高一数学必修1集合与函数概念单元测试题.doc
- 格式:doc
- 大小:216.05 KB
- 文档页数:5
高一数学必修1集合与函数单元测试试题.高一数学必修1《集合与函数》单元测试一、选择题(每小题5分,共计50分,在每小题给出的四个选项中,只有一项是最符合题目要求的,请将正确答案的序号填在表格内.)1.设集合{1,2}A =,则A 的子集个数是( )A .1B .3C .4D .8 2.下列五个写法:①}3,2,1{}0{∈;②}0{⊆φ;③{0,1,2}}0,2,1{⊆;④φ∈0;⑤φφ=⋂0,其中错误写法的个数为( )A. 1B. 2 C . 3 D. 43. 已知M ={x|y=x 2-1}, N={y|y=x 2-1},N M ⋂等于( )A. NB. MC.RD.Φ4. 方程x 2-px +6=0的解集为M ,方程x 2+6x -q =0的解集为N ,且M ∩N ={2},那么p +q 等于( )A.21B.8C.6D.75. 下列各组函数)()(x g x f 与的图象相同的是( )A .2)()(,)(x x g x x f == B .22)1()(,)(+==x x g x x f C .0)(,1)(x x g x f == D .⎩⎨⎧-==x x x g x x f )(|,|)( )0()0(<≥x x 6. 若函数y=x 2+(2a -1)x+1在区间(-∞,2]上是减函数,则实数a 的取值范围是( )A .[-23,+∞)B .(-∞,-23]C .[23,+∞) D .(-∞,23]7. 已知函数f (x )=12++mx mx 的定义域是一切实数,则m 的取值范围是( )A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤48. 已知函数f (n )= ⎩⎨⎧<+≥-)10)](5([)10(3n n f f n n ,其中n ∈N ,则f (8)等于( )A.2B.4C.6D.79. 已知函数()533f x ax bx cx =-+-,()37f -=,则()3f 的值为( )A. 13B.13-C.7D. 7-10. 已知函数)(x f 是R 上的增函数,A (0,-2),B (3,2)是其图象上的两点,那么2|)1(|<+x f 的解集是( )A .(1,4)B .(-1,2)C .),4[)1,(+∞-∞D .),2[)1,(+∞--∞二、填空题(每小题5分,共计20分,要求只填最后结果.)11.函数y 的定义域为___________________12.设偶函数f (x )的定义域为R ,当[0,)x ∈+∞时f (x )是增函数,则(2),(),(3)f f f π--的大小关系是13. 已知y=f(x)是定义在R 上的奇函数,当0x ≥时,()2x -x x f 2=, 则()x f 在0<x 时的解析式是 _______________14. 某工厂8年来某产品产量y 与时间t 年的函数关系如下图,则:①前3年总产量增长速度增长速度越来越快;②前3年中总产量增长速度越来越慢;③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变.以上说法中正确的是_______.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)15. (本题满分12分) 已知集合A ={x| 73<≤x }, B={x| 2<x<10},求A B ⋃; B A C R ⋂)(;16. (本题满分12分) 已知定义在(-1,1)上的函数()f x 是减函数,且)2()1(a f a f >-,求a 的取值范围。
高中数学必修一第一章单元测试题《集合与函数概念》(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={0,1,2},B={x|-1<x<2},则A∩B=( )A.{0}B.{1}C.{0,1}D.{0,1,2}2.设集合M={2,0,x},集合N={0,1},若N⊆M,则x的值为( )A.2B.0C.1D.不确定3.在下列由M到N的对应中构成映射的是( )4.已知函数f(x)=ax3+bx(a≠0),满足f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( )A.5B.10C.8D.不确定5.已知一次函数y=kx+b为减函数,且kb<0,则在直角坐标系内它的大致图象是( )6.若f(x)=则f的值为( )A.-B.C.D.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+18.下列四个图形中,不是以x为自变量的函数的图象是( )9.已知集合A={x|x2+x+1=0},若A∩R=∅,则实数m的取值范围是( )A.m<4B.m>4C.0<m<4D.0≤m<410.函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( )A.(-∞,0]和(-∞,1]B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a ※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个12.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知集合A={x|1≤x<2},B={x|x<a},若A∩B=A,则实数a的取值范围是.14.已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是.15.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-⎧⎨⎩≤≤≤≤16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.(1)分别求A∩B,(B)∪A.R(2)已知C={x|a<x<a+1},若C⊆B,求实数a取值构成的集合.18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.20.(12分)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并用定义证明.21.(12分)(2015·葫芦岛高一检测)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.22.(12分)定义在(-1,1)上的函数f(x)满足:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.高中数学必修一第一章单元测试题《集合与函数概念》参考答案(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={0,1,2},B={x|-1<x<2},则A∩B=( )A.{0}B.{1}C.{0,1}D.{0,1,2}【解析】选C.因为A={0,1,2},B={x|-1<x<2},所以A∩B={0,1}.2.(2015·天津高一检测)设集合M={2,0,x},集合N={0,1},若N⊆M,则x的值为( ) A.2 B.0C.1D.不确定【解析】选C.因为N⊆M,所以集合N中元素均在集合M中,所以x=1.3.在下列由M到N的对应中构成映射的是( )【解析】选C.选项A中,集合M中的数3在集合N中没有数与之对应,不满足映射的定义;选项B中,集合M中的数3在集合N中有两个数a,b与之对应;选项D中,集合M中的数a在集合N中有两个数1,3与之对应,不满足映射的定义.4.已知函数f(x)=ax3+bx(a≠0),满足f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【解析】选 C.方法一:f(-3)=a(-3)3+b(-3)=-33a-3b=-(33a+3b)=3,所以33a+3b=-3.f(3)=33a+3b=-3.方法二:显然函数f(x)=ax3+bx为奇函数,故f(3)=-f(-3)=-3.【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( )A.5B.10C.8D.不确定【解析】选B.因为f(x)是偶函数,所以f(-4)=f(4)=5,所以f(4)+f(-4)=10.5.已知一次函数y=kx+b为减函数,且kb<0,则在直角坐标系内它的大致图象是( )【解析】选A.选项A图象为减函数,k<0,且在y轴上的截距为正,故b>0,满足条件,而B,C,D 均不满足条件.6.若f(x)=则f的值为( )A.-B.C.D.【解析】选C.因为<1,所以应代入f(x)=1-x2,即f=1-=.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+1【解析】选B.由f(g(x))=f(2x+1)=6x+3=3(2x+1),知f(x)=3x.8.(2015·西城区高一检测)下列四个图形中,不是以x为自变量的函数的图象是( )【解析】选C.由函数定义知,定义域内的每一个x都有唯一函数值与之对应,A,B,D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的值与之对应,不符合函数定义.9.已知集合A={x|x2+x+1=0},若A∩R=∅,则实数m的取值范围是( )A.m<4B.m>4C.0<m<4D.0≤m<4【解析】选D.因为A∩R=∅,所以A=∅,即方程x2+x+1=0无解,所以Δ=()2-4<0,所以m<4.又因为m≥0,所以0≤m<4.10.(2015·赣州高一检测)函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( ) A.(-∞,0]和(-∞,1] B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)【解析】选C.函数f(x)=|x|的单调递增区间为[0,+∞),函数g(x)=x(2-x)=-(x-1)2+1的单调递增区间为(-∞,1].11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a ※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个【解析】选B.若a,b同奇偶,有12=1+11=2+10=3+9=4+8=5+7=6+6,前面的每种可以交换位置,最后一种只有1个点(6,6),这时有2×5+1=11;若a,b一奇一偶,有12=1×12=3×4,每种可以交换位置,这时有2×2=4,所以共有11+4=15个.12.(2015·西安高一检测)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)【解析】选D.由f(x)为奇函数,可知=<0.而f(1)=0,则f(-1)=-f(1)=0.又f(x)在(0,+∞)上为增函数,所以当0<x<1时,f(x)<0=f(1),此时<0;又因为f(x)为奇函数,所以f(x)在(-∞,0)上为增函数,所以当-1<x<0时,f(x)>0=f(-1),此时<0,即所求x的取值范围为(-1,0)∪(0,1).二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2015·开封高一检测)已知集合A={x|1≤x<2},B={x|x<a},若A∩B=A,则实数a的取值范围是.【解析】因为A∩B=A,所以A B,所以a≥2.答案:a≥214.已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是.【解析】若集合{x|ax=1}是任何集合的子集,则它是空集,即方程ax=1无解,所以a=0.答案:015.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-⎧⎨⎩≤≤≤≤【解析】当x∈[0,1]时,-x∈[-1,0],f(-x)=-x+1,又因为f(x)为偶函数,所以f(x)=f(-x)=1-x.答案:1-x16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).【解析】若a+b≤0,则a≤-b,b≤-a,又因为f(x)为R上递减的奇函数,所以f(a)≥f(-b),f(b)≥f(-a),所以f(a)+f(b)≥f(-a)+ f(-b),④正确;又因为f(-b)=-f(b),所以f(b)f(-b)=-f(b)f(b)≤0,③正确.其余错误.答案:③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.B)∪A.(1)分别求A∩B,(R(2)已知C={x|a<x<a+1},若C⊆B,求实数a取值构成的集合.【解析】(1)A∩B={x|3≤x<6}.因为B={x|x≤2或x≥9},RB)∪A={x|x≤2或3≤x<6或x≥9}.所以(R(2)因为C⊆B,如图所示:所以解得2≤a≤8,所以所求集合为{a|2≤a≤8}.18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.【解析】(1)因为f(x)=,所以f(3)==-,所以点(3,14)不在f(x)的图象上.(2)f(4)==-3.(3)令=2,即x+2=2x-12,解得x=14.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.【解析】因为函数f(x)的对称轴方程为x=-2,所以函数f(x)在定义域[-2,b](b>-2)上单调递增,所以函数f(x)的最小值为f(-2)=a-4=-2,所以a=2.函数f(x)的最大值为f(b)=b2+4b+2=b.所以b2+3b+2=0,解得b=-1或b=-2(舍去),所以b=-1.20.(12分)(2015·烟台高一检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并用定义证明.【解析】(1)由f(1)=2,f(2)=-1,得a+b=2,2a+b=-1,即a=-3,b=5,故f(x)=-3x+5,f(m+1)=-3(m+1)+5=-3m+2.(2)函数f(x)在R上单调递减,证明如下:任取x1<x2(x1,x2∈R),则f(x2)-f(x1)=(-3x2+5)-(-3x1+5)=3x1-3x2=3(x1-x2),因为x1<x2,所以f(x2)-f(x1)<0,即f(x2)<f(x1),所以函数f(x)在R上单调递减.【拓展延伸】定义法证明函数单调性时常用变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进行因式分解.(2)通分:当原函数是分式函数时,作差后往往进行通分,然后对分子进行因式分解.(3)配方:当原函数是二次函数时,作差后可考虑配方,便于判断符号.21.(12分)(2015·葫芦岛高一检测)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.【解析】(1)取x=y=0,则f(0+0)=2f(0),所以f(0)=0.取y=-x,则f(x-x)=f(x)+f(-x),所以f(-x)=-f(x)对任意x∈R恒成立,所以f(x)为奇函数.(2)任取x1,x2∈(-∞,+∞),且x1<x2,则x2-x1>0,f(x2)+f(-x1)=f(x2-x1)<0,所以f(x2)<-f(-x1),又f(x)为奇函数,所以f(x1)>f(x2),所以f(x)是R上的减函数.(3)由(2)知f(x)在R上为减函数,所以对任意x∈[-3,3],恒有f(3)≤f(x)≤f(-3),因为f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=-2×3=-6,所以f(-3)=-f(3)=6,所以f(x)在[-3,3]上的值域为[-6,6].22.(12分)定义在(-1,1)上的函数f(x)满足:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.【解题指南】(1)结合已知等式利用赋值法求解.(2)利用赋值法并结合奇偶性定义判断.(3)结合(2)的结论及已知条件得f=1,再利用奇偶性和单调性脱去符号“f”,转化为一次不等式求解.【解析】(1)令x=y=0,得2f(0)=f(0),所以f(0)=0.(2)令y=-x,得f(x)+f(-x)=f(0)=0,即f(x)=-f(-x),所以f(x)为奇函数.(3)因为f=-1,f(x)为奇函数,所以f=1,所以不等式f(2x-1)<1等价于f(2x-1)<f,又因为f(x)在(-1,1)上是减函数,所以2x-1>-,-1<2x-1<1,解得<x<1.所以不等式的解集为.【误区警示】解答本题(3)时易忽视函数定义域而得出解集为的错误.。
高一数学必修1《集合与函数概念》测试卷(含答案)第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一.选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A.函数的值域就是其定义中的数集BB.函数y=f(x)的图像与直线x=m至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果A={x|x>-1},则下列结论正确的是()A.XXXB.{}⊆AC.{}∈AD.∅∈A3.设f(x)=(2a-1)x+b在R上是减函数,则有()A.a≥1/2B.a≤1/2C.a>1/2D.a<1/24.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有|x1-x2|<π/2,则有()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)5.若奇函数f(x)在区间[1,3]上为增函数,且有最小值,则它在区间[-3,-1]上()A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设f:x→x是集合A到集合B的映射,若A={-2,0,2},则AB等于()A.{}B.{2}C.{0,2}D.{-2,0}7.定义两种运算:a⊕b=ab,a⊗b=a²+b²,则函数f(x⊗3-3)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数8.若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是减函数,且f(-2)=1/4,则使f(x)<1/4的x的取值范围为()A.(-2,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)9.函数f(x)=x+(x|x|)的图像是()10.设f(x)是定义域在R上的奇函数,f(x+2)=-f(x),当|x|<1时,f(x)=x,则f(7.5)的值为()A.-0.5B.0.5C.-5.5D.7.511.已知f(-2x+1)=x²+1,且-1/2≤x≤1/2,则f(x)的值域为()A.[1,5/4]B.[1/4,5/4]C.[0,5/4]D.[1/4,2]12.设f(x)是定义在R上的奇函数,且f(x)在[-2,2]上单调递增,则f(x)在(-∞,-2)∪(2,+∞)上()A.单调递减B.单调不增也不减C.单调递增D.无法确定第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A。
【最新】高一数学必修一集合与函数概念单元测试-word范文
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
高一数学必修一集合与函数概念单元测试
为了方便同学们复习,提高同学们的复习效率,对这一年的学习有一个更好的
巩固,本文整理了高一数学必修一,具体内容请看下文。
高一数学必修一集合与函数概念单元测试及答案
注意事项:
1.本试题分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为120分钟。
2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上。
考试结束,试题和答题卡一并收回。
3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。
第Ⅰ卷
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把
正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。
第Ⅱ卷
二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共
16分)。
三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)
这篇高一数学必修一就为大家分享到这里了。
希望对大家有所帮助!。
高一数学必修一第一章集合与函数测试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.用描述法表示一元二次方程的全体,应是()A .{ x | ax 2+bx +c =0, a , b , c ∈ R }B .{ x | ax 2+bx +c =0, a , b , c ∈ R ,且 a ≠ 0}C .{ 2+ + =0| a , , ∈ R }axbx cb cD .{ ax 2+bx +c =0|a , b , c ∈ R ,且 a ≠ 0}2.已知 x | x 21 0A1, 0 ,1 集合 A 的子集个数是()A . 3B . 4C . 6D .83.函数 f ( x)x 1, x1,1,2 的值域是()A 0 ,2, 3By3C{ 0,2,3}D [0,3]4. 函数 f ( x)x 2 2(a 1)x 2 在区间,4 上是递减的, 则实数 a 的取值范围为()A a 3B a 3 Ca 5Da 55.设集合 A 只含一个元素 a ,则下列各式正确的是 ( )A . 0∈AB . a AC . a ∈AD .a = A6.图中阴影部分所表示的集合是()A.B ∩[ C U (A ∪ C)]B.(A ∪B) ∪ (B ∪C)C.(A ∪C)∩ (C B)D.[ C (A ∩ C)]∪ BUU7.设集合 P={立方后等于自身的数},那么集合 P 的真子集个数是( )A . 3B . 4C . 7D . 8 8、下列四组函数中表示同一函数的是()A 、 f (x)=| x |与 g(x)=x 2B 、 y=x 0 与 y=1C 、 y=x+1 与 y= x21D、 y=x - 1 与 y= x 22x 1x 19.已知 A 、B 两地相距 150 千米,某人开汽车以60 千米 / 小时的速度从 A 地到达 B 地,在 B地停留 1 小时后再以 50 千米 / 小时的速度返回 A 地,把汽车离开 A 地的距离 x 表示为时间 t (小时)的函数表达式是()A . x =60tB. x =60t +50t60t, (0 t 2.5)60t,(0 t2.5)D. x =150,(2.5 t 3.5)C . x =50t,(t3.5)150150 50(t 3.5), (3.5 t 6.5)10.已知 ()=1-4x,f [ (x )]= 1 x 20), 则 f ( 1) 等于()g xg2(x2xA . 20B . 35C . 65D . 30x 2( x 1)11.已知 f ( x)x 2 ( 1x 2) ,若 f (x)3 ,则 x 的值是()2x( x 2)A .1B . 或3C . ,3或 3 D . 3121 212.下列四个命题( 1) f(x)=x 21 x 在 [1,2] 上有意义 ;( 2)函数是其定义域到值域的映射 ;( 3)函数 y=2x(xN ) 的图象是一直线;( 4)函数 y= x 2 , x 0的图象是抛物线,其中正确的命题个数是()x 2 , xA . 0B . 1C . 2D . 313、已知函数 g( x2) 2x 3 ,则 g( 3 )( )A 、 9B、 7C、5 D、 314.设函数 f ( x) 2x 3, g( x 2) f ( x) ,则 g( x) 的表达式是()A . 2x 1B . 2x 1C . 2x 3D . 2x 715.已知集合 M {4,7,8},且 M 中至多有一个偶数 , 则这样的集合共有( )(A)3 个(B) 4个(C) 5个(D) 6个16. 已知 S { x / x 2n,n Z} , T { x / x4k 1,k Z} , 则()(A)S T(B) TS(C)S ≠ T(D)S=T17. 函数yx 2 4x 3, x [0,3] 的值域为( )(A)[0,3](B)[-1,0] (C)[-1,3] (D)[0,2]18.下述函数中,在(,0] 内为增函数的是()A y = x 2 -2By =3Cy = 1 2xDy( x 2)2x19. 在区间 (0 ,+∞ ) 上不是增函数的函数是( )A . y =2x + 1B . y =3x 2 +1C. y =2D. y =2x 2+ x + 120.设函数 f ( x ) 是(-xa, + )上的减函数,又若 R ,则()A . f ( a )> f (2 a )B . f ( a 2 )< f(a)C . f (22a a )< f ( a ).( a +1)< f( a )+D f二、填空题:请把答案填在题中横线上.1. 已知全集 U2,3, 2 a 1, A 2,3 ,若 C U A 1,则实数 a 的值是a 2.函数 y =( x - 1) 2 的减区间是 ____.3.设集合 A={ x 3 x 2 },B={x 2k 1 x2k 1}, 且 AB ,则 k 的取值范围是4. 已知集合 A{ x | ax 2 3x2 0} . 若 A 中至多有一个元素,则a 的取值范围是5.若函数2.f ( x )=2 x +x +3,求 f ( x ) 的递减区间是6.已知 x [0,1], 则函数 y = x 2 1 x 的值域是.7. 函数 yx 2 ax3(0a2)在 [ 1,1] 上的最大值是,最小值是.三.求下列函数的定义域:( 1 ) y =x + 13x 41x + 2( 2 ) y( 3 ) y =2x 16-5x - x(4) y = 2x - 1 + (5 x - 4) 0 ( 5) y =1 + - x + x +4x - 1 x + 3四.求下列函数的解析式:(1)已知 f (x) x 22x,求 f (2x 1) ; (2)已知 f ( x1) x 2 x ,求 f (x) ;(3)若 f ( x 1) 2x 2 1,求 f ( x)(4)已知 f (x1) x 22 x 1,求 f ( x)(5)已知 f (x) 是一次函数满足 f ( f ( x)) 4x 6 ,求 f (x)五.求值域(1)求函数 y x 2 4x 6, x (1,5) 的值域(2) y x 4x 4 的值域x,( x2)(3)求函数 f (x)2的值域。
集合与函数概念单元测试题一、选择题(40)1.集合{,,}a b c 的真子集有 ( )A .6个B .7个C .8个D .9个2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则A ∩B= ( )A .(4,3)-B .(4,2]-C .(,2]-∞D .(,3)-∞3.已知()5412-+=-x x x f ,则()x f 的表达式是( )A .x x 62+B .782++x xC .322-+x xD .1062-+x x 4.下列四个函数:①3y x =-;②211y x =+;③2210y x x =+-;④(0)1(0)x x y x x⎧-≤⎪=⎨->⎪⎩. 其中值域为R 的函数有 ( )A .1个B .2个C .3个D .4个5、已知函数212x y x ⎧+=⎨-⎩(0)(0)x x ≤>,使函数值为5的x 的值是( ) A .-2 B .2或52- C . 2或-2 D .2或-2或52- 6.下列函数中,定义域为[0,+∞)的函数是 ( )A .x y =B .22x y -=C .13+=x yD .2)1(-=x y7.若R y x ∈,,且)()()(y f x f y x f +=+,则函数)(x f ( )A . 0)0(=f 且)(x f 为奇函数B .0)0(=f 且)(x f 为偶函数C .)(x f 为增函数且为奇函数D .)(x f 为增函数且为偶函数8(A ) (B) (C ) (D)二、填空题(30)9.若函数 f (x )=(k-2)x 2+(k-1)x +3是偶函数,则f (x )的递减区间是10.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A ∪B= .11.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M ∩N = .12.函数()1,3,x f x x +⎧=⎨-+⎩ 1,1,x x ≤>则()()4f f = . 13.已知函数f(x)满足f(xy)=f(x)+f(y),且f(2)=p,f(3)=q ,那么f(36)= .14.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .三、解答题15.(14)已知集合A={}71<≤x x ,B={x|2<x<10},C={x|x<a },全集为实数集R .(Ⅰ)求A ∪B ,(C R A)∩B ;(Ⅱ)如果A ∩C ≠φ,求a 的取值范围.16.(16)已知函数2()21f x x =-.(Ⅰ)用定义证明()f x 是偶函数;(Ⅱ)用定义证明()f x 在(,0]-∞上是减函数;(Ⅲ)作出函数()f x 的图像,并写出函数()f x 当[1,2]x ∈-时的最大值与最小值.。
第一章《集合与函数概念》测试卷(一)考试时间:120分钟满分:150分一.选择题.(本大题共12小题,每小题5分,共60分) 1.下列叙述正确的是( )A.函数的值域就是其定义中的数集BB.函数()y f x =的图像与直线x m =至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果{}1A x x =>-,则下列结论正确的是() A.0A ⊆ B.{}0A ⊆ C.{}0A ∈ D.A ∅∈3.设()(21)f x a x b =-+在R 上是减函数,则有( ) A.12a ≥B.12a ≤C.12a >D.12a < 4.定义在R 上的偶函数()f x ,对任意1x ,2x ∈[)0,+∞12()x x ≠,有1212()()0f x f x x x -<-,则有()A.(3)(2)(1)f f f <-<B.(1)(2)(3)f f f <-<C.(2)(1)(3)f f f -<<D.(3)(1)(2)f f f <<-5.若奇函数()f x 在区间[]1,3上为增函数,且有最小值0,则它在区间[]3,1--上() A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设:f x x →是集合A 到集合B 的映射,若{}2,0,2A =-,则A B 等于()A.{}0B.{}2C.{}0,2D.{}2,0-7.定义两种运算:a b ab ⊕=,22a b a b ⊗=+,则函数3()33xf x x ⊕=⊗-为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数 8.若函数()f x 是定义域在R 上的偶函数,在(),0-∞上是减函数,且(2)0f -=,则使()0f x <的x 的取值范围为() A.()2,2- B.()()2,00,2- C.()(),22,-∞-+∞ D.(][),22,-∞-+∞9.函数()xf x x x=+的图像是( ) 10.设()f x 是定义域在R 上的奇函数,(2)()f x f x +=-,当01x <≤时,()f x x =,则(7.5)f 的值为( )A. -0.5B. 0.5C. -5.5D.7.511.已知2(21)1f x x -+=+,且(21)f x -+的定义域为[)2,1-,则()f x 的解析式为( )A.)51(,452141)(2≤<--+=x x x x f B.)51(,452141)(2≤<-+-=x x x x f C.21153()(0)4242f x x x x =+-<≤, D.21153()(0)4242f x x x x =-+<≤,12.已知函数()f x 是定义在R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是( )A.0B.12C.1D.52二.填空题.(本大题共4小题,每小题5分,共20分)13.已知1()x f x +=()f x 的定义域为.14.设函数(1)()()x x a f x x++=为奇函数,则a 的值为.15.设22,1(),12x x f x x x +≤-⎧=⎨-<<⎩,若()f x =3,则x 的值为.16.关于函数()()1(),,00,f x x x x=-∈-∞+∞,有下列四个结论:○1()f x 的值域为R ; ○2()f x 是定义域上的增函数; ○3对任意的()(),00,x ∈-∞+∞,都有()()0f x f x -+=成立;○4()f x 与20()x x g x x x=-表示同一个函数.把你认为正确的结论的序号填写到横线上.三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)17.设函数()f x 是定义域在R 上的奇函数,当0x >时,2()331f x x x =-+-,求()f x 在R 上的解析式. 18.已知集合{}{}13,22A x x B x m x m -≤≤=-≤≤+=. (1)若{}03AB x x =≤≤,求实数m 的值(2)若R A C B ⊆,求实数m 的取值范围.19.二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求a 的取值范围.20.某商场国庆节期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣;如果顾(1)试写出y x 关于的函数解析式; (2)若30y =,求此人购物实际所付金额. 21.已知函数2()2(1)f x x a x a =+-+. (1)当1a =-时,求()f x 在[]3,3-上的值域; (2)求()f x 在区间[]3,3-上的最小值. 22.已知2()1ax b f x x +=+是定义域在()1,1-上的奇函数,且12()25f =. (1)求()f x 的解析式;(2)判断()f x 的单调性,并证明你的结论; (3)解不等式(22)()0f t f t -+<.第一章《集合与函数概念》答案解析一.选择题.(本大题共12小题,每小题5分,共60分) CBDAD CAADA BA 二.填空题.(本大题共4小题,每小题5分,共20分) 13.[)()()1,11,22,-+∞或者{}11,2x x x x ≥-≠≠且14. -1 16.①③三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)2222217.0,0()3()3()1331()()()331()(0)0331,0()0,0331,0x x f x x x x x f x f x f x x x f x R f x x x f x x x x x <->∴-=--+--=---∴=--=++∴=⎧++<⎪∴==⎨⎪-+->⎩解:设则是奇函数又是上的奇函数{}()()2018.(1)2232.(2),2,2232153,35,U U m m m m B C B x x m x m A C Bm m m m m -=⎧⇒=⎨+≥⎩∴≠∅=<->+⊆∴->+<-><-∴-∞-+∞解:由题意得: 的值为 由题意知:则或或 得到或 的取值范围为22219.(1)(0)(2)3()1()1()(1)1(0)(0)132()2(1)1,()243211(2)02112f f f x x f x f x a x a f a a f x x f x x x a a a a a a ==∴=∴=-+>=+==∴=-+=-+<+⎧⇒<<⎨<<+⎩∴解: 二次函数的对称轴为 又有最小值 设 由得 即 由题意得: 的取值范围102⎛⎫⎪⎝⎭为, 0,080020.(1):(800)5%,800130025(1300)10%,1300(2)305005%2525(1300)10%30,135013503013201320x y x x x x x x ≤≤⎧⎪=-⨯<≤⎨⎪+-⨯>⎩>⨯=∴+-⨯==∴-=∴解:由题意得 解得 此人购物实际所付金额为元.[](][][]2min 21.(1)1()41()2()-3,22,3()=(2)5(3)20,(3)4()3,3-5,20(2)()113,4a f x x x f x x f x f x f f f f x f x x a a a =-=--∴=∴∴=--==-∴-=--<->解:当时, 的对称轴为 在上单调递减,在上单调递增 / 又在上的值域为 的对称轴为 ①当即时 [][](][]min 2min()-33()=(3)155313,24()-3,11,3()=(1)3113,2()-33f x f x f a a a f x a a f x f a a a a a f x f ∴-=--≤-≤-≤≤--∴-=-+--><-∴ 在,上单调递增 / ②当即时在上单调递减,在上单调递增/ ③当即时 在,上单调递减 min 2min ()=(3)7+37+3,2()=31,24155,4x f a a a f x a a a a a =<-⎧⎪-+--≤≤⎨⎪->⎩/ 综上所述,/()()22212121222.(1)()1,1(0)0()112()2522,115()12()1(2)()-1,1,(1,1),,()()f x f baxf x x f aa xf x x f x x x x x x f x f x -∴==∴=+=∴==+∴=+∈-<-=解:是上的奇函数又 解得 在上单调递增.证明:任意取且则()1212122222121212221212121212()(1)11(1)(1)110,10,10,10()()0,()()()-1,1(3)(22)()0x x x x x x x x x x x x x x x x x f x f x f x f x f x f t f t ---=++++-<<<∴-<->+>+>∴-<<∴-+<∴即 在上单调递增. ()()(22)()()1,1()()(22)()(2)()1,122121221,2311f t f t f x f t f t f t f t f x t tt t t -<--∴-=-∴-<---<-⎧⎪∴-<-<<<⎨⎪-<-<⎩ 易知是上的奇函数 又由知是上的增函数 解得。
高一数学必修一 集合与函数的概念单元测试 附答案解析(时间:120分钟 满分:150分)一、选择题(本大题共12个小题.每小题5分.共60分.在每小题给出的四个选项中.只有一项是符合题目要求的)1.设集合M ={x |x 2+2x =0.x ∈R }.N ={x |x 2-2x =0.x ∈R }.则M ∪N =( ) A .{0} B .{0,2} C .{-2,0} D .{-2,0,2}2.设f :x →|x |是集合A 到集合B 的映射.若A ={-2,0,2}.则A ∩B =( ) A .{0} B .{2} C .{0,2} D .{-2,0}3.f (x )是定义在R 上的奇函数.f (-3)=2.则下列各点在函数f (x )图象上的是( ) A .(3.-2) B .(3,2) C .(-3.-2) D .(2.-3)4.已知集合A ={0,1,2}.则集合B ={x -y |x ∈A .y ∈A }中元素的个数是( ) A .1 B .3 C .5 D .95.若函数f (x )满足f (3x +2)=9x +8.则f (x )的解析式是( )A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -46.设f (x )=⎩⎨⎧x +3 x >10,f x +5 x ≤10,则f (5)的值为( )A .16B .18C .21D .247.设T ={(x .y )|ax +y -3=0}.S ={(x .y )|x -y -b =0}.若S ∩T ={(2,1)}.则a .b 的值为( )A .a =1.b =-1B .a =-1.b =1C .a =1.b =1D .a =-1.b =-18.已知函数f (x )的定义域为(-1,0).则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0) D.⎝ ⎛⎭⎪⎫12,19.已知A ={0,1}.B ={-1,0,1}.f 是从A 到B 映射的对应关系.则满足f (0)>f (1)的映射有( ) A .3个 B .4个 C .5个D .6个10.定义在R 上的偶函数f (x )满足:对任意的x 1.x 2∈(-∞.0](x 1≠x 2).有(x 2-x 1)[f (x 2)-f (x 1)]>0.则当n ∈N *时.有( )A .f (-n )<f (n -1)<f (n +1)B .f (n -1)<f (-n )<f (n +1)C .f (n +1)<f (-n )<f (n -1)D .f (n +1)<f (n -1)<f (-n ) 11.函数f (x )是定义在R 上的奇函数.下列说法:①f (0)=0; ②若f (x )在[0.+∞)上有最小值为-1.则f (x )在(-∞.0]上有最大值为1;③若f (x )在[1.+∞)上为增函数.则f (x )在(-∞.-1]上为减函数;④若x >0时.f (x )=x 2-2x .则x <0时.f (x )=-x 2-2x .其中正确说法的个数是( )A .1个B .2个C .3个D .4个12.f (x )满足对任意的实数a .b 都有f (a +b )=f (a )·f (b )且f (1)=2.则f 2f 1+f 4f 3+f 6f 5+…+f 2014f 2013=( )A .1006B .2014C .2012D .1007二、填空题(本大题共4小题.每小题5分.共20分.把答案填在题中横线上)13.函数y =x +1x 的定义域为________.14.f (x )=⎩⎨⎧x 2+1x ≤0,-2x x >0,若f (x )=10.则x =________.15.若函数f (x )=(x +a )(bx +2a )(常数a .b ∈R )是偶函数.且它的值域为(-∞.4].则该函数的解析式f (x )=________.16.在一定范围内.某种产品的购买量y 吨与单价x 元之间满足一次函数关系.如果购买1000吨.每吨为800元.购买2000吨.每吨为700元.那么客户购买400吨.单价应该是________元.三、解答题(本大题共6小题.共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知集合A ={x |2≤x ≤8}.B ={x |1<x <6}.C ={x |x >a }.U =R . (1)求A ∪B .(∁U A )∩B ;(2)若A ∩C ≠∅.求a 的取值范围.18.(本小题满分12分)设函数f (x )=1+x 21-x 2.(1)求f (x )的定义域; (2)判断f (x )的奇偶性; (3)求证:f ⎝ ⎛⎭⎪⎫1x +f (x )=0.19.(本小题满分12分)已知y =f (x )是定义在R 上的偶函数.当x ≥0时.f (x )=x 2-2x . (1)求当x <0时.f (x )的解析式;(2)作出函数f (x )的图象.并指出其单调区间.20.(本小题满分12分)已知函数f (x )=2x +1x +1. (1)判断函数在区间[1.+∞)上的单调性.并用定义证明你的结论. (2)求该函数在区间[1,4]上的最大值与最小值.21.(本小题满分12分)已知函数f (x )的定义域为(0.+∞).且f (x )为增函数.f (x ·y )=f (x )+f (y ).(1)求证:f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y );(2)若f(3)=1.且f(a)>f(a-1)+2.求a的取值范围.22.(本小题满分12分)某商场经销一批进价为每件30元的商品.在市场试销中发现.此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:x 30404550y 6030150(1)在所给的坐标图纸中.根据表中提供的数据.描出实数对(x.y)的对应点.并确定y与x的一个函数关系式.(2)设经营此商品的日销售利润为P元.根据上述关系.写出P关于x的函数关系式.并指出销售单价x为多少元时.才能获得最大日销售利润?1.解析 M ={x |x (x +2)=0..x ∈R }={0.-2}.N ={x |x (x -2)=0.x ∈R }={0,2}.所以M ∪N ={-2,0,2}.答案 D2. 解析 依题意.得B ={0,2}.∴A ∩B ={0,2}.答案 C3. 解析 ∵f (x )是奇函数.∴f (-3)=-f (3).又f (-3)=2.∴f (3)=-2.∴点(3.-2)在函数f (x )的图象上.答案 A4. 解析 逐个列举可得.x =0.y =0,1,2时.x -y =0.-1.-2;x =1.y =0,1,2时.x -y =1,0.-1;x =2.y =0,1,2时.x -y =2,1,0.根据集合中元素的互异性可知集合B 的元素为-2.-1,0,1,2.共5个.答案 C5. 解析 ∵f (3x +2)=9x +8=3(3x +2)+2.∴f (x )=3x +2.答案 B6. 解析 f (5)=f (5+5)=f (10)=f (15)=15+3=18.答案 B7. 解析 依题意可得方程组⎩⎨⎧2a +1-3=0,2-1-b =0,⇒⎩⎨⎧a =1,b =1.答案 C8. 解析 由-1<2x +1<0.解得-1<x <-12.故函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12.答案 B9. 解析 当f (0)=1时.f (1)的值为0或-1都能满足f (0)>f (1);当f (0)=0时.只有f (1)=-1满足f (0)>f (1);当f (0)=-1时.没有f (1)的值满足f (0)>f (1).故有3个.答案 A10.解析 由题设知.f (x )在(-∞.0]上是增函数.又f (x )为偶函数.∴f (x )在[0.+∞)上为减函数. ∴f (n +1)<f (n )<f (n -1). 又f (-n )=f (n ).∴f (n +1)<f (-n )<f (n -1). 答案 C11. 解析 ①f (0)=0正确;②也正确;③不正确.奇函数在对称区间上具有相同的单调性;④正确. 答案 C12. 解析 因为对任意的实数a .b 都有f (a +b )=f (a )·f (b )且f (1)=2.由f (2)=f (1)·f (1).得f (2)f (1)=f (1)=2. 由f (4)=f (3)·f (1).得f (4)f (3)=f (1)=2. ……由f (2014)=f (2013)·f (1). 得f (2014)f (2013)=f (1)=2.∴f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)=1007×2=2014. 答案 B13. 解析 由⎩⎨⎧x +1≥1,x ≠0得函数的定义域为{x |x ≥-1.且x ≠0}.答案 {x |x ≥-1.且x ≠0}14. 解析 当x ≤0时.x 2+1=10.∴x 2=9.∴x =-3.当x >0时.-2x =10.x =-5(不合题意.舍去). ∴x =-3. 答案 -315. 解析 f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2为偶函数.则2a +ab =0.∴a =0.或b =-2.又f (x )的值域为(-∞.4].∴a ≠0.b =-2.∴2a 2=4. ∴f (x )=-2x 2+4. 答案 -2x 2+416. 解析 设一次函数y =ax +b (a ≠0).把⎩⎨⎧x =800,y =1000,和⎩⎨⎧x =700,y =2000,代入求得⎩⎨⎧a =-10,b =9000.∴y =-10x +9000.于是当y =400时.x =860.答案 86017. 解 (1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}. ∁U A ={x |x <2.或x >8}. ∴(∁U A )∩B ={x |1<x <2}. (2)∵A ∩C ≠∅.∴a <8.18. 解 (1)由解析式知.函数应满足1-x 2≠0.即x ≠±1.∴函数f (x )的定义域为{x ∈R |x ≠±1}. (2)由(1)知定义域关于原点对称. f (-x )=1+(-x )21-(-x )2=1+x 21-x 2=f (x ).∴f (x )为偶函数.(3)证明:∵f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1.f (x )=1+x 21-x 2.∴f ⎝ ⎛⎭⎪⎫1x +f (x )=x 2+1x 2-1+1+x 21-x 2=x 2+1x 2-1-x 2+1x 2-1=0. 19. 解 (1)当x <0时.-x >0.∴f (-x )=(-x )2-2(-x )=x 2+2x . 又f (x )是定义在R 上的偶函数. ∴f (-x )=f (x ). ∴当x <0时.f (x )=x 2+2x .(2)由(1)知.f (x )=⎩⎨⎧x 2-2x (x ≥0),x 2+2x (x <0).作出f (x )的图象如图所示:由图得函数f (x )的递减区间是(-∞.-1].[0,1].f (x )的递增区间是[-1,0].[1.+∞).20. 解 (1)函数f (x )在[1.+∞)上是增函数.证明如下:任取x 1.x 2∈[1.+∞).且x 1<x 2.f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1). ∵x 1-x 2<0.(x 1+1)(x 2+1)>0. 所以f (x 1)-f (x 2)<0.即f (x 1)<f (x 2). 所以函数f (x )在[1.+∞)上是增函数.(2)由(1)知函数f (x )在[1,4]上是增函数.最大值f (4)=95.最小值f (1)=32.21. 解 (1)证明:∵f (x )=f ⎝ ⎛⎭⎪⎫xy·y =f ⎝ ⎛⎭⎪⎫x y +f (y ).(y ≠0)∴f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ).(2)∵f (3)=1.∴f (9)=f (3·3)=f (3)+f (3)=2. ∴f (a )>f (a -1)+2=f (a -1)+f (9)=f [9(a -1)].又f (x )在定义域(0.+∞)上为增函数.∴⎩⎨⎧a >0,a -1>0,a >9(a -1),∴1<a <98.22. 解 (1)由题表作出(30,60).(40,30).(45,15).(50,0)的对应点.它们近似地分布在一条直线上.如图所示.设它们共线于直线y =kx +b .则⎩⎨⎧50k +b =0,45k +b =15,⇒⎩⎨⎧k =-3,b =150.∴y =-3x +150(0≤x ≤50.且x ∈N *).经检验(30,60).(40,30)也在此直线上. ∴所求函数解析式为y =-3x +150(0≤x ≤50.且x ∈N *).(2)依题意P =y (x -30)=(-3x +150)(x -30)=-3(x -40)2+300.∴当x =40时.P 有最大值300.故销售单价为40元时.才能获得最大日销售利润.。
高一数学?第一章集合与函数概念?单元测试一、选择题:〔此题一共10小题,每一小题5分〕1.集合M ⊂≠{4,7,8},且M 中至多有一个偶数,那么这样的集合一共有 ( )(A)3个 (B) 4个 (C) 5个 (D) 6个2.S={x|x=2n+1,n ∈Z}, T={x|x=4k ±1,k ∈Z},那么 〔 〕(A)S ⊂≠T (B) T ⊂≠S (C)S ≠T (D)S=T3.集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么P Q 等〔 〕(A)〔0,2〕,〔1,1〕 (B){〔0,2 〕,〔1,1〕} (C){1,2} (D){}|2y y ≤4.以下各组函数表示同一函数的是 〔 〕A .22(),()()f x x g x x == B .0()1,()f x g x x == C .3223(),()()f x x g x x == D .21()1,()1x f x x g x x -=+=- 5.⎩⎨⎧<+≥-=)6()2()6(5)(x x f x x x f ,那么f(3)为 〔 〕 A 2 B 3 C 4 D 52()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是〔 〕A 3-≤aB 3-≥aC 5≤aD 5≥a7.某学生离家去,由于怕迟到,一开场就跑步,等跑累了再步行走完余下的路程,假设以纵轴表示离家的间隔 ,横轴表示离家后的时间是,那么以下四个图形中,符合该学生走法的是 〔 〕8.假设函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,那么m 的值是 〔 〕A. 1B. 2C. 3D. 49.下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数f(x)假设在x=0处有定义,那么f(0)=0;③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数一定是()f x =0〔x ∈R 〕,其中正确命题的个数是〔 〕A 4B 3C 2D 110.定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么以下式子一定成立的是 〔 〕A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9)二、填空题(一共5小题,每一小题4分)11.假设函数x x x f 2)12(2-=+,那么)3(f12.函数]1,1[)20(32-<<++=在a ax x y 上的最大值是 ,最小值是 .13. 集合}023|{2=+-=x ax x A .假设A 中至多有一个元素,那么a 的取值范围是14.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,那么=+20042003b a .)(x f 在),0(),0()0,(+∞+∞⋃-∞上为奇函数,且在上为增函数,0)2(=-f ,那么不等式0)(<x xf 的解集为 .三、解答题(一共4小题,一共40分,解容许写出文字说明,证明过程或者演算步骤〕16.集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U ,求集合N ,)(N C M U ⋂,N M ⋃.17. (1)集合}04{2=-=x x A ,集合}02{=-=ax x B ,假设A B ⊆,务实数a 的取值集合. (2)集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,假设满足 }73{<<=x x B A ,务实数a 的值.18. 函数[]1(),3,5,2x f x x x -=∈+ ⑴ 判断函数()f x 的单调性,并证明;⑵ 求函数()f x 的最大值和最小值.19.底角是 45的等腰梯形ABCD ,底边BC 长为7cm ,腰长为22 cm ,当一条垂直于底边BC的直线l 〔垂足为F 〕从左到右挪动 〔与梯形ABCD 有两个公一共点〕时,直线l 把梯形分成两局部,设BF=x ,试写出左边局部的面积y 与x 的函数解析式.励志赠言经典语录精选句;挥动**,放飞梦想。
新课标数学必修1第一章集合与函数概念测试题
一、选择题:在每小题给出的四个选项中,只冇一项是符合题冃要求的,请把止确答案的代 号
填在题后的括号内(每小题5分,共50分)。
用描述法表示一元二次方程的全体,应是
A. {x I aj3+bx+c=O f a, b, c€R}
B. (x I flx 1 2 3+/?x+c=0, a, b, c^R, 一FL Q HO}
C. {ax 2+bx+c=O la, b, cGR}
D. {ax 2-^-bx+c=O I d, b, cWR ,且 aHO} 图中阴影部分所表示的集合是( )
A.BA [Cu(AUC)]
B.(AUB) U(BUC)
C.(AUC )n (CuB)
D. [Cu(ACC)] UB
1 f(x)=』x_
2 + J1 —兀启意义; 2 函数是其定义域到值域的映射; 3
函数y=2x(xwN)的图象是一直线;
1. 2. 3. 4. 设集合P 二{立方后等于白身的数},那么集合P 的真子集个数是 A. 3 B. 4 C. 7 设P 二{质数} , Q= {偶数},贝1JPPQ 等于
A.
B. 2
C. {2}
D. 8 D. N
设函数y= ------- 的定义域为M,值域为N,那么
1 + -
x
5. 6. 7. 8.
A. B. M= M= {x I 兀工0} , N= {y I yHO}
{x I x<Oj=Lx^-l,或x>0},N={y I y<0,或0Vy<l,或y>l} {x I xH()} , N= {y I )€R}
{x I x<-l,或一1<兀<(),或x>()=, N= {ylyHO}
C. D. 已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,
M= M= B 地停留1小时后再以50 T 米/小时的速度返冋A 地,把汽车离开A 地的距离x 表示 为时间t (小时)的函数表达式是
A. x=60/
C. x= 60r,(0<z <2.5)
15()-50z,(r>3.5)
已知g(x)=l ・2x 恥)]=—
x 2 兀厂
A- 1
B. 3 函数 y=71-X 2
+ 1 + X
A.奇函数 B ・偶函数 下列四
个命题
B. x=60/+50/ 6()Z,(0<r<2.5)
150,(2.5 <r<3.5)
150 — 50(f — 3.5),(3.5 vf 56.5) D. (心0),则/(斗)等于
C. 15
D. 3()
C. 既是奇函数又是偶函数
D.非奇非偶数
(4)函数 y=f
>0
■ 的图象是抛物线, x < 0
其屮正确的命题个数是 (
)
A. 1
B. 2
C. 3
D. 4
10.设函数f(x)是(一 00
, +°° )上的减函数, 又若aWR,贝IJ
(
)
A. f(a)>f(2a)
B ・ /(a 2
)</ (a)
C ・ f(aha)<f(a)
D. .f(/+l)g)
二、填空题:请把答案填在题屮横线上(每小题6分,共24分).
11. 设集合 A={ ^| -3 < x < 2 },B={x|2Z: -1 < % < 2Z: +1),且 A R B,则实数 R 的取值范围
是 ________ .
12. 函数/W 的定义域为则F (x) 的定义域是 ___________ .
13. 若函数/U)=(K ・2)/+(K ・l)x+3是偶函数,则心)的递减区间是 ______________ • 14. 已知疋[0,1],则函数尸厶+ 2-Jl-x 的值域是 ______________________ . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15. (12分)已知,全集U={jd-5WxW3},
A=/xl-5Wxv-1}, B={xl-1 Wxvl},求CuA, CuB, (CuA)G(CuB), (CuA)U(CuB),
Cu(AAB), Cu(AUB),并指出具屮相关的集合.
16. (12 分)集合 A={(x,y)*2 + inx — y + 2 = 0 },集合 B={(x,y)卜一 y+ 1 = 0,且 05兀52},
又AC/H0,求实数m 的取值范围.
18. (12分)如图,用长为1的铁丝弯成卜-部为矩形,上部为半圆形的框 架,
若半圆半径为兀,求此框架围成的面积y 与兀的函数式 并写出它的定义域.
19. (14分)已知/(x)是R 上的偶函数,且在(0,+ X)上单调递增,并且/(x)<0对一切xw R
2
xe (一8,1)
心1,+8)'求两的值
17. (12分)已知砂
C
成立,试判断-一在(-00,0)上的单调性,并证明你的结论.
20.(14分)指出函数/(x) = x + -在(-oo,-l],[-1,0)上的单调性,并证明之
参考答案(5)
一、DACCB DCBA D
二、11. {刈一1 5 k 5 ㊁};12. [a,-G]; 13. [0, +°°];
14. —1,-^3];
三、15.解:CuA={xl・lW«xW3}; CuB二{xl・53・1 或1 WxW3};
(CuA)Q(CuB)二{xllW%W3}; (C L A)U(CuB)= {xl・5WxW3}=U;C U(A0B)=U;
C U(AUB)={X I10W3}.
相等集合冇(CuA) Q (CuB)= Cu(A U B); (C t iA) U (C V B)= Cu(A A B).
16.解:由ACBH0知方程组加兀一歹+ 20在osxs2内有解,消去y,
[兀- y +1 = 0
得x2+(/??-1)^=0 在0 Wx W 2 内有解,A = (m — l)2— 4 n 0 即加X 3 或〃?5-1.
若/n>3,则Xj+x2= 1讪<0/以2= 1,所以方程只有负根.
若m<-l,x1+x2=l-w>0,x1x2=l,所以方程有两正根,且两根均为1或两根一个大于1,一个小于1, 即
至少有一根在[0, 2]内.
因此{加 |— 8 on <-1}.
17.解:I 06 (-ooj ),・・・几0)=迈,乂・・•迈>1,
・•・ XV2 )=(V2 )3+(V2 )'3=2+1 = |,即加0)]= |•
2
1& 解:AB=2x, CD = "于是AD二1_2兀_加, 因此,y=2x •+ —,
2 2 2
龙+ 4 2 > 即y=- ------ x +/x.
- 2
2x > 0
1 一2x — 7DC
八------------ > 0
2 得0<r< ——,
7T + 2
窗数的定义域为(0,
又1
f(x) 丄).
龙+ 2
一%2>0,・\/(一兀1)力(一兀2),9-\fM为偶函数,・\/(X I)M(X2)
二_______ 二/(册)7叽0
~ f(X2) f(X})~ /(x2)/(x,)
(・・:心)<0用2)v0)・•・_ —,
f(xj f (x2)
丄是(8,0)上的单调递减函数. f (x)
20.解:任取X], x2e ( ] /(心-心)二
(—汽一1」仏02 勺一斗
Fhxj<x2-一1 知X|X2>1, 1 ——>0,即于(兀2)>/(兀】)
f(x)在(―°°厂1】上是增函数;当1 -X!< X2<0时,有Ov X]XY1,得1< 0
“2・・・/(")>门兀2)・・・f(X)在[7°)上是减函数.
再利用奇偶性,给出(0,1], (1,4-00)单调性,证明略.。