磁共振常用压脂技术
- 格式:ppt
- 大小:1.80 MB
- 文档页数:32
常用脂肪抑制技术解读(二)● 化学位移法脂肪抑制技术基于化学位移法的选择性脂肪信号抑制:水和脂肪中氢质子周围化学环境的不同导致了它们在进动频率上的微小差别,这个差别用无量纲的ppm表示就是3.5ppm。
无论所使用的磁共振成像设备场强是多少,水和脂肪之间这个无量纲差异都是不变的。
但到了不同场强的成像设备,根据拉莫尔方程计算出来的以Hz为单位的频率差异就不同了。
磁共振成像设备的场强越高,这个频率差异就越大。
水和脂肪中氢质子核这种进动频率的差别为化学位移成像奠定了成像基础。
利用这种频率上的差异也可以实现选择性的脂肪信号抑制,这就是所说的化学位移法脂肪抑制,通常简称为Fat Sat。
与STIR脂肪抑制技术相比,利用化学位移法的脂肪信号抑制具有以下特点:01化学位移法脂肪抑制技术的临床优点相比于短时反转脂肪抑制STIR序列,化学位移法脂肪抑制具有以下两个突出的临床优点:1)化学位移法选择性脂肪抑制适用于更多的成像序列:与STIR 技术相比,化学位移法脂肪抑制可以作为一个成像技术选项,既可以用于T1加权成像,也可以用于T2加权成像,在序列上也可以同时兼容自旋回波序列家族和梯度回波序列家族。
化学位移法脂肪抑制的这种广适性使得它在临床上具有更广泛的应用。
2)化学位移法选择性脂肪抑制属于选择性脂肪抑制技术:这种选择性脂肪抑制技术可以特异性地抑制脂肪信号,这样对于鉴别出血或脂肪具有重要价值。
另一方面,这种选择性抑制脂肪信号也确保了组织中水中氢质子信号免受损失,因此相比于STIR脂肪抑制技术,化学位移法脂肪抑制具有更高的信噪比。
02化学位移法脂肪抑制技术的局限性相比于STIR脂肪抑制方法,化学位移法脂肪抑制技术也具有几方面自身的局限性:1)化学位移法选择性脂肪抑制对主磁场强度具有高度依赖性:当主磁场强度很低时,水和脂肪中氢质子核的进动频率从具体的Hz数来看差别就很小,也就是二者的进动频率点相离很近,如在0.2T的磁共振成像设备上,二者频率差异约为29Hz,而通常的射频激励脉冲宽度在数百个Hz或KHz量级,显然,这么窄的频率差异很容易被频率域更宽的射频脉冲所淹没,这是低场磁共振无法实现化学位移法脂肪信号抑制的根本原因。
磁共振压脂方法及原理应用磁共振压脂方法主要有频率选择饱和法、反转时间的反转恢复(STIR)技术、频率选择反转脉冲脂肪抑制技术等。
频率选择饱和法是高场磁共振最常用的一种脂肪抑制方法,其成像基础是利用脂肪与水分子中质子的进动频率存在差别。
如果在扫描之前连续施加频率与脂肪中质子进动频率一致的脉冲,脂肪组织中的质子会因连续激发而产生饱和现象,而水分子中的质子由于频率不同,不会被激发。
这个时候再施加真正的激发射频脉冲,脂肪组织却因为饱和不能再接受能量而不产生信号,而水分子中的质子可能被激发产生信号,从而达到脂肪抑制的目的。
这种方法的优点是选择特异性强,选择性高,抑制的组织几乎全部是脂肪信号,另外多种序列均可采用。
缺点是对磁场的均匀度、场强的要求比较高,一般主要用于以上的机型。
同时大范围扫描时,在大范围内磁场均匀度会发生一定线性变化,所以边缘的的不均匀会导致脂肪抑制效果差,所以一般用在小范围的脂肪抑制中。
同时,由于在扫描之前增加了射频,病人所接受的SAR值会过高,同时扫描的速度会受到明显的影响。
STIR序列实际上是反转恢复(inversion recovery, IR)序列演变而来的。
STIR技术的成像基础是基于脂肪组织短T1特性。
它基本原理为人体组织中脂肪的T1值最短,180度反向脉冲后其纵向磁化矢量从反向最大到过零点所需要的时间很短,如果选择合适的T1就能有效抑制脂肪组织的信号。
这种技术的优点在于:场强依赖性低,较频率饱和法对磁场的均匀度也较低,同时,大范围FOV扫描也能取得较好的脂肪抑制效果。
由于其成像特点,也有自身的一些缺点:选择性差,与脂肪相类似的T1值的组织的信号也会被抑制掉,特别是增强扫描时,被增强的组织T1值有可能缩短到与脂肪信号相同,从而被抑制掉,从而影响增强程度的。
同时,由于此方法在扫描之前也要预加反向脉冲,其扫描时间也较长。
频率选择反转脉冲脂肪抑制技术实际是第1、2种压脂方法的组合。
在真正成像脉冲施加前,先施加一个预脉冲,这个脉冲的带宽很窄,中心频率为脂肪中质子的进动频率,因此仅有脂肪组织被激发,角度可以随意调整,预脉冲结束后,脂肪组织发生纵向弛豫,其纵向驰豫将发生从反向到零,然后到正向并逐渐增大,直至平衡状态。
【MRI⼩问】脂肪抑制成像的作⽤及各种序列介绍往期相关内容链接:【如何简单理解、认识MRI图像】【MRI⼩问】磁共振检查前须知【MRI⼩问】MR对⽐剂的应⽤须知【MRI⼩问】如何分辨T1WI与T2WI?⼀、为什么要进⾏脂肪抑制成像脂肪抑制(fat suppression, FS)是指通过应⽤特殊技术,使MR图像中的脂肪组织表现为低信号。
FS即可在T1WI(如Gd对⽐剂增强扫描),也可在T2WI(如区别⽔与脂肪的⾼信号)实现。
压脂后背景信号明显变暗,⿊⽩反差增⼤,⾼信号病变更易于显⽰。
不仅有利于显⽰病变,还能为疾病鉴别诊断提供依据,可提⾼诊断准确性。
在FS T2WI,如病变组织含⽔较多,⾼信号将更明显,易于识别;在FS T1WI增强扫描时,由于没有脂肪信号的⼲扰,将更容易观察和评价病变的强化程度,这对显⽰肌⾻系统和眼眶病变尤为重要。
能够抑制脂肪信号的MRI技术有:①反相位成像(Dixon技术,体素内⽔脂相位⼤⼩相减);②频率选择性脂肪抑制,常⽤的技术有CHEMSAT(通⽤电⽓)、FATSAT(西门⼦)、SPIR和SPAIR(飞利浦),前⼆者常被称为化学饱和法(CHESS);③T1恢复时间依赖脂肪抑制,⼜称短时反转恢复(STIR);④其他,包括选择性⽔激励成像(3D-FATS,Proset,Quick Fatsat)、层⾯选择梯度反转技术以及⼀些将脉冲序列混合应⽤的成像技术。
⼆、反相位成像脂肪抑制是如何实现的?相位指氢质⼦围绕外磁场进动时,每⼀个磁矩在进动轨迹上的位置。
同相位指组织中所有进动质⼦的磁矩在某⼀时刻处于处于同⼀位置,失相位指组织中质⼦的磁矩不能保持在同⼀位置⽽逐渐离散的过程,反相位指两种组织的磁矩在某⼀时刻处于180°相反⽅向的状态。
在静磁场中脂肪和⽔质⼦的共振频率存在轻微差异,他们之间的化学位移是3.5ppm。
利⽤脂肪和⽔质⼦的相位处于180°相反⽅向或相同⽅向时分别采集MR信号,就可以产⽣反相位或同相位图像。
Dixon法是一种用于磁共振成像的技术方法,其基本原理与Opposed-phase法相似。
它利用自旋回波序列,在不同的回波时间,分别采集水和脂肪质子的In Phase和Opposed-phase两种回波信号。
通过两种不同相位的信号相加,去除脂肪信号,产生一幅纯水质子的影像,从而达到脂肪抑制的目的。
然而,Dixon法也存在一些缺点。
它需要采集两组数据,成像时间长,并且受磁场非均匀性影响较大,因此在临床应用上很少见。
为了改进Dixon法,人们提出了一种所谓三点Dixon法(Three-point Dixon),该方法在脂肪和水共振频率相位移分别为0o、180o、-180o的三个点采集回波信号。
这种方法增加了一个信号采集点用于修正磁场均匀性偏差引起的信号误差,较好地克服了磁场非均匀性对脂肪抑制效果的影响。
据报道,经改良后的三点Dixon法在低场强开放式磁共振系统中应用,脂肪抑制效果满意,诊断关节软骨损伤的敏感性和特异性均较高,是一种十分有用的检查技术。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询专业医生。
常用脂肪抑制技术解读(一)当以氢原子核作为探测对象来进行磁共振成像时,水分子中的氢质子和脂肪中的氢质子便成为磁共振信号的两大主要来源。
脂肪分子的分子结构远远较水分子更复杂,所以脂肪中的氢质子核周围的环境也更复杂。
因为水和脂肪中氢质子核的化学环境不同,导致二者间产生了化学位移现象,这种化学位移现象既可能是产生伪影的原因,也可以成为成像技术的切入点。
由于脂肪中氢质子的运动较水分子慢,这使得脂肪中氢质子具有相对短T1弛豫属性;而脂肪中氢质子核之间相对更“稳定”,这导致它们具有较自由水相对更短的T2弛豫属性。
但在FSE序列采集过程中,因为脂肪中氢质子核之间的J耦合效应减弱,导致在FSE序列中脂肪组织具有较高的信号。
很多时候因为脂肪组织呈现出来的高信号会在一定程度上降低病变与背景组织之间的对比,如水肿、病变本身等都可能因为脂肪组织的高信号导致它们与正常组织之间的对比变差,因此,在磁共振成像过程中很多时候需要把脂肪信号抑制或剔除,这样才能更好的突出病变所导致的直接或间接征象的改变。
当然,在一些部位的检查如盆腔检查时,有时也会保留脂肪信号,这样能更好地突出直肠或子宫等病变对周围的侵犯以及所引起的淋巴结转移。
图片说明:脂肪抑制技术能更好地反映病变范围。
骨关节磁共振成像脂肪抑制技术对于显示病变范围及骨折分期都具有重要的临床价值。
因为通常情况下骨髓内的脂肪会导致T1及T2上的高信号改变,特别是T2像上的高信号会掩盖病变的范围。
临床实际工作中对于脂肪信号的处理可以采用几种不同的解决方案,可以将脂肪信号抑制,也可以将脂肪信号剔除,当然也可能会保留脂肪信号。
常用的脂肪信号抑制技术解决方案有如下几种不同的方式。
● STIR脂肪抑制技术基于组织T1弛豫时间的短时反转STIR脂肪抑制技术:短时反转脂肪抑制技术(STIR)是较早用于磁共振成像的磁共振脂肪抑制技术,特别在低场磁共振成像中,它也是最主要的脂肪抑制技术。
STIR序列利用的成像原理是基于脂肪的T1弛豫属性,它根据脂肪组织在特定场强下的T1弛豫时间来确定成像参数中的纵向弛豫回零时间,从而实现脂肪信号抑制的目的。
MRI压脂技术在膝关节患者中的应用发布时间:2022-12-01T01:57:52.237Z 来源:《健康世界》2022年18期作者:张妍妍[导读] 目的:对膝关节患者应用MRI压脂技术进行诊断的应用效果分析。
张妍妍西安交通大学第二附属医院陕西西安710000【摘要】目的:对膝关节患者应用MRI压脂技术进行诊断的应用效果分析。
方法:选择我院收治的80例膝关节患者作为研究对象,进行MRI压脂技术检查后,再通过手术检测的形式进行确诊,并将检查结果进行对比分析。
结果:膝关节患者均通过手术检测形式进行确诊,MRI 压脂技术确诊77例,诊断符合率为96.25%,差异无统计学意义(P>0.05),具有较高的诊断检测率。
结论:对膝关节患者应用MRI压脂技术进行病情确诊,能够获得较高的检出率,能为患者的临床治疗提供影像学参考依据。
【关键词】膝关节患者;MRI压脂技术;膝关节是人体的重要关节,位于下肢中部,需要承受的力相对较大,从而容易导致发生损伤,膝关节受损会导致人体行走功能运行受阻。
目前,临床上对于膝关节损伤患者的病情诊断,以手术检测结果为主,如关节镜探查,而通过手术形式对于膝关节患者来说是具有创伤性,并且存在一定风险的,在一定程度上影响患者的治疗依从性以及耐受性。
MRI压脂技术属于一种微创性的检查形式,产生的损伤较小,可以直接显示膝关节内部结构情况,便于观察分析[1]。
进行本研究中,将MRI压脂技术在膝关节患者诊断中的应用效果,具体报道如下:1 对象和方法1.1 对象选择我院在2020年1月到2021年1月,一年期间收治的80例膝关节患者作为研究对象,其中男43例,女37例,平均年龄为(45.61±5.87)岁,对比患者的一般资料可知,数据间的差异无统计学意义(P>0.05)。
1.2 方法对患者采用MRI压脂技术,使用美国GE Medical Systems 0.35T磁共振成像系统进行检查。
在进行扫描前,保证患者身上没有任何金属类物品,让患者平躺于扫描床,取仰卧位。
MRI脂肪抑制技术意义:(1)减少运动伪影、化学位移伪影或其他相关伪影;(2)抑制脂肪组织信号,增加图像的组织对比;(3)增加增强扫描的效果;(4)鉴别病灶内是否含有脂肪,因为在T1WI上除脂肪外,含蛋白的液体、出血均可表现为高信号,脂肪抑制技术可以判断是否含脂,为鉴别诊断提供信息。
方法(一)频率选择饱和法:最常用的脂肪抑制技术之一。
由于化学位移,脂肪和水分子中质子的进动频率存在差别,在成像序列的RF施加前,先连续施加数个预脉冲,如果预脉冲的频率与脂肪中质子进动频率一致,脂肪组织的将被连续激发而发生饱和现象,而水分子中的质子由于进动频率不同不被激发。
这时再施加RF,脂肪组织因为饱和不能再接受能量,因而不产生信号,从而达到脂肪抑制的目的。
特点:(1)高选择性。
主要抑制脂肪组织信号,对其他组织的信号影响较小。
(2)可用于多种序列。
(3)场强依赖性较大,在中高场强下使用可取得好的脂肪抑制效果。
(4)对磁场的均匀度要求很高。
(5)进行大FOV扫描时,因梯度场存在,视野周边区域脂肪抑制效果较差。
(6)增加了人体吸收射频的能量。
(7)预脉冲将占据TR间期的一个时段,因此会延长扫描时间,并有可能影响图像的对比度。
(8)运动区域脂肪抑制效果差。
(二)STIR技术:常用的脂肪抑制技术之一。
STIR技术是基于脂肪组织短T1特性的脂肪抑制技术。
由于人体组织中脂肪的T1值短,180°脉冲后其纵向磁化矢量从反向最大到过零点所需的时间也很短,此刻如果选择短TI则可有效抑制脂肪组织的信号。
抑制脂肪组织信号的TI等于脂肪组织T1值的69%,不同的场强下脂肪组织的T1值不同,因此抑制脂肪组织的TI值也应作相应调整。
在1.5T的MR仪,脂肪组织的T1值约为200~250ms,则TI=140~175ms时可有效抑制脂肪组织的信号。
在1.0T仪上TI应为125~140ms;在0.5T仪上TI应为85~120ms,在0.35T仪上TI应为75~100ms。
MRI常见的压脂方法很多,但基本原理就这三种展开全文在临床MRI查中,为了消除脂肪信号的干扰,病变强化的需要抑或判断病变是否含有脂肪成分等原因,常常需要抑制脂肪信号,这种序列我们常称之为脂肪抑制序列。
脂肪抑制的方法有很多,其效果和临床用途也各不相同,各有利弊,无法简单的判定哪种最好。
在MRI序列中对于脂肪的抑制其实关键就是脂肪信号与水信号的分离,水脂分离的方法主要基于以下三种:1. 化学位移(Chemical Shift):利用水脂共振频率的不同;2. 脂肪短T1特性:脂肪在T1WI呈高信号,而水为低信号;3. 联合应用(Hybrid Techniques):化学位移+短T1特性一、化学位移法1. 正反相位成像(In-Phase/Out-of-Phase Imaging)该成像是根据水和脂肪在外磁场的作用下,共振频率不一样,质子间的相位不一致,在不同的回波时间可获得不同相位差的影像这一基本原理而开发的脂肪抑制序列。
当脂肪质子和水质子处于同一体素中时,由于它们有不同的共振频率,在初始激发后,这些质子间随着时间变化相位亦发生变化,但在激励后的瞬间,脂肪质子和水质子处在同一相位,即它们之间的相位差为零,而水质子比脂肪质子进动频率快,经过数毫秒后,两者之间的相位差变为180°,再经过数毫秒后,相对于脂肪质子,水质子完成360°的旋转,它们又处于同相位,因此通过选择适当的回波时间,可在水和脂肪质子宏观磁化矢量相位一致或相位反向时采集回波信号。
严格意义上讲,反相位成像技术实际上不是一种真正意义上的脂肪抑制技术,但它包含的信息可以帮助有经验的医生有效地区分水和脂肪。
2. Dixon技术Dixon法是由Dixon提出,其基本原理与Opposed-phase法相似,分别采集水和脂肪质子的In Phase和Opposed-phase两种回波信号,两种不同相位的信号通过运算,去除脂肪信号,产生一幅纯水质子的影像,从而达到脂肪抑制的目的。
磁共振脂肪抑制技术及其临床应用探讨摘要:本文主要分析了当前临床中普遍应用到的STIR技术、选择性水或脂肪激发技术、频率选择饱和法、Dixon技术、频率选择反转脉冲脂肪抑制技术等,并将它们进行对比,提出了它们各自的使用范围以及优缺点,在临床中只有合理选择脂肪抑制技术才可以对病变更好的辨别,关键词:磁共振,脂肪抑制技术,临床应用到目前为之,有着非常多的磁共振抑制脂肪技术,它们的原理各不相同,若是没有选择合理的技术就容易导致抑制脂肪失败或是不精确,本文探讨了怎样在临床中选用合适的技术才能发挥出最大的效果。
本人对当前应用于临床中的脂肪抑制技术做出了相关分析供参考。
1 频率选择饱和法1.1成像原理根据水和脂肪化学位移。
因为存在有化学位移,那么水分子里的质子以及脂肪会有进洞频率上的差异。
假如成像序列施加射频脉冲以前,多个频率和脂肪里质子进动频率一样的预脉冲,那么质子就会由于不断激发出现饱和的情况,水分子里的质子则不会被激发。
此时加之真正激发射频脉冲,脂肪组织将不会再出现信号,水分子里的质子能够出现信号,进而实现脂肪抑制,1.2优点及缺点优点有:第一,较高的选择性。
此技术大部分都是脂肪组织的信号实现抑制,仅小面积的影响别的组织信号。
第二,能够使用多种序列。
缺点有:第一,过于依赖场强,场强高的情况下,水的质子与脂肪进动频率有很大的差别,所以很容易实现脂肪抑制,如果场强过低,那么就很难完成脂肪抑制。
第二,需要磁场具有均匀性。
此技术是通过水分子以及脂肪质子进动频率细小差别,磁场要是不够均匀,那么就会对质子进动频率造成直接阻碍,不一致的进动频率会导致脂肪抑制效果大打折扣。
第三,开展较大的FOV扫描过程中,视野边缘位置脂肪抑制效果不佳,一般关系到梯度线性以及磁场均匀度。
第四,使人体射频吸收能量增多[1]。
1.3临床应用在临床中该技术应用的十分广泛。
不但能够用在FSE序列以及SE序列,另外还可以在扰相GRE以及常规GRE中应用。
磁共振压脂技术简介最近维修设备中有客户问起磁共振扫描压脂方式,本文就根据客户所问总结了磁共振各种压脂技术的原理及利弊。
一、压脂技术总述目前常见的压脂技术主要有以下五种:1、FS-Fat Saturation(频率选择脂肪抑制)2、SPAIR-Spectrally Adjabatic Inversion Recovery(频率选择反转恢复脂肪抑制)3、TIRM-Turbo Inversion Recovery Magnitude/STIR(反转恢复脂肪抑制)4、DIXON(水脂分离)5、WE-Water Excitation/Proset(水激发)二、Fat Saturation在常温及1.5T的场强里面,水和脂肪的频率差异为3.4ppm,ppm为百万之一,而氢质子的旋磁比为42.58MHz/T,所以在1.5T的磁场中,水和脂肪的进动频率差异为:42.58x3.5x1.5≈225Hz,即场强越高水脂频率差异越大。
通过施加一个90度软脉冲,把脂肪信号饱和从而达到脂肪抑制目的。
优点:信噪比高,能与多种序列结合使用,可用于增强扫描。
缺点:对B0场、B1场要求高,对B0场、B1场不均匀性很敏感,扫描时间增长,SAR高。
三、SPAIR-Spectrally Adjabatic Inversion Recovery首先施加180度的软脉冲只让脂肪信号翻转到纵向磁化矢量最大,通过一个短暂的TI时间(1.5T≈170ms),然后再施加一个90度的射频脉冲从而达到脂肪抑制效果。
优点:对B1场不均匀性不敏感,信噪比高,可用于增强扫描,压脂效果比FS好。
缺点:对B0场不均匀性敏感,扫描时间增长。
四、TIRM-Turbo Inversion Recovery Magnitude(STIR)首先施加180度脉冲把水和脂肪信号翻转到纵向磁化矢量最大,此时脂肪恢复快,水恢复慢,通过一定的TI时间后,再发射90度射频脉冲把脂肪打到Z轴从而不产生信号,而水被打到XY平面使其弛豫切割线圈产生信号,从而达到脂肪抑制目的。
第二节MRI脂肪抑制技术脂肪抑制是MRI检查中非常重要的技术,合理利用脂肪抑制技术不仅可以明显改善图像的质量,提高病变的检出率,还可为鉴别诊断提供重要信息。
一、MRI检查使用脂肪抑制技术的意义脂肪组织不仅质子密度较高,且T1值很短(1.5T场强下约为200 250ms),T2值较长,因此在T1WI上呈现很高信号,在T2WI呈现较高信号,在目前普遍采用的FSE T2WI图像上,其信号强度将进一步增高(详见FSE序列)。
脂肪组织的这些特性在一方面可能为病变的检出提供了很好的天然对比,如在皮下组织内或骨髓腔中生长一个肿瘤,那么在T1WI上骨髓组织或皮下组织因为富含脂肪呈现很高信号,肿瘤由于T1值明显长于脂肪组织而呈现相对低信号,两者间形成很好的对比,因此病变的检出非常容易。
从另外一个角度看,脂肪组织的这些特性也可能会降低MR图像的质量,从而影响病变的检出。
具体表现在:(1)脂肪组织引起的运动伪影。
MRI扫描过程中,如果被检组织出现宏观运动,则图像上将出现不同程度的运动伪影,而且组织的信号强度越高,运动伪影将越明显。
如腹部部检查时,无论在T1WI还是在T2WI上,皮下脂肪均呈现高信号,表面线圈的应用更增高了脂肪组织的信号强度,由于呼吸运动腹壁的皮下脂肪将出现严重的运动伪影,明显降低图像的质量。
(2)水脂肪界面上的化学位移伪影(详见MRI伪影一节)。
(3)脂肪组织的存在降低了图像的对比。
如骨髓腔中的病变在T2WI上呈现高信号,而骨髓由于富含脂肪组织也呈现高信号,两者之间因此缺乏对比,从而掩盖了病变。
又如肝细胞癌通常发生在慢性肝病的基础上,慢性肝病一般都存在不同程度的脂肪变性,这些脂肪变性在FSE T2WI上将使肝脏背景信号偏高,而肝细胞癌特别是小肝癌在T2WI上也往往表现为略高信号,肝脏脂肪变性的存在势必降低病灶与背景肝脏之间的对比,影响小病灶的检出。
(4)脂肪组织的存在降低增强扫描的效果。
在T1WI上脂肪组织呈现高信号,而注射对比剂后被增强的组织或病变也呈现高信号,两者之间对比降低,脂肪组织将可能掩盖病变。