当前位置:文档之家› 设大型异步电机转子断条早期故障下的定子电流由基频

设大型异步电机转子断条早期故障下的定子电流由基频

设大型异步电机转子断条早期故障下的定子电流由基频
设大型异步电机转子断条早期故障下的定子电流由基频

设大型异步电机转子断条早期故障下的定子电流由基频、故障特征频率分量

(幅值为基频的1%一3%)和噪声构成

()()()()()()100sin 2501sin 2120.0055060.5sin 2120.0055058i t t t t randn n t πππππ=??+?-???++???+???++?

?

将i(t)通过Hilbert 解调并经双Hilber 滤除直流后(乘以0.06以满足A<

参考频率为10.512ωπ=?20.482ωπ=?的周期策动力均为F 一0.82的Duffing 振

子阵列中,来检测强噪声中的12sf 故障特征分量。采样频率为200Hz ,采用四阶 Kunge 一Kutta 计算,算法步长为0.00550正常和故障时可以得到1ω2ω

由时域相图得到周期为一005和505,那么10.012/rad s ωπ?=?, 20.022/rad s ωπ?=? ()()11/2k k k k ωωωωω++=+?+-?????=(0.51+0.48-0.01+0.02)×2π/2=0.5×2πrad/s 。所以f=0.5HZ,而原()i t 中的故障特征分量的频率为0.5HZ ,与故障特征频率完全吻合。由此我们可以准确有效的检测出故障特征分量的频率。由此得出利用Duffing 间歇混沌运动很容易精确检测强噪声背景下微弱故障2拭频率分量,这对异步电机转子断条早期故障的精确检测有重要的意义。

为了体现Duffing 阵列精确检测的优势,下面给出电流信号解调并去直流后的信号图及其局部频谱分析图。

由图5一8可以得知,2拭分量在频谱分析中根本上没有体现,湮没在强噪声背景下的微弱的2试故障特征分量很难运用一般的频谱分析方法进行有效准确的检测,而杜芬振子对强噪声背景下微弱周期信号的检测有其独特的优越性。为了验证Duffing阵列检测微弱信号的有效性及可靠性,利用动模实验模

了鼠笼型异步电动机的断条故障。所用电机的铭牌数据如表5一1所示。

在动模实验室测量了不同断条情况、不同负载情况下的定子电流进行分析,

由于断条故障越轻,故障特征频率幅值就越小,也就越难检测,因此本文列出较

难检测的额定负载和半载下的一根断条和两根断条的数据分析,来验证本方法的

有效性。由于在实验室条件下噪声强度不大,为模拟现场噪声环境,在测得的定

子电流信号中,人为加入白噪声,并把加入噪声后的信号作为定子电流信号进行

分析对比。

为减少Duffing振子阵列的数量,依据转差率得知若存在断条故障,就可以

适当设置Duffing阵列的个数。同时D喊ng阵列周期摄动力的阐值的选择,是

通过大量的实验来选择合适的数值,可参考文献[2],2抓的闽值为0.4%于基波,

这样在额定负载下我们设置周期策动力的分岔值为0.82,当2抓(当然需要乘以

合适的比例系数)的值大于0.007时发生间歇混沌运动现象,低于0.007时不发

生间歇混沌运动现象。很显然如果2抓的闭值设置过大,就有可能会漏判,而闭

值设置过小,就有可能误判。

同时文献[38』指出,正常运行当s变化时,Zsf的值仅仅和s有关。这样我们

只需要根据所测得的实时稳态转速来调整振子的频率,来检测在不同运行工况下

的电机是否发生断条故障,这对异步电机转子断条早期故障精确检测非常有效。

一根断条且满载时,测得实际转速为1430转/分,从而求得实际转差率为

0.0467,由(l士25)石可算出故障特征频率就为45.33Hz和54.67Hz,由2抓可算出

特征频率就为4.67Hz。由于转速装置检测的精确性比较高,一般测量值和实际转

速不会相差10转以上,这样我们就没必要设置过多的阵子,而可以适当的选择而

避免不必要的浪费。因此可以设置4.445*2二,4.445*2二*1·03,

4.445,2二,(1.03),,4.445,2二,(1.03),,4个振子阵列。其他的振子可以不必设置,因为2斌在处于其他的振子内都无间歇混沌现象发生。周期策动力均为F二0.82,

采样频率为1000Hz,采用四阶Kunge一Kutta计算,算法步长为0.0015。

观察示波器输出的波形,可以看出正常时所有的振子都呈混沌状态。当一根、

两根断条故障时可以得到在第2个,第3个振子间出现间歇混沌运动。第2,3

两振子的正常、一根断条、两根断条时的时域相图。

由时域相图可以得到两振子间歇混沌周期为105和205,那么

340.092/,0.052/rad s rad s ωπωπ?=??=?则由

()()11/2 4.662/k k k k rad s ωωωωωπ++=+?+-?=?????所以f=4.66HZ ,

而原i(t)中的 故障特征分量的频率为4.67HZ ,由间歇混沌得到的频率与转子一根断条时故障特 征频率基本吻合。

一根断条且半载时,测得实际转速为1473转/分,从而求得实际转差率为0.018,由(l 士25)五可算出故障特征频率就为48.2Hz和sl.SHz,由2拭可算出特征

频率就为l.SHz。因此可以设置1.7133x2二,l.7133x2二、1.03,

1.7一33x2二x(一03),,l.7133x2二x(1.03),,4个振子阵列。

观察示波器输出的波形,可以看出正常时所有的振子都呈混沌状态。当一根、

两根断条故障时可以得到在第2个,第3个振子间出现间歇混沌运动。第2,3

两振子的正常、一根断条、两根断条时的时域相图。

340.0362/,0.0182/rad s rad s ωπωπ?=??=?

()()()11/2 3.5820.0192/ 1.80012/k k k k rad s rad s ωωωωωππ++=+?+-?=+?=?????由此可以看出利用Duffing 振子阵列可以准确有效的检测出故障特征分量的

频率。理论上本来可以完全精确检测,之所以出现误差是因为周期是近似计算的 而导致产生误差,但精度足以满足要求,比一般的频谱分析高得多,因为此方法 不受采样频率和栏栅效应的影响。

结论

本文以鼠笼式异步电动机为主要研究对象,在广泛阅读国内外有关电机断

条故障检测和Duffing振子方面文献的基础上,就异步电动机转子断条故障故障诊断技术方法进行了深入分析和研究。在现有方法的基础上,提出了基于D确ng 振子阵列的电机转子断条早期故障检测新方法。针对电机断条故障在实际检测

中遇到的一些问题,本文采用了下列几种措施:

l)针对异步电动机转子断条故障特征信号分量容易被基波而淹没的问题,

本文利用Hllbert变换解调出故障特征频率,以便进一步的进行检测。

2)针对异步电动机转子断条故障特征信号分量容易被噪声淹没的问题,本

文利用杜芬振子对强噪声背景下微弱周期信号的检测的独特优越性来检测故障

特征分量,并分别进行仿真与实验验证。

1)Duffing振子从混沌到间歇性混沌的非平衡相变对与参考信号频差较的

周期微弱周期信号具有敏感性,而对白噪声和与参考信号频差较大的周期干扰

信号具有免疫力,具有良好抗噪性和很高的灵敏度。

3)研究了双Hilbert变换去直流的替代方法,以解决高通滤波可能损失用

信号的弊端,并对其进行了理论上的推理和仿真验证,取得良好的效果。

4)针对诊断效果常受负荷波动的影响,提出了基于小波变换的负荷波动判

定方法,它能明显地区分出电机的转子断条与负荷波动。

本文方法与传统检测方法相比具有如下特点:

1)Duffing振子从混沌到间歇性混沌的非平衡相变对与参考信号频差较的

周期微弱周期信号具有敏感性,而对白噪声和与参考信号频差较大的周期干扰

信号具有免疫力,具有良好抗噪性和很高的灵敏度。

2)在故障特征信号微弱和噪声强度很大的情况下,能够进行异步电机子

断条早期故障的精确检测,提高了检测故障特征信号的检测精度,降低了检测

难度

3)Duffing阵列周期策动力的分岔值的合理选择影响电机转子早期断条障

的检测精度。

电机转矩 功率 转速 电压 电流之间的关系及计算公式

电机转矩、功率、转速之间的关系及计算公式 电动机输出转矩: 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生 一定程度的扭转变形,故转矩有时又称为扭矩。 转矩与功率及转速的关系:转矩(T)=9550*功率(P)/转速(n)? 即:T=9550P/n—公式【1】由此可推导出: 转矩=9550*功率/转速《===》功率=转速*转矩/9550,即P=Tn/9550——公式【2】 方程式中: P—功率的单位(kW); n—转速的单位(r/min); T—转矩的单位(N.m); 9550是计算系数。 电机扭矩计算公式 T=9550P/n 是如何计算的呢? 分析: 功率=力*速度即 P=F*V---————公式【3】 转矩(T)=扭力(F)*作用半径(R) 推出F=T/R---——公式【4】 线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30---——公式【5】 将公式【4】、【5】代入公式【3】得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位N.m, n分=每分钟转速单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n 30000/π*P=T*n 30000/3.1415926*P=T*n 9549.297*P=T*n 这就是为什么会有功率和转矩*转速之间有个9550的系数关系。。。 电动机转矩、转速、电压、电流之间的关系 由于电功率P=电压U*电流I,即 P=UI————公式【6】 由于公式【2】中的功率P的单位为kw,而电压U的单位是V,电流I的单位是A,而UI乘积的单位是V.A,即w,所以将公式【6】代入到公式【2】中时,UI需要除以1000以统一单位。则: P=Tn/9550=UI/1000————公式【7】 ==》Tn/9.55=UI————公式【8】 ==》T=9.55UI/n————公式【9】 ==》U=Tn/9.55I————公式【10】 ==》I=9.55U/Tn————公式【11】 方程式【7】、【8】、【9】、【10】、【11】中: P—功率的单位(kW); n—转速的单位(r/min);

三相电机的电流计算公式

三相电机的电流计算公式 如果一台排风扇是三相电机,它的标签上只写了电压380V,功率是4KW,还有转速,那么怎么计算它的电流呢? 公式是什么呢 A=KW/(1.732*0.38*COS) COS=功率因数 第 2.0.1条电力负荷应根据对供电可靠性的要求及中断供电在政治、经济上所造成损失或影响的程度进行分级,并应符合下列规定: 一、符合下列情况之一时,应为一级负荷: 1.中断供电将造成人身伤亡时。 2.中断供电将在政治、经济上造成重大损失时。例如:重大设备损坏、重大产品报废、用重要原料生产的产品大量报废、国民经济中重点企业的连续生产过程被打乱需要长时间才能恢复等。 3.中断供电将影响有重大政治、经济意义的用电单位的正常工作。例如:重要交通枢纽、重要通信枢纽、重要宾馆、大型体育场馆、经

常用于国际活动的大量人员集中的公共场所等用电单位中的重要电力负荷。 在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应视为特别重要的负荷。 二、符合下列情况之一时,应为二级负荷: 1.中断供电将在政治、经济上造成较大损失时。例如:主要设备损坏、大量产品报废、连续生产过程被打乱需较长时间才能恢复、重点企业大量减产等。 2.中断供电将影响重要用电单位的正常工作。例如:交通枢纽、通信枢纽等用电单位中的重要电力负荷,以及中断供电将造成大型影剧院、大型商场等较多人员集中的重要的公共场所秩序混乱。 三、不属于一级和二级负荷者应为三级负荷。 第2.0.2条一级负荷的供电电源应符合下列规定: 一、一级负荷应由两个电源供电;当一个电源发生故障时,另一个电源不应同时受到损坏。 二、一级负荷中特别重要的负荷,除由两个电源供电外,尚应增设应急电源,并严禁将其它负荷接入应急供电系统。 第2.0.3条下列电源可作为应急电源:

电机常用计算公式和说明

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式 T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=0.0172, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ/ (N × Ae)B=F/IL u磁导率 pi=3.14 B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 磁通量变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

电机定子和转子的建模与仿真

建模与仿真 作业题目(一) 姓名:张娇 专业:电研-11 学号:2011301350117

建模与仿真演讲作业1 如下图所示直流电机电路图,电机转动惯量为J,电机扭矩方程为 ω ωF i i K dt d J e a -=1 转子电流方程为: ω e a a a a a i K U i R dt di L 2-=+ 定子电流方程: e e e e e U i R dt di L =+ 直流电机电路示意图 回答: 1. 将如上方程写为的状态空间模型形式。 2. 求解在U a = 2V ,U e = 2V 的输入条件下,系统稳定的转速和i a ,i e 大小? 3. 在2稳定条件下,若U a 和U e 从第5秒均变为5V ,试求10s 内的转子转 速的动态数值解,并给出转子电流和定子电流数值解。 解:1. 为计算和书写方便,现假定 F=1, J=1,K 1=K 2=1, L a =L e =1,R a =R e =1 ? 选取状态变量为: 转速w 、转子电流i a 、定子电流i e ? 输入量:转子电压U a 、定子电压U e

则系统的状态方程: 2.设U a = U e =2,系统在similink 下的仿真如下: 则仿真结果为: i a 如scope 所示: 由此图可知转子电流i a 在5s 后达到稳定值0.4。 e e e a a e a i u e w i i u a w i i i i w -=--=-=. . .

◆i e如scope1所示: 由此图可知定子电流i e在5s后达到稳定值2。 ◆w如scope2所示: 由此图可知转速w在5s后达到稳定值0.8。 3.假设:U a、U e的值从第5秒突然从2跳变到5,系统在similink下仿真,仿真图如题2所示,修改参数U a、U e值如下:

三相异步电动机结构详细图解

三相异步电动机结构详细图解 图1封闭式三相异步电动机的结构 1—端盖2—轴承3—机座4—定子绕组5—转子 6—轴承7—端盖8—风扇9—风罩10—接线盒 异步电动机的结构也可分为定子.转子两大部分。定子就是电机中固定不动的部分,转子是电机的旋转部分。由于异步电动机的定子产生励磁旋转磁场,同时从电源吸收电能,并产生且通过旋转磁场把电能转换成转子上的机械能,所以与直流电机不同,交流电机定子是电枢。另外,定.转子之间还必须有一定间隙(称为空气隙),以保证转子的自由转动。异步电动机的空气隙较其他类型的电动机气隙要小,一般为~2mm。 三相异步电动机外形有开启式.防护式.封闭式等多种

形式,以适应不同的工作需要。在某些特殊场合,还有特殊的外形防护型式,如防爆式.潜水泵式等。不管外形如何电动机结构 基本上是相同的。现以封闭式电动机为例介绍三相异步电动机的结构。如图1所示是一台封闭式三相异步电动机解体后的零部件图。 1.定子部分 定子部分由机座.定子铁心.定子绕组及端盖.轴承等部件组成。 (1)机座。机座用来支承定子铁心和固定端盖。中.小型电动机机座一般用铸铁浇成,大型电动机多采用钢板焊接而成。 (2)定子铁心。定子铁心是电动机磁路的一部分。为了减小涡流和磁滞损耗,通常用厚的硅钢片叠压成圆筒,硅钢片表面的氧化层(大型电动机要求涂绝缘漆)作为片间绝缘,在铁心的内圆上均匀分布有与轴平行的槽,用以嵌放定子绕组。 (a)直条形式(b)斜条形式

图2 笼型异步电动机的转子绕组形式 (3)定子绕组。定子绕组是电动机的电路部分,也是最重要的部分,一般是由绝缘铜(或铝)导线绕制的绕组联接而成。它的作用就是利用通入的三相交流电产生旋转磁场。通常,绕组是用高强度绝缘漆包线绕制成各种型式的绕组,按一定的排列方式嵌入定子槽内。槽口用槽楔(一般为竹制)塞紧。槽内绕组匝间.绕组与铁心之间都要有良好的绝缘。如果是双层绕组(就是一个槽内分上下两层嵌放两条绕组边),还要加放层间绝缘。 (4)轴承。轴承是电动机定.转子衔接的部位,轴承有滚动轴承和滑动轴承两类,滚动轴承又有滚珠轴承(也称为球轴承),目前多数电动机都采用滚动轴承。这种轴承的外部有贮存润滑油的油箱,轴承上还装有油环,轴转动时带动油环转动,把油箱中的润滑油带到轴与轴承的接触面上。为使润滑油能分布在整个接触面上,轴承上紧贴轴的一面一般开有油槽。 2.转子部分 转子是电动机中的旋转部分,如图中的部件5。一般由

电动机的基本结构及工作原理

电动机的基本结构及工作原理 交流电机分异步电机和同步电机两大类。异步电机一般作电动机使用,拖动各种生产机械作功。同步电机分分为同步发电机和同步电动机两类。根据使用电源不同,异步电机可分为三相和单相两种型式。 一、异步电动机的基本结构 三相异步电动机由定子和转子两部分组成。因转子结构不同又可分为三相笼型和绕线式电机。 1、三相异步电动机的定子: 定子主要由定子铁心、定子绕组和机座三部分组成。定子的作用是通入三相对称交流电后产生旋转磁场以驱动转子旋转。定子铁心是电动机磁路的一部分,为减少铁心损耗,一般由0.35~0.5mm厚的导磁性能较好的硅钢片叠成圆筒形状,安装在机座内。定子绕组是电动机的电路部分,安嵌安在定子铁心的内圆槽内。定子绕组分单层和双层两种。一般小型异步电机采用单层绕组。大中型异步电动机采用双层绕组。机座是电动机的外壳和支架,用来固定和支撑定子铁心和端盖。 电机的定子绕组一般采用漆包线绕制而成,分三组分布在定子铁心槽内(每组间隔120O),构成对称的三相绕组。三相绕组有6个出线端,其首尾分别用U1、U2;V1、V2;W1、W2表示,连接在电机机壳上的接线盒中,一般3KW以下的电机采用星形接法(Y接),3KW以上的电机采用三角形接法(△接)。当通入电机定子的三相交流电相序改变后,因定子的旋转磁场方向改变,所以电机的转子旋转方向也改变。

2、三相异步电动机的转子:

转子主要由转子铁心、转子绕组和转轴三部分组成。转子的作用是产生感应电动势和感应电流,形成电磁转矩,实现机电能量的转换,从而带动负载机械转动。转子铁心和定子、气隙一起构成电动机的磁路部分。转子铁心也用硅钢片叠压而成,压装在转轴上。气隙是电动机磁路的一部分,它是决定电动机运行质量的一个重要因素。气隙过大将会使励磁电流增大,功率因数降低,电动机的性能变坏;气隙过小,则会使运行时转子铁心和定子铁心发生碰撞。一般中小型三相异步电动机的气隙为0.2~1.0mm,大型三相异步电动机的气隙为1.0~1.5mm。 三相异步电动机的转子绕组结构型式不同,可分为笼型转子和绕线转子两种。笼型转子绕组由嵌在转子铁心槽内的裸导条(铜条或铝条)组成。导条两端分别焊接在两个短接的端环上,形成一个整体。如去掉转子铁心,整个绕组的外形就像一个笼子,由此而得名。中小型电动机的笼型转子一般都采用铸铝转子,即把熔化了的铝浇铸在转子槽内而形成笼型。大型电动机采用铜导条;绕线转子绕组与定子绕组相似,由嵌放在转子铁心槽内的三相对称绕组构成,绕组作星形形联结,三个绕组的尾端连结在一起,三个首端分别接在固定在转轴上且彼此绝缘的三个铜制集电环上,通过电刷与外电路的可变电阻相连,用于起动或调速。 3、三相异步电动机的铭牌: 每台电动机上都有一块铭牌,上面标注了电动机的额定值和基本技术数据。铭牌上的额定值与有关技术数据是正确选择、使用和检修电动机的依据。下面对铭牌中和各数据加以说明: 型号异步电动机的型号主要包括产品代号、设计序号、规格代号和特殊环境代号等。产品代号表示电动机的类型,用汉语拼音大写字母表示;设

电机的启动电流怎么算

电机的启动电流怎么算 [ 标签:电机, 启动电流]ㄨ只④我不配2011-06-01 08:43 满意答案好评率:100% 电动机启动冲击电流,与负载性质(恒转矩、恒功率、通风机类)和启动方式(直接启动、自藕降压启动、星三角、延边三角、频敏变阻、变频启动)有关。 通常,以星三角启动380/3交流异步电动机为例,可以这样估算: 110KW电动机,额定工作电流约200A(也可以按功率的2倍估算), 直接启动时,电流按6倍额定电流估算,约1200A; 星三角启动时,启动电流为直接启动方式时的1/3,则为400A。 200KW电动机的断路器开关额定电流选多大 三相异步电机额定电流的估算: 额电电压~660V I≈ ~380V I≈2P ~220V I≈ P-电动机额定功率KW 主开关电流选择:主开关额定电流=设备额定电流(分支额定电流总和)*~ 既(200*2)*=520A选型时选600A

11千瓦电动机启动热过载电流是多少 11千瓦电动机启动热过载电流是多少 匿名提问 2009-08-24 09:54:43 发布 工程学术 2个回答 oncsqufpi| 2009-08-24 09:54:53 有0人认为这个回答不错 | 有0人认为这个回答没有帮助 根据用电设备的功率,算出总功率以后,I=P/U按公式后在乘的系数~!

如果比较麻烦的话就是一个千瓦2个安培的电流~!是最通用的,里面包括了抛出的电流容量。1KW=2A 选择电缆也有方法 按电流计算,下面给出的比较简单的选择算法以铝芯线为计算项目 十下五:百上二:二五三五四三界,七零九五两倍半~!这个是口诀 十平方毫米以下的BLV线电流可以承载线径的五倍~! 一百平方毫米以上的BLV线电流承载线径的二倍。 25mm2和35mm2的BLV电流承载在4倍和3倍的分割线。 70mm2和95mm2的电流容量是线径的倍。 除此内容以外,有铜芯线的按照铝线的升级倍数来算,也就是说BV-10mm2按照BLV-16mm2的电流来算其他的也如此 导线在穿塑料管或是PVC管,算出的电流要乘上的系数 导线在穿钢管的情况下,计算的电流在乘上 导线在高温的场所通过,计算的电流结果在乘上 如果导线在以上三种情况都有的话先乘在乘或者直接打到也可以

三相异步电动机的结构原理(定子、转子)讲解

三相异步电动机的结构原理(定子、转子)讲解 电动机的静止部分称为定子,其组成部分主要包括定子铁芯、定子绕组、机座等部分。 定子铁芯:定子铁芯的作用是作为电机磁路的一部分,并在其上放置定子绕组。定子铁芯一般由0.35~0.5毫米厚,表面涂有绝缘漆的环状冲片槽的硅钢片叠压而成,如右图所示。 定子绕组:定子绕组是电动机的电路部分,通入三相交流电,产生旋转磁场。 小型号异步电动机定子绕组通常用高强度漆包线 (铜线或铝线)绕制成各种线圈后,在嵌放在定子铁芯槽内。大中型电动机则用各种规格的铜条经过绝缘处理后,再嵌放在定子铁芯槽内。为了保证绕组的各导电部分与铁芯之间的可靠绝缘以及绕组本身之间的可靠绝缘,故在定子绕组制造过程中采取了许多绝缘措施,三相异步电动机定子绕组的主要绝缘项目有以下三种: 1.对地绝缘:定子绕组整体与定子铁心之间的绝缘。 2.相间绝缘:各相定子绕组之间的绝缘。 3.匝间绝缘:每相定子绕组各线匝之间的绝缘。 定子三相绕组的槽内嵌放完毕后共有六个出线端引到电动机机座的接线盒内,可按需要将三相绕组接成星形接法(Y接)或三角形接法(△接),如右图所示。 机座:它的作用是固定定子铁芯和定子绕组,并以两个端盖支撑转子,同时起保护整台电动机的电磁部分和散发电动机运行中产生的热量,一般是铁或铝铸造而成。

转子是电动机的旋转部分,包括转子铁芯,转子绕组和转轴等部分。 ?转子铁芯:作为电机磁路的一部分,并放置转子绕组。一般由0.5毫米厚的硅钢片冲制叠压而成。如右图所示。 ?转子绕组:其作为切割定子磁场,产生感应电动势和电流,并在旋转磁场的作用下受力使转子转动。根据构造的不同可分为鼠笼式和绕线式转子两种类型。 1.鼠笼式转子:它的结构是转子铁芯的槽沟内插入铜条,在铜条两端焊接两个铜环,如下图(a)所示。 这样转子绕组好像一个鼠笼型转子。为了节约铜材和便于制造。目前绝大部分鼠笼均采用铝代替。如下图(b)所示。 2.绕线式转子:绕线式转子绕组也和定子绕组一样做成三相对称绕组,经过适当的排列和组合。 嵌入并固定转子铁芯槽内,最后使三组绕圈接成星形连接, 三个引出线分别接到固定的转轴上的三个铜滑环上,在各个环上,分别放置着固定不动的电刷,通过电刷与滑环的接触,使转子绕组与外加变阻器接通,一边启动电机。如右图所示。 3.转轴:用以传递转矩及支撑转子的重量。一般都由中碳钢或合金钢制成。除了定子和转子两大部分外, 还有端盖,风扇等其他附件。

关于发电机定、转子间气隙的计算方法简介

关于发电机定、转子间气隙的计 算方法简介 1.关于定、转子间气隙结构的介绍 水轮发电机的定转子间的空气间隙,顾名思义就是发电机定子与转子间的间隙。具体一点就是定子铁芯壁与转子磁极表面之间的间隙。其示意图如下: 图1 发电机定、转子间的气隙结构 2.气隙的状态监测方法 首先要明白,测量转子的不圆度以及偏心距和偏心角是对某一个气隙传感器而言的;定子的不圆度是对某一个磁极而言的。 2.1键相同步 目前在发电机的定子内壁上装有四个平板电容式位移传感器(后面简称为:

气隙传感器),和一个电涡流传感器。其安装方位如下图所示: 图2 气隙测量示意图 就上图所示的安装方位而言,电涡流传感器W的作用是使键相同步,即当电涡流传感器转一圈后接到电信号时,此时的1号磁极正好经过B号气隙传感器,当转子转动一圈后,电涡流传感器再次接收到电信号时,此时1号磁极再次经过B号气隙传感器。这就是键相同步。有了键相同步的测量基点后,我们就可以推算出每一个气隙传感器在不同时刻测得的气隙值所对应的是哪一号磁极。 2.2气隙测量 在确定键相后,就可以通过气隙传感器测出每一号磁极与该传感器的气隙大小,最后可以作出转子轮廓的大致结构。当我们在定、转子之间装有足够多的气隙传感器时,就可以测出同一个磁极在转子转一圈的过程中与每一个气隙传感器的气隙大小,这样就可以大致描绘出定子的内壁轮廓。 在气隙传感器测得一段信号后,下面将简单介绍怎样在这组信号中提取出气

隙的值。 如下图所示,为B号气隙传感器在涡流传感器W接收到信号时刻开始测得的信号波形图。 图3 B号气隙传感器检测到的信号波形 上图是根据图2所对应的磁极关系来确定的B号气隙传感器的信号波形,即当涡流传感器接收到信号时,正好是1号磁极经过B号气隙传感器。此后依次是2、3、4号磁极经过该传感器。我们所要测量的气隙值就是上图所示的波形的每一个“波谷”,即每一个最小值对应的就是该磁极与定子间的气隙值。 如下面所示,为某一水电站的发电机定、转子间气隙图,该图是就同一传感器(如图2 中的B号传感器)所测的各磁极气隙大小。

电机定子的基本知识

电机定子是电动机静止不动的部分。定子由定子铁芯、定子绕组和机座三部分组成。定子的主要作用是产生旋转磁场,而转子的主要作用是在旋转磁场中被磁力线切割进而产生(输出)电流。 定子常见故障包括绕组断路、短路、接地、拉簧与刷握接触不良、拉簧烧断、定子固定螺栓松动等。 通过检测可发现部分定子故障: 1. 绝缘电阻:在线圈绕组与铁芯(轴)之间加一定值的直流电压,测量其绝缘电阻值。检查线圈对铁芯(轴)有无漏电或短路; 2. 交流耐压:在线圈绕组与铁芯(轴)等部位之间施加一定值的工频交流电压,持续一定时间,检测其交流介电强度。检查线圈对铁芯(轴)耐工频电压的介电强度,以发现有无短路、击穿或闪烙; 3. 匝间耐压:在各相绕组首尾之间或相间施加规定幅值、按规定波形要求的冲击电压。检查各相绕组内部线圈匝间(线与线)或各相绕组之间有是否绝缘不良、气隙放电或短路,还可检验绕组的圈数超差、部分反嵌以及接线错误等; 4. 直流电阻:检测各相线圈的直流电阻,可以发现线圈线径错误、严重短路、断线、圈数超差等; 5. 磁场旋向:检测主副线圈的相位关系,以推断由此定子生产的电机的旋转方向; 6.反嵌:检测电机的线圈绕制方向错误(全部或部分)、抽头焊线错误、线圈嵌入槽错误等质量问题。 青岛/仪迪/研发的IDI5306电机测试系统可以将定子的绝缘电阻、工频耐压、线圈直流电阻、匝间耐压等全部电气性能测试项目一次性高速自动完成,使系统功能远远超过一般仪器的简单组合,大大提高了生产效率,特别是在结果保存、波形存储、同步测量、系统的扩张性、多功能等方面体现的优越性是传统手动试验台无法比拟的;可快速准确的判别定子在焊接、绕线等生产过程中产生的缺陷,便于操作人员对不良的产品进行修复。

各种电机电流计算方法

各种电机额定电流的计算 1、电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号3 UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 三相的计算公式: P=1.732×U×I×cosφ (功率因数:阻性负载=1,感性负载≈0.7~0.85之间,P=功率:W) 单相的计算公式: P=U×I×cosφ 空开选择应根据负载电流,空开容量比负载电流大20~30%附近。P=1.732×IU×功率因数×效率(三相的) 单相的不乘1.732(根号3) 空开的选择一般选总体额定电流的1.2-1.5倍即可。

经验公式为: 380V电压,每千瓦2A, 660V电压,每千瓦1.2A, 3000V电压,4千瓦1A, 6000V电压,8千瓦1A。 3KW以上,电流=2*功率;3KW及以下电流=2.5*功率 2功率因数(用有功电量除以无功电量,求反正切值后再求正弦值)功率因数cosΦ=cosarctg(无功电量/有功电量) 视在功率S 有功功率P 无功功率Q 功率因数cosΦ 视在功率S=(有功功率P的平方+无功功率Q 的平方)再开平方 而功率因数cosΦ=有功功率P/视在功率S 3、求有功功率、无功功率、功率因数的计算公式,请详细说明下。(变压器为单相变压器) 另外无功功率的降低会使有功功率也降低么?反之无功功率的升高也会使有功功率升高么? 答:有功功率=I*U*cosφ即额定电压乘额定电流再乘功率因数 单位为瓦或千瓦 无功功率=I*U*sinφ,单位为乏或千乏. I*U 为容量,单位为伏安或千伏安. 无功功率降低或升高时,有功功率不变.但无功功率降低时,电流要降低,线路损耗降低,反之,线路损耗要升高. 4、什么叫无功功率?为什么叫无功?无功是什么意思?

电机分类,结构和原理

电机知识学习总结 1基本知识介绍 1.1直流、单相交流、三相交流 1.2交流下有“同步和异步”的区别 同步异步指的是转子转速与定子旋转磁场转速是同步(相同)还是异步(滞后),因而只有交流能产生旋转磁场,只有交流电机有同步异步的概念。 同步电机——原理:靠“磁场总是沿着磁路最短的方向上走”实现转子磁极与定子旋转磁场磁极逐一对应,转子磁极转速与旋转磁场转速相同。特点:同步电机无论作为电动机还是发电机使用,其转速与交流电频率之间将严格不变。同步电机转速恒定,不受负载变化影响。 异步电机——原理:靠感应来实现运动,定子旋转磁场切割鼠笼,使鼠笼产生感应电流,感应电流受力使转子旋转。转子转速与定子旋转磁场转速必须有转速差才能形成磁场切割鼠笼,产生感应电流。 区别:(1)同步电机可以发出无功功率,也可以吸收;异步电机只能吸收无功。(2)同步电机的转速与交流工频50Hz电源同步,即2极电机3000转、4极1500、6极1000等。异步电机的转速则稍微滞后,即2极2880、4极1440、6极960等。(3)同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。同步电动机可以用以改进供电系统的功率因素。 同步电机无法直接启动:刚通电一瞬间,通入直流电的转子励磁绕组是静止的,转子磁极静止;定子磁场立即具有高速。假设此瞬间正好定子磁极与转子磁极一一对应吸引,在定子磁极在极短的时间内旋转半周的时间之内,会对转子产生吸引力,半周之后将会产生排斥力。由于转子有转动惯量,转子不会转动起来,而是在接近于0的速度下左右震动。因此同步电机需要鼠笼绕组启动。转速差使其产生感应电流,而感应电流具有减小转速差的特性(四根金属棒搭成井形,内部磁场变密会减小面积,变疏会增加面积,阻止其变化趋势),因而会使转子转动起来,直到感应电流与转速差平衡(没有电流就不会有力,因而不会消除转速差,猜测与旋转阻力有关)。 1.3永磁、电磁、感磁(构成定子、转子) 永磁——永磁铁 电磁——通电线圈 感磁——无电闭合绕组、鼠笼 永磁和电磁大多数情况下可以互换,感磁需要有旋转磁场的场合才能用,在三相同步

关于发电机定、转子间气隙的计算方法简介

关于发电机定、转子间气隙的计算方法简介 1、关于定、转子间气隙结构的介绍 水轮发电机的定转子间的空气间隙,顾名思义就是发电机定子与转子间的间隙。具体一点就是定子铁芯壁与转子磁极表面之间的间隙。其示意图如下: 2. 气隙的状态监测方法 首先要明白,测量转子的不圆度以及偏心距和偏心角是对某一个气隙传感器而言的;定子的不圆度是对某一个磁极而言的。 2.1键相同步 目前在发电机的定子内壁上装有四个平板电容式位移传感器(后面简称为:气隙传感器),和一个电涡流传感器。其安装方位如下图所示:

就上图所示的安装方位而言,电涡流传感器W的作用是使键相同步,即当电涡流传感器转一圈后接到电信号时,此时的1号磁极正好经过B号气隙传感器,当转子转动一圈后,电涡流传感器再次接收到电信号时,此时1号磁极再次经过B号气隙传感器。这就是键相同步。有了键相同步的测量基点后,我们就可以推算出每一个气隙传感器在不同时刻测得的气隙值所对应的是哪一号磁极。 2.2气隙测量 在确定键相后,就可以通过气隙传感器测出每一号磁极与该传感器的气隙大小,最后可以作出转子轮廓的大致结构。当我们在定、转子之间装有足够多的气隙传感器时,就可以测出同一个磁极在转子转一圈的过程中与每一个气隙传感器的气隙大小,这样就可以大致描绘出定子的内壁轮廓。 在气隙传感器测得一段信号后,下面将简单介绍怎样在这组信号中提取出气隙的值。 如下图所示,为B号气隙传感器在涡流传感器W接收到信号时刻开始测得的信号波形图。

上图是根据图2所对应的磁极关系来确定的B号气隙传感器的信号波形,即当涡流传感器接收到信号时,正好是1号磁极经过B号气隙传感器。此后依次是2、3、4号磁极经过该传感器。我们所要测量的气隙值就是上图所示的波形的每一个“波谷”,即每一个最小值对应的就是该磁极与定子间的气隙值。 如下面所示,为某一水电站的发电机定、转子间气隙图,该图是就同一传感器(如图2 中的B号传感器)所测的各磁极气隙大小。 从上图可以看出,该传感器对应的气隙最大值,发生在6号磁极上,气隙最大值为26.27mm;最小气隙值为23.79mm,发生在29号磁极上。平均气隙为25.03mm。根据键相同步,还可

三相电动机空载电流值计算方法和经验值

三相电动机空载电流值计算和经验值讲解 经验值:三相电动机的空载电流约1A/KW。 公式就有些复杂了:三相异步电动机空载运行时,定子三相绕组中通过的电流,称为空载电流。绝大部分的空载电流用来产生旋转磁场,称为空载激磁电流,是空载电流的无功分量。还有很小一部分空载电流用于产生电动机空载运行时的各种功率损耗(如摩擦、通风和铁芯损耗等),这一部分是空载电流的有功分量,因占的比例很小,可忽略不计。因此,空载电流可以认为都是无功电流。从这一观点来看,它越小越好,这样电动机的功率因数提高了,对电网供电是有好处的。如果空载电流大,因定子绕组的导线截面积是一定的,允许通过的电流是一定的,则允许流过导线的有功电流就只能减小,电动机所能带动的负载就要减小,电动机出力降低,带过大的负载时,绕组就容易发热。但是,空载电流也不能过小,否则又要影响到电动机的其他性能。总之,空载电流是三相异步电动机的重要参数,它是鉴定电动机制造和修理质量的重要标准之一。在电动机的修理工作中,往往需要知道电动机损坏前的空载电流值,以便与修复后的空载电流值进行比较,从而判断修理质量的好坏。但是,在电动机的铭牌或产品说明书上,一般不标注空载电流的额定数据,如果运行时没有留下空载电流数据,只可用计算方法来确定电动机的空载电流值。 (1)根据电动机的简化原理图推导出来的计算公式如下:

(图片丢失,见顶部网站链接) 式中 Io——电动机的空载电流,A; Ie——电动机的额定电流,A; cosφe——额定功率因数; φe——额定功率因数角; φst——起动功率因数角; tgφe——对应于角 P。的正切; tgφst——对应于角驴。。的正切; sinφst——对应于角 9。。的正弦; Kst——起动电流倍数,即起动电流与额定电流之比; KM——起动转矩倍数,即起动转矩与额定转矩之比。 此公式计算所需用的原始参数(产品目录的数据)太多,且不易获得;再就是计算麻烦、费时。所以,它在理论上讲是正确的.但在实用计算上很不方便,一般没有人用的。 (2)对大量试验数据的分析和统计,归纳出的实用近似公式:

电机电流计算

已知变压器容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数” 显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV 电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。(3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去0.76系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安

电机的额定电流计算法

电机的额定电流计算法 22KW×2÷1.732≈25.4A 已知三相电动机容量,求其额定电流口诀(c):容量除以千伏数,商乘系数点七六。说明:(1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6k电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。三相二百二电机,千瓦三点五安培。常用三百八电机,一个千瓦两安培。低压六百六电机,千瓦一点二安培。高压三千伏电机,四个千瓦一安培。高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为k,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380电动机额定电流时,先用电动机配接电源电压0.38k数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6k电动机,容量kW数又恰是6k数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c

电机的耗电量的公式计算

电机的耗电量以以下的公式计算: 耗电度数=(根号3)X 电机线电压X 电机电流X 功率因数) X 用电小时数/1000 电机的额定功率是750W,采用星形接法,接在三相380伏的电源上,用变频器监测电流是1.1A;我又用钳形电流表进行测量,测得每相电流为1.1A,这就说明变频器和钳形电流表测得的电流是一致的。 因为电机是星形接法,线电压是相电压的倍,线电流等于相电流,电机实际消耗的功率:380×× = 724 W,这样电机实际消耗的功率就接近于电机的额定功率。 如果电机是三角形接法,线电压等于相电压,线电流是相电流的倍,电机实际消耗功率的计算是一样的。 这就说明:三相交流电机实际消耗的功率就等于线电压× 线电流。 电机额定功率为450kW,功率因数为,电机效率为%,现运行中发现电流为40A,电压为6000V,那么怎么正确计算电机的各项功率以及电机有功及无功的损耗

高压电机一般为三相电机. 视在功率=×6000×40= 有功功率=×6000×40×= 无功功率=(视在功率平方减有功功率平方开根二次方) 有功损耗=有功功率×%)=×= 无功损耗=无功功率×%)=×= 注明:电机不运行于额定状况,效率及功率因数是有偏差的,上述数值只能为理论值,可能与实际会有点小偏差。 因为铭牌上所标的额定功率是电机能输出的机械功率, 所以不等于电压和电流的乘积 就象一个10KW的电动机,他能输出的机械功率是10KW,但它所消耗的电功率要大于10KW, 三相电动机的功率计算公式: P=*U*I*cosΦ . 三相异步电动机功率因数 异步电动机的功率因数不是一个定数,它与制造的质量有关,还与负载率的大小有关。为了节约电能,国家强制要求电机产品提高功率因数,由原来的到提高到了现在的到,但负载率就是使用

三相电流计算公式

三相电流计算公式 I=P/(U*1.732)所以1000W的线电流应该是1.519A。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是4.545A,电压等于380V时,电流是2.63A,以上说的是指的单相的情况。380V三相的时候,公式是I=P/(U*1.732),电流大小是1.519A 三相电机的电流计算I= P/(1.732*380*0.75) 式中:P是三相功率(1.732是根号3) 380 是三相线电压(I是三相线电流) 0.75是功率因数,这里功率因数取的是0.75 ,如果功率因数取0.8或者0.9,计算电流还小。电机不是特别先进的都是按0.75计算。按10kW计算:I=10kW/(1.732*380*0.75) =10kW/493.62 =20.3 A 三相电机必须是三相电源,10KW电动机工作时,三根电源线上的工作电流都是20.3 A 实际电路计算的时候还要考虑使用系数,启动电流等因素来确定导线截面积、空开及空开整定电留。 三相电中,功率分三种功率,有功功率P、无功功率Q和视在功率S。电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 三种功率和功率因素cosΦ是一个直角功率三角形关系:两个直角边是有功功率P、无功功率Q,斜边是视在功率S。三相负荷中,任何时候这三种功率总是同时存在:S2=P2+Q2S=√(P2+Q2) 视在功率S=1.732UI 有功功率P=1.732UIcosΦ无功功率Q=1.732UIsinΦ功率因数cosΦ=P/S 根号3,没有软件写不上,用1.732代替 系统图 Pe:额定功率Pj:计算有功功率Sj:计算视在功率Ij:计算电流Kx:同时系数cosφ:功率因数Pj=Kx*Pe Sj=Pj/cosφ单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/√3Ue 电气系统图里的符号是有标准的 KM表示交流接触器 KA表示中间继电器, KT表示时间继电器;

三相异步电动机空载电流的经验计算公式

三相异步电动机空载电流的经验计算公式针对在汇川变频器MD380东莞巨冈及深圳帝马主轴的应用情况,调试空载电流的影响:加大空载电流可以增强进入弱磁区效果,使主轴能达到最高转速,但是会减小电机的带动的负载能力。对此,查找了一些资料,经整理后作出总结。 异步电动机空载运行时,定子三相绕组中通过的电流,称为空载电流。绝大部分的空载电流用来产生旋转磁场,称为空载激磁电流,是空载电流的无功分量。还有很小一部分空载电流用于产生电动机空载运行时的各种功率损耗(如摩擦、通风和铁芯损耗等),这一部分是空载电流的有功分量,因占的比例很小,可忽略不计。因此,空载电流可以认为都是无功电流。从这一观点来看,它越小越好,这样电动机的功率因数提高了,对电网供电是有好处的。如果空载电流大,因定子绕组的导线载面积是一定的,允许通过的电流是一定的,则允许流过导线的有功电流就只能减小,电动机所能带动的负载就要减小,电动机出力降低,带过大的负载时,绕组就容易发热。但是,空载电流也不能过小,否则又要影响到电动机的其他性能。一般小型电动机的空载电流约为额定电流的30%~70%,大中型电动机的空载电流约为额定电流的20%~40%。具体到某台电动机的空载电流是多少,在电动机的铭牌或产品说明书上,一般不标注。可电工常需知道此数值是多少,以此数值来判断电动机修理的质量好坏,能否使用。但是在电动机的铭牌或产品说明书上,一般不标注空载电流的额定数据。如果运行时,没有留下空载电流数据,只可用计算方法来确定电动机的空载电流值。

参数含义: , Rs、R’r ——定子每相电阻和折合到定子侧的 转子每相电阻; , Lls、L’lr ——定子每相漏感和折合到定子侧的 转子每相漏感; , Lm——定子每相绕组产生气隙主磁通的 等效电感,即励磁电感; , Us、,1 ——定子相电压和供电角频率; , s ——转差率。 , I0、Is、I’r ——空载电流,定子电流,转子电流 定子绕组的导线载面积是一定的,允许通过的电流是一定,即定子电流Is一定,若空载电流I0加大,则转子电流I’r,电动机输出转矩变小,带动负载减少。这里就可以说明东莞巨冈为什么加大空载电流可以让最高转速提升至 12000RPM。根据上面分析,空载电流I0加大,电动机输出转矩变小,P=T*V,即功率一定,T减小,V便可提高。 (1) 大量试验数据的分析和统计称归纳出的实用近似公式

电机的额定电流计算方法

电机的额定电流计算方法(2009-07-12 15:12:33) 标签:杂谈 已知三相电动机容量,求其额定电流口诀(c):容量除以千伏数,商乘系数点七六。说明:(1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6k电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。三相二百二电机,千瓦三点五安培。常用三百八电机,一个千瓦两安培。低压六百六电机,千瓦一点二安培。高压三千伏电机,四个千瓦一安培。高压六千伏电机,八个千瓦一安培。 (2)口诀c使用时,容量单位为kW,电压单位为k,电流单位为A,此点一定要注意。 (3)口诀c中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380电动机额定电流时,先用电动机配接电源电压0.38k数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6k电动机,容量kW数又恰是6k数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(k)数除去0.76系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。

相关主题
文本预览
相关文档 最新文档