:通常是指尺寸在100nm以下的微小结构。 3.纳米技术:在纳米尺度上对物质和材料进行研究处理的技术称为纳米技术。纳米技术本质上是一种用单个原子、分子制造物质的科学技术。 4.团簇:Clusters denotes small, multiatom particles. As a rule of thumb, any particle of somewhere between 3 and 3x107 atoms is considered a cluster. (a few ? ~ a few hundreds ?) 5.量子点:A quantum dot is a portion of matter (e.g., semiconductor) whose excitons are confined in all three spatial dimensions. Consequently, such materials have electronic properties intermediate between those of bulk semiconductors and those of discrete molecules. (typically, 5 ~ 50 nm)

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

三维纳米材料制备技术综述

三维纳米材料制备技术综述 摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。 关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法 1.引言 随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。 当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。 纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容与所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易与其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们与旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。 答:纳米材料的缺陷有:一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒 T 内。位错与晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5 m

常见纳米材料的制备技术

东华大学研究生课程论文封面 教师填写: 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名: 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

常见纳米材料的制备技术 1 概述 纳米材料是指材料的任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料,广义来讲,数百纳米的尺度亦可称为纳米材料。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能,纳米材料的性能往往由量子力学决定。按照纳米材料的空间形态可以将其分为4类:三维尺寸均为纳米量级的纳米粒子或人造原子被称为零维纳米材料;纳米纤维为一维纳米材料;纳米膜(片、层)可以称为二维纳米材料;而有纳米结构的材料可以称为三维纳米材料。目前只有纳米粉末实现了工业化生产(如碳酸钙、氧化锌等),静电纺纳米纤维的产量能够满足实验的需求,其它纳米材料基本上还处于实验室研究阶段[1]。 2 常见的纳米材料 2.1 零维纳米材料 指空间中三个维度的尺寸均在纳米尺度,如纳米尺度颗粒、原子团簇等。纳米球全称“原子自组装纳米球固体润滑剂”,是具有二十面体原子团簇结构的铝基合金,是一种新型纳米/非晶合金固体抗磨自修复剂,采用急冷方法制备抗磨剂粉体,在合金从液体到固体的凝固过程中,形成纳米晶/非晶的复合结构,利用粒度控制的方法对抗磨剂粉末进行超微细化处理而成。该材料具有高硬度、高强度,并具有一定的韧性等性能,在多种减摩自修复机制的综合作用下呈现优良的减摩和抗磨性能,可以起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。 2.2 一维纳米材料 一维纳米材料指空间中有二维处于纳米尺度的材料,如纳米纤维、纳米棒、碳纳米管等。 静电纺纳米纤维是目前唯一一种能够连续制备纳米纤维的技术,它是利用高压电场力将纤维从导电溶液中抽拔出来,在抽拔过程中纤维被拉伸变细、溶剂挥

纳米学习材料含技术复习总结计划思考题.docx

一、填空:(每空 1 分,总共30 分) 1.纳米尺度是指 1~100nm 。 2.纳米科学是研究纳米尺度内原子、分子和其他类型物质运动和变化的科学。 3.纳米技术是在纳米尺度范围内对原子、分子等进行操纵和加工的技术。 4.当材料的某一维、二维或三维方向上的尺度达到纳米范围尺寸时,可将此类材料称 为低维材料。 5. 一维纳米材料中电子在2个方向受到约束,仅能在1个方向自由运动,即 电子在2个方向的能量已量子化。一维纳米材料是在纳米碳管发现后才得到广 泛关注的,又称为量子线。 6.1997 年以前关于 Au、 Cu、 Pd 纳米晶样品的弹性模量值明显偏低,其主要原因是 材料的密度偏低。 7.纳米材料热力学上的不稳定性表现在纳米晶粒容易长大和相变两个方 面。 8.纳米材料具有高比例的内界面,包括晶界、相界、畴界等。 9.根据原料的不同,溶胶 -凝胶法可分为:水溶液溶胶 -凝胶法和醇盐溶胶 -凝胶法10.隧穿过程发生的条件为|Q| > e/ 2 。 11.磁性液体由三部分组成:磁性颗粒、表面活性剂和基液。 12.随着半导体粒子尺寸的减小,其带隙增加,相应的吸收光谱和荧光光谱将向 短波方向移动,即蓝移。 13.光致发光指在一定波长光照射下被激发到高能级激发态的电子重新跃入 低能级被空穴捕获而发光的微观过程。仅在激发过程中发射的光为荧光。 在激发停止后还继续发射一定时间的光为磷光。 14.根据碳纳米管中碳六边形沿轴向的不同取向,可将其分成三种结构:扶手椅型、锯齿型、螺 旋型 15.STM 成像的两种模式是恒电流模式和恒高度模式。 二、简答题:(每题 5 分,总共45 分) 1、简述纳米材料科技的研究方法有哪些? 答:主要有两种技术: Top down(由上而下)的方法和Bottom up(由下而上)的方法(2 分);Top down 由上而下的方法是一种采用物理和化学方法对宏观物质的超细化的纳米科技的研究方法。 Bottom up 由下而上的方法,以原子、分子、团簇等为基元组装具有特定功能的器件、材料。纳米 科技的最终目的是以原子、分子为起点,去制造具有特殊功能的产品。 2、纳米材料的分类? 答:纳米材料通常按照维度进行分类。 超细粒子,团簇→ 0 维材料 纳米线或管→ 1维纳米材料 纳米膜→ 2维纳米材料 纳米块体→ 3维纳米材料 3、纳米颗粒与微细颗粒及原子团簇的区别? 答: 1)尺度上:分别为10-9~10-7m, 10-7~10-5m, <10-9m

纳米材料的制备方法

纳米材料的制备方法 一、前言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。 应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。 二、纳米材料的制备方法 (一)、机械法 机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部

一维纳米材料的制备概述

学年论文 ` 题目:一维纳米材料的制备方法概述 学院:化学学院 专业年级:材料化学2011级 学生姓名:龚佩斯学号:20110513457 指导教师:周晴职称:助教

2015年3月26日 成绩 一维纳米材料制备方法概述 --气相法、液相法、模板法制备一维纳米材料 材料化学专业2011级龚佩斯 指导教师周晴 摘要:一维纳米材料碳纳米棒、碳纳米线等因其独特的用途成为国内外材料科学家的研究热点。然而关于如何制备出高性能的一维纳米材料正是各国科学家所探究的问题。本文概述了一维纳米材料的制备方法:气相法、液相法、模板法等。 关键词:一维纳米材料;制备方法;气相法;液相法;模板法 Abstract: the nanoscale materials such as carbon nanorods and carbon nanowires have become the focus of intensive research owing to their unique applications. but the question that how to make up highqulity one-dimentional nanostructure is discussing by Scientists all around the world. This parper has reviewed the preparation of one dimention nanomaterials ,such as vapor-state method, liqulid -state method ,template method and so on. Key words: one-dimention nanomaterials ; preparatinal method ; vapor-state method liqulid-state method ; template method 纳米材料是基本结构单元在1nm ~100nm之间的材料,按其尺度分类包括零维、一维、二维纳米材料。自80年代以来,零维纳米材料不论在理论上和实践中均取得了很大的进展;二维纳米材料在微型传感器中也早有应用。[1]一维纳米材料因其特殊的结构效应在介观物理、纳米级结构方面具有广阔的应用前景,它的制备研究为器件的微型化提供了材料基础。本文主要概述了近年来文献关于一维纳米材料的制备方法。 1 一维纳米材料的制备方法 近几年来,文献报导了制备一维纳米材料的多种方法,如溶胶-凝胶法、气相-溶液-固相法、声波降解法、溶剂热法、模板法、化学气相沉积法等。然而不同制备方法的纳米晶体生长机制各异。本文按不同生长机制分类概述,主要介绍气相法、液相法、模板法三大类制备方法。 1.1 气相法 在合成一维纳米结构时,气相合成可能是用得最多的方法。气相法中的主要机

纳米材料复习总结

1、机械粉碎法:在给定的外场力的作用下,如,冲击、挤压、碰撞、剪切或摩擦,使大颗粒破碎成超细微粒的一种技术。 2、球磨:将起粉碎作用的介质材料做成球体或圆柱体,放入在球磨筒体中。在筒体的上下旋转过程中,利用介质和物料之间的相互研磨冲击使物料颗粒粉碎,经过几十甚至几百小时长时间的球磨,可使小于1um的颗粒破碎。 3、搅拌磨:由一个静止的研磨筒和一个旋转的搅拌器构成的粉碎设备,分为间歇式、循环式、连续式三种。也使用球形或柱形的研磨介质。 4、胶体磨:被加工的物料为胶体形式的浆料,利用一对固体磨和高速旋转磨体的相对运动所产生的强大的剪切、摩擦、冲击等作用力来粉碎或分散物料的颗粒。 5、球磨的基本原理:需加工的物料粉体被放在一个密封的球磨容器里,其中有许多硬钢球或包覆着硬质碳化钨的球体。物料在此容器内被抛甩、振动或猛烈地摇动,达到粉碎的目的。 6、高能球磨法:是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击、研磨和搅拌,把粉末粉碎为纳米级微粒的方法。将粉末放入球磨机的球磨罐中进行高能球磨,粉末颗粒经反复地压延、压合、碾碎、再压合、碾碎的过程,最后获得组织和组分分布均匀的纳米颗粒。 7、高能球磨法制备纳米颗粒的工艺步骤: 1)根据所制产品的元素组成,将两种或多种单质或合金粉末组成初始粉末。 2)选择球磨介质,根据所制产品的性质,在钢球、刚玉球或其他材质做成的球中选择适合的材料组成球磨介质。 3)初始粉末的球磨介质按一定的比例放入球磨机中球磨。 4)工艺的过程是:球与球,球与研磨桶壁的碰撞粉末,并使其产生塑性形变,形成小颗粒粉体。经过长时间的球磨,得到的颗粒的组成细化,并发生扩散和固态反应,形成单质在合金纳米颗粒粉末。 5)球磨时一般需要使用气体进行保护。 6)塑性非常好的粉末往往加入1%~2%的有机添加剂,可防止粉末过度焊接和粘球。8、高速气流粉碎是利用高速气流(300~500m/s)或热蒸气(300~500℃)的能量使颗粒相互产生冲击、碰撞、摩擦而被较快粉碎。 1)喷射式气流粉碎:使物料颗粒与固定的冲击板进行冲击碰撞,或颗粒之间进行迎面冲击碰撞。 2)扁平式气流粉碎 3)循环管式气流粉碎:粉碎过程是将待粉碎的物料从加料器加入,进入粉碎区,物料经过喷嘴后再进入粉碎室,经过加速物料在运行中发生冲击碰撞。高速的旋流夹带着被粉碎的颗粒,沿上移管向上运动,被半圆开的分级区所限制,使气固双相夹流发生半圆周的回旋运动,从而产生了离力场,使细颗粒得以分级。粗颗粒在离心力的驱使下集中在循环管的外侧,随循环旋流沿下行管重新进入粉碎区,而合格的细颗粒经成品出口离开粉碎室,进行气固分离后变成产品。 9、气相沉积 …………………………………… 10、液相反应制备纳米颗粒 1)沉淀法原理:包含有一种或多种阳离子的可溶性盐溶液,加入沉淀剂(OH-、CO32-等)在特定的温度下合溶液发生水解或直接沉淀,形成不溶性氢氧化物、氧化物或无机盐,直接或经热分解可得到所需的纳米微粒。 工艺方法:将不同化学成分的物质首先在溶液状态下进行混合,在混合溶液中加入适当的用来沉淀制备纳米颗粒的躯体沉淀剂,再将此沉淀物进行干燥或煅烧。从而制得相应的纳米颗粒。

纳米材料制备方法

纳米微粒制备方法研究进展 刘伟 (湘潭大学材料科学与工程学院,13材料二班,2013701025) 摘要:纳米微粒一般是指粒径在1nm到100nm之间,处在原子簇和宏观物体交接区域内的粒子,或聚集数从十到几百范围的物质。纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特点,因而有许多与传统的晶体和非晶体不同的独特性质,也与组成它们的分子或原子差异很大,在材料学、物理学、化学、催化、环境保护、生物医学等领域具有十分广阔的应用前景。本文综述目前纳米微粒的主要的制备方法, 比较和评述了每种方法的特点,以期这一新材料能得以更为深入地研究和更广泛地应用。 关键词:纳米微粒;制备;方法 1.引言 纳米微粒的制备方法从物料的状态来分,可归纳为固相法、液相法、气相法3大类;从物料是否发生化学反应而分为物理法、化学法及近年迅速发展的模板合成法、仿生法等;随着科技的不断发展及对不同物理、化学特性超微粒子的需求,又派生出许多新的技术,下面就着重介绍固相法、液相法和气相法。 2.固相法 固相法是一种传统的粉化工艺,具有成本低、产量高、制备工艺简单的优点。固相法分为固相机械粉碎法和固相反应法。固相机械粉碎法借用诸如搅拌磨、球磨机、气流磨、塔式粉碎机等多种粉碎机,利用介质和物料之间的相互研磨和冲击的原理,使物料粉碎,常用来制备微米级粒径的粉体颗粒。此法存在能耗大、颗粒粒径分布不均匀、易混入杂质、颗粒外貌不规则等缺点,因而较少用以制备纳米微粒。固相反应法是将固体反应物研细后直接混合,在研磨等机械作用下发生化学反应,然后通过后处理得到需要的纳米微粒。该方法一般要加入适量表面活性剂,所以有时也称湿固相反应。该方法具有工艺简单、产率高、颗粒粒子稳定化好、易操作等优点,尤其是可减少或避免液相中易团聚的现象。[4] 3.液相法 液相法是目前实验室和工业生产中较为广泛采用的方法。通常是让溶液中的不同分子或离子进行反应,产生固体产物。产物可以是单组分的沉淀,也可以是多组分的共沉淀。其涉及的反应也是多种多样的,常见的有:复分散反应、水解反应、还原反应、络合反应、聚合反应等。适当控制反应物的浓度、反应温度和搅拌速度,就能使固体产物的颗粒尺寸达到纳米级。液相法具有设备简单、原料易得、产物纯度高、化学组成可准确控制等优点。下面主要介绍其中的沉淀法和微乳液法。 3.1 沉淀法 沉淀法是液相法制备金属氧化物纳米微粒最早采用的方法。沉淀法基本过程是:可溶性化合物经沉淀或水解作用形成不溶性氢氧化物、水合氧化物或盐类而析出,经过滤、洗涤、煅烧得到纳米微粒粉末。沉淀法又分为均相沉淀法和共沉淀法。沉淀法工艺简单、成本低、反应时间短、反应温度低,易于实现工业化生产。但是,沉淀物通常为胶状物,水洗、过滤较困难;所制备的纳米微粒易发生团聚,难于制备粒径小的纳米微粒。沉淀剂容易作为杂质混入产物之中。此外,还由于大量金属不容易发生沉淀反应,因而这种方法适用面较窄。[3]

相关主题
文本预览
相关文档 最新文档