当前位置:文档之家› 【CN110210313A】基于多尺度PCA3DCNN空谱联合的高光谱遥感影像分类方法【专利】

【CN110210313A】基于多尺度PCA3DCNN空谱联合的高光谱遥感影像分类方法【专利】

【CN110210313A】基于多尺度PCA3DCNN空谱联合的高光谱遥感影像分类方法【专利】
【CN110210313A】基于多尺度PCA3DCNN空谱联合的高光谱遥感影像分类方法【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910369586.1

(22)申请日 2019.05.06

(71)申请人 河海大学

地址 210019 江苏省南京市江宁开发区佛

城西路8号

(72)发明人 杨琪 

(74)专利代理机构 南京苏高专利商标事务所

(普通合伙) 32204

代理人 成立珍

(51)Int.Cl.

G06K 9/00(2006.01)

G06K 9/62(2006.01)

G06N 3/04(2006.01)

G06N 3/08(2006.01)

(54)发明名称基于多尺度PCA-3D-CNN空谱联合的高光谱遥感影像分类方法(57)摘要本发明公开了一种基于多尺度PCA -3D -CNN 空谱联合的高光谱遥感影像分类方法,本发明有效缩短了模型的训练时间,高效提取高光谱影像的特征,显著提高地物分类的精度,且分类性能较传统的2D -CNN模型相比,在遥感影像分类上有明显的优势。传统的2D -CNN模型忽略了每个波段上的像元邻域信息,舍弃了目标地物的空间信息,而空谱联合的多尺度PCA -3D -CNN模型,利用PCA算法降低数据的特征维度和各波段间的相关性,有效缩短模型的训练时间,同时对高光谱影像中的数据进行三维卷积,充分利用高光谱影像空谱联合信息的优势,并设置不同尺寸的卷积核并对输入图像进行多尺度卷积,取得多尺度的特征信息,

极大提高了模型的分类精度。权利要求书2页 说明书11页 附图4页CN 110210313 A 2019.09.06

C N 110210313

A

1.基于多尺度PCA -3D -CNN空谱联合的高光谱遥感影像分类方法,其特征在于:包括以下步骤:

S1:采用PCA技术对高光谱影像的光谱维进行降维处理,将实验中的原始数据集的光谱维使用PCA方法压缩至16维,之后将已降维数据进行标准差归一化处理;

S2:将上述标准差归一化后的数据输入到多尺度PCA -3D -CNN神经网络模型中,取得多尺度的特征信息;

S3:进行模型的训练,将训练样本输入到上述模型中;本方法训练过程中使用dropout 方法随机隐藏全连接层中的部分神经元(隐藏概率为0.5);

S4:待多尺度PCA -3D -CNN神经网络经过样本训练之后,将测试样本输入到网络中进行测试样本的分类;其中本方法将传统CNN模型中倒数第二层激活函数设置为Sigmoid函数,并通过Softmax分类器产生最终标签,模型选用交叉熵作为损失函数,使用Adam梯度下降优化算法,确保损失迅速收敛至全局最小。

2.根据权利要求1所述的基于多尺度PCA -3D -CNN空谱联合的高光谱遥感影像分类方法,其特征在于:S1步骤中,

将已降维数据进行标准差归一化处理采用如下公式(1):

其中x ′为进行标准差归一化后输出值,x为降维后的输入数据值,μ为数据集样本均值,σ为标准差。

3.根据权利要求1所述的基于多尺度PCA -3D -CNN空谱联合的高光谱遥感影像分类方法,其特征在于:S2步骤中,多尺度PCA -3D -CNN神经网络模型包含五个卷积层、三个全连接层,其中卷积层选用三维卷积核且其数目逐层翻倍,其中第一、二层卷积层采用多尺度卷积核(1*1*3,3*3*3,5*5*3),设置不同尺寸的卷积核并对输入图像进行多尺度卷积,取得多尺度的特征信息。

4.根据权利要求3所述的基于多尺度PCA -3D -CNN空谱联合的高光谱遥感影像分类方法,其特征在于:S2步骤中,每次卷积选取三个波段,在空间维上,采用多尺度卷积(1*1,3*3,5*5)来提取多尺度邻域特征。

5.根据权利要求4所述的基于多尺度PCA -3D -CNN空谱联合的高光谱遥感影像分类方法,其特征在于:S2步骤中,卷积过程中将padding设置为“SAME ”,并选用Relu激活函数增加网络的非线性,第三至五层卷积层使用单一尺度的卷积核(3*3*3),将不同尺度的特征进行统一整合,为了减少提取特征的数量,避免出现提取特征过多的问题,同时将padding设置为“Valid ”;

整个3D卷积过程可用公式2表示:

其中,h、w分别表示空谱维度上卷积点在卷积核上的长度及宽度位置,r表示卷积点在光谱维度上在卷积核上的位置,i表示网络层数变量,j表示卷积核数变量,m表示第i -1层中与当前特征图相连的特征图,H i 与W i 表示卷积核的长度和宽度,R i 表示卷积核在光谱维度上的尺寸,(x ,y ,z)表示卷积核上位置,

表示第i层网络中第j个卷积核上位置(x ,y ,z)的值,代表与(h ,w ,r)相连的第m个特征图的连接权值,b i ,j 表示第i层第j个特征图的偏置;

权 利 要 求 书1/2页2CN 110210313 A

Bruker Q4 TASMAN全谱直读光谱仪使用手册

德国BRUKER公司 Q4TASMAN直读光谱仪用户使用手册

仪器正面视图 仪器日常分析的所有操作均可通过仪器正面的操作按钮实现,由于仪器的简洁以及人性化设计,使得Q8的操作变得异常简单 火花台 火花台是用于样品检测过程中放置样快的地方,Q8的火花台包括: ●气动样品夹,针对不同形状样品,上方固定针可垂直放置或倾斜放置; ●火花台板及火花开口以及下电极。 操作按钮 在Q4仪器正面面板上有三个操作按钮: ?O形图案按钮用于停止某次测量过程,该按钮只在样快前处理不当或在火花台上位置放 置不当的情况下使用,按下该按钮后,屏幕上将不出现分析数据。 ?I形图案按钮用于开始某次测量,该功能也可通过键盘上的F2功能键实现 ?下边旋钮为维护旋钮,当对仪器进行维护时,须将旋钮旋至关闭状态(向左),在该状 态下,仪器将切断高压及火花激发源,只有在所有部件都归位的情况下,才可将维护旋钮打开。 火花台盒

火花台盒位于火花台的下方,通过把手可将火花台盒拉开。这时,可相应的把电极和火花台板松开。若要将其重新关上,只需用力往上推,直到听见清脆的锁紧声为止。 注意:在打开火花台盒之前,请将仪器背面的维修旋钮旋至关闭状态。 仪器背面视图 仪器背面面板包括了主电源开关,维修旋钮,氩气输入输出端等,虽然在日常工作中较少接触仪器背面面板,但为维修方便,请将仪器背面通道让出。 旋钮 在仪器背面面板上,有两个旋钮,分别是电源开关和维修旋钮。在进行仪器维护工作时,请将维修旋钮置于关闭状态,这样将断开高电压及火花激发源。只有在所有部件都归位的情况下,才可将维护旋钮打开。 只有在主电源开关和维护旋钮都开启的状态下,才可进行样快的分析工作。 电源插座 仪器背面的电源插座为计算机、显示器、打印机及其它设备提供电源输出,所借设备的功率不得高于300W。该电源接口不可用于真空净化器、打磨机、车床等高功率设备。 注意:即使仪器开关关闭,接口仍带有230V的电压。 仪器准备 检查氩气输出及压力 对于仪器的日常使用必须确保具有充足的氩气供应,氩气的输出压力应设定为3 bar 假如氩气通过氩气瓶供应的话,钢瓶压力应高于10bar,假如低于这个数值,请及时更换氩气瓶 废气瓶 废气瓶应装3/4左右的水

如何解析红外光谱图解读

如何解析红外光谱图 一、预备知识 (1)根据分子式计算不饱和度公式: 不饱和度Ω=n4+1+(n3-n1)/2其中: :化合价为4价的原子个数(主要是C原子), n 4 :化合价为3价的原子个数(主要是N原子), n 3 n :化合价为1价的原子个数(主要是H,X原子) 1 (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对); (4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 二、熟记健值 1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。 3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。 4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。 芳烃重要特征:在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。C-H面外弯曲振动吸收880~680cm-1,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常用判别异构体。

高光谱遥感数据最佳波段的选择

高光谱遥感数据最佳波段的选择根据自己对具体影像解译的要求进行波段的选择,以提高解译的速度和精度。 若要获得丰富的地质信息和地表环境信息,可以选择TM(7、4、1)波段的组合,TM(7、4、1)波段组合后的影像清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚; 若要获得监测火灾前后变化分析的影像,可以选择TM(7、4、3)波段的组合,它们组合后的影像接近自然彩色,所以可通过TM(7、4、3)彩色合成图的分析来掌握林火蔓延与控制及灾后林木的恢复状况; 若要获得砂石矿遥感调查情况,可以选择TM(5、4、1)波段组合;用TM影像编制洲地芦苇资源图时,宜用TM(3、4、5)波段组合的影像,分辨率最高,信息最丰富;用MSS图像编制土地利用地图,通常采用MSS(4、5、7)波段的合成影像; 若要再区分林、灌、草,则需要选用MSS(5、6、7)波段的组合影像。 遥感影像时相的选择: 遥感影像的成像季节直接影响专题内容的解译质量。对其时相的选择,既要根据地物本身的属性特征,又要考虑同一地物不同地域间的差异。例如解译农作物的种植面积最好选在8、9月份,因为这时作物成熟了,但还没有收割,方便各种作物的区别;解译海滨地区的芦苇地及其面积宜用5、6月份的影像;解译黄淮海地区盐碱土分布图宜用3、4月份的影像。高分辨率影像的选择:

分辨率的选择要符合自己的实际需要,分辨率高对解译速度和精度都有很大帮助。随着科技的不断发展,已经有了15~30m分辨率的ETM/TM影像、2.5~5.0m分辨率的SPORT 影像、2m分辨率的福卫二号、lm分辨率的ORBVIEW一3/IKONOS、0.6m分辨率的QUICK BIRD等。法国SPOT-5卫星影像分辨率可达到2.5m,并可获得立体像对,进行立体观测。SPOT一5卫星上的主要遥感设备是2台高分辨率几何成像仪(HRVIR),其工作谱段有4个,主要任务是监测自然资源分布,特别是监测农业、林业和矿产资源,观测植被生长状态与农田含水量等项,对农作物进行估产,了解城市建设与城市土地利用状况等。卫星遥感传感器和遥感数据处理技术发展很快,一些传感器的立体观测,各类遥感数据分辨率的提高,为遥感影像解译标志和遥感影像信息模型的开发、研究提供了有利条件,为快速和精确地进行解译提供了便利。 ETM+遥感不同波段的用途 741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。

光电直读光谱仪原理与结构图

光电直读光谱仪为发射光谱仪,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。 一、原理简介: 直读光谱仪采用原子发射光谱学的分析原理,样品经过电弧或火花放电激发成原子蒸汽,蒸汽中原子或离子被激发后产生发射光谱,发射光谱经光导纤维进入光谱仪分光室色散成各光谱波段,根据每个元素发射波长范围,通过光电管测量每个元素的最佳谱线,每种元素发射光谱谱线强度正比于样品中该元素含量,通过内部预制校正曲线可以测定含量,直接以百分比浓度显示。 主要领域几乎涵盖所有金属行业。 目前无论国内还是国外的光电直读光谱仪,基本可按照功能分为4个模块,即: 1、激发系统:任务是通过各种方式使固态样品充分原子化,并放出各元素的发射光谱光。 2、光学系统:对激发系统产生出的复杂光信号进行处理(整理、分离、筛选、捕捉)。 3、测控系统:测量代表各元素的特征谱线强度,通过各种手段,将谱线的光强信号转化为电脑能够识别的数字电信号。控制整个仪器正常运作

4、计算机中的软件数据处理系统:对电脑接收到的各通道的光强数据,进行各种算法运算,得到稳定,准确的样品含量。 二、光电直读光谱仪4个模块的种类和特点: 1、激发系统: (1)高能预燃低压火花激发光源+高纯氩气激发气氛:采用高能预燃,大幅降低了样品组织结构对原子化结果的影响 (2)高压火花激发光源+高纯氩气激发气氛:采集光强不稳定 (3)低压火花激发光源+高纯氩气激发气氛:对同一样品光强稳定,但是对于样品组织结构对原子化的影响无能为力 (4)直流电弧激发光源+高纯氩气激发气氛:对样品中的痕量元素光谱分辨率和检出限有好效果。 5)数控激发光源+高纯氩气激发气氛:按照样品中各元素的光谱特性,把激发过程分为灵活可调的几个时间段,每段时间只针对某几个情况相近的元素给出最佳的激发状态进行激发,并仅采集这几个元素。把各元素的激发状态按照试验情况进行分类讨论) 2、光学系统: (1)帕邢-龙格光学系统(固定光路,凹面光栅及排列在罗兰轨道上的固定出射狭缝阵列):光学系统结构稳定,笨重,体积大。 (2)中阶梯光栅交叉色散光学系统(采用双单色器交叉色散技术,达到了高级次同级的高分辨率,同时又用二次色散解决了光谱的级次重叠问题):体积小,分辨率高,一般采集接固体成像系统。 3、测控系统: (一)测量系统:

常见高分子红外光谱谱图解析

常见高分子红外光谱谱图解析1. 红外光谱的基本原理 1)红外光谱的产生 能量变化 ν νhc h= = E - E = ?E 1 2 ν ν h ?E = 对于线性谐振子 μ κ π ν c 2 1 = 2)偶极矩的变化 3)分子的振动模式 多原子分子振动 伸缩振动对称伸缩 不对称伸缩 变形振动AX2:剪式面外摇摆、面外扭摆、面内摇摆 AX3:对称变形、反对称变形 . 不同类型分子的振动 线型XY2: 对称伸缩不对称伸缩 弯曲

弯曲型XY2: 不对称伸缩对称伸缩面内弯曲(剪式) 面内摇摆面外摇摆卷曲 平面型XY3: 对称伸缩不对称伸缩面内弯曲 面外弯曲 角锥型XY3: 对称弯曲不对称弯曲

面内摇摆 4)聚合物红外光谱的特点 1、组成吸收带 2、构象吸收带 3、立构规整性吸收带 4、构象规整性吸收带 5、结晶吸收带 2 聚合物的红外谱图 1)聚乙烯 各种类型的聚乙烯红外光谱非常相似。在结晶聚乙烯中,720 cm-1的吸收峰常分裂为双峰。要用红外光谱区别不同类型的聚乙烯,需要用较厚的薄膜测绘红外光谱。这些光谱之间的差别反映了聚乙烯结构与线性—CH2—链之间的差别,主要表现在1000-870㎝-1之间的不饱和基团吸收不同,甲基浓度不同以及在800-700㎝-1之间支化吸收带不同。

低压聚乙烯(热压薄膜) 中压聚乙烯(热压薄膜) 高压聚乙烯(热压薄膜)

2.聚丙烯 无规聚丙烯

等规聚丙烯的红外光谱中,在1250-830 cm-1区域出现一系列尖锐的中等强度吸收带(1165、998、895、840 cm-1)。这些吸收与聚合物的化学结构和晶型无关,只与其分子链的螺旋状排列有关。 3.聚异丁烯 CH3 H2 C C n CH3

直读光谱仪常见问题

电直读光谱仪用氩气净化机使用总结与故障处理 一、氩气净化机的再生总结 1、电源电压为220V,电压要稳,可通过单独供电或加稳压电源即可,但稳压电源也必须是稳压效果较好的,电压波动在规定的范围内 2、送电前一定要确保电流调节旋钮处于零位置,并将温度设定旋钮旋到设定的350度, 3、准备一瓶高纯氩气,减压阀,2个再生阀,熟料管等,并将减压阀与氩气瓶连接好,再将管子与减压阀接好,根据需要选择1#或2#再生端口,此时,应打开气瓶将管子内部的空气排尽,注意:此时不要关掉气瓶,应保持气瓶微开。将再生排气堵头快速拆下,并快速按上再生阀,此时应对气瓶到再生阀处进行检漏操作,同时将再生进气堵头快速拆下,快速按上再生阀,最后,将再生排气阀调到微开状态。 4、送电,将再生万能转换开关打到要再生的塔上,对于塔的红灯亮,温度表的绿灯亮。 5、手动缓慢调节电流调节旋钮至5-6A,再生开始,当温度升到150度时,开始放气,每隔15分钟瞬时将阀门旋到最大放气大约30秒后再调到原来的状态。 6、当温度升到350度时,自动保持恒温4小时后,手动将电流调节旋钮旋到最小,此时将氩气钢瓶阀门关掉,将再生进气阀关掉,开启工作进气阀,将再生出气阀的流量控制的低一点,直到降到100度时,此时停止放气,但根据经验应继续放气最好,且降到室温再停止放气效果最佳,关闭再生出气阀,2分钟后,关闭工作出气阀以保证再生设备充以正压留作备用。同时关掉电源,将再生转换开关旋至零位。 7、再生完毕后,光谱仪要进行打点试验,如发现点不圆较大有毛刺时,应对仪器进行放气操作。之后,仪器要进行标准化。 一般氩气净化机的进气压力为,计为3公斤压力。 二、氩气净化机的故障处理 故障1:电炉丝烧断故障 处理:更换炉丝 故障2:热电偶烧坏 处理:用万用表量,一般热电偶在欧姆左右时为正常,当远大于欧姆时,热电偶烧坏。

空谱联合先验的高光谱图像解混与分类方法

空谱联合先验的高光谱图像解混与分类方法高光谱成像是近年来遥感领域发展较快、较前沿的技术。由于包含丰富的空间、辐射和光谱三重信息,高光谱遥感已被广泛应用于精准农业、矿物勘测、军事目标识别、环境监测、灾害评估等领域。 因此,对高光谱数据的处理与解译具有重要的理论意义和实际应用价值。高光谱解混和分类是高光谱遥感信息处理中的关键科学问题,也是定量分析以及后续应用的重要基础。 由于受仪器、大气辐射、光照不均、地物结构等因素的影响,相同地物的光谱曲线存在一定的差异,使得仅利用光谱信息的解混和分类方法的精度无法得到保障。空间信息可以充分刻画地物结构,有效降低“同质异谱”的影响,空谱联合的方法受到众多学者的重视。 本文研究围绕高光谱线性解混、分类等高光谱数据处理中的热点问题,重点提出基于光谱库的l1/2正则化稀疏回归解混方法、以及空谱联合的高光谱分类方法,并在此基础上设计了相应问题的高效算法。本文所做的主要工作和研究成果如下:1、根据高光谱线性解混模型,利用光谱库作为端元字典,将解混问题转化为稀疏回归问题;针对模型解的唯一性要求进行光谱库预优,利用l1/2范数对丰度系数向量进行稀疏正则化约束,在“和为一”、“非负性”条件下,提出了一种约束的l1/2正则化稀疏回归解混模型,并通过迭代重加权的l1算法进行优化求解。 模拟和真实高光谱数据实验表明,基于光谱库的l1/2正则化稀疏回归解混方法能够有效地从光谱库字典中选择出端元并准确反演出其对应的丰度系数。2、针对高光谱监督分类问题,在贝叶斯最大后验框架下,利用l1-l2正则化稀疏表

示方法对似然概率进行建模,并利用MRF分类标签的空间先验进行建模,提出了稀疏表示和马尔可夫场空间先验相结合的空谱联合分类模型,并通过图割算法进行了快速近似求解。 真实高光谱数据实验表明,基于稀疏表示与马尔可夫场空间先验相结合的高光谱分类模型能够有效地提升分类精度,且分类精度优于主流的分类方法。3、在贝叶斯推断框架下,采用稀疏多项式逻辑回归方法对似然概率进行建模,并将最大后验(MAP)分布的边际概率作为实值的隐形场引入到马尔可夫空间先验中,提出了一种加权马尔可夫场空间先验的高光谱分类方法。 利用最大后验边际概率上的加权TV函数定义该马尔可夫场的势函数,并将MAP分类模型转化为加权TV正则化的变分模型,同时添加“非负性”、“和为一”以及“训练样本类别标签固定”三个约束项,建立约束条件下的空谱分类模型,并利用ADMM方法提出了SMLR-SpATV (sparse multinomial logistic regression based spatially adaptive total variation method)算法对模型进行了快速求解。实验结果表明所提出的基于隐形场空间先验的空谱分类模型对高光谱分类的有效性,对比实验表明该方法优于主流的分类方法。 4、为了充分挖掘特征空间与原始空间、全局分类与局部分类的特点,提出了一种子空间逻辑回归分类器与稀疏表示分类器融合的空谱分类方法。其中,仅利用光谱信息的分类概率是由子空间逻辑回归分类器和稀疏表示分类器以一定的方式融合求得,空间先验信息由边缘保持的马尔可夫随机场进行建模。 最后,空谱模型采用图割算法进行快速优化求解。真实高光谱数据实验表明:多分类器融合能够充分发挥多个分类器的优点,分类结果大大高于单个分类器,且优于大部分主流的高光谱分类方法。

光电直读光谱仪原理

光电直读光谱仪原理、简介分类、维护及故障排除: 一、原理简介: 光电直读光谱仪为发射光谱仪,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。 目前无论国内还是国外的光电直读光谱仪,基本可按照功能分为4个模块,即: 1、激发系统:任务是通过各种方式使固态样品充分原子化,并放出各元素的发射光谱光。 2、光学系统:对激发系统产生出的复杂光信号进行处理(整理、分离、筛选、捕捉)。 3、测控系统:测量代表各元素的特征谱线强度,通过各种手段,将谱线的光强信号转化为电脑能够识别的数字电信号。控制整个仪器正常运作 4、计算机中的软件数据处理系统:对电脑接收到的各通道的光强数据,进行各种算法运算,得到稳定,准确的样品含量。 二、光电直读光谱仪4个模块的种类和特点: 1、激发系统: (1)高能预燃低压火花激发光源+高纯氩气激发气氛:采用高能预燃,大幅降低了样品组织结构对原子化结果的影响 (2)高压火花激发光源+高纯氩气激发气氛:采集光强不稳定 (3)低压火花激发光源+高纯氩气激发气氛:对同一样品光强稳定,但是对于样品组织结构对原子化的影响无能为力 (4)直流电弧激发光源+高纯氩气激发气氛:对样品中的痕量元素光谱分辨率和检出限有好效果。 (5)数控激发光源+高纯氩气激发气氛:按照样品中各元素的光谱特性,把激发过程分为灵活可调的几个时间段,每段时间只针对某几个情况相近的元素给出最佳的激发状态进行激发,并仅采集这几个元素。把各元素的激发状态按照试验情况进行分类讨论) 2、光学系统: (1)帕邢-龙格光学系统(固定光路,凹面光栅及排列在罗兰轨道上的固定出射狭缝阵列):光学系统结构稳定,笨重,体积大。 (2)中阶梯光栅交叉色散光学系统(采用双单色器交叉色散技术,达到了高级次同级的高

高光谱遥感实习报告

高光谱遥感实习报告 目录 一.数据预处理 (2) 1. 数据说明 (2) 2.数据转换 (3) 2.FLAASH大气校正 (4) 3.图像裁剪 (7)

二.光谱识别与地物分析 (8) 1.波段相关性分析 (8) 2.MNF变换 (8) 3.端元提取 (10) 3.1 2-D散点图法 (10) 3.2基于PPI的端元提取(N维散点图法) (13) 三.实习心得 (19) 一.数据预处理 1.数据说明 环境与灾害监测预报小卫星星座A、B星(简称环境小卫星,简写HJ-1A /1B)于2009

年3月30日开始正式交付使用,HJ-1-A星搭载了CCD相机和超光谱成像仪(HSI),HJ-1-B 星搭载了CCD相机和红外相机(IRS)。HJ-1A /1B卫星是继我国继气象、海洋、国土资源卫星之后一个全新的民用卫星。卫星投入使用后,对自然灾害、生态破坏、环境污染进行大范围、全天候、全天时的动态监测,对灾害和环境质量进行快速和科学评估,提高灾害和环境信息的观测、采集、传送和处理能力,为紧急救援、灾后救助及恢复重建和环境保护工作提高科学依据。 HSI 对地成像幅宽为50 km, 星下点像元地面分辨率为100 m,115个波段,工作谱段:459~ 956nm。具有30度侧视能力和星上定标功能。HJ-1数据应用于自然灾害、生态环境之前,需要进行几何及光谱方面的预处理。ENVI在数据读取、图像配准、精确大气校正等方面提供了非常好的工具。 2.数据转换 目前,网上免费获取的HJ-1A /1B卫星CCD和HSI影像的分发的格式主要有两种:CCD 为Geotiff,每一个波段为一个Geotiff文件,并提供一个元数据说明(.XML); HSI为HDF5格式,也提供一个元数据说明(.XML)。 使用HJ-1数据读取补丁,启动ENVI->File->Open External File->HJ-1->HJ-1A /1B Tools工具。直接读取CCD、HIS、IRS数据,之后选择Basic Tools->Convert Data(BSQ,BIL,BIP),将刚才生成的文件转成BIL储存顺序的文件。至此,已经将HSI数据转成BIL储存顺序、带有中心波长信息、波段宽度信息的ENVI格式文件。 图1.1 HJ-1A /1B Tools面板

直读光谱仪讲义 第一章 直读光谱仪的概况

第一章直读光谱仪的概况 国内外光电直读光谱仪的发展 光谱起源于17世纪,1666年物理学家牛顿第一次进行了光的色散实验。他在暗室中引入一束太阳光,让它通过棱镜,在棱镜后面的自屏上,看到了红、橙、黄、绿、兰、靛、紫七种颜色的光分散在不同位置上——即形成一道彩虹。这种现象叫作光谱.这个实验就是光谱的起源,自牛顿以后,一直没有引起人们的注意。到1802年英国化学家沃拉斯顿发现太阳光谱不是一道完美无缺的彩虹,而是被一些黑线所割裂。 1814年德国光学仪器专家夫琅和费研究太阳光谱中的黑斑的相对位置时.把那些主要黑线绘出光谱图。 1826年泰尔博特研究钠盐、钾盐在酒精灯上光谱时指出,发射光谱是化学分析的基础、钾盐的红色光谱和钠盐的黄色光谱都是这个元素的特性。 到1859年克希霍夫和本生为了研究金属的光谱自己设计和制造了一种完善的分光装置,这个装置就是世界上第一台实用的光谱仪器,研究火焰、电火花中各种金属的谱线,从而建立了光谱分析的初步基础。 从1860年到1907年之间、用火焰和电火花放电发现碱金属元素铯Cs、1861年又发现铷Rb和铊Tl,1868年又发现铟In和氦He。1869年又发现氮N。1875~1907年又相继发现镓Ga,钾K,铥Tm,镨Pr,钋Pe,钐Sm,钇y,镥Lu等。 1882年,罗兰发明了凹面光栅,即是把划痕直接刻在凹球面上。凹面光栅实际上是光学仪器成象系统元件的合为一体的高效元件,它解决了当时棱镜光谱仪所遇到的不可克服的困难。凹面光栅的问世不仅简化了光谱仪器的结构,而且还提高了它的性能。 波耳的理论在光谱分析中起了作用,其对光谱的激发过程、光谱线强度等提出比较满意的解释。 从测定光谱线的绝对强度转到测量谱线的相对强度的应用,使光谱分析方法从定性分析发展到定量分析创造基础。从而使光谱分析方法逐渐走出实验室,在工业部门中应用了。 1928年以后,由于光谱分析成了工业的分析方法,光谱仪器得到迅速的发展,一方面改善激发光源的稳定性,另一方面提高光谱仪器本身性能。 最早的光源是火焰激发光谱;后来又发展应用简单的电弧和电火花为激发光源,在上世纪的三十、四十年代改进采用控制的电弧和电火花为激发光源,提高了光谱分析的稳定性。工业生产的发晨,光谱学的进步,促使光学仪器进一步得到改善,而后者又反作用于前者,促进了光谱学的发展和工业生产的发展。 六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展。由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。 解放后,我国的光谱仪器工业从无到有,由小到大,得到飞跃的发展,且具有一定的规模,与世界先进技术竞争中求生存,社会商品竞赛中得到发展。 1958年开始试制光谱仪器,生产了我国第一台中型石英摄谱仪,大型摄谱仪,单色仪等。中科院光机所开始研究刻制光栅,59年上海光学仪器厂,63年北京光学仪器厂开始研究刻制光栅,63年研制光刻成功。1966—1968年北京光学仪器厂和上海光学仪器厂先后研制成功中型平面光栅摄谱仪和一米平面光栅摄谱仪及光电直读头。1971—1972年由北京第二光学仪器厂研究成功国内第一台WZG—200平面光栅光量计,结束了我国不能生产光电直读光谱仪的历史。 八十年代以来,我国铸造行业开始引进光电直读光谱仪作为熔炼过程中化学成份控制的分析手段,并逐步取代了我国传统的湿法化学分析法,至今已发展到中小企业也逐步采用光谱法配合作炉前分析。

直读光谱仪

TECHNICAL DOCUMENT 技术文件 ARL 3460 金属分析仪(直读光谱仪)制造商:Thermo Scientific(瑞士)

1. Scope of Supply 供货范围 No. 序号 Ref. No. 参考号 Description 说明 Qty.数量 1 OE-34ADV A RL 3460 Advantage Metals Analyzer ARL 3460AD 金属分析仪 1 ? One meter focal length, Paschen-Runge polychromator made of cast iron 一米焦距,帕邢龙格装置,光谱室由特殊铸铁制造; ? Vacuum spectrometer 真空型光谱室 ? Temperature controlled to 38 ±0.1o C 温控系统 (38±0.1o C); ? MBS 201/I argon stand MBS 201/I 充氩激发台; ? Spark table with diam. 16mm hole & electrode holder assembly 直径16mm 的火花激发台,包括电极夹具装置; ? Cooling system for spark table 激发台水冷系统 ? HiRep II excitation source with High Energy Prespark capacity, 400Hz 具有高能预火花能力的HiRep II 高重复率火花激发光源,400Hz ; ? Integral measuring electronics section 积分测量电子部分; ? Status control card ? Diagnostics 光谱仪状态控制卡 ? 具有自诊断功能 OXSAS OXSAS analytical software OXSAS 分析软件(中文分析软件) 1 OXSAS analytical software OXSAS 分析软件,主要功能如下: ? Graphic user interface. Navigation, operation and display through HTML pages using Internet Explorer; 图解式用户界面;使用Explorer 浏览器,通过HTML 页面进行导航、操作和显示。? Shortcuts for analyses and other ordinary tasks with one click; 使用单键捷径式操作进行分析和其他日常任务操作。 ? Automatic analytical program choice;自动分析程序选择。 ? Manual input of values;手工数据出入。 ? Flexible result display and printing;灵活的分析结果显示和打印。 ? Quality check & quality sort;质量检查和分类。 ? Concentration result recalculation;浓度结果再计算; ? Instrument control with on-line integrated SPC-Basic; 基于在线式基本SPC 技术的仪器控制。 ? Instrument standardization and type standardization with audit trail; 采用检查跟踪方式进行仪器标准化和类型标准化。 ? Software and instrument configuration tools and utilities; 软件和仪器配置工具及应用。 ? Result storage. Basic post-treatment and export to popular software applications;结果存储;基本的处理后管理并输出到通用的应用软件中。 ? Result validation and edition, with audit trail; 采用检查跟踪方式对分析结果进行确认和编辑。

高光谱遥感数据的大气校正

实验二高光谱遥感数据的大气校正 --GIS0901 赵建平 2009303200901 一. 基本概念: a)大气散射 辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开,称为散射。大气散射是电磁波同大气分子或气溶 胶等发生相互作用,使入射能量以一定规律在各方向重新分布 的现象。其实质是大气分子或气溶胶等粒子在入射电磁波的作 用下产生电偶极子或多极子振荡,并以此为中心向四周辐射出 与入射波频率相同的子波,即散射波。散射波能量的分布同入 射波的波长、强度以及粒子的大小、形状和折射率有关。 b)大气吸收和地面遥感可以利用的主要大气窗口 对遥感传感器而言,只有选择透过率高的波段才对观测有意义。电磁波通过大气层较少被反射、吸收和散射的那些透射 率高的波段成为大气窗口。通常把太阳光透过大气层时透过率 较高的光谱段称为大气窗口。大气窗口的光谱段主要有: 微波波段(即0.8~2.5cm),由于微波穿云透雾能力强,这一区间可以用于全天候观测,而且是主动遥感方式。 远红外波段(即8~14μm),主要通透来自地物热辐射的能量,适用于夜间成像。 中红外波段(即3.5~5.5μm),该波段除了反射外,地面物体也可以自身发射热辐射能量。 近、中红外波段(即1.5~1.8μm和2.0~3.5μm),是白天

日照条件好时扫描成像的常用波段。 紫外、可见光和近红外波段(即0.3~1.3μm)这一波段是摄影成像的最佳波段,也是许多卫星传感器扫描成像的常用波段。 c)天空为什么是蓝色的?太阳升起和落下时天空为什么是红色 或橘红色? 我们所看到的蓝天是因为空气分子和其他微粒对入射的太阳光进行选择性散射的结果。当微粒的直径小于可见光波长时,散射强度和波长的4次方成反比,不同波长的光被散射的比例不同。当太阳光进入大气后,空气分子和微粒(尘埃、水滴、冰晶等)会将太阳光向四周散射。组成太阳光的红、橙、黄、绿、蓝、靛、紫7种光中,红光波长最长,紫光波长最短。 波长比较长的红光透射性最大,大部分能够直接透过大气中的微粒射向地面。而波长较短的蓝、靛、紫等色光,很容易被大气中的微粒散射。因此晴天天空是蔚蓝的。 当太阳将要落山时,太阳光穿透大气层到达观察者所经过的路程要比中午时长得多,更多的光被散射和反射,所以光线也没有中午时明亮。因为在到达所观察的地方,波长较短的光——蓝色和紫色的光几乎已经散射殆尽,只剩下橙色和红色的光,所以随着太阳慢慢落下,天空看起来也从橙色变成红色。 同样道理,当太阳升起的时候,也是橙色或者红色的。 d)为什么要进行大气校正?

直读光谱仪哪个品牌好

直读光谱仪,即原子发射光谱仪。二战后,由于欧洲重建,市场对钢铁检测有巨大的需求,也促进了相关检测仪器的发展。六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展,由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。下面就让合肥卓越分析仪器有限责任公司为您简单介绍一下,希望可以帮助到您! 直读光谱仪品种分为火花直读光谱仪,光电直读光谱仪,原子发射光谱仪,原子吸收光谱仪,手持式光谱仪,便携式光谱仪,能量色散光谱仪,真空直读光谱仪,直读光谱仪分为台式机和立式机。

直读光谱仪广泛应用于铸造,钢铁,金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检,质检等单位。 工作原理分类 根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪. 经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器.经典光谱仪器都是狭缝光谱仪器.调制光谱仪是非空间分光的,它采用圆孔进光. 分光原理分类 根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪, 衍射光栅光谱仪和干涉光谱仪.

合肥卓越分析仪器有限责任公司是一家生产销售红外碳硫,直读光谱,智能元素分析仪,分光光度计专业化公司,公司数年来生产化学分析仪器,直读光谱分析仪,理化实验室工程,理化分析检测人员培训服务遍及全国各省市地区。 公司多年来对耐磨材料、耐热材料、球墨铸铁、球铁灰铁分析检测,分析研究投入大量人力、财力,总结丰富经验。为用户提供了可靠可行分析方案。公司产品遍布全国各省市地区,出口俄罗斯、蒙古国、吉尔吉斯斯坦、巴基斯坦、缅甸、越南、南非等数十个国家。 公司以三耐材料(耐磨,耐热,耐蚀)分析,矿山分析高中低合金铸造分析见长,为客户实现精确,快速分析提供最佳方案,特别针对原材料:锰铁、硅铁、镍铁等铁合金分析有独到之处。 公司承建的大中型及小型理化中心或化学实验室,从设计开始,设备及器材配置,专业人才培训满足不同层次客户的实际要求,深受海内外用户青睐。欢迎来电咨询合作。

直读光谱仪操作规程全

直读光谱仪操作规程全 为保证直读光谱仪系统发挥正常功能,特制定本规范,规定了直读光谱仪的作业环境、作业过程、维护保养等具体细节。 3. 直读光谱仪作业环境要求 1.1 直读光谱仪作业环境清洁、无尘,尽可能避免震动。 1.2 作业环境温度:+18?―+28?;短期温度变化率不要超过?5?/小时。 1.3 作业环境最佳湿度:20,80,相对湿度。 1.4 工作电压稳定:230?10%,频率:50/60HZ 1.5 在氩气瓶与铜管之间还需一块压力表,用于减压。输入压力范围应在 0,2.5MPA。 1.6 氩气纯度必须?99.995%;O?5ppm N?20ppm H2O?5ppm CO+CH?5ppm。2244. 实验过程工作 2.1 开、关机顺序 2.4.1 接通总电源,确保整个系统通电 开启电源稳压器,保证直读光谱仪作业时处于恒定电压230?10%下 2.4.2 2.4.3 开启氩气净化器,确保净化器上的两个阀门为开,温度值设定500?。2.4.4 打开氩气瓶阀门,并调节氩气输出压力至0.7Mpa。 2.4.5 打开电脑显示器、打印机、主机。 2.4.6 最后开启光谱仪(欧式插板)和光源开关。 2.4.7 稳定一段时间,使得仪器能量达到最佳状态。 2.4.8 关机则相反

温度值设定500? 电压恒定230?10%

输出压力0.7Mpa 快到一格停止使用,需更换。 输出压力调节 2

光源开关 地线,无伤害 2.2 仪器工作前状态检测 2.2.1 仪器工作前应该检测状态是否正常。 2.2.2 双击“Spark Analyzer Vision Mx”图标,打开分析软件。 2.2.3 通过软件系统|自检|设备参数 2.2.4 也可通过选择SSE/MID图来维护。 2.2.5 将SUS样品重新磨好,放在火花台上,按F2激发,看激发点是否正常,如果不正常, 充气三分钟,直到SUS样品激发点正常。如果激发点始终不正常,是氩气不纯,应该更 换氩气。

直读光谱仪常见问题

每种元素的发射光谱谱线强度正比于样品中该元素的含量,通过内部预先存储的校正曲线可测定其含量,并直接以百分比浓度显示出来。斯派克公司的固定式金属分析仪是采用了原子发射光谱学的分析原理。火花台上的样品通过电弧或火花放电激发生成原子蒸气,该蒸气中的原子与离子被激发后产生发射光谱。发射光谱通过光导纤维进入到光谱仪的分光室中,色散成各光谱波段。根据每个元素发射的波长范围,通过光电倍增管可以测量出每个元素的最佳谱线。 电直读光谱仪用氩气净化机使用总结与故障处理 一、氩气净化机的再生总结 1、电源电压为220V,电压要稳,可通过单独供电或加稳压电源即可,但稳压电源也必须是稳压效果较好的,电压波动在规定的范围内 2、送电前一定要确保电流调节旋钮处于零位置,并将温度设定旋钮旋到设定的350度, 3、准备一瓶高纯氩气,减压阀,2个再生阀,熟料管等,并将减压阀与氩气瓶连接好,再将管子与减压阀接好,根据需要选择1#或2#再生端口,此时,应打开气瓶将管子内部的空气排尽,注意:此时不要关掉气瓶,应保持气瓶微开。将再生排气堵头快速拆下,并快速按上再生阀,此时应对气瓶到再生阀处进行检漏操作,同时将再生进气堵头快速拆下,快速按上再生阀,最后,将再生排气阀调到微开状态。 4、送电,将再生万能转换开关打到要再生的塔上,对于塔的红灯亮,温度表的绿灯亮。 5、手动缓慢调节电流调节旋钮至5-6A,再生开始,当温度升到150度时,开始放气,每隔15分钟瞬时将阀门旋到最大放气大约30秒后再调到原来的状态。 6、当温度升到350度时,自动保持恒温4小时后,手动将电流调节旋钮旋到最小,此时将氩气钢瓶阀门关掉,将再生进气阀关掉,开启工作进气阀,将再生出气阀的流量控制的低一点,直到降到100度时,此时停止放气,但根据经验应继续放气最好,且降到室温再停止放气效果最佳,关闭再生出气阀,2分钟后,关闭工作出气阀以保证再生设备充以正压留作备用。同时关掉电源,将再生转换开关旋至零位。 7、再生完毕后,光谱仪要进行打点试验,如发现点不圆较大有毛刺时,应对仪器进行放气操作。之后,仪器要进行标准化。 一般氩气净化机的进气压力为0.3MPa,计为3公斤压力。 二、氩气净化机的故障处理 故障1:电炉丝烧断故障 处理:更换炉丝 故障2:热电偶烧坏 处理:用万用表量,一般热电偶在4.7欧姆左右时为正常,当远大于4.7欧姆时,热电偶烧坏。 故障3:温度控制仪的指针到最大,且其红灯亮 处理步骤: 1、将再生万能转换开关打到另一个塔上,看绿灯是否变亮, 2、如红灯仍亮,停电后,用万用表量2个塔的电炉丝是否断,否则,可判断为可控硅损坏 3、如电炉丝没有断,看热电偶是否接线正确或未接线 4、如接线正确但红灯仍亮,停电后,将热电偶直接接到温度控制仪的“正”“负”端子上, 5、如红灯仍亮,停电后,将热电偶拆下,用万用表测量看其阻值大小,是否在4.7欧姆附近, 6、如在4.7欧姆附近,则断定为温度表损坏 7、加热时,要注意观察电流表指针的波动,如波动太大则说明电压不稳,对于电压不稳的

红外光谱图解析方法

红外识谱歌 红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。 2960、2870是甲基,2930、2850亚甲峰。 1470碳氢弯,1380甲基显。 二个甲基同一碳,1380分二半。 面内摇摆720,长链亚甲亦可辨。 烯氢伸展过三千,排除倍频和卤烷。 末端烯烃此峰强,只有一氢不明显。 化合物,又键偏,~1650会出现。 烯氢面外易变形,1000以下有强峰。 910端基氢,再有一氢990。 顺式二氢690,反式移至970;单氢出峰820,干扰顺式难确定。 炔氢伸展三千三,峰强很大峰形尖。三键伸展二千二,炔氢摇摆六百八。 芳烃呼吸很特征,1600~1430。1650~2000,取代方式区分明。 900~650,面外弯曲定芳氢。 五氢吸收有两峰,700和750;四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。 C-O伸展吸收大,伯仲叔醇位不同。 1050伯醇显,1100乃是仲,1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。 若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。 苯环若有甲氧基,碳氢伸展2820。 次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,九百上下反对称,八百左右最特征。 缩醛酮,特殊醚,1110非缩酮。 酸酐也有C-O键,开链环酐有区别,开链强宽一千一,环酐移至1250。 羰基伸展一千七,2720定醛基。 吸电效应波数高,共轭则向低频移。 张力促使振动快,环外双键可类比。 二千五到三千三,羧酸氢键峰形宽,920,钝峰显,羧基可定二聚酸、酸酐千八来偶合,双峰60严相隔,链状酸酐高频强,环状酸酐高频弱。 羧酸盐,偶合生,羰基伸缩出双峰,1600反对称,1400对称峰。 1740酯羰基,何酸可看碳氧展。 1180甲酸酯,1190是丙酸,1220乙酸酯,1250芳香酸。 1600兔耳峰,常为邻苯二甲酸。 氮氢伸展三千四,每氢一峰很分明。 羰基伸展酰胺I,1660有强峰;N-H变形酰胺II,1600分伯仲。 伯胺频高易重叠,仲酰固态1550;碳氮伸展酰胺III,1400强峰显。 胺尖常有干扰见,N-H伸展三千三,叔胺无峰仲胺单,伯胺双峰小而尖。 1600碳氢弯,芳香仲胺千五偏。 八百左右面内摇,确定最好变成盐。

光电直读光谱仪在铸造行业的发展应用

光电直读光谱仪在铸造行业的发展应用 一、仪器分析在铸造行业的发展应用 铸造是获得机械产品毛坯的主要方法之一,是机械工业重要的基础工艺,在国民经济中占有重要的位置。当前世界上工业发达国家铸造技术的发展归纳起来大致有四个目标,即:①保护环境,减少以至消除污染;②提高铸件质量和可靠性,生产优质近终形铸件;③降低生产成本;④缩短交货期。传统的铸铁分析检测过程,是以手工化学分析也就是人们常说的"湿法分析"方法为主的。这种分析方法过程长、强度高、功能单一、稳定性差、人为误差大,已经不能满足时代的要求,也很难帮助企业达到以上四大目标。仪器科学技术的发展,大大缩短了分析时间,减少了人为误差及废品率,很好的促进了以上四个生产目标的形成与发展。近年来,仪器分析法在铸造行业化学成分分析中得到广泛应用。 国内大多数铸造及大型钢铁企业通过引进国外先进仪器迅速提高了分析检测装备水平。在企业铸件主体生产体系,通常采用光电直读光谱仪(OES),X荧光光谱仪(XRF)这两类仪器,实施所谓的仪器化分析改进。这类仪器是一种利用物理电能激发,使试样中不同化学元素原子发生能级跃迁而产生不同光谱,并使其转换为电信号进行定量检测的大型精密仪器。 目前,光电直读光谱仪已成为铸件化学成分分析的首选仪器,X荧光光谱分析仪则是生铁和其它矿类样化学成分分析的首选仪器。由于这类仪器集光、机、电、算(计算机)等方面的最新技术于一体,配备相当精密的物理与几何光学系统,精密机械系统,电子传感测量系统,计算机控制与数据处理及人机界面系统。使其具有的选择性好、灵敏度、准确性、稳定性高的性能,又具快速化、自动化、智能化、多功能的特点。 二、光电直读光谱仪的原理及特点 由于各种元素的原子结构不同,在光源的激发作用下,试样中每种元素都发射自己的特征光谱。光电直读光谱仪就是通过对导电样品施加能量而激发元素的外层电子,电子跃迁产生元素固有的特征光谱,利用特征光谱进行定性、定量的分析仪器。在铸造行业的应用中,具有以下优点: 1)多通道多元素同时分析检测的快速化特点 光电直读光谱仪可同时进行多元素分析。直读光谱法进行炉前分析时,在数分钟内可同时得出铸件中二、三十个元素的分析结果,有利于铸造生产过程进行中间控制,加速生产、提高了生产效率。 2)直接以固态分析,不需要复杂的前处理 光电直读光谱仪分析样品的处理比化学分析法简单,从而大大地提高了分析速度。在对铸件进行分析检测中,简化了试样前处理过程,只需简单的将样品表面磨平。取消了手工分析方法过程中的试样粉碎、酸溶加热分解、化学反应、比色分析、人工读数等繁杂流程。 3)节约添加元素,降低生产成本 光电直读光谱仪能够快速准确的定量分析出样品的化学成分,对于铸造企业生产铸件时,如不锈钢的生产企业,能够很好的将Cr、Ni的化学成分控制在客户要求下限内,达到节约添加元素,降低生产成本。同时,由于具备快速的进行炉前定量分析,提高生产效率,为企业节约电费,降低生产成本。 4)多功能、自动化和智能化特点 分析仪器正向智能化方向发展,发展趋势主要表现是:基于微电子技术和计算机技术的应用实现分析仪器的自动化,通过计算机控制器和数字模型进行数据采集、运算、统计、处理,提高分析仪器数据处理能力,数字图像处理系统实现了分析仪器数字图像处理功能的发展。 光电直读光谱仪已从传统的经典化学精密机械电子学结构、实验室内人工操作应用模式,转化为光、机、电、

相关主题
文本预览
相关文档 最新文档