当前位置:文档之家› 第4讲基本共射极放大电路的静态分析

第4讲基本共射极放大电路的静态分析

第4讲基本共射极放大电路的静态分析
第4讲基本共射极放大电路的静态分析

课题:基本共射极放大电路的静态分析

课型:讲练结合

教学目的:

知识目标:

1.熟悉基本共射极放大电路的组成、特点、工作原理。

2.掌握基本共射极放大电路的静态分析。

技能目标:

学会基本共发射极放大电路静态工作点的调试方法。

教学重点、难点:

重点:基本共发射极放大电路的静态分析

难点:基本共发射极放大电路的静态分析

复习与提问:

1、三极管有哪几种工作状态?

(在黑板上画出三极管的输出特性图并提问让学生指出相应的区域)

2、在模拟电子电路中三极管通常工作在什么区?

教学过程:

引子:我们知道在模拟电路中,三极管通常都工作在放大区,那么如何保证三极管始终工作在放大区,也就是让发射结正偏、集电结反偏?这节课我们主要来解决这个问题.

(在黑板上画出基本共射放大电路,进行讲解)我们来看下这个电路.

一、基本共射极放大电路

1、电路图

2、电路组成元件及作用

(1)三极管V:具有电流放大作用,是放大器的核

心元件。不同的三极管有不同的放大倍数。

1

产生放大作用的外部条件是:发射结为正向电压偏置,集电结为反向电压偏置。

(2)集电极直流电源U CC:确保三极管工作在放大状态。

(3)集电极负载电阻RC:将三极管集电极电流的变化转变为电压变化,以实现电压放大。

(4)基极偏置电阻RB:为放大电路提供基极偏置电压。

(5)耦合电容C1和C2:隔直流通交流。

电容C1和C2具有通交流的作用,交流信号在放大器之间的传递叫耦合,C1和C2正是起到这种作用,所

以叫作耦合电容。C1为输入耦合电容,C2为输出耦合电容。

电容C1和C2还具有隔直流的作用,因为有C1和C2,放大器的直流电压和直流电流才不会受到信号源和

输出负载的影响。

3.放大器的工作原理(这部分知识先在这里讲解,具体的实际操作能力在动态分析的测试中再进行)

(1)ui直接加在三极管V的基极和发射极之间,引起基极电流i B作相应的变化。

(2)通过V的电流放大作用,V的集电极电流i C也将变化。

(3)i C的变化引起V的集电极和发射极之间的电压u CE变化。

(4)u CE中的交流分量u ce经过C2畅通地传送给负载R L,成为输出交流电压uo,,实现了电压放大作用。

二、基本共射放大电路的静态分析(先理论后实践的方法来实现)

我们看到在这个放大电路中,即有交流信号也有直流信号,为了便于分析和理解,我们将分别对这两个信号在放大电路中的作用进行分析。我们先来学习只有直流信号作用时的放大电路。我们将这种状态叫静态。

⑴静态的概念:即当输入信号电压ui=0时,放大电路称为静态,或称为直流工作状态。

这时电路中没有变化量,电路中的电压、电流都是直流量,此时I B,I C,U CE的值对应三极管输出特性曲线上的一点,该点称为放大电路的静态工作点。

⑵静态工作点的表示

用三极管的电流、电压来表示静态工作点,也可用符号Q表示。

电流、电压分别是基极电流I BQ、集电极电流I CQ、集射极电压U CEQ。在模拟电子电路中理想的Q点应

该处在放大区。

⑶静态分析的估算法

例1:

2

Rc

RB

Ic

Vcc

I

B

UCE

画直流通路的方法是:将电容看作是开路

估算的公式

例2:

3

估算的公式:

V B=VCC·R B2/(R B1+R

B2)

IEQ=I C Q=(V B-VBE)/R

E

IBQ=ICQ/β

U CEQ=V CC-I CQ(R C+R

E)

那么在实际的电路中,我们又是如何调节静态工作点呢?接下去我们来完成我们的试验。

通过试验我们看到在静态工作点合适的情况下,三极管能将小信号进行放大,如果静态工作点不合适,必须先调节好静态工作点,电路才能正常工作,调节方法见试验操作单。

课堂小结:

1、共发射极放大电路静态工作点的估算

2、静态工作点的调试

作业:

4

共射极基本放大电路解读

实验一共射极基本放大电路 一、实验目的 1、掌握放大器静态工作点的调试及其对放大性能的影响。 2、学习测量放大器Q点,Av,r i,r0的方法,了解共射级电路特性。 二、实验环境 1、Electronics Workbench5.12软件 2、器件:有极性电容滑动变阻器三极管信号发生器直流电源示波器 三、实验内容 图1.1为一共射极基本放大电路,按图连接好电路 . . 图1.1 共射极基本放大电路 1、静态分析 选择分析菜单中的直流工作点分析选项(Analysis/DC operating Point),电路静态分析结果如图1.2所示,分析结果表明晶体管Q1工作在放大电路。 . 图1.2 共射极基本放大器的静态工作点 2、动态分析 用仪器库的函数发生器为电路提供正弦输入信号V i(幅值为5mV,频率为10KHz)用示波器可观察输入、输出信号如图1.3所示,图中V A表示输入电压(电路中的节点4)V B为输出电压(电路中的节点5),由图波形图可观察到电路的输入、输出电压信号反相位关系。

图1.3共射极放大电路的输入、输出波形 由上图可得: 放大器的放大倍数:Av=801.54mv/4.97mv=161.3 理论计算:rbe=300+(1+β)×26mv/I E=300+26mv/I BQ=300+26mv/0.0226mA=1450Ω Av=-βR L′/ r be= 250×1000Ω/1450Ω=172.4 (其中R L′为RL与Rc的并联值,β的值约为250) 实验结果与理论值基本相符 3、频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis),在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。分析结果如图2.4所示。 图1.3 共射极基本放大电路的频率响应 由图1.3可得:电路的上限频率(x1)为10.78Hz,下限频率(x2)为23.1MHz,放大器的通频带约为23.1MHz,频率响应图理论结果基本相符。 1、测量放大器的输入、输出电压: (1)输入电阻的测量 在A点与B点之间串接一个2KΩ的电阻,如图1.1,测量 A点与B点的电位就可计算输入电阻Ri。 (2)、输出电阻的测量 用示波器监视,在输出不失真是,分别测量有负载是和无负载时的Vo,即可计算Ro 将上述测量及计算填入下表:

基本共射极放大电路

《基本共射极放大电路》教学设计 课题:第10章放大电路和集成运算放大器 10.1 共发射极单管放大电路 执教人:黄笑颜时间:2013年5月9日星期四上午第一节课 班级:高二(1)班(机电专业) 地点:安庆市第一职业教育中心高二(1)教室 课题:10.1 基本放大电路(第十章放大电路和集成运放)课时:1 课时 课型:新授型 一、教学目标: 1. 知识目标 (1)了解基本共射极放大电路直流通路工作情况。 (2)掌握静态工作点的计算方法。 (3)了解放大电路动态工作原理。 2.能力目标 通过讲解、演示,循序渐进地从简单的放大电路引入,引导学生运用所有电器元件的基本特性逐一分析出放大电路的工作原理。 3. 情感目标 本节内容在第十章里起到开篇的作用,课本第十章介绍的都是模拟电子电路的知识,后面的分压式放大电路,差分放大电路,OCL功率放大电路都是在此基础上慢慢的展现,所以基本共射极放大电路这一开篇电路对于学生学习模拟电路很重要! 二、教学分析: 1、教材分析: 本节内容的作用和地位: 这一节内容比较抽象,但对于参加对口高考的中职学生来说,这一章又至关重要,对于电子部分来说,放大电路将是所有模拟电路的一个起点。 2、学情分析 我们的学生是中等职业机电学生,对电的认识和理解非常有限,想象力也是非常有限的,只有将复杂的东西简单化,抽象变

的具体才能让学生去认识与接受。 三、过程与方法 1.教学方法设计: 利用多媒体方式,将基本共发射机电路波形特点展示给学生,通过讲解、图形收集、网络资料,建立长期记忆模式。 2.教学流程设计思路: 复习前面放大电路知识→导入新课→基本放大电路的组成→基本放大电路的直流通路→基本放大电路的静态工作点计算→→小结→作业 四、教学重点与难点 2.教学重点和难点: 重点:基本共发射极放大电路的直流通路图。 难点:基本共发射机放大电路的静态工作点的计算。 教学过程: 知识回顾: 1、放大电路的核心元件是什么?那么晶体管的作用是什么? (找学生回答):核心元件是晶体管。起到电流放大作业。 2、晶体管电流放大作用的原理是什么? (找学生回答):以较小的基极电流控制较大的集电极电流的变化。 3、看FLASH动画,回顾晶体管在放大状态时偏置情况。 集电结反偏,发射结正偏 导入新课: 前面我们已经接触了晶体管放大电路中的多种状态,今天我们要仔细的了解放大电路的元件名称和作用,了解晶体管放大电路静态工作状态和动态工作模式。 新课讲授 对于单管共射极放大电路而 言,其结构包括以下几个部分 首先,给整个放大电路供电的 直流电源

第三章 §3.1 共射极放大电路习题1--2018-7-10

第三章§ 共射极放大电路习题1 【考核内容】 1. 了解单级低频放大电路的组成和工作原理。 放大电路的基本概念 (1) 放大器的定义 放大电路(amplification circuit ,简写AMP )也称放大器 ,通常是由晶体三极管、直流电源、电阻以及电容等器件组成的电子电路,作用是将一个微小的交流信号转换成较大 幅值的交流信号。 (2) 放大器的方框图 实用放大器的类型虽然各种各样,但是都可以用一个方框图来表示,如图所示,其中Es 是输入信号源,它代表被放大的弱小电信号;ui 为输入电压,uo 为输出电压,接收放大器输出信号的器件为放大器的负载,一般用等效电阻RL 表示, RL 表示各种形式的实际负载的等效电阻,实际用电设备(例如喇叭、显象管等),有信号源的一端叫输入端,有负载的一端叫输出端。 *(3).放大器中电流、电压符号使用规定 : ① 用大写字母带大写下标表示直流分量,如I B 。② 用小写字母带小写下标表示交流分量,如i b 。 对放大电路的基本要求 1. 要有足够大的放大倍数(电压、电流、功率)。 2. 良好的频率特性. 3. 较小的非线性失真。 足够大的放大倍数 一、放大倍数 放大倍数表征放大电路对微弱信号的放大能力,它是输出信号(Uo 、Io 、Po )比输入信号增大的倍数,又称增益,常用分贝表示,单位dB 。 i o U U A u = , i o i I I A =, V I P A A V I V I P P A ?=-==i i o o i o 1. 放大电路的电压放大倍数,定义为输出电压有效值与输入电压有效值之比,它表示放大电路放大信号电压的能 力。 2.放大电路电流放大倍数,定义为输出电流有效值与输入电流有效值之比,它表示放大电路放大电流信号的能力。 3.功率放大倍数,放大电路等效负载RL 上吸收的信号功率(Po =UoIo )与输入端的信号功率(Pi =UiIi )之比,定义为放大电路的功率放大倍数。 \ 在实际工作中,为了便于表示和计算,放大器的放大倍数也常用对数形式表示,对数的值称为增益,用“分贝”dB 做单位,当改用“分贝”做单位时,放大倍数就称之为增益,这是一个概念的两种称呼。 电压增益Gu 为:)(dB lg 20i o U U G u =,电流增益Gi 为:)(dB lg 20i o I I Gi = 功率增益G P 定义为:)(dB lg 10i o P P G p = 当放大器的电压放大倍数>1时,其增益用分贝表示为一个正数,为放大电路。 当放大器的电压放大倍数<1时,其增益用分贝表示为一个负数,为衰减电路。 良好的频率特性 如放大电路对不同频率信号的幅值放大不同,就会引起幅度失真。如放大电路对不同频率信号产生的相移不同就会引起相位失真。幅度失真和相位失真总称为频率失真。 .较小的非线性失真 由于此失真是由电路的线性电抗元件(电阻、电容、电感等)引起的,故称为非线性失真。 晶体管工作在非线性区所引起的失真称为非线性失真。产生非线性失真的原因来自两个方面: 共发射极基本放大电路的组成原则 # 单电源共发射极基本放大电路 双电源共发射极基本放大电路 ) 1、固定偏置共发射极放大电路,如图所示: (1)、晶体管T 是整个电路的核心元件,它担负着放大任务,利用输入信号产生微弱的ib 电流,控制集电极ic 变化。 (2)、直流电源EC ,有两个作用,一方面提供负载所需信号的能量;另一方面通过Rb 给晶体管的发射结提供正向偏压,通过RC 给集电结提供反向偏压,EC (一般在几V ~几十V )。 (3)、基极偏置电阻Rb :提供基极偏置电压,决定基极偏置电流IB 的大小,称为基极偏置电阻。 选择适当的R b 值,就可使三极管有适当的工作状态(Rb 一般为几十kΩ~几百kΩ)。 (4)、集电极负载电阻Rc :将集电极电流的变化转换为电压的变化,提供给负载,称为集电极负载电阻,防止输出交流信号被短路,(Rc 一般为几kΩ); (5)、耦合电容C1、C2的作用是隔断放大电路与信号源、放大电路与负载之间的直流通路,仅让交流信号流通过,即隔直通交。 C1称为输入耦合电容,使信号源的交流信号传送到放大电路输入端。 C2称为输出耦合电容,把放大后的交流信号传送给负载,一般为几微法。 (耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合)。 、 (6)、负载电阻R L ,为放大器输出端的等效电阻,经放大后的信号输出给R L 。 C1、Rb 、EC 及T 的b 、e 极构成信号的输入电路; C2、Rc 、EC 及T 的c 、e 极构成信号的输出电路。 以三极管为核心的基本放大电路,输入信号ui 从三极管的基极和发射极之间输入,放大后输出信号uo 从三极管的集电极和发射极之间输出,发射极是输入、输出回路的公共端,故称该电路为共发射极放大电路。 在分析放大电路时,常以公共端作为电路的零电位参考点,称之为"地"端(并非真正接到大地)。电路图上用"┻"作标记,电路中各点的电压都是指该点对地端的电位差。电压参考正方向规定为上"+"下"-"电流参考正方向规定为流入电路为正,流出电路为负。 【说明】:放大电路放大的本质.........是能量的控制和转换,在输入信号的作用下,通过放大电路将直流电源的能量转换成负载所获得的能量,使负载从电源获得的能量大于信号源所提供的能量。 2、放大电路的组成原则 (1)、必须有直流电源,电阻适当,同电源配合,使放大管有合适静态工作点(Q 点)。 基极偏置 R b R c V CC C 2 C 1 + + u o … u R L VT + + V BB u o R b R c +V CC C 2 C 1 + + u i ^ R

共射极基本放大电路分析汇总讲解

教案首页

一、组织教学(3分钟) 二、复习旧课5分钟) 三、导入新课(5分钟) 1.检查学生出勤情况、安全文明生产情况; (包括工作服,绝缘鞋等穿戴情况) 2.课前安全教育;按操作规程要求正确操作电器设备的运行。 1、复习旧知识:(1)放大电路的工作原理。 (提问:简述共发射极放大电路的工作原理。) (2)基本放大电路的工作状态分:静态和动态。 (3)静态工作点的设置。 (提问:设置静态工作点的目的是什么?) 2、启发、提出问题:(1)放大电路设置静态工作点的目的是 为了避免产生非线性失真,那么如何设置静态工作点才能避免非线性失真呢? (2)放大器的主要功能是放大信号,那怎 样计算放大器的放大能力呢? 引入新课题:必须学习如何分析放大电路。 课题:§2-2共发射极低频电压放大电路的分析 强调 安全用电 线 路 板 接 通 电 源 连 接 示 波 器 调 R B 观察示波器中输出电压的波形是否失真, 思考,回答 思 考 , 回 答 讲 授 法 讲 授 法 讲 授 法 稳定课堂秩序,准备上课。 巩固已学知识,为本次课程学习新知识作铺垫。 通过实际生产中的问题引入课程内容,激发学生的求知欲望,达到更好的教学效果。 +U CC + + V C 1 C 2 R B R C u i u o 放大电路的分析方法: 近似估算法; 图解分析法 教师活动 教学方法 设计目的 教学内容与过程 学生活动

四、讲授新课(20分钟) 1、分析静态工作点的估算。 (1) 静态工作点要估算的物理量。 提问:什么是静态工作点? 回答:当静态时,直流量I B 、I C 、U CE 在晶体管输出特性曲线上 所对应的点称为静态工作点。 提问:要确定静态工作点,必须要计算什么量? 回答:I B 、I C 、U CE 。 (2) 计算静态工作点的解题步骤。 启发提问:怎样计算I B 、I C 、U CE 呢? 以例2.1为例子,具体讲解静态的分析解题步骤。 ① 学生阅读例题;(例2.1) ② 画图:共发射极基本放大电路; ③ 提问:什么是直流通路? 回答:直流电流通过的路径。 ④画出放大器的直流通路。 方法:电容视为开路,其余不变 画图:放大器的直流通路 ⑤ 计算I B ; 适度引导板书课 题 讲解 学生阅读例题; 学生自己画出直流通路 +U CC V R B R C I CQ I BQ U BEQ U CEQ

第二章放大电路分析基础

第二章放大电路分析基础 1、放大电路工作原理 2、 2、放大电路的直流工作状态2、 3、放大电路的动态分析2、 4、静态工作点的稳定及其偏置电路2、 5、多级放大电路本章要点: 1、放大电路直流状态的解析法和图解法 2、放大电路交流状态的图解法和微变等效电路法 3、三种基本组态放大电路的分析方法 4、多级放大电路的耦合方式及其分析方法电子课件二:放大电路分析基础课时授课教案一授课计划批准人:批准日期:课序:4 授课日期: 授课班次:课题: 第二章 第2、1节: 放大电路工作原理目的要求: 1、掌握基本放大电路的组成原则 2、掌握放大电路的直流通路和交流通路

3、理解放大电路的工作原理重点:放大电路的工作原理难点:放大电路的交流通路教学方法手段:结合电子课件讲解教具:电子课件、计算机、投影屏幕复习提问: 1、三极管的类型及外部工作条件? 2、三级管的特性曲线有何规律?课堂讨论: 1、如何画放大电路的直流通路和交流通路? 2、放大电路中三极管各极电流和极间电压如何变化?布置作业:课时分配:课堂教学环节复习提问新课讲解课堂讨论每课小结布置作业时间分配(分钟)8751052 二、授课内容引言放大电路的任务是不失真地把微小信号放大到所需要的程度。本节首先分析放大电路的组成原则及工作原理。2、 1、放大电路工作原理 2、2、 1、放大电路的组成 一、电路组成基本共发射极放大电路如图2一1所示。V──放大三级管VCC──主电源、能源VBB──发射结偏置电源RC──直流负载电阻,用来确定直流工作点RB──发射结偏置电阻 RL──负载电阻RS、us──信号源的电压和内阻C 1、C2──耦合电容 二、工作条件 1、三极管应处于放大状态。即发射结正偏,集电结反偏。 2、能够输入和输出信号。

基本共射极放大电路电路分析

基本共射极放大电路电路分析 3.2.1基本共射放大电路 1.放大电路概念:基本放大电路一般是指由一个三极管与相应元件组成的三种基本组态放大电路。 a.放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加 强 。 b.输出信号的能量实际上是由直流电源提供的,经过三极管的控制,使之转换成信号能量,提供给负载 。 ■■童■ B r - - ■ :必)iy, :信号 慷: I ■ t>A 放大电路 !?! 2.电路组成:(1)三极管T; (2)VCC :为JC提供反偏电压,一般几?几十伏; (3)RC :将IC的变化转换为Vo的变化,一般几K?几十K。 VCE=VCC-ICRC RC,VCC同属集电极回路。 (4)VBB :为发射结提供正偏。 (习R十一般为儿1 K - JLT- Rb 一般,程骨V開=e7V 当%*宀只£时; ,V B, I B A (6)Cb1,Cb2 :耦合电容或隔直电容, (7)Vi :输入信号 (8)Vo :输出信号 (9)公共地或共同端,电路中每一点的电位实际上都是该点与公 共端之间的电位差。图中各电压的极性是参考极性,电流的参 考方向如图所示。 其作用是通交流隔直流。

V ⑵输入电阻Ri I £黒 b ZC Kt 亡 /〒气 V.V 2^ 3.共射电路放大原理 f' h : 11 12V 峠变化% %变化 7变化 % 尸%-叫好变化 > %变化 SOOK A 4K TH l/cc /jt 躍—=40w/{ Ic = E h = \ .6rffA J cE = f4v-AVr = -bn y T M = —5 址4 4.放大电路的主要技术指标 放大倍数/输入电阻Ri /输出电阻Ro /通频带 (1)放大倍数 放大电路的输出信号的电压和电流幅度得到 了念大,所以输出功零也龛筋「所肢大.对赦夫电 ffilfilH'W:电压放人侣数;凰=峙电 电流放脸倚tt : ■半二扫冷 功率ttXMSi :心=£『尸=峡!鰹 通常它们蛊;fi 按F 张怙宦义的4放大俗数定 义式中各有其S 如图所示,

共射极基本放大电路分析教(学)案

共射极基本放大电路分析 教学容分析:§2-2共发射极低频电压放大电路的分析中的“近似估算法”:近 似估算静态工作点、电压放大倍数。 教学对象及分析:1、基础知识:学生已基本掌握了共发射极低频电压放大电路 组成及工作原理。 2、分析与理解能力:由于放大电路的工作原理比较抽象,学生对此理解不够深刻,并且动手调试电子电路的能力有待提高。所以本次课堂将结合共发射极低频电压放大电路演示测试方式调动学生的主动性和积极性。 教学目的: 1、了解、掌握放大电路的分析方法:近似估算法; 2、培养学生分析问题的能力。 3、培养学生耐心调试的科学精神。 教学方法:演示法、启发法、讲练结合法 教具准备:分压式偏置放大电路实验板、示波器、万用表。 教学重点: 1、共射极放大电路的静态工作点的估算; 2、放大器的电压放大倍数的估算。 教学难点:静态工作点的估算。 教学过程: 一、复习及新课引入: 1、复习旧知识:(1)放大电路的工作原理。 (提问:简述共发射极放大电路的工作原理。) (2)基本放大电路的工作状态分:静态和动态。 (3)静态工作点的设置。 (提问:设置静态工作点的目的是什么?) 2、启发、提出问题:(1)放大电路设置静态工作点的目的是为了避免产生非线 性失真,那么如何设置静态工作点才能避免非线性失真呢? (2)放大器的主要功能是放大信号,那怎样计算放大器的放 大能力呢? 引入新课题:必须学习如何分析放大电路。

板书设计: §2—2 共发射极放大电路的分析

一、近似估算法 1.静态工作点的估算。 2.电压放大倍数的估算: (1) 目的:计算I B 、I C 、U CE 。 (1)目的:计算A u 、R i 、R o 。 (2) 步骤: (2)步骤: ①画直流通路。 ①画交流通路。 ②计算I B 、I C 、U CE 。 ②计算A u 。 改进措施:强调三极管的非线性,分析非线性元件电量计算的特点。 u o i c +U CC I +U CC 2 放大电路的分析方法: 近似估算法; 图解分析法

第二章_放大电路分析基础

第二章放大电路分析基础 XD Univ. @ 诚夏 SincereXIA 放大电路工作原理 放大的基本概念 输出电压或电流在幅度上得到了放大,在能量上得到了加强,能量由直流电源提供放大电路的组成原则 1. 要有直流通路保证发射结正偏,集电结反偏,使晶体管工作在放大区 2. 要有交流通路待放大的输入信号能加到发射结上,放大了的信号能从电路中取出 3. 确保合适的工作点信号始终处于放大区 放大原理 放大电路的信号及常用符号 1. (小写字母,大写下标)——瞬时值,实际的物理信号 2. (大写字母,大写下标) ——实际信号的直流成分 3. (小写字母,小写下标) ——实际信号的交流成分 4. (大写字母,小写下标) ——交流信号的有效值 5. ——交流信号的最大值 放大电路的直流工作状态 确定直流工作状态,就是确定 Q 点

Q点 基极直流电源IB 集电极直流电流IC 集电极与发射极间的直流电压UCE 其中:在三极管输入曲线上确定Q点,在三极管输出曲线上确定 Q 点放大电路的基本分析方法 解析法确定静态工作点 必须已知三极管的值,静态工作点在直流通路求得,直流通路:将电容视为开路 所需要使用的公式 1. 硅 2. 3. 图解法确定静态工作点

1. 在输入特性曲线上,作出直线-,两线的交点即是Q点,得到。 2. 在输出特性曲线上,作出直流负载线-,与IBQ曲线的交点即为Q点,从而得 到和。 电路参数对静态工作点的影响 1. 增加,降低,工作点沿直流负载线下移 2. 减小,减小,斜率绝对值增加,工作点沿特性曲线右移 3. 增加,增大,直流负载线平行右上移,工作点向右上方移动 放大器的动态范围 失真输出电压的峰峰值:。 1. 当--时,受截止失真限制,。 2. 当--时,受饱和失真限制, -。 3. 当--,放大器将有最大的不失真输出电压。 放大电路的动态分析 动态分析的对象是交流通路,分析的关键是做交流负载线 交流通路:电容视为短路,理想直流电压源视为短路(接地) 图解法分析动态特性 三极管工作点的移动不再沿直流负载线,而是按交流负载线移动。 放大电路的非线性失真 1. Q 点过低,信号进入截止区—— 截止失真

基本共射极放大电路电路分析

基本共射极放大电路电路分析 基本共射放大电路 1.放大电路概念:基本放大电路一般是指由一个三极管与相应元件组成的三种基本组态放大电路。 a.放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。 b.输出信号的能量实际上是由直流电源提供的,经过三极管的控制,使之转换成信号能量,提供给负载。 2.电路组成:(1)三极管T; (2)VCC:为JC提供反偏电压,一般几~几十伏; (3)RC:将IC的变化转换为Vo的变化,一般几K~几十K。 VCE=VCC-ICRC RC,VCC同属集电极回路。 (4)VBB:为发射结提供正偏。 (6)Cb1,Cb2:耦合电容或隔直电容,其作用是通交流隔直流。 (7)Vi:输入信号 (8)Vo:输出信号 (9)公共地或共同端,电路中每一点的电位实际上都是该点与公

共端之间的电位差。图中各电压的极性是参考极性,电流的 参考方向如图所示。 3.共射电路放大原理 4.放大电路的主要技术指标 放大倍数/输入电阻Ri/输出电阻Ro/通频带 (1)放大倍数

(2)输入电阻Ri (3)输出电阻Ro

(4)通频带 问题1:放大电路的输出电阻小,对放大电路输出电压的稳定性是否有利? 问题2:有一个放大电路的输入信号的频率成分为100Hz~10kHz,那么放大电路的通频带应如何选择?如果放大电路的通频带比输入信号的频带窄,那么输出信号将发生什么变化? 放大电路的图解分析法 1.直流通路与交流通路 静态:只考虑直流信号,即Vi=0,各点电位不变(直流工作状态)。 动态:只考虑交流信号,即Vi不为0,各点电位变化(交流工作状态)。 直流通路:电路中无变化量,电容相当于开路,电感相当于短路。 交流通路:电路中电容短路,电感开路,直流电源对公共端短路。 放大电路建立正确的静态,是保证动态工作的前提。分析放大电路必须要正确地区分静态和动态,正确地区分直流通道和交流通道。 直流通路

基本共射极放大电路的工作原理

基本共射极放大电路的工作原理 (1)共射组态基本放大电路的组成<?xml:namespace prefix = o /> 共射组态基本放大电路如图1所示。 图1共射组态交流基本放大电路 基本组成如下: 三极管T——起放大作用。 负载电阻RC,RL——将变化的集电极电流转换为电压输出。

偏置电路VCC,Rb——使三极管工作在线性区。 耦合电容C1,C2——输入电容C1保证信号加到发射结,不影响发射结偏置。输出电容C2保证信号输送到负载,不影响集电结偏置。 (2)静态和动态 静态—时,放大电路的工作状态,也称直流工作状态。 动态—时,放大电路的工作状态,也称交流工作状态。 放大电路建立正确的静态,是保证动态工作的前提。分析放大电路必须要正确地区分静态和动态,正确地区分直流通路和交流通路。 (3)直流通路和交流通路 放大电路的直流通路和交流通路如图2中(a),(b)所示。 直流通路,即能通过直流的通路。从C、B、E向外看,有直流负载电阻、Rc、Rb。

交流通路,即能通过交流的电路通路。如从C、B、E向外看,有等效的交流负载电阻、Rc//RL、Rb。 直流电源和耦合电容对交流相当于短路。因为按迭加原理,交流电流流过直流电源时,没有压降。设C1、C2足够大,对信号而言,其上的交流压降近似为零,在交流通路中,可将耦合电容短路。 (a)直流通路(b)交流通路 图2基本放大电路的直流通路和交流通路 (4)放大原理

输入信号通过耦合电容加在三极管的发射结,于是有下列过程: (5)静态工作状态的计算分析法 根据直流通路可对放大电路的静态进行计算

共发射极放大电路理论分析与计算

共发射极放大电路理论分析与计算 理论计算与分析是实现电子电路的非常好的设计手段,这方面是职业学校同学们的弱点,适当地学习一些计算与分析的方法,更能使你的动手能力如虎添翼,节约时间与成本. 1.共发射极放大电路 电路组成 + + + + - + - +U CC R b1 R c R b2 R e R L + - C 1 C 2 u i u o U B C e (a ) C e : 射极旁路电容,使发射极交流接地 静态工作点的估算 R U U I U R R R U E BE BQ EQ CC b b b BQ -= +≈2 12 ) (R R I U U I I I I e c CQ CC CEQ CQ BQ EQ CQ +-≈=≈β 动态分析 1)画出H 参数微变等效电路如下:

r be R b +- u i u o r i r o β i b R c R L + - i b i c b c (a ) 2)共发射放大电路基本动态参数的估算 (1)电压放大倍数 ' -='-=R i R i u L b L c o β r i u R R R be b i L C L ==' // r R r i R i A be L be b L b u ' - ='- =ββ (2)输入电阻r i r R I u r be b i i i //== )//(21R R R b B b = (3)输出电阻r 0 R r C o = (4)源电压放大倍数 r r R u u A be s L s o us +' -==β

下面是对图示共发射极放大电路的计算分析,可以和仿真分析进行对比; 设晶体管的 =100,'bb r =100Ω。(1)求电路的Q 点、u A 、R i 和R o ;(2)若电容C e 开路,则将引起电路的哪些动态参数发生变化如何变化 解:(1)静态分析: V 7.5)( A μ 101mA 1 V 2e f c EQ CEQ EQ BQ e f BEQ BQ EQ CC b2b1b1 BQ =++-≈≈+=≈+-==?+≈R R R I V U I I R R U U I V R R R U CC β 动态分析: Ω ==Ω≈++=-≈++-=Ω≈++=k 5k 7.3])1([7.7)1()(k 73.2mV 26) 1(c o f be b2b1i f be L c EQ bb'be R R R r R R R R r R R A I r r u ββββ∥∥∥ (2)R i 增大,R i ≈Ω;u A 减小,e f ' L R R R A u +-≈ ≈-。

基本共射极放大电路电路分析

基本共射极放大电路电路分析 3.2.1 基本共射放大电路 1. 放大电路概念:基本放大电路一般是指由一个三极管与相应元件组成的三种基本组态放大电路。 a.放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。 b.输出信号的能量实际上是由直流电源提供的,经过三极管的控制,使之转换成信号能量,提供给负载。 2. 电路组成:(1)三极管T; (2)VCC:为JC提供反偏电压,一般几~ 几十伏; (3)RC:将IC的变化转换为Vo的变化,一般几K~几十K。 VCE=VCC-ICRC RC ,VCC 同属集电极回路。 (4)VBB:为发射结提供正偏。 (6)Cb1,Cb2:耦合电容或隔直电容,其作用是通交流隔直流。 (7)Vi:输入信号 (8)Vo:输出信号 (9)公共地或共同端,电路中每一点的电位实际上都是该点与公 共端之间的电位差。图中各电压的极性是参考极性,电流的 参考方向如图所示。

3. 共射电路放大原理 4. 放大电路的主要技术指标 放大倍数/输入电阻Ri/输出电阻Ro/通频带(1) 放大倍数 (2) 输入电阻Ri

(3) 输出电阻Ro (4) 通频带

问题1:放大电路的输出电阻小,对放大电路输出电压的稳定性是否有利? 问题2:有一个放大电路的输入信号的频率成分为100 Hz~10 kHz,那么放大电路的通频带应如何选择?如果放大电路的通频带比输入信号的频带窄,那么输出信号将发生什么变化? 3.2.2 放大电路的图解分析法 1. 直流通路与交流通路 静态:只考虑直流信号,即Vi=0,各点电位不变(直流工作状态)。 动态:只考虑交流信号,即Vi不为0,各点电位变化(交流工作状态)。 直流通路:电路中无变化量,电容相当于开路,电感相当于短路。 交流通路:电路中电容短路,电感开路,直流电源对公共端短路。 放大电路建立正确的静态,是保证动态工作的前提。分析放大电路必须要正确地区分静态和动态,正确地区分直流通道和交流通道。 直流通路 交流通路

第4讲基本共射极放大电路的静态分析

课题:基本共射极放大电路的静态分析 课型:讲练结合 教学目的: 知识目标: 1. 熟悉基本共射极放大电路的组成、特点、工作原理 2. 掌握基本共射极放大电路的静态分析。 技能目标: 学会基本共发射极放大电路静态工作点的调试方法。 教学重点、难点: 重点:基本共发射极放大电路的静态分析 难点:基本共发射极放大电路的静态分析 复习与提问: 1、三极管有哪几种工作状态? (在黑板上画出三极管的输出特性图并提问让学生指出相应的区域) 2、在模拟电子电路中三极管通常工作在什么区? 教学过程: ,也就引子:我们知道在模拟电路中,三极管通常都工作在放大区,那么如何保证三极管始终工作在放大区 是让发射结正偏、集电结反偏?这节课我们主要来解决这个问题. (在黑板上画出基本共射放大电路,进行讲解)我们来看下这个电路. 、基本共射极放大电路 1、电路图

° 十Ucc 2、电路组成元件及作用 (1)三极管V :具有电流放大作用,是放大器的核 心元件。不同的三极管有不同的放大倍数。 产生放大作用的外部条件是:发射结为正向电压偏置,集电结为反向电压偏置。 (2) 集电极直流电源 U cC 确保三极管工作在放大状态。 (3) 集电极负载电阻RC:将三极管集电极电流的变化转变为电压变化,以实现电压放大。 (4) 基极偏置电阻RB:为放大电路提供基极偏置电压。 (5) 耦合电容C i 和C 2:隔直流通交流。 电容C i 和C 2具有通交流的作用,交流信号在放大器之间的传递叫耦合, C i 和C 2正是起到这种作用,所 以叫作耦合电容。C i 为输入耦合电容,C 2为输出耦合电容。 电容C i 和C 2还具有隔直流的作用,因为有 C 和C 2,放大器的直流电压和直流电流才不会受到信号源和 输出负载的影响。 3?放大器的工作原理(这部分知识先在这里讲解,具体的实际操作能力在动态分析的测试中再进行) (1) ui 直接加在三极管 V 的基极和发射极之间,引起基极电流 i B 作相应的变化。 (2) 通过V 的电流放大作用,V 的集电极电流i C 也将变化。 (3) i C 的变化引起V 的集电极和发射极之间的电压 U CE 变化。 (4) u CE 中的交流分量u ce 经过C 2畅通地传送给负载 R L ,成为输出交流电压 uo,,实现了电压放大作用。 二、基本共射放大电路的静态分析(先理论后实践的方法来实现) 我们看到在这个放大电路中,即有交流信号也有直流信号,为了便于分析和理解,我们将分别对这两个 信号在放大电路中的作用进行分析。我们先来学习只有直流信号作用时的放大电路。我们将这种状态叫 静态。 Rc O- + R B C I ■ C 2 K EV R L U o

第二章放大电路分析基础

第二章 放大电路分析基础 〖本章主要内容〗 本章重点讲述基本放大电路的组成原理和分析方法,三种组态基本放大电路的特点和应用场合。多级放大电路的耦合方式和分析方法,差动放大器的分析方法。 首先介绍基本放大电路的组成原则。三极管的低频小信号模型。固定偏置共射放大电路的图解法和等效电路法静态和动态分析,最大不失真输出电压和波形失真分析。分压式偏置共射放大电路的分析以及稳定静态工作点的方法。共集和共基放大电路的分析,由BJT 构成的三种组态放大电路的特点和应用场合。然后介绍多级放大电路的两种耦合方式、直接耦合多级放大电路的静态偏置以及多级放大电路的静态和动态分析,差动放大器的分析方法。通过习题课掌握放大电路的静态偏置方法和性能指标的分析计算方法。 〖学时分配〗 本章有6讲,每讲两个学时。 第四讲 放大电路的工作原理 一、主要内容 1、放大的概念 在电子电路中,放大的对象是变化量,常用的测试信号是正弦波。放大电路放大的本质是在输入信号的作用下,通过有源元件(BJT 或FET )对直流电源的能量进行控制和转换,使负载从电源中获得输出信号的能量,比信号源向放大电路提供的能量大的多。因此,电子电路放大的基本特征是功率放大,表现为输出电压大于输入电压,输出电流大于输入电流,或者二者兼而有之。 在放大电路中必须存在能够控制能量的元件,即有源元件,如BJT 和FET 等。放大的前提是不失真,只有在不失真的情况下放大才有意义。 2、电路的主要性能指标 1) 输入电阻 i R :从输入端看进去的等效电阻,反映放大电路从信号源索取电流的大 小。 2) 输出电阻o R :从输出端看进去的等效输出信号源的内阻,说明放大电路带负载的 能力。 3) 放大倍数(或增益):输出变化量幅值与输入变化量幅值之比。或二者的正弦交流 值之比,用以衡量电路的放大能力。根据放大电路输入量和输出量为电压或电流的不同,有四种不同的放大倍数:电压放大倍数、电流放大倍数、互阻放大倍数和互导放大倍数。

放大电路分析基础解读

第二章 放大电路分析基础 §2、1 放大电路工作原理 一:放大电路的组成原理 基本共发射极电路如图右所示。图中V 是NPN 型三极管,担负放大作用,是整个电路的核心器件。 放大电路的组成原则是: (1):放大器件工作在放大区(三极管的发射结正向偏置,集电结反向偏置) (2):输入信号能输送至放大器件的输入端(三极管的发射结) (3):有信号电压输出。 我们判断一个放大电路能否放大输入,可按上述原则进行。 如用PNP 三极管,则电源和电容C1,C2的极性均反向。 基本放大电路的习惯画法 (1) (2) 二:直流通路和交流通路 在分析放大电路时有两类问题:直流问题和交流问题。 (1)直流通路:将放大电路中的电容视为开路,电感视为短路即得。它又被称为静态分析。 (2)交流通路:将放大电路中的电容视为短路,电感视为开路,直流电源视为短路即得。它又被称为动态分析。 按上述原则,可画出图(2)的直流通路和交流通路。如图所示(3)和(4)。 - u o + - u o + + u o -

§2、2 放大电路的直流工作状态 直流工作点,又称为静态工作点,简称Q 点。它可以通过公式求出,也可以通过作图的方法求出。 一:公式法计算Q 点 根据放大电路的直流通路,估算出放大电路的静态工作点。下面把求I B 、I C 、U CE 的公式列出来 三极管导通时,U BE 的变化很小,可视为常数,我们一般认为:硅管为 0.7V 锗管为 0.2V 例:用估算法计算静态工作点。 已知:V CC=12V ,R C=4K Ω,R b=300K Ω,β=37.5。 解: 二:图解法计算Q 点 三极管的电流、电压关系可用输入特性曲线和输出特性曲线 表示,我们可以在特性曲线上,直接用作图的方法来确定静态工作点。用图解法的关键是正确的作出直流负载线,通过直流负载线与i B =I BQ 的特性曲线的交点,即为Q 点。读出它的坐标即得I C 和U CE 图解法求Q 点的步骤为: (1):通过直流负载方程画出直流负载线,(直流负载方程为U CE =U CC -i C R C ) (2):由基极回路求出I B (3):找出i B =I B 这一条输出特性曲线与直流负载线的交点就是Q 点。读出Q 点的坐标即为所求。 例2:如图(5)所示电路,已知Rb=280千欧,Rc=3千欧,Ucc=12伏,三极管的输出特性曲线如图(6) 所示,试用图解法确定静态工作点。 + u o - A μ400.04mA 300 12 b CC B ===≈ R V I mA 5.104.05.37B C =?=≈I I β6V 41.512C C CC CE =?-=-=R I V U

第二章放大电路分析基础

第二章放大电路分析基础 本章介绍三极管的三种基本组态放大电路的分析方法,为分析其他复杂电路打下基础。 本章内容: 2.1、放大电路工作原理 2.2、放大电路的直流工作状态 2.3、放大电路的动态分析 2.4、静态工作点的稳定及其偏置电路 2.5、多级放大电路 本章要点: 1、放大电路直流状态的解析法和图解法 2、放大电路交流状态的图解法和微变等效电路法 3、三种基本组态放大电路的分析方法 4、多级放大电路的耦合方式及其分析方法 电子课件二:放大电路分析基础

课时授课教案 一授课计划 批准人:批准日期:课序:4授课日期:授课班次:课题:第二章第2.1节:放大电路工作原理 目的要求: 1、掌握基本放大电路的组成原则 2、掌握放大电路的直流通路和交流通路 3、理解放大电路的工作原理 重点:放大电路的工作原理 难点:放大电路的交流通路 教学方法 手段:结合电子课件讲解 教具:电子课件、计算机、投影屏幕 复习提问: 1、三极管的类型及外部工作条件? 2、三级管的特性曲线有何规律? 课堂讨论: 1、如何画放大电路的直流通路和交流通路? 2、放大电路中三极管各极电流和极间电压如何变化?布置作业: 课时分配:

二、授课内容 引言 放大电路的任务是不失真地把微小信号放大到所需要的程度。本节首先分析放大电路的组成原则及工作原理。 2.1、放大电路工作原理 2.2.1、放大电路的组成 一、电路组成 基本共发射极放大电路如图2一1所示。 V──放大三级管 V CC──主电源、能源 V BB ──发射结偏置电源 R C ──直流负载电阻,用来确定直流工作点 R B ──发射结偏置电阻 R L ──负载电阻 R S 、u s ──信号源的电压和内阻 C 1、C 2 ──耦合电容 二、工作条件 1、三极管应处于放大状态。即发射结正偏,集电结反偏。 2、能够输入和输出信号。 3、不失真地放大信号。 为了方便起见通常把V CC及V BB合并为一个直流电源,如图2一2所示。 2.1.2 直流通路和交流通路 一、直流通路 当交流输入信号为零时,电路中只有直流电流和电压,叫直流通路,又叫直流状态。此时,可把耦合电容视为开路。如图2一3(a)所示直流状态又叫静态。分析直流电路,叫直流分析,也叫静态分析。目的在 于分析直流工作点,即求解:I BQ 、U BEQ 、I CQ 、U CEQ 。

电路分析基础基本概念

1实际电路:实际电路是各个器件按照一定的方式相互连接而构成电流的通路。以实现电能或电信号的产生、传输、转换、控制和处理等。 模型:是对实体的特征和变化规律的一种表示或者抽象。 理想电路元件:理想电路元件是用数学关系式严格定义的假想元件,每一种理想电路元件都可以表示其实际器件的其中主要的一种电磁性能,理想电路元件是电路模型的最小组成单元。 R、L、C是电路中的三类基本元件 电路模型:电路模型是实际电路在一定条件下的科学抽象和足够精确的数学描述。 集总概念:当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总起来,这样的元件叫做集总元件,这样的电路参数叫做集总参数,由集总元件构成的电路称为集总电路。 分布概念:当实际电路的尺寸可以电路工作时电磁波的波长相比拟时,电路中同一瞬间相邻两点的电位和电流都不相同,这样的元件叫做分布元件,这样的电路参数叫做分布参数,由分布元件构成的电路叫做分布电路。 集总电路的分类:(1)静态电路(2)动态电路 1

二端元件:具有两个端子的元件叫做二端元件,又叫单口元件支路:电路的每一个二端元件称为一条支路,流经元件的电流叫做支路电流,元件的端电压叫做支路电压。 节点:电路中两条或两条以上的支路的公共连接点叫做节点。回路:电路中由支路组成的任一闭合路径称为回路。 网孔:内部不含有支路的回路叫做网孔。 网络:一般把含有元件较多的电路称为网络。 有源网络:内部含有独立电源的网络 无源网络:内部不含独立电源的网络 平面网络:可以画在一个平面上而不出现任何支路交叉现象的网络。 非平面网络:不属于平面网络即为非平面网络。 KCL:对于任一集总电路的任一节点,在任一时刻,流进(或流出)改节点的支路电流的代数和为零。或表示为流入任一节点的支路电流的等于流出任一节点的支路电流。 KVL:对于任一集总电路的任一回路,在任一时刻,沿着该回路的所有支路电压的代数和为零。或表示为回路中各支路电压升的代数和等于各支路电压降的代数和。

电路分析基础第一章习题答案

§1-1电路和电路模型 l -1晶体管调频收音机最高工作频率约108MHz 。问该收音机的电路是集中参数电路还是分布参数电路? 解:频率为108MHz 周期信号的波长为 m 78.21010810368=??== f c λ 几何尺寸d <<2.78m 的收音机电路应视为集中参数电路。 说明:现在大多数收音机是超外差收音机,其工作原理是先将从天线接收到的高频信号变换为中频信号后再加以放大、然后再进行检波和低频放大,最后在扬声器中发出声音。这种收音机的高频电路部分的几何尺寸远比收音机的几何尺寸小。 §1-2电路的基本物理量 l -2题图 l -2(a)表示用示波器观测交流电压的电路。若观测的正弦波形如图(b)所示。试确定电压u 的表达式和 s 1 s 5.0、=t 和s 5.1时电压的瞬时值。 题图 l —2 解: V 1V )270sin(V )1.5πsin()s 5.1(V 0V )018sin(V )1πsin()s 1(V 1V )90sin(V )5.0πsin()s 5.0(V πsin )(-==?===?===?== u u u t t u 1-3各二端元件的电压、电流和吸收功率如题图1-3所示。试确定图上指出的未知量。 题图 l —3 解:二端元件的吸收功率为p =ui ,已知其中任两个量可以求得第三个量。 W e 4e 22 H,A cos 2sin cos sin 2sin 2sin G,mA 1A 10110 1010 F, mA 1A 101101010 E,V 21 2 D, kV 2V 1021012 C,W μ5W 105101105 B,mW 5W 1051105 ,A 33 333363333t t ui p t t t t t t u p i u p i u p i i p u i p u ui p ui p -------------=?-=-======?=?--=-==?=?===--=-==?=?== -=?-=???-=-==?=??==吸吸吸

相关主题
文本预览
相关文档 最新文档