【信息光学课件】 第六章 光学空间滤波原理 PDF版
- 格式:pdf
- 大小:811.07 KB
- 文档页数:73
第六章光学信息处理6.1光学信息◆什么是光学信息处理光学信息处理是20世纪60年代随着激光器的问世而发展起来的一个新的研究方向,是现代信息处理技术中一个重要组成部分,在现代光学中占有很重要的地位。
所谓光学信息,是指光的强度(或振幅)、相位、颜色(波长)和偏振态等。
光学信息处理是基于光学频谱分析,利用傅里叶综合技术,通过空域或频域调制,借助空间滤波技术对光学信息进行处理的过程。
较多用于对二维图像的处理。
光学信息处理通常有两种分类方法:一种是根据处理系统是否满足叠加原理而分为线性处理和非线性处理;另一种是根据光源的相干性分为相干光处理、非相干光处理和白光处理。
不同的照明方式,系统的性质和处理方法将完全不同。
◆光学信息处理简史事实上,光学信息处理的历史可以追溯到19世纪末、20世纪初。
早在1873年,著名德国科学家阿贝(E.Abbe,1840~1905) 提出了二次成像理论及其相应的实验,就已经为光学信息处理打下了一定的理论基础,是空间滤波与光学信息处理的先导。
1906年Porter首先提出了空间滤波的概念, 他在相干成像系统中的透镜后焦平面上作各种滤波处理,有意改变像的频谱,使成像发生了各种有趣的变化。
1935年荷兰物理学家泽尼克(F. Zernike,1888~1966 )相衬显微镜的发明, 他通过在相干成像系统的频谱面上放置一块位相板和一块吸收板,可以直接观察到位相物,从而荣获1953年度的诺贝尔物理学奖。
而后相干滤波技术被广泛的用来提高图像质量和实现图像的消模糊。
然而相干滤波最为成功的应用是直到60年代初Michigan大学雷达实验室的研究工作,Cutrona等人利用相干光学系统对综合孔径雷达收集到的数据进行处理,成功的绘制出了高分辨率的地貌图;V ander Lugt用离轴全息术制备出复空间滤波器,并成功地应用到光学相关识别和从噪声中提取信号。
到70年代,相干光信息处理已在光学频谱分析、解卷积逆滤波、图像微分和加减、复空间滤波器综合以及相关识别等领域得到应用。
阿贝成像原理和空间滤波汇报人:2023-12-14•阿贝成像原理概述•阿贝成像原理基本原理•空间滤波技术介绍目录•阿贝成像原理与空间滤波技术结合应用•阿贝成像原理与空间滤波技术未来发展趋势预测01阿贝成像原理概述阿贝成像原理是德国物理学家恩斯特·阿贝提出的一种光学成像原理,其核心思想是通过空间滤波器对物体进行空间频率分解,从而获得物体的清晰成像。
阿贝成像原理将物体看作是由无数个点组成的,这些点在空间中以不同的频率分布。
通过使用空间滤波器,我们可以将物体中不同频率的点进行分离,从而获得清晰成像。
阿贝成像原理定义19世纪末,阿贝在研究显微镜成像时提出了阿贝成像原理。
20世纪初,阿贝成像原理被广泛应用于光学仪器设计,如显微镜、望远镜等。
20世纪中叶,随着计算机技术的发展,阿贝成像原理被应用于计算机视觉领域,形成了计算机视觉理论的基础。
阿贝成像原理被广泛应用于光学仪器设计,如显微镜、望远镜等,以提高成像质量。
光学仪器设计阿贝成像原理是计算机视觉理论的基础,被广泛应用于图像处理、模式识别等领域。
计算机视觉阿贝成像原理在医学影像领域也有广泛应用,如X光、CT等医学影像设备的成像原理都与阿贝成像原理密切相关。
医学影像02阿贝成像原理基本原理光学成像系统组成提供足够的光能量,以照亮目标物体。
由多个透镜组成,负责将目标物体的光线进行汇聚和成像。
被观察或成像的物体或场景。
通常是一个平面,用于接收通过透镜组汇聚的光线,形成可观察的图像。
光源透镜组物体成像面光线从光源发出,经过透镜组汇聚,最后在成像面上形成图像。
光线路径通过调整透镜组的角度和位置,可以改变汇聚的光线路径,从而调整图像的大小、形状和清晰度。
成像效果光学成像系统工作原理描述光学成像系统对横向和纵向分辨率的权衡关系。
阿贝数瑞利判据奈奎斯特采样定理基于衍射极限的判据,用于评估光学成像系统的性能。
在数字信号处理中使用的定理,描述了采样频率与信号带宽之间的关系。
光学空间滤波及光信息处理技术空间滤波指在光学系统的傅里叶频谱面上放置适当的滤波器,以改变光波的频谱结构,使得像达到预期要求。
在此基础上,发展了光学信息处理技术,利用光学手段,对输入信息(包括图像、光波频率和振幅)实施运算或变换,以便对相关信息进行提取、编码、存储、增强、识别和恢复。
早在1873年,德国人阿贝(E.Abbe,1840~1905)在蔡司光学公司任职期间研究如何提高显微镜的分辨本领时,首次提出了二次衍射成像的理论。
阿贝和波特(A.B. Porter)分别于1893年和1906年以一系列实验证实了这一理论,说明了成像质量与系统传递的空间频谱之间的关系。
1935年,泽尼可(Zernike)提出了相衬显微镜的原理,将物光的位相分布转化为光强分布,并用光学方法实现图像处理。
这些早期的理论和实验其本质上都是一种空间滤波技术,是傅里叶光学的萌芽,为近代光学信息处理提供了深刻的启示。
但由于它属于相干光学的范畴,在激光出现以前很难将它在实际中推广使用。
随着激光器、光电技术和全息技术的发展,它才重新振兴起来,其相应的基础理论——“傅里叶光学”形成了一个新的光学分支。
目前,光学信息处理在信息存储、遥感、医疗、产品质量检测等方面得到了广泛应用。
一、实验目的1.了解傅里叶光学基本理论的物理意义,加深对光学空间频率、空间频谱和空间频率滤波等概念的理解。
2.掌握在一张全息干版上按照不同的角度制作全息光栅的方法。
3.理解 调制法假彩色编码原理,并学习利用光栅的色散作用,在频谱面上使相应的色谱点通过,形成彩色像。
二、实验仪器光学实验平台,He-Ne激光器,分束镜,反射镜,暗室处理器具及显影、定影、漂白药剂,电吹风,全息干版、白炽灯、凸透镜、频谱滤波器、大头针三、实验仪器介绍1.He-Ne激光发射器氦-氖激光器由激光电源和激光发射管构成,如图1所示。
一般来说,氦氖激光器发出红色的光线,其波长为632.8nm。
图1氦-氖激光器2.光学元件1—分束镜2,3—反射镜4,5—扩束镜6—白板(全息干版)图2光学元件三、实验原理1.阿贝成像原理设有一个空间二维函数),(y x g ,其二维傅里叶变换为[](,)(,)exp 2()G g x y i x y dxdy ξηπξη∞∞=-+⎰⎰-∞-∞(1)式中ηξ,分别为x,y 方向的空间频率,而),(y x g 则为),(ηξG 的傅里叶逆变换,即[](,)(,)exp 2()g x y G i x y d d ξηπξηξη∞∞=+⎰⎰-∞-∞(2)式(2)表示,任意一个空间函数),(y x g 可表示为无穷多个基元函数[]exp 2()i x y πξη+的线性迭加,),(ηξG 是相应于空间频率为ηξ,的基元函数的权重,),(ηξG 称为),(y x g 的空间频谱。
《信息光学》课程教学大纲一、课程基本信息二、课程简介信息光学是应用光学、计算机和信息科学相结合而发展起来的一门新的光学学科,是信息科学的一个重要组成部分,也是现代光学的核心。
本课程主要介绍信息光学的基础理论及相关的应用,内容涉及二维傅里叶分析、标量衍射理论、光学成像系统的频率特性、部分相干理论、光学全息照相、空间滤波、相干光学处理、非相干光学处理、信息光学在计量学和光通信中的应用等。
三、课程目标本课程是光电信息科学与工程专业的主要专业课程之一,设置本课程的目的是让学生掌握信息光学的基本概念、基础理论及光信息处理的基本方法,了解光信息处理的发展近况和运用前景。
为今后从事光信息方面的生产,科研和教学工作打下基础。
四、教学内容及要求第一章信息光学概述(2学时)1.信息光学的基本内容和发展方向2.光波的数学描述和基本概念3.相干光和非相干光4.从信息论看光波的衍射要求:1.了解信息光学的内容和发展方向2.掌握相干光和非相干光的特点3.掌握从信息论的观点看光波的衍射。
重点:空间频率,等相位面。
从信息光学看衍射的基本观点。
难点:空间频率,光波的数学描述。
第二章二维傅里叶分析(8+2学时)1.光学常用的几种非初等函数2.卷积与相关3.傅里叶变换的基本概念4.线性系统分析5.二维采样定理要求:1.了解光学中常用非初等函数的定义、性质,熟悉它们的图像及在光学中的作用2.了解卷积与相关的定义及基本性质3.熟悉傅里叶变换的基本原理,性质和几何意义4.熟悉系统的基本概念及线性系统分析的基本理论5.了解二维采样定理及其应用6.本章强调概念的物理意义理解,以定性和应用为主。
避免与《信号与系统》课程重复。
重点:δ函数的意义和运算特性,傅里叶变换性质、定理,相关和卷积的意义及运算,线性空间不变系统的特性。
难点:卷积,傅里叶变换、系统分析。
第三章标量衍射理论(6+2学时)1.基尔霍夫衍射理论2.菲涅耳衍射和夫琅和费衍射3.夫琅和费衍射计算实例4.菲涅尔衍射计算实例5.衍射的巴俾涅原理要求:1.了解基尔霍夫衍射理论2.熟悉菲涅耳- 基尔霍夫衍射公式及其物理意义3.熟悉菲涅耳衍射与夫琅和费衍射4.掌握常见夫琅和费衍射光场的分析与计算5.了解菲涅耳衍射光场的分析和计算6.了解巴俾涅原理及其应用重点:如何用二维傅里叶变换来分析和计算夫琅和费衍射。
光学空间滤波实验研究1.阿贝成像原理1873年,阿贝(Abbe)在研究显微镜成像原理时提出了一个相干成像的新原理,这个原理为当今正在兴起的光学信息处理奠定了基础。
如图1-1所示,用一束平行光照明物体,按照传统的成像原理,物体上任一点都成了一次波源,辐射球面波,经透镜的会聚作用,各个发散的球面波转变为会聚的球面波,球面波的中心就是物体上某一点的像。
一个复杂的物体可以看成是无数个亮度不同的点构成,所有这些点经透镜的作用在像平面上形成像点,像点重新叠加构成物体的像。
这种传统的成像原理着眼于点的对应,物像之间是点点对应关系。
阿贝成像原理认为,透镜的成像过程可以分成两步:第一步是通过物的衍射光在透镜后焦面(即频谱面)上形成空间频谱,这是衍射所引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相干叠加而形成物体的像,这是干涉所引起的“合成”作用。
成像过程的这两步本质上就是两次傅里叶变换。
如果这两次傅里叶变换是完全理想的,即信息没有任何损失,则像和物应完全相似。
如果在频谱面上设置各种空间滤波器,挡去频谱某一些空间频率成份,则将会使像发生变化。
空间滤波就是在光学系统的频谱面上放置各空间滤波器,去掉(或选择通过)某些空间频率或者改变它们的振幅和相位,使二维物体像按照要求得到改善。
这也是相干光学处理的实质所在。
以图l-l 为例,平面物体的图像可由一个二维函数g(x,y)描述,则其空间频谱G(f x ,f y )即为g(x ,y)的傅里叶变换:2(,)(,)(,)x y i f x f y x y G f f g x y edxdy π∞-∞-=⎰⎰ (1-1)设,x y ''为透镜后焦面上任一点的位置坐标,则式中为x x f F λ'=,y y f Fλ'= (1-2) 方向的空间频率,量纲为L -1, F 为透镜焦距,λ为入射平行光波波长。
再进行一次傅里叶变换,将(,)G fx fy 从频谱分布又还原到空间分布(,)g x y '''''。