CC2530核心板电路原理图
- 格式:pdf
- 大小:20.45 KB
- 文档页数:1
基于CC2530的温湿度监测系统1系统设计思路及整体结构本文的温湿度监测系统是利用ZigBee无线通讯技术为基础,采用CC2530芯片为核心设计的无线传感系统。
在现实中所应用的温湿度监测系统通常需要一个或多个路由器节点和至少一个或多个终端设备,往往是一个非常庞大的ZigBee 无线网络系统,具有非常复杂的网络结构,但是由于在实验环境下,节点数量、制作成本、技术能力等多方面因素,无法构成像现实中的大型无线网络,目前只能实现点对点的温湿度监测和数据传输来模拟现实中的温湿度监测ZigBee网络。
本文中所设计的温湿度监测系统采用点对点通信的模式,可以理解为简化的星型拓扑网络,由一个协调器和一个终端节点组成。
协调器具有无线收发通信部分、处理器部分、与PC机通信的串口部分和电源供电部分。
终端节点与协调器相比不具有串口通信部分而是增加了温湿度采集传感器部分。
当需要温湿度采集时,协调器向终端节点发送控制命令,终端节点通过温湿度传感器DS18B20进行温湿度的采集,之后终端节点将采集的温湿度数据通过无线发送给协调器,由协调器对温湿度数据进行处理后通过串口将温湿度数据传输给PC机,通过上位机软件对温湿度数据进行显示、分析、存储等处理。
由于ZigBee的特点是低功耗,因此本设计中为使节点满足低功耗要求,终端节点还能进入休眠模式,采用定时器唤醒模式每10秒唤醒一次,以最大限度的降低功耗。
系统总体方案图,如图3.1所示。
图3.1 系统总体方案图2系统硬件设计2.1 ZigBee开发套件本设计所用ZigBee开发套件由节点(底板和核心板)2套、仿真器1个、10pin排线1条、USB线2条、2db天线2条和DS18B20温湿度传感器1个构成。
此开发套件具有以下特点:①设计小巧,布局合理。
底板尺寸5*5cm,核心板尺寸2.5*2.5cm;②采用底板加核心板的设计,便于更换模块或板载天线模块;③板上接口资源丰富,传感器即插即用;④板载USB转串口电路,方便笔记本以及没有串口的电脑用户;⑤传输距离远;⑥具备USB高速下载功能,支持IAR集成开发环境;ZigBee开发套件节点底板实物图,如图3.2所示。
课程名称:Zigbee技术及应用实验项目: ADC实验指导教师:专业班级:姓名:学号:成绩:一、实验目的:(1)了解ADC采集原理;(2)熟悉ADC相关寄存器配置和使用方法;(3)掌握CC2530芯片内温度检测方法;使用ADC进行片内温度单次采样,将采集的电压值转换成温度值,通过串口打印至PC机;二、实验过程:(1)根据实验目的分析实验原理;(2)根据实验原理编写C程序;(3)编译下载C程序,并在实验箱上观察实验结果。
三、实验原理:3.1硬件原理3.1.1 ADC概述CC2530芯片ADC结构框图如图4-1所示。
图3-1 ADC结构框图CC2530的ADC 的主要特征如下:• ADC转换位数可选,8到14位;• 8个独立的输入通道,单端或差分输入;•参考电压可选为内部、外部单端、外部差分或AVDD5;•中断请求产生;•转换结束时DMA触发;•温度传感器输入;•电池电压检测。
通常A/D转换需要经过采样、保持、量化、编码四个步骤。
也可以将采样、保持合为一步,量化、编码合为一步,共两大步完成一次A/D采集。
采样是对连续变化的模拟量进行定时的测量,采样结束后将测量的值保持一段时间使ADC设备有充分的时间进行A/D转换,即量化编码过程。
要将一个采样后的数据进行量化编码,就必须在采样之前将要被采样的信号划分不同等级。
例如本实验要读取片上温度的值,实际上ADC读取的值为电压值。
我们首先要将能读到的最大电压值1.25V(这个被划分等级的电压值就是ADC的参考电压)划分为1024个等级(这里的等级就是ADC 的抽取率即分辨率),等级划分的越细及量化的越细。
我们最后编码得到的电压值越准确。
编码是将读取到的电压值与划分好等级的电压值比较,与哪个电压值最接近就采用哪个电压值对应的等级来表示。
例如我们读到的电压值为0.12203V,这个值与等级为100的电压值0.001220703125最接近。
则我们此次ADC读取到的数据最后量化编码后的值为100。
第三章CC2530开发板硬件资源详解CC2530开发板硬件资源详解前言进行ZigBee无线传感器网络开发,首先,需要有相应的硬件支持(尤其是需要支持ZigBee协议栈的硬件);此外还需要相应的软件支持(最好是相应的支持ZigBee协议的软件协议栈),当然,还需要下载器将程序下载到相应的硬件。
本章主要讲解硬件电路方面的设计方法。
为了让大家能够更方便地学习Zigbee,佳杰科技打造了一套本土化的高性价比学习套件。
我们的学习平台是IAR8.1 + Z-stack 2007 PRO,采用TI 公司的CC2530F256芯片。
也是目前国内最流行的且资料最全的Zigbee 学习和应用方案。
配套有《ZigBee入门与实战演练》该教程每章一个文件夹,文件夹内有教程提到的图片,程序代码,工具软件、原理图、HEX文件。
配套面上的例程也是基于本学习平台开发的,所以可以直接下载使用,有16个基础实验,以及26个组网实验。
网上所谓最全的教程资料其实更本不到我的内容的1/5. 该教程包含如下内容:第一章、Zigbee简介第二章、IAR开发环境的搭建以及一个工程的建立实例一些工具软件的安装第三章、开发板硬件资源详细介绍第四章、16个基础实验掌握CC2530第五章、Zigbee无线网络入门每个实验都有协调器终端节点的编程有些有路由器的编写,从0开始编写指的是从新建立一个.C .H 一个简单的无线传输组网实验从0开始编写数据收发无线组网实验从0开始编写无线开关灯实验组网实现从0开始编写OSAL详细分析之NV操作实验从0开始编写无线串口,无线聊天程序从0开始编写与讲解无线数据采集网络从0开始编写实现空余时间睡眠功能Zigbee无线点对点组网实验Zigbee群发信息组网实验Zigbee组发信息组网实验Zigbee获得IEEE地址段地址PAN组网实验无线传感网络通用系统设计组网实验太阳能供电无线传感网络组网实验无线温度采集实验无线电灯实验基于基本的无线收发非组网信道质量检测实验非组网实验串口控制LED灯组网实验终端自动发送数据实验TI官方实验GenericAppTI官方实验SampleLight SampleSwitchTI官方实验GenericAppTI官方实验SampleAppTI官方实验SensorDemoTI官方实验SimpleAppTI官方实验SerialAppTI官方实验Transmit项目实战教程目录CC2530开发板硬件资源详解 (1)前言 (1)3.1.1 核心板硬件资源 (2)3.1.1 CC2530简介 (3)3.1.1 天线及巴伦配置电路设计 (4)3.1.2 晶振电路设计 (4)3.1.3 核心板原理图 (5)3.4.2 ZigBee模块天线选型 (12)3.1核心板硬件资源RF2530A核心板主要包括CC2530单片机、天线接口、晶振以及I/O扩展接口,RF2530A 核心板如图3-1所示。
引脚描述引脚名称引脚引脚类型描述AVDD1 28 电源(模拟)2-V–3.6-V 模拟电源连接AVDD2 27 电源(模拟)2-V–3.6-V 模拟电源连接AVDD3 24 电源(模拟)2-V–3.6-V 模拟电源连接AVDD4 29 电源(模拟)2-V–3.6-V 模拟电源连接AVDD5 21 电源(模拟)2-V–3.6-V 模拟电源连接AVDD6 31 电源(模拟)2-V–3.6-V 模拟电源连接DCOUPL 40 电源(数字) 1.8V 数字电源去耦。
不使用外部电路供应。
DVDD1 39 电源(数字)2-V–3.6-V 数字电源连接DVDD2 10 电源(数字)2-V–3.6-V 数字电源连接GND - 接地接地衬垫必须连接到一个坚固的接地面。
GND 1,2,3,4 未使用的引脚连接到GNDP0_0 19 数字I/O 端口0.0P0_1 18 数字I/O 端口0.1P0_2 17 数字I/O 端口0.2P0_3 16 数字I/O 端口0.3P0_4 15 数字I/O 端口0.4P0_5 14 数字I/O 端口0.5P0_6 13 数字I/O 端口0.6P0_7 12 数字I/O 端口0.7P1_0 11 数字I/O 端口1.0-20-mA 驱动能力P1_1 9 数字I/O 端口1.1-20-mA 驱动能力P1_2 8 数字I/O 端口1.2P1_3 7 数字I/O 端口1.3P1_4 6 数字I/O 端口1.4P1_5 5 数字I/O 端口1.5P1_6 38 数字I/O 端口1.6P1_7 37 数字I/O 端口1.7P2_0 36 数字I/O 端口2.0P2_1 35 数字I/O 端口2.1P2_2 34 数字I/O 端口2.2P2_3 33 数字I/O 模拟端口2.3/32.768 kHz XOSCP2_4 32 数字I/O 模拟端口2.4/32.768 kHz XOSCRBIAS 30 模拟I/O 参考电流的外部精密偏置电阻RESET_N 20 数字输入复位,活动到低电平RF_N 26 RF I/O RX 期间负RF 输入信号到LNAc c2530功能引脚图RF_P 25 RF I/O RX 期间正RF 输入信号到LNAXOSC_Q1 22 模拟I/O 32-MHz 晶振引脚1或外部时钟输入XOSC_Q2 23 模拟I/O 32-MHz 晶振引脚23功能介绍·RF/布局–适应2.4-GHz IEEE 802.15.4 的RF 收发器–极高的接收灵敏度和抗干扰性能–可编程的输出功率高达4.5 dBm–只需极少的外接元件–只需一个晶振,即可满足网状网络系统需要–6-mm ×6-mm 的QFN40 封装–适合系统配置符合世界范围的无线电频率法规:ETSI EN 300 328 和EN 300440(欧洲),FCC CFR47 第15 部分(美国)和ARIB STD-T-66(日本)·低功耗–主动模式RX(CPU 空闲):24 mA–主动模式TX 在1dBm(CPU 空闲):29mA–供电模式1(4 μs 唤醒):0.2 mA–供电模式2(睡眠定时器运行):1 μA–供电模式3(外部中断):0.4 μA–宽电源电压范围(2 V–3.6 V)·微控制器–优良的性能和具有代码预取功能的低功耗8051 微控制器内核–32-、64-或128-KB 的系统内可编程闪存–8-KB RAM,具备在各种供电方式下的数据保持能力–支持硬件调试·外设–强大的5 通道DMA–IEEE 802.5.4 MAC 定时器,通用定时器(一个16 位定时器,一个8 位定时器)–IR 发生电路–具有捕获功能的32-kHz 睡眠定时器–硬件支持CSMA/CA–支持精确的数字化RSSI/LQI–电池监视器和温度传感器–具有8 路输入和可配置分辨率的12 位ADC–AES 安全协处理器–2 个支持多种串行通信协议的强大USART–21 个通用I/O 引脚(19×4 mA,2×20 mA)–看门狗定时器4运行条件cc2530在此条件下运行能达到最好的效果。
CC2530开发板硬件资源详解前言进行ZigBee无线传感器网络开发,首先,需要有相应的硬件支持(尤其是需要支持ZigBee协议栈的硬件);此外还需要相应的软件支持(最好是相应的支持ZigBee协议的软件协议栈),当然,还需要下载器将程序下载到相应的硬件。
本章主要讲解硬件电路方面的设计方法。
为了让大家能够更方便地学习Zigbee,佳杰科技打造了一套本土化的高性价比学习套件。
我们的学习平台是IAR8.1 + Z-stack 2007 PRO,采用TI 公司的CC2530F256芯片。
也是目前国内最流行的且资料最全的Zigbee 学习和应用方案。
配套有《ZigBee入门与实战演练》该教程每章一个文件夹,文件夹内有教程提到的图片,程序代码,工具软件、原理图、HEX文件。
配套面上的例程也是基于本学习平台开发的,所以可以直接下载使用,有16个基础实验,以及26个组网实验。
网上所谓最全的教程资料其实更本不到我的内容的1/5. 该教程包含如下内容:第一章、Zigbee简介第二章、IAR开发环境的搭建以及一个工程的建立实例一些工具软件的安装第三章、开发板硬件资源详细介绍第四章、16个基础实验掌握CC2530第五章、Zigbee无线网络入门每个实验都有协调器终端节点的编程有些有路由器的编写,从0开始编写指的是从新建立一个.C .H一个简单的无线传输组网实验从0开始编写数据收发无线组网实验从0开始编写无线开关灯实验组网实现从0开始编写OSAL详细分析之NV操作实验从0开始编写无线串口,无线聊天程序从0开始编写与讲解无线数据采集网络从0开始编写实现空余时间睡眠功能Zigbee无线点对点组网实验Zigbee群发信息组网实验Zigbee组发信息组网实验Zigbee获得IEEE地址段地址PAN组网实验无线传感网络通用系统设计组网实验太阳能供电无线传感网络组网实验无线温度采集实验无线电灯实验基于基本的无线收发非组网信道质量检测实验非组网实验串口控制LED灯组网实验终端自动发送数据实验TI官方实验GenericAppTI官方实验SampleLight SampleSwitchTI官方实验GenericAppTI官方实验SampleAppTI官方实验SensorDemoTI官方实验SimpleAppTI官方实验SerialAppTI官方实验Transmit项目实战教程目录CC2530开发板硬件资源详解 (1)前言 (1)3.1.1 核心板硬件资源 (2)3.1.1 CC2530简介 (3)3.1.1 天线及巴伦配置电路设计 (4)3.1.2 晶振电路设计 (4)3.1.3 核心板原理图 (5)3.4.2 ZigBee模块天线选型 (12)3.1核心板硬件资源RF2530A核心板主要包括CC2530单片机、天线接口、晶振以及I/O扩展接口,RF2530A 核心板如图3-1所示。