新课标人教A版高中数学必修2单元检测试卷汇编
- 格式:docx
- 大小:2.85 MB
- 文档页数:158
精品"正版〞资料系列,由本公司独创 .旨在将"人教版〞、〞苏教版"、〞北师大版"、〞华师大版"等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友 .本资源创作于2021年8月,是当前最|新版本的教材资源 .包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最|正确选择 .模块质量评估 (A卷 )(第|一至|第四章)(120分钟150分)一、选择题(本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项符合题目要求)1.(2021·石家庄高一检测)如图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,那么该几何体的侧面积是( )ππππ2.(2021·广州高一检测)一个球的内接正方体的外表积为54,那么球的外表积为( ) ππππ3.(2021·浙江高|考)设m,n是两条不同的直线,α,β是两个不同的平面( )⊥n,n∥α,那么m⊥α∥β,β⊥α,那么m⊥α⊥β,n⊥β,n⊥α,那么m⊥α⊥n,n⊥β,β⊥α,那么m⊥α4.(2021·大连高一检测)假设直线(2a +5)x +(a -2)y +4 =0与(2 -a)x +(a +3)y -1 =0互相垂直,那么a的值为( )C.2, -2D.2,0, -25.如下图,四边形ABCD中,AD∥BC,AD =AB,∠BCD =45°,∠BAD =90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体A -BCD,那么在四面体A -BCD中,以下说法正确的选项是( )⊥平面ABC⊥平面BDC⊥平面BDC⊥平面ABD6.与直线y = -2x +3平行,且与直线y =3x +4交于x轴上的同一点的直线方程是( )A.y = -2x +4B.y =x +C.y = -2x -D.y =x -+ =1与圆x2 +y2 =1有公共点,那么( )2 +b2≤2 +b2≥1C. +≤1D. +≥18.(2021·厦门高一检测)假设圆C的半径为1,圆心在第|一象限,且与直线4x -3y =0和x轴都相切,那么该圆的标准方程是( )A.(x -3)2 + =1B.(x -2)2 +(y -1)2 =1C.(x -1)2 +(y -3)2 =1D. +(y -1)2 =19.底面边长为1,侧棱长为的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,那么该球的体积为( )A.ππ D.10.(2021·武汉高一检测)如图,在长方体ABCD -A1B1C1D1中,M,N分别是棱BB1,B1C1的中点,假设∠CMN =90°,那么异面直线AD1和DM所成角为( )°°°°11.假设圆(x -3)2 +(y +5)2 =r2上的点到直线4x -3y -2 =0的最|近距离等于1,那么半径r的值为( )12.(2021·烟台高一检测)假设直线y =kx +1与圆x2 +y2 +kx -y -9 =0的两个交点恰好关于y轴对称,那么k等于( )二、填空题(本大题共4个小题,每题5分,共20分.把答案填在题中的横线上)13.(2021·长春高一检测)假设圆锥的侧面展开图是圆心角为120°,半径为l的扇形,那么这个圆锥的外表积与侧面积之比是. ,ABCD -A1B1C1D1是棱长为1的正方体,M,N分别是下底面的棱A1B1、B1C1的中点,P是上底面的棱AD上的一点,AP =,过P,M,N的平面交上底面于PQ,Q在CD上,那么PQ = .15.过点P(2,3),并且在两坐标轴上截距相等的直线方程是.16.(2021·江苏高|考)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx -y -2m -1 =0(m∈R)相切的所有圆中,半径最|大的圆的标准方程为.三、解答题(本大题共6个小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)如下图(单位:cm),四边形ABCD是直角梯形,求图中阴影局部绕AB旋转一周所成几何体的外表积和体积.18.(12分)直线l经过两直线l1:2x -y +4 =0与l2:x -y +5 =0的交点,且与直线x -2y -6 =0垂直.(1)求直线l的方程.(2)假设点P(a,1)到直线l的距离为,求实数a的值.19.(12分)(2021·长沙高一检测)圆C:x2 +y2 -8y +12 =0,直线l经过点D( -2,0),且斜率为k.(1)求以线段CD为直径的圆E的方程.(2)假设直线l与圆C相离,求k的取值范围.20.(12分)如图,正方体ABCD -A1B1C1D1中,P,M,N分别为棱DD1,AB,BC的中点.(1)求二面角B1 -MN -B的正切值.(2)求证:PB⊥平面MNB1.21.(12分)如图,在直三棱柱ABC -A1B1C1中,A1B1 =A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1.(2)直线A1F∥平面ADE.22.(12分)在平面直角坐标系xOy中,圆心在x轴上,半径为2的圆C位于y轴右侧,且与直线x -y +2 =0相切.(1)求圆C的方程.(2)在圆C上,是否存在点M(m,n),使得直线l:mx +ny =1与圆O:x2+y2=1相交于不同的两点A,B,且△OAB的面积最|大?假设存在,求出点M的坐标及对应的△OAB的面积;假设不存在,请说明理由.答案解析1.B 因为正视图和侧视图都是等腰梯形,俯视图是一个圆环,所以该几何体是一个圆台,且圆台的上、下底半径分别为1和2,母线为4,所以S侧 =π(r +r')l =π·(1 +2)×4 =12π.2.A 设正方体的棱长为a,球的半径为r,那么6a2 =54,所以a =3.又因为2r =a,所以r = a =,所以S表 =4πr2 =4π× =27π.3.C 对A假设m⊥n,n∥α,那么m⊂α或m∥α或m⊥α,故A选项错误; 对B假设m∥β,β⊥α,那么m⊂α或m∥α或m⊥α,故B选项错误; 对C假设m⊥β,n⊥β,n⊥α,那么m⊥α,故C选项正确;对D假设m⊥n,n⊥β,β⊥α,那么m⊂α或m∥α或m⊥α,故D选项错误.【补偿训练】m,n是两条不同直线,α,β,γ是三个不同平面,以下命题中正确的选项是( )∥α,n∥α,那么m∥nα⊥γ,β⊥γ,那么α∥β∥α,m∥β,那么α∥β⊥α,n⊥α,那么m∥nD A中还可能m,n相交或异面,所以A不正确;B,C中还可能α,β相交,所以B,C不正确,很明显D正确.4.【解题指南】利用l1⊥l2⇔A1A2 +B1B2 =0求a的值.C 因为两直线垂直,所以(2a +5)(2 -a) +(a -2)(a +3) =0,即a =±2.5.D 因为AD∥BC,AD =AB,∠BCD =45°,∠BAD =90°,所以∠ABD =∠ADB =45°,所以∠BDC =90°,即BD⊥CD,又因为平面ABD⊥平面BCD,平面ABD ∩平面BCD =BD,CD⊂平面BCD,所以CD⊥平面ABD,又CD⊂平面ADC,所以平面ADC⊥平面ABD.6.C 直线y =3x +4与x轴的交点坐标为,故所求直线方程为y -0 = -2 = -2x -.【延伸探究】此题中的条件 "与直线y = -2x +3平行〞假设换为 "与直线y = -2x +3垂直〞其他条件不变,其结论又如何呢?【解析】直线y =3x +4与x轴的交点坐标为,故所求直线方程为y -0 =,即y =x +.7.D 直线 + =1与圆x2 +y2 =1有公共点,因此圆心(0,0)到直线bx +ay -ab =0的距离应小于等于1.所以≤1,所以 +≥1.8.B 由设所求圆的圆心坐标为:C(a,b)(a>0且b>0),由有:⇒所以所求圆的方程为:(x -2)2 +(y -1)2 =1.9.D 正四棱柱的外接球的球心为上下底面的中|心连线的中点,所以球的半径r = =1,球的体积V =r3 =.应选D.10.D 因为MN⊥DC,MN⊥MC,DC∩MC =C,所以MN⊥⊥DM.因为MN∥AD1,所以AD1⊥DM,即所求角为90°.11.A 由圆的方程可知圆心为(3, -5),圆心(3, -5)到直线4x -3y -2 =0的距离为d = = =5,由题意得d -r =1,即r =d -1 =5 -1=4.12.A 将两方程联立消去y后得(k2 +1)x2 +2kx -9 =0,由题意知此方程两根之和为0,故k =0.13.【解析】设圆锥的底面半径为r,那么有l =2πr,故l =3r,所以= =.答案:4∶314.【解析】因为平面ABCD∥平面A1B1C1D1,平面ABCD∩平面PQNM =PQ,平面A1B1C1D1∩平面PQNM =NM,所以MN∥PQ,又因为MN∥AC,所以PQ∥AC.又因为AP =,所以 = = =,所以PQ =AC =.答案:15.【解析】假设截距为0,过P点和原点的直线方程为y =x,即3x -2y =0;假设截距不为0,设所求直线方程为 + =1,由P(2,3)在直线上,可得a =5,那么所求直线方程为x +y -5 =0,因此满足条件的直线方程为3x -2y =0或x +y -5 =0.答案:3x -2y =0或x +y -5 =0【补偿训练】直线l经过点(1,3),且与圆x2 +y2 =1相切,直线l的方程为.【解析】当斜率存在时,设切线的斜率为k,那么切线方程为y -3 =k(x -1),由圆心到切线的距离等于半径得 =1,解得k =,切线方程为4x -3y +5 =0;当斜率不存在时,直线x =1也符合题意.答案:x =1或4x -3y +5 =0【误区警示】此题易无视斜率不存在的情况,只写出一条切线方程. 16.【解题指南】点(1,0)到直线mx -y -2m -1 =0(m∈R)的最|大距离即为所求圆的半径,利用点到直线的距离公式表示出此距离并求出最|大值,代入圆的标准方程即可.【解析】点(1,0)到直线mx -y -2m -1 =0的距离d = =,当m>0时,d = = =.因为m>0,所以m +≥2 =2,当且仅当m =1时上式成立,所以d≤.当m≤0时,d≤,标准方程为(x -1)2 +y2 =2.答案:(x -1)2 +y2 =217.【解析】由题意,知所成几何体的外表积等于圆台下底面积、圆台的侧面积与半球面面积的和,又S半球面 =×4π×22 =8π(cm2),S圆台侧 =π(2 +5) =35π(cm2),S圆台下底 =π×52 =25π(cm2),所以所成几何体的外表积为8π +35π +25π =68π(cm2).又V圆台 =×(22 +2×5 +52)×4 =52π(cm3),V半球 =××23 =(cm3).所以所成几何体的体积为V圆台 -V半球 =52π - =(cm3).18.【解析】(1)由得交点为(1,6),又直线l垂直于直线x -2y -6 =0,所以直线l的斜率为k = -2.故直线l的方程为y -6 = -2(x -1),即2x +y -8 =0.(2)由于P(a,1)到直线l的距离等于,那么 =,解得a =1或a =6.19.【解析】(1)将圆C的方程x2+y2-8y +12 =0配方得标准方程为x2+(y -4)2 =4,那么此圆的圆心为C(0,4),半径为2.所以CD的中点E( -1,2),|CD| = =2,所以r =,故所求圆E的方程为(x +1)2 +(y -2)2 =5.(2)直线l的方程为y -0 =k(x +2),即kx -y +2k =0.假设直线l与圆C相离,那么有圆心C到直线l的距离>2,解得k<.20.【解析】(1)连接BD交MN于F,连接B1F,连接AC.因为平面DD1B1B⊥平面ABCD,交线为BD,AC⊥BD,所以AC⊥平面DD1B1B.又因为AC∥MN,所以MN⊥平面DD1B1B.因为B1F,BF⊂平面DD1B1B,所以B1F⊥MN,BF⊥MN.因为B1F⊂平面B1MN,BF⊂平面BMN,那么∠B1FB为二面角B1 -MN -B的平面角.在Rt△B1FB中,设B1B =1,那么FB =,所以tan∠B1FB =2.(2)过点P作PE⊥AA1,那么PE∥DA,连接BE.又DA⊥平面ABB1A1,所以PE⊥平面ABB1A1,即PE⊥B1M.又BE⊥B1M,所以B1M⊥平面PEB.所以PB⊥MB1.由(1)中MN⊥平面DD1B1B,得PB⊥MN,所以PB⊥平面MNB1.21.【证明】(1)因为三棱柱ABC -A1B1C1是直三棱柱, 所以CC1⊥平面ABC.又因为AD⊂平面ABC,所以CC1⊥AD.因为AD⊥DE,CC1,DE⊂平面BCC1B1,且CC1∩DE =E,所以AD⊥平面BCC1B1.又因为AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)方法一:因为A1B1 =A1C1,F为B1C1的中点, 所以A1F⊥B1C1.又因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1⊂平面BCC1B1,且CC1∩B1C1 =C1,所以A1F⊥平面BCC1B1.由(1)知,AD⊥平面BCC1B1,所以A1F∥AD.又因为AD⊂平面ADE,A1F⊄平面ADE,所以直线A1F∥平面ADE.方法二:由(1)知,AD⊥平面BCC1B1,因为BC⊂平面BCC1B1,所以AD⊥BC.因为A1B1 =A1C1,所以AB =AC.所以D为BC的中点.连接DF(图略),因为F是B1C1的中点,所以DF BB1AA1.所以四边形ADFA1是平行四边形.所以A1F∥AD.因为AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE.22.【解析】(1)设圆心是(x0,0)(x0>0),它到直线x -y +2 =0的距离是d = =2,解得x0 =2或x0 = -6(舍去),所以所求圆C的方程是(x -2)2 +y2 =4(x≠0).(2)存在.理由如下:因为点M(m,n)在圆C上,所以(m -2)2 +n2 =4,n2 =4 -(m -2)2 =4m -m2且0≤m≤4.又因为原点到直线l:mx +ny =1的距离h = =<1,解得<m≤4,而|AB| =2,所以S△OAB =|AB|·h == =,因为≤<1,所以当 =,即m =时,S△OAB取得最|大值,此时点M的坐标是或,△OAB的面积的最|大值是.精品"正版〞资料系列,由本公司独创 .旨在将"人教版〞、〞苏教版"、〞北师大版"、〞华师大版"等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友 .本资源创作于2021年8月,是当前最|新版本的教材资源 .包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最|正确选择 .。
模块综合测试(满分120分,测试时间100分钟)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列命题:①底面多边形内接于一个圆的棱锥的侧棱长相等,②棱台的各侧棱不一定相交于一点,③如果不在同一平面内的两个相似的直角三角形的对应边互相平行,则连结它们的对应顶点所围成的多面体是三棱台,④圆台上底圆周上任一点与下底圆周上任一点的连线都是圆台的母线.其中正确的个数为( )A.3B.2C.1D.0解析:命题①中:底面多边形内接于一个圆,但并不能推测棱长相等;命题②中:由棱台的性质可知,棱台的各侧棱延长后相交于一点;命题③中:因两个直角三角形相似且对应边平行,可推出连结对应顶点后延长线交于一点,即此几何体可由一个平行于底面的平面所截,故命题③正确;命题④中:上底的圆周上一点与下底圆周上任一点连线有三种可能:在圆周上的曲线、侧面上的曲线或不在侧面上的线段.答案:C2.图1是一个物体的三视图,则此三视图所描述的物体是下列几何体中的( )图1解析:从三个角度看都是符合的,故选D.答案:D3.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )图2A.16πB.20πC.24πD.32π解析:由题意可得该正四棱柱的底面面积为4,边长为2.因正四棱柱属于长方体,因此所求球的球心在该长方体的中心,即球的直径为26,根据球的表面积公式可得球的表面积为24π.答案:C4.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的( )A.60倍B.3060倍 C.120倍 D.30120倍解析:设木星的半径为r1,地球的半径为r2,由题意,得302403231rr,则木星的表面积∶地球的表面积=.120302403024013024032231232312221=⨯=⨯=•=rrrrrr答案:C5.已知水平放置的△ABC是按“斜二测画法”得到如图3所示的直观图,其中B′O′=C′O′=1,A′O′=23,那么原△ABC是一个( )图3A.等边三角形B.直角三角形C.三边中有两边相等的等腰三角形D.三边互不相等的三角形解析:根据“斜二测画法”可得BC=B′C′=2,AO=2A′O′=3.故原△ABC是一个等边三角形. 答案:A6.已知直线m、n与平面α、β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中正确命题的个数是( )A.0B.1C.2D.3解析:通过举例可证明①错误,可知②③命题为正确命题.答案:C7.点P(2,5)关于直线x+y+1=0的对称点的坐标为( )A.(6,-3)B.(3,-6)C.(-6,-3)D.(-6,3)解析:根据两点关于直线对称的特点:两点的连线与对称轴垂直以及两点的中点在对称轴上,可得对称点为(-6,-3).答案:D8.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为( )A.30°B.45°C.60°D.90°解析:将图形补成一个正方体如图,则PA与BD所成角等于BC′与BD所成角即∠DBC′.在等边三角形DBC′中,∠DBC′=60°,即PA与BD所成角为60°.答案:C9.若l为一条直线,α、β、γ为三个互不重合的平面,给出下面三个命题:①α⊥γ,β⊥γ⇒α⊥β;②α⊥γ,β∥γ⇒α⊥β;③l∥α,l⊥β⇒α⊥β.其中正确的命题有( ) A.0个 B.1个 C.2个 D.3个解析:①中可由长方体的一角证明是错误的;②③易证明是正确的.答案:C10.已知实数x 、y 满足2x+y+5=0,那么22y x +的最小值为( )A.5B.10C.52D.102解析:22y x +表示点P(x,y)到原点的距离.根据数形结合得22y x +的最小值为原点到直线2x+y+5=0的距离,即d=555=.答案:A11.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有( )A.1条B.2条C.3条D.4条解析:与点A (1,2)的距离为1的直线即为以点A(1,2)为圆心,以1为半径的圆的切线.与点B (3,1)的距离为2的直线即为以点B(3,1)为圆心,以2为半径的圆的切线.所以到A 、B 两点距离为1和2的直线即为两圆的公切线,因|AB |=5)12()31(22=-+-,且125+<,所以两圆相交,故有两条公切线.答案:B12.矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角BACD ,则四面体ABCD 的四个顶点所在球的体积为( )A.π12125B.π9125C.π6125D.π3125 解析:连结矩形ABCD 的对角线AC 、BD 交于O ,则AO=BO=CO=DO ,翻折后仍然AO=BO=CO=DO ,则O 为四面体ABCD 四个顶点所在球的圆心,因此四面体ABCD 四个顶点所在球的半径为25,故球的体积为ππ6125)25(343=. 答案:C二、填空题(本大题共6小题,每小题4分,共24分)13.圆台上、下底半径为2和3,则中截面面积为________________.解析:由圆台的性质可知中截面是一个圆,圆的直径为轴截面梯形的中位线,设中截面圆的半径为x ,故有4x=4+6,解得x=π425,25=S . 答案:π425 14.经过直线2x+3y-7=0与7x+15y+1=0的交点,且平行于直线x+2y-3=0的直线方程是____________.解析:由已知可设经过直线2x+3y-7=0与7x+15y+1=0的交点的直线方程为2x+3y-7+λ(7x+15y+1)=0,整理得(2+7λ)x+(3+15λ)y -7+λ=0.根据两直线平行关系得λ=1,代入得3x+6y-2=0.答案:3x+6y-2=0 15.过A(-3,0)、B(3,0)两点的所有圆中面积最小的圆的方程是___________________.解析:根据圆的性质,圆的半径最小时,面积最小,即以AB 为直径端点的圆满足条件,所求方程为x 2+y 2=9.答案:x 2+y 2=916.已知圆锥的侧面积是底面积的2倍,它的轴截面的面积为Q ,则圆锥的体积为___________.解析:设圆锥的高为h,半径为r,母线为l ,则S 侧=πr l ,S 底=πr 2,∵S 侧=2S 底,∴πr l =2πr 2,即l =2r.又l 2=r 2+h 2,解得h=r 3.又∵S 轴截面=rh=Q,∴r 2=3Q,即r=43Q.∴h=4333Qr =.故V 圆锥=31πr 2h=433Q Q π. 答案:433QQ π 17.已知圆柱的高为h ,底面半径为R ,轴截面为矩形A 1ABB 1,在母线AA 1上有一点P ,且PA=a ,在母线BB 1上取一点Q ,使B 1Q=b ,则圆柱侧面上P 、Q 两点的最短距离为____________.解析:如图甲,沿圆柱的母线AA 1剪开得矩形(如图乙),过P 作PE ∥AB 交BB 1于E ,则PE=AB=21·2πR=πR ,QE=h-a-b. ∴PQ=2222)()(b a h R QE PE --+=+π.答案:22)()(b a h R --+π18.过圆x 2+y 2=4外的一点A(4,0)作圆的割线,则割线被圆截得的弦的中点的轨迹方程为________________.解析:设弦的中点是P(x 0,y 0),根据圆的几何性质得OP ⊥AP ,即点P(x 0,y 0)在以OA 为直径的圆上,即(x 0-2)2+y 02=4.因P(x 0,y 0)在圆x 2+y 2=4内,故弦的中点的轨迹方程为(x-2)2+y 2=4,x ∈[0,1).答案:(x-2)2+y 2=4,x ∈[0,1)三、解答题(本大题共4小题,共48分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)已知直线l 垂直于直线3x-4y-7=0,直线l 与两坐标轴围成的三角形的周长为10,求直线l的方程.解:设直线l方程为4x+3y+b=0,则l 与x轴、y轴的交点为A(4b-,0),B(0,3b-).∴|AB|=b125.由|OA|+|OB|+|AB|=10,得12||53||4||bbb++=10.∴b=±10.∴l方程为4x+3y+10=0,4x+3y-10=0.20.(本小题满分12分)圆锥底面半径为1 cm,高为2cm,其有一个内接正方体,求这个内接正方体的棱长.解:过圆锥的顶点和正方体底面的一条对角线CD作圆锥的截面,得圆锥的轴截面SEF,正方体对角面CDD1C1,如图,设正方体棱长为x,则CC1=x,C1D1=2x.作SO⊥EF于O,则SO=2,OE=1,∵△ECC1∽△ESO,∴EOECSOCC11=.∴12212xx-=.∴x=22(cm).∴正方体棱长为22cm.21.(本小题满分12分)(2005江苏高考,19)如图4,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得PM=2PN,试建立适当的坐标系,并求动点P的轨迹方程.图4解:如图,以直线O1O2为x轴,线段O1O2的垂直平分线为y轴,建立平面直角坐标系,则两圆心分别为O1(-2,0),O2(2,0).设P(x,y),则PM 2=O 1P 2-O 1M 2=(x+2)2+y 2-1.同理,PN 2=(x-2)2+y 2-1.∵PM=2PN ,∴(x+2)2+y 2-1=2[(x-2)2+y 2-1],即x 2-12x+y 2+3=0,即(x-6)2+y 2=33.这就是动点P 的轨迹方程.22.(本小题满分14分)如图5,正方体ABCD —A 1B 1C 1D 1中,P 、M 、N 分别为棱DD 1、AB 、BC 的中点.图5(1)求二面角B 1MNB 的正切值;(2)求证:PB ⊥平面MNB 1.(3)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P 、B 两点间的距离.(1)解:连结BD 交MN 于F ,连结B 1F.∵平面DD 1B 1B ⊥平面ABCD,交线为BD ,AC ⊥BD,∴AC ⊥平面DD 1B 1B.又∵AC//MN ,∴MN ⊥平面DD 1B 1B.∵B 1F,BF ⊂平面DD 1B 1B ,∴B 1F ⊥MN,BF ⊥MN.∵B 1F ⊂平面B 1MN ,BF ⊂平面BMN ,则∠B 1FB 为二面角B 1-MN-B 的平面角.在Rt △B 1FB 中,设B 1B=1,则FB=42, ∴tan ∠B 1FB=22.(2)证明:过点P 作PE ⊥AA 1,则PE ∥DA ,连结BE.又DA ⊥平面ABB 1A 1,∴PE ⊥平面ABB 1A 1,即PE ⊥B 1M.又BE ⊥B 1M ,∴B 1M ⊥平面PEB.∴PB ⊥MB 1.由(1)中MN ⊥平面DD 1B 1B,得PB ⊥MN ,所以PB ⊥平面MNB 1.(3)解:PB=213,符合条件的正方体表面展开图可以是以下6种之一:。
最新人教A版高一数学必修二测试题全套及答案第一章检测试题时间:90分钟分值:120分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.下列关于投影的说法中不正确的是( )A.平行投影的投影线是互相平行的B.中心投影的投影线是互相垂直的C.线段上的点在中心投影下仍然在线段上D.平行的直线的中心投影不一定是平行直线答案:B2.下列说法中,正确的个数为( )①相等的角在直观图中对应的角仍然相等;②相等的线段在直观图中对应的线段仍然相等;③平行的线段在直观图中对应的线段仍然平行;④线段的中点在直观图中仍然是线段的中点.A.1 B.2C.3 D.4解析:①③④正确.答案:C3.如图所示为一个简单几何体的三视图,则其对应的实物是( )解析:根据三种视图的对角线位置关系,容易判断A是正确结论.答案:A4.如图所示,该直观图表示的平面图形为( )A.钝角三角形B.锐角三角形C.直角三角形D.正三角形解析:直观图中三角形有2条边与坐标轴平行,这2条边互相垂直.答案:C5.如图是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数是( )A.2 B.3C.4 D.6解析:由正视图可知,几何体的最右边有2个小正方体,中间和左边各有1个小正方体.答案:C6.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30解析:由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥得到的.三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5;截去的锥体的底面是两直角边的长分别为3和4的直角三角形,高为3,所以该几何体的体积为V =12×3×4×5-13×12×3×4×3=24.答案:C7.棱台上、下底面面积分别为16,81,有一平行于底面的截面,其面积为36,则截面截得两棱台高的比为( )A .11B .12C .23D .34解析:将棱台还原为棱锥,设顶端小棱锥的高为h. 两棱台的高分别为x 1,x 2,则 ⎝ ⎛⎭⎪⎫h h +x 12=1636,解得x 1=h 2.⎝ ⎛⎭⎪⎫h h +x 1+x 22=1681,解得x 2=34h.故x 1x 2=23. 答案:C8.某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是(锥体体积公式:V =13Sh ,其中S为底面面积,h为高)( )A.3 B.2C. 3 D.1解析:由图可知,三棱锥的底面为边长为2的正三角形,左侧面垂直于底面,且为边长为2的正三角形,所以该三棱锥的底面积S=12×2×3,高h=3,所以其体积V=13Sh=13×3×3=1.故选D.答案:D9.若圆锥的高扩大到原来的2倍,底面半径缩短到原来的12,则圆锥的体积( )A.缩小到原来的一半B.扩大到原来的两倍C.不变D.缩小到原来的1 6解析:设变化前的圆锥的高为h,底面半径为r,体积为V,变化后的圆锥的高为h′,底面半径为r′,体积为V′,则V′V=13πr′2h′13πr2h=14r2·2hr2h=12.答案:A10.如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:该零件是一个由两个圆柱组成的组合体,其体积V=π×32×2+π×22×4=34π(cm3),原毛坯的体积V毛坯=π×32×6=54π(cm3),被切部分的体积V切=V毛坯-V=54π-34π=20π(cm3),所以V切V毛坯=20π54π=1027.答案:C11.如图,如果底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b,那么圆柱被截后剩下部分的体积是( )A.13πr2(a+b) B.12πr2(a+b)C.πr2(a+b) D.2r2(a+b)解析:将这样两个完全相同的几何体拼在一起组成一个高为a+b的圆柱,故圆柱被截后剩下部分的体积为12πr2(a+b).答案:B12.一个球与一个正三棱柱的三个侧面和两个底面都相切,如果这个球的体积是323π,那么这个三棱柱的体积是( )A.96 3 B.16 3 C.24 3 D.48 3解析:由球的体积公式可求得球的半径R=2.设球的外切正三棱柱的底面边长为a,高即侧棱长为h,则h=2R=4.在底面正三角形中,由正三棱柱的内切球特征,有a2×33=R=2,解得a=4 3.故此三棱柱的体积V=12×32×(43)2×4=48 3.答案:D第Ⅱ卷(非选择题,共60分)二、填空题(每小题5分,共20分)13.如图所示的螺母是由________和______两个简单几何体构成的.答案:正六棱柱圆柱14.某几何体的三视图如图所示,则该几何体的体积是________.解析:由三视图知该几何体是一个底面半径为r=2,高为h=4的圆柱,中间挖去一个底面边长为a=2的正四棱柱,则其体积是V=πr2h-a2h=16π-16.答案:16π-1615.如图是一个几何体的三视图.若它的体积是33,则a=________.解析:由三视图可知几何体是一个三棱柱,其底面三角形的一边长为2,其边上的高为a,则V三棱柱=12×2×a×3=33a= 3.答案: 316.如图是一个棱长为1的无盖正方体盒子的平面展开图,A,B,C,D为其上四个点,则以A,B,C,D为顶点的三棱锥的体积为________.题图答图解析:将展开图还原为正方体如图.故以A,B,C,D为顶点的三棱锥的体积V=VC-ABD=1 3×⎝⎛⎭⎪⎫12×12×1=16×1=16.答案:16三、解答题(写出必要的计算步骤,只写最后结果不得分,共40分)17.(10分)如果一个几何体的正视图与侧视图都是全等的长方形,边长分别是4 cm与2cm,如图所示,俯视图是一个边长为4 cm的正方形.(1)求该几何体的表面积;(2)求该几何体的外接球的体积.解:(1)由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2,因此该几何体的表面积是2×4×4+4×4×2=64 cm2故该几何体的表面积是64 cm2.(2)由长方体与球的性质可得,长方体的对角线是球的直径.记长方体的对角线为d,球的半径是r,d=16+16+4=36=6,所以球的半径r=3.因此球的体积V=43πr3=43×27π=36π cm3.所以外接球的体积是36π cm3.18.(10分)把一块边长为10 cm的正方形铁片按如图所示的阴影部分裁下,用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与等腰三角形的底边边长x的函数关系式,并求出函数的定义域.解:在Rt△EOF中,EF=5 cm,OF=12x cm,则EO=25-14x2 cm,于是V=13x225-14x2 cm3.依题意,函数的定义域为{x|0<x<10}.19.(10分)某工厂为了制造一个实心工件,先画出了这个工件的三视图(如图),其中正视图与侧视图为两个全等的等腰三角形,俯视图为一个圆,三视图尺寸如图所示(单位cm).(1)求出这个工件的体积;(2)工件做好后,要给表面喷漆,已知喷漆费用是每平方厘米1元,现要制作10个这样的工件,请计算喷漆总费用(精确到整数部分).解:(1)由三视图可知,几何体为圆锥,底面直径为4,母线长为3,设圆锥高为h,则h=32-22=5,则V=13Sh=13πR2h=13π×4×5=453π(cm3).(2)圆锥的侧面积S1=πRl=6π,则表面积=侧面积+底面积=6π+4π=10π(cm2),喷漆总费用=10π×10=100π≈314(元).20.(10分)已知圆柱OO1的底面半径为2,高为4.(1)求从下底面出发环绕圆柱侧面一周到达上底面的最短路径长;(2)若平行于轴OO1的截面ABCD将底面圆周截去四分之一,求截面面积;(3)在(2)的条件下,设截面将圆柱分成的两部分中较小部分为Ⅰ,较大部分为Ⅱ,求V Ⅰ:VⅡ(体积之比).解:(1)将侧面沿某条母线剪开铺平得到一个矩形,邻边长分别是4π和4,则从下底面出发环绕侧面一周到达上底面的最短路径长即为此矩形的对角线长41+π2.(2)连接OA,OB,因为截面ABCD将底面圆周截去14,所以∠AOB=90°,因为OA=OB=2,所以AB=22,而截面ABCD是矩形且AD=4,所以SABCD=8 2.(3)依题知V圆柱=Sh=16π,三棱柱AOB-DO1C的体积是8,则VⅠ+8=14V圆柱=4π,所以VⅠ=4π-8,而VⅡ=V圆柱-VⅠ=12π+8,于是VⅠ:VⅡ=π-23π+2.第二章检测试题时间:90分钟分值:120分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.下列推理不正确的是( )A.A∈b,A∈β,B∈b,B∈βbβB.M∈α,M∈β,N∈α,N∈βα∩β=直线MNC.直线m不在α内,A∈m AαD.A,B,C∈α,A,B,C∈β,且A,B,C不共线α与β重合解析:由空间中点线面的位置关系知选C.答案:C2.下列说法中正确的是( )A.经过三点确定一个平面B.两条直线确定一个平面C.四边形确定一个平面D.不共面的四点可以确定4个平面解析:考查确定平面的公理二及其推论,易知选D.答案:D3.如图,α∩β=l,A∈α,B∈α,AB∩l=D,C∈β,C l,则平面ABC与平面β的交线是( )A.直线AC B.直线ABC.直线CD D.直线BC解析:D∈l,lβ,∴D∈β,又C∈β,∴CDβ;同理,CD平面ABC,∴平面ABC∩平面β=CD.答案:C4.设a、b为两条直线,α、β为两个平面,下列四个命题中,正确的命题是( ) A.若a、b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若aα,bβ,a∥b,则a∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b解析:A中a、b可以平行、相交或异面;B中a、b可以平行或异面;C中α、β可以平行或相交.答案:D5.设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β解析:A项,当m∥α,n∥α时,m,n可能平行,可能相交,也可能异面,故错误;B项,当m∥α,m∥β时,α,β可能平行也可能相交,故错误;C项,当m∥n,m⊥α时,n⊥α,故正确;D项,当m∥α,α⊥β时,m可能与β平行,可能在β内,也可能与β相交,故错误.故选C.答案:C6.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )A.CC1与B1E是异面直线B.AC⊥平面ABB1A 1C.AE,B1C1为异面直线,且AE⊥B1C1D.A1C1∥平面AB1E解析:由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,C正确.答案:C6题图7题图7.如上图,ABCD-A1B1C1D1是长方体,AA1=a,∠BAB1=∠B1A1C1=30°,则异面直线AB与A1C1所成的角、AA1与B1C所成的角分别为( )A.30°,30° B.30°,45°C.45°,45° D.60°,45°解析:∵AB∥A1B1,∴∠B1A1C1是AB与A1C1所成的角,∴AB与A1C1所成的角为30°.∵AA1∥BB1,∴∠BB1C是AA1与B1C所成的角,又BB1=a,AB1=A1C1=2a,AB=3a,∴B1C1=BC=a,则BB1C1C是正方形,∴∠BB1C=45°.答案:B8.在三棱锥P-ABC中,平面PAC⊥平面ABC,∠PCA=90°,△ABC是边长为4的正三角形,PC=4,M是AB边上的一动点,则PM的最小值为( )A.2 3 B.27C.4 3 D.47解析:连接CM,则由题意知PC⊥平面ABC,可得P C⊥CM,所以PM=PC2+CM2,要求PM的最小值只需求出CM的最小值即可,在△ABC中,当CM⊥AB时CM有最小值,此时有CM=4×3 2=23,所以PM的最小值为27.答案:B9.如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.当A1M+MC取得最小值时,B1M的长为( )A. 3B. 6C.2 3 D.2 6题图答图解析:将侧面CDD1C1绕DD1逆时针转90°展开,与侧面ADD1A1共面(如图),连接A1C′,当A1,M,C′共线时,A1M+MC取得最小值.由AD=CD=1,AA1=2,得M为DD1的中点.在长方体ABCD-A1B1C1D1中,B1A1⊥平面A1D1DA,则B1A1⊥A1M,又A1M=2,故B1M=B1A21+A1M2=12+22= 3.故选A.答案:A10.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n等于( )A.8 B.9C.10 D.11解析:取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF 相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.答案:A11.正方体ABCD-A1B1C1D1中,过点A作平面A1BD的垂线,垂足为点H.以下结论中,错误的是( )A.点H是△A1BD的垂心B.AH⊥平面CB1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45°解析:因为AH⊥平面A 1BD ,BD 平面A 1BD , 所以BD⊥AH.又BD ⊥AA 1,且AH∩AA 1=A , 所以BD⊥平面AA 1H.又A 1H 平面AA 1H.所以A 1H⊥BD,同理可证BH⊥A 1D , 所以点H 是△A 1BD 的垂心,A 正确. 因为平面A 1BD∥平面CB 1D 1, 所以AH⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD.因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H≠45°,所以∠A 1AH≠45°,故D 错误. 答案:D12.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( )A.5π12B.π3C.π4D.π6解析:如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO⊥平面ABC ,连接OA ,则∠PAO 即为PA 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3, 则S =34×(3)2=334,VABC -A 1B 1C 1=S×PO=94,∴PO= 3.又AO =33×3=1, ∴tan∠PAO=PO AO =3,∴∠PAO=π3. 答案:B第Ⅱ卷(非选择题,共60分)二、填空题(每小题5分,共20分)13.已知PA 垂直平行四边形ABCD 所在平面,若PC⊥BD,平行四边形ABCD 一定是________. 解析:如图,∵PA⊥平面ABCD , ∴PA⊥BD.∵PC⊥BD,∴BD⊥平面PAC. ∴AC⊥BD. 答案:菱形14.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN 等于________.解析:∵B 1C 1⊥平面A 1ABB 1,MN 平面A 1ABB 1,∴B 1C 1⊥MN, 又∠B 1MN 为直角,∴B 1M⊥MN 而B 1M∩B 1C 1=B 1.∴MN⊥平面MB 1C 1,又MC 1平面MB 1C 1, ∴MN⊥MC 1,∴∠C 1MN =90°. 答案:90°15.如图,圆锥SO 中,AB ,CD 为底面圆的两条直径,AB∩CD=O ,且AB⊥CD,SO =OB=2,P为SB的中点.则异面直线SA与PD所成角的正切值为________.题图答图解析:连接PO,则PO∥SA,PO=SA2=2,∴∠OPD即为异面直线SA与PD所成的角,且△OPD为直角三角形,∠POD为直角,∴tan∠OPD=ODOP=22= 2.答案: 216.如图,正方体ABCD-A1B1C1D1,给出下列四个结论:①P在直线BC1上运动时,三棱锥A-D1PC的体积不变;②P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变;③P在直线BC1上运动时,二面角P-AD1-C的大小不变;④M是平面A1B1C1D1上到点D和C1距离相等的点,则M点运动的路线是过D1点的直线.其中正确结论的编号是________(写出所有真命题的编号).解析:因为BC1∥AD1,所以BC1∥平面ACD1,BC1上任意一点到平面ACD1的距离为定值,所以VA-D1PC=VP-ACD1为定值,①正确;因为P到平面ACD1的距离不变,但AP的长度在变化,所以AP与平面ACD1所成角的大小是变量,②错误;平面PAD1即平面ABC1D1,又平面ABC1D1与平面ACD1所成二面角的大小不变,故③正确;M点运动的路线为A1D1,④正确.答案:①③④三、解答题(写出必要的计算步骤,只写最后结果不得分,共40分)17.(10分)如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形.证明:(1)因为D,E分别为AP,AC的中点,所以DE∥PC.又DE平面BCP,所以DE∥平面BCP.(2)因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF,所以四边形DEFG为平行四边形.又PC⊥AB,所以DE⊥DG.所以四边形DEFG为矩形.18.(10分)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B 1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明:(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.因为DE平面AA1C1C,AC平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC平面ABC,所以AC⊥CC1.因为AC⊥BC,CC1平面BCC1B1,BC平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.因为BC1平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C平面B1AC,AC∩B1C=C,所以BC 1⊥平面B 1AC.因为AB 1平面B 1AC ,所以BC 1⊥AB 1.19.(10分)如图,在三棱锥V -ABC 中,平面VAB⊥平面ABC ,△VAB 为等边三角形,AC⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点.(1)求证:VB∥平面MOC ;(2)求证:平面MOC⊥平面VAB ; (3)求三棱锥V -ABC 的体积.证明:(1)如图,因为O ,M 分别为AB ,VA 的中点,所以OM∥VB. 因为VB 平面MOC , 所以VB∥平面MOC.(2)因为AC =BC ,O 为AB 的中点,所以OC⊥AB. 因为平面VAB⊥平面ABC ,且OC 平面ABC , 所以OC⊥平面VAB.所以平面MOC⊥平面VAB.(3)在等腰直角三角形ACB 中,AC =BC =2, 所以AB =2,OC =1,所以S △VAB =3, 又因为OC⊥平面VAB ,所以 V C -VAB =13OC·S △VAB =33.因为三棱锥V -ABC 的体积与三棱锥C -VAB 的体积相等,所以三棱锥V -ABC 的体积为33.20.(10分)如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=25,AA1=7,BB1=27,点E和F分别为BC和A1C的中点.(1)求证:EF∥平面A1B1 BA;(2)求证:平面AEA1⊥平面BCB1;(3)求直线A1B1与平面BCB1所成角的大小.解:(1)证明:如图,连接A1B.在△A1BC中,因为E和F分别是BC和A1C的中点,所以EF∥BA1.又EF平面A1B1BA,所以EF∥平面A1B1BA.(2)证明:因为AB=AC,E为BC的中点,所以AE⊥BC.因为AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,从而BB1⊥AE.又BC∩BB1=B,所以AE⊥平面BCB1,又AE平面AEA1,所以平面AEA1⊥平面BCB1.(3)取BB1的中点M和B1C的中点N,连接A1M,A1N,NE.因为N和E分别为B1C和BC的中点,所以NE∥B1B,NE=12B1B,故NE∥A1A且NE=A1A,所以A1N∥AE,且A1N=AE.因为AE⊥平面BCB1,所以A1N⊥平面BCB1,从而∠A1B1N为直线A1B1与平面BCB1所成的角.在△ABC中,可得AE=2,所以A1N=AE=2.因为BM∥AA1,BM=AA1,所以A1M∥AB,A1M=AB,由AB⊥BB1,有A1M⊥BB1.在Rt△A1MB1中,可得A1B1=B1M2+A1M2=4.在Rt△A1NB1中,sin∠A1B1N=A1NA1B1=12,因此∠A1B1N=30°.所以直线A1B1与平面BCB1所成的角为30°.第三章检测试题时间:90分钟分值:120分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知直线l的方程为y=-x+1,则直线l的倾斜角为( )A.30°B.45°C.60°D.135°解析:由题意可知,直线l的斜率为-1,故由tan135°=-1,可知直线l的倾斜角为135°.答案:D2.已知点A(0,4),B(4,0)在直线l上,则l的方程为( )A.x+y-4=0 B.x-y-4=0C.x+y+4=0 D.x-y+4=0解析:由截距式方程可得l的方程为x4+y4=1,即x+y-4=0.答案:A3.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是( )A.π3B.π4C.2π3D.3π4解析:因为kMN =-3-22+3=-1,所以kl=1,由此可得,直线l的倾斜角为π4.答案:B4.若直线mx+ny+3=0在y轴上的截距为-3,且它的倾斜角是直线3x-y=33的倾斜角的2倍,则( )A.m=-3,n=1 B.m=-3,n=-3C.m=3,n=-3 D.m=3,n=1解析:依题意得-3n=-3,-mn=tan120°=-3,得m=3,n=1.故选D.答案:D5.两条直线l1:2x+y+c=0,l2:x-2y+1=0的位置关系是( )A .平行B .垂直C .重合D .不能确定解析:l 1的斜率k 1=-2,l 2的斜率k 2=12,因k 1k 2=-1,所以两直线垂直.故选B.答案:B6.已知A(2,4)与B(3,3)关于直线l 对称,则直线l 的方程为( ) A .x +y =0 B .x -y =0 C .x +y -6=0 D .x -y +1=0解析:由已知得直线l 是线段AB 的垂直平分线,所以直线l 的斜率为1,且过线段中点⎝ ⎛⎭⎪⎫52,72,由点斜式得方程为y -72=x -52,整理得x -y +1=0.故选D.答案:D7.已知直线mx +ny +1=0平行于直线4x +3y +5=0,且在y 轴上的截距为13,则m ,n的值分别为( )A .4和3B .-4和3C .-4和-3D .4和-3解析:由题意知:-m n =-43,即3m =4n ,且有-1n =13,∴n=-3,m =-4.答案:C8.和直线3x -4y +5=0关于x 轴对称的直线方程为( ) A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0 D .-3x +4y +5=0解析:设所求直线上的任一点为(x ,y),则此点关于x 轴对称的点的坐标为(x ,-y),因为点(x ,-y)在直线3x -4y +5=0上,所以3x +4y +5=0.答案:A9.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210B .6C .3 3D .2 5解析:由题意知点P 关于直线AB 的对称点为D(4,2),关于y 轴的对称点为C(-2,0),则光线所经过的路程PMN 的长为|CD|=210.答案:A10.点P(7,-4)关于直线l :6x -5y -1=0的对称点Q 的坐标是( ) A .(5,6) B .(2,3) C .(-5,6) D .(-2,3) 解析:设Q(m ,n),则⎩⎪⎨⎪⎧n +4m -7×65=-1,6×m +72-5×n -42-1=0,解得m =-5,n =6,所以点P(7,-4)关于直线l :6x -5y -1=0的对称点Q 的坐标是(-5,6),故选C.答案:C 11.已知点M(1,0)和N(-1,0),直线2x +y =b 与线段MN 相交,则b 的取值范围为( )A .[-2,2]B .[-1,1] C.⎣⎢⎡⎦⎥⎤-12,12 D .[0,2]解析:直线可化为y =-2x +b ,当直线过点M 时,可得b =2;当直线过点N 时,可得b =-2.所以要使直线与线段MN 相交,b 的取值范围为[-2,2].答案:A12.函数y =x 2+1+x 2-4x +8的最小值是( ) A .0 B.13 C .13D .不存在解析:y =x 2+1+x 2-4x +8 =x -02+0-12+x -22+0-22.令A(0,1),B(2,2),P(x,0),则原问题转化为在x 轴上求一点P(x,0),使它到A ,B 两点的距离之和最小.如图所示,取点A 关于x 轴的对称点A′,连接A′B,交x 轴于点P ,则|AP|+|PB|=|A′P|+|PB|≥|A′B|. ∵A(0,1),∴A′(0,-1).∴|A′B|=2-02+2+12=13,即函数y =x 2+1+x 2-4x +8的最小值是13. 答案:B第Ⅱ卷(非选择题,共60分)二、填空题(每小题5分,共20分)13.过点(1,3)且在x 轴的截距为2的直线方程是__________. 解析:由题意设所求直线的方程为x 2+yb =1,又点(1,3)满足该方程,故12+3b =1,∴b=6.即所求直线的方程为x 2+y6=1,化为一般式得3x +y -6=0. 答案:3x +y -6=014.已知直线l 的斜率为16,且和坐标轴围成面积为3的三角形,则直线l 的方程为________.解析:设直线方程为y =16x +b ,与坐标轴截距分别为-6b ,b ,所以12|-6b|·|b|=3,解得b =±1,所以直线方程为x -6y +6=0或x -6y -6=0. 答案:x -6y +6=0或x -6y -6=015.已知直线l 与直线y =1,x -y -7=0分别相交于P 、Q 两点,线段PQ 的中点坐标为(1,-1),那么直线l 的斜率为________.解析:设P(x,1),则Q(2-x ,-3),将Q 坐标代入x -y -7=0得,2-x +3-7=0.∴x =-2,∴P(-2,1),∴k l =-23.答案:-2316.已知a ,b ,c 为某一直角三角形的三边长,c 为斜边,若点(m ,n)在直线ax +by +2c =0上,则m 2+n 2的最小值为________.解析:点(m ,n)在直线ax +by +2c =0上,且m 2+n 2为直线上的点到原点的距离的平方.当两直线垂直时,距离最小.故d =|a·0+b·0+2c|a 2+b 2=2c a 2+b 2=2c c =2.所以m 2+n 2≥4.答案:4三、解答题(写出必要的计算步骤,只写最后结果不得分,共40分)17.(10分)(1)已知直线y=33x-1的倾斜角为α,另一直线l的倾斜角β=2α,且过点M(2,-1),求l的方程;(2)已知直线l过点P(-2,3),且与两坐标轴围成的三角形面积为4,求直线l的方程.解:(1)∵已知直线的斜率为33,即tanα=33,∴α=30°.∴直线l的斜率k=tan2α=tan60°= 3.又l过点(2,-1),∴l的方程为y-(-1)=3(x-2),即3x-y-23-1=0.(2)显然,直线l与两坐标轴不垂直,否则不构成三角形,设l的斜率为k,则k≠0,则l的方程为y-3=k(x+2).令x=0,得y=2k+3;令y=0,得x=-3k-2.于是直线与两坐标轴围成的三角形面积为1 2|(2k+3)(-3k-2)|=4,即(2k+3)(3k+2)=±8,解得k=-12或k=-92.∴l的方程为y-3=-12(x+2),或y-3=-92(x+2).即x+2y-4=0或9x+2y+12=0.18.(10分)已知两直线l1:mx+8y+n=0和l2:2x+my-1=0,(1)若l1与l2交于点P(m,-1),求m,n的值;(2)若l1∥l2,试确定m,n需要满足的条件;(3)若l1⊥l2,试确定m,n需要满足的条件.解:(1)将点P(m,-1)代入两直线方程得:m2-8+n=0和2m-m-1=0,解得m=1,n =7.(2)由l1∥l2得:m2-8×2=0m=±4,又两直线不能重合,所以有8×(-1)-nm≠0,对应得n≠±2,所以当m=4,n≠-2或m=-4,n≠2时,l1∥l2.(3)当m=0时,直线l1:y=-n8和l2:x=12,此时l1⊥l2,当m≠0时,此时两直线的斜率之积等于1 4,显然l1与l2不垂直,所以当m=0,n∈R时直线l1和l2垂直.19.(10分)在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在的直线方程为y =0.若点B 的坐标为(1,2),求点A 和点C 的坐标.解:由方程组⎩⎨⎧x -2y +1=0,y =0,解得点A 的坐标为(-1,0).又直线AB 的斜率k AB =1,x 轴是∠A 的平分线,所以k AC =-1,则AC 边所在的直线方程为y =-(x +1).①又已知BC 边上的高所在直线的方程为x -2y +1=0,故直线BC 的斜率k BC =-2, 所以BC 边所在的直线方程为y -2=-2(x -1).②解①②组成的方程组得⎩⎨⎧x =5,y =-6.即顶点C 的坐标为(5,-6).20.(10分)如图所示,已知A(-2,0),B(2,-2),C(0,5),过点M(-4,2)且平行于AB 的直线l 将△ABC 分成两部分,求此两部分面积的比.解:由已知可得k AB =-12,过点M(-4,2)且平行于AB 的直线l 的方程为x +2y =0.直线AC 的方程为5x -2y +10=0,由方程组⎩⎨⎧x +2y =0,5x -2y +10=0,得直线l 与AC 的交点坐标为P(-53,56).所以|CP||CA|=|x P ||x A |=56.所以两部分的面积之比为5262-52=2511.第四章检测试题 时间:90分钟 分值:120分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.以点A(1,-2),B(3,4)为直径端点的圆的方程是( ) A .(x -2)2+(y +1)2=10 B .(x -2)2+(y -1)2=10 C .(x -2)2+(y +1)2=10 D .(x -2)2+(y -1)2=10解析:圆心为⎝⎛⎭⎪⎫1+32,-2+42,即(2,1),r =12|AB|=10,故方程为(x -2)2+(y -1)2=10.答案:D2.圆x 2+y 2=4与圆x 2+y 2-6x +8y -24=0的位置关系是( ) A .相交 B .相离 C .内切 D .外切解析:圆x 2+y 2=4的圆心为A(0,0),半径为r =2,圆x 2+y 2-6x +8y -24=0的圆心为B(3,-4),半径为R =7,因为|AB|=5=R -r =7-2,故两圆内切.答案:C3.点P(1,-2,5)到坐标平面xOz 的距离为( ) A .1 B .2 C .5 D .-2解析:因为空间一点到平面xOz 的距离等于|y|,所以点P(1,-2,5)到坐标平面xOz 的距离为2.故选B.答案:B4.要使圆x 2+y 2+Dx +Ey +F =0与x 轴的两个交点分别位于原点的两侧,则有( ) A .D 2+E 2-4F>0,且F<0 B .D<0,F>0 C .D≠0,F≠0 D .F<0解析:令y =0,则x 2+Dx +F =0.设两个交点的横坐标分别为x 1,x 2,则x 1x 2=F<0,且x 2+y 2+Dx +Ey +F =0表示圆时D 2+E 2-4F>0.答案:A5.圆x 2+y 2-4x -2y -20=0的斜率为-43的切线方程是( )A .4x +3y -36=0B .4x +3y +14=0C .4x +3y -36=0或4x +3y +14=0D .不能确定解析:由直线与圆的位置关系可知,一定有两条斜率都为-43的平行直线与圆相切.答案:C6.如图,等腰梯形ABCD 的底边长分别为2和14,腰长为10,则这个等腰梯形的外接圆E 的方程为( )A .x 2+(y -2)2=53B .x 2+(y -2)2=64C .x 2+(y -1)2=50 D .x 2+(y -1)2=64解析:由题图易知,等腰梯形的高为102-62=8,显然,外接圆的圆心E 一定在y 轴上,设圆心E 到下底边的距离为a ,则72+a 2=12+(8-a)2,解得a =1.故外接圆E 的圆心为(0,1),半径为72+12=52,故所求外接圆E 的方程为x 2+(y -1)2=50.答案:C7.若曲线x 2+y 2+a 2x +(1-a 2)y -4=0关于直线y -x =0的对称曲线仍是其本身,则实数a 等于( )A .±12B .±22C.12或-22D .-12或22解析:将(y ,x)代入曲线方程,得 y 2+x 2+a 2y +(1-a 2)x -4=0. 于是1-a 2=a 2,解得a =±22. 答案:B8.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:设圆C 2的圆心为(a ,b).因为圆C 1的圆心坐标为(-1,1),所以⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎨⎧a =2,b =-2.又因为圆C 2的半径与圆C 1的半径长相等, 所以圆C 2的方程为(x -2)2+(y +2)2=1. 答案:B9.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN|=23,则k 的值是( )A .-34B .0C .0或-34D.34解析:圆心(3,2)到直线y =kx +3的距离d =|3k +1|k 2+1,则|MN|=24-3k +12k 2+1=23,解得k =0或k =-34.答案:C10.已知圆C :x 2+y 2-4x -2y +1=0,直线l :3x -4y +m =0,圆上存在两点到直线l 的距离为1,则m 的取值范围是( )A .(-17,-7)B .(3,13)C .(-17,-7)∪(3,13)D .[-17,-7]∪[3,13]解析:当圆心到直线的距离d 满足r -1<d<r +1时,圆上存在两个点到直线的距离为1,即满足1<|2+m|5<3,解得m∈(-17,-7)∪(3,13).答案:C11.设点M(x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN=45°,则x 0的取值范围是( )A .[-1,1]B.⎣⎢⎡⎦⎥⎤-12,12 C .[-2,2]D.⎣⎢⎡⎦⎥⎤-22,22解析:点M(x 0,1)在直线y =1上,而直线y =1与圆x 2+y 2=1相切.据题意可设点N(0,1),如图,则只需∠OMN≥45°即可,此时有tan∠OMN=|ON||MN|≥tan45°,得0<|MN|≤|ON|=1,即0<|x 0|≤1.当M 位于点(0,1)时,显然在圆上存在点N 满足要求.综上可知,-1≤x 0≤1.答案:A12.已知线段AB 的端点B 的坐标为(m ,n),端点A 在圆C :(x +1)2+y 2=4上运动,且线段AB 的中点M 的轨迹方程为⎝⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=1,则m +n 等于( )A .-1B .7C .1D .-7解析:设点M ,A 的坐标分别为(x ,y),(x 0,y 0),因为点M 是线段AB 的中点,所以⎩⎨⎧x 0=2x -m ,y 0=2y -n ,又点A 在圆C 上,所以(2x -m +1)2+(2y -n)2=4,即⎝⎛⎭⎪⎫x +1-m 22+⎝ ⎛⎭⎪⎫y -n 22=1,即为中点M 的轨迹方程,又中点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=1,比较得⎩⎪⎨⎪⎧1-m 2=-32,-n 2=-32,解得⎩⎨⎧m =4,n =3.所以m +n =7.故选B.答案:B第Ⅱ卷(非选择题,共60分)二、填空题(每小题5分,共20分)13.点M(4,-3,5)到x 轴的距离为m ,到xOy 坐标平面的距离为n ,则m 2+n =________. 解析:由题意,得m 2=(-3)2+52=34,n =5,所以m 2+n =39. 答案:3914.若P(2,1)是圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:由圆的方程得圆心坐标为O(1,0),所以k PO =12-1=1.则直线AB 的斜率为k =-1,由点斜式方程得x +y -3=0.答案:x+y-3=015.已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD,则四边形ABCD的面积为________.解析:将圆的方程化为标准形式为(x-3)2+(y-4)2=25,过点(3,5)的最长弦为直径,所以AC=10,最短弦为与AC垂直的弦,所以BD=46,所以四边形ABCD的面积为12 AC·BD=20 6.答案:20 616.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为________;(2)圆C在点B处的切线在x轴上的截距为________.解析:(1)过点C作CM⊥AB于M,连接AC,则|CM|=|OT|=1,|AM|=12|AB|=1,所以圆的半径r=|AC|=|CM|2+|AM|2=2,从而圆心C(1,2),即圆的标准方程为(x-1)2+(y -2)2=2.(2)令x=0得,y=2±1,则B(0,2+1),所以直线BC的斜率为k=2+1-20-1=-1,由直线与圆相切的性质知,圆C在点B处的切线的斜率为1,则圆C在点B处的切线方程为y-(2+1)=1×(x-0),即y=x+2+1,令y=0得x=-2-1,故所求切线在x 轴上的截距为-2-1.答案:(1)(x-1)2+(y-2)2=2 (2)-2-1三、解答题(写出必要的计算步骤,只写最后结果不得分,共40分)17.(10分)已知一圆经过点A(2,-3)和B(-2,-5),且圆心C在直线l:x-2y-3=0上,(1)求此圆的标准方程;(2)判断点M1(0,1),M2(2,-5)与该圆的位置关系.解:(1)如图,因为点A(2,-3),B(-2,-5),所以线段AB 的中点D 的坐标为(0,-4).又k AB =-5--3-2-2=12,所以线段AB 的垂直平分线的方程是y =-2x -4. 联立方程组⎩⎨⎧x -2y -3=0,y =-2x -4,解得⎩⎨⎧x =-1,y =-2.所以圆心坐标为C(-1,-2),半径 r =|CA|=2+12+-3+22=10.所以此圆的标准方程是(x +1)2+(y +2)2=10.(2)将点M 1(0,1),M 2(2,-5)分别代入(x +1)2+(y +2)2中,得值分别为10,18, 故点M 1(0,1)在圆上,点M 2(2,-5)在圆外.18.(10分)自点A(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x 2+y 2-4x -4y +7=0相切,求光线L 所在的直线方程.解:已知圆的标准方程是(x -2)2+(y -2)2=1, 它关于x 轴对称的圆的方程是(x -2)2+(y +2)2=1. 设光线L 所在直线方程是y -3=k(x +3).由题设知对称圆的圆心C′(2,-2)到这条直线的距离等于1,即d =|5k +5|1+k 2=1. 整理得12k 2+25k +12=0, 解得k =-34或k =-43.故所求的直线方程是y -3=-34(x +3)或y -3=-43(x +3),即3x +4y -3=0或4x +3y+3=0.19.(10分)已知点P(2,0)及圆C :x 2+y 2-6x +4y +4=0. (1)若直线l 过点P 且与圆心C 的距离为1,求直线l 的方程.(2)设直线ax -y +1=0与圆C 交于A ,B 两点,是否存在实数a ,使得过点P(2,0)的直线l 2垂直平分弦AB ?若存在,求出实数a 的值;若不存在,请说明理由.解:(1)设直线l 的斜率为k(k 存在),则方程为y -0=k(x -2),即kx -y -2k =0. 又圆C 的圆心为(3,-2),半径r =3,由|3k +2-2k|k 2+1=1,解得k =-34.所以直线方程为y =-34(x -2),即3x +4y -6=0.当l 的斜率不存在时,l 的方程为x =2,经验证x =2也满足条件.(2)把直线y =ax +1代入圆C 的方程,消去y ,整理得(a 2+1)x 2+6(a -1)x +9=0. 由于直线ax -y +1=0交圆C 于A ,B 两点, 故Δ=36(a -1)2-36(a 2+1)>0,解得a<0. 则实数a 的取值范围是(-∞,0). 设符合条件的实数a 存在.由于l 2垂直平分弦AB ,故圆心C(3,-2)必在l 2上.所以l 2的斜率k PC =-2. 而k AB =a =-1k PC ,所以a =12. 由于12(-∞,0),故不存在实数a ,使得过点P(2,0)的直线l 2垂直平分弦AB.20.(10分)在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A(4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.解:(1)由题意可知直线l 的斜率存在,设直线l 的方程为y =k(x -4),即kx -y -4k =0,所以圆心C 1(-3,1)到直线l 的距离d =4-2322=1,由点到直线的距离公式得|-3k -1-4k|k 2+1=1,化简得24k 2+7k =0,解得k =0或k = -724.所以直线l 的方程为y =0或y =-724(x -4),即y =0或7x +24y -28=0. (2)设点P 的坐标为(m ,n),直线l 1,l 2的方程分别为y -n =k 1(x -m),y -n =-1k 1(x -m),即k 1x -y +n -k 1m =0,-1k 1x -y +n +1k 1m =0.因为直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,两圆半径相等,由垂径定理,得:圆心C 1(-3,1)到直线l 1的距离与圆心C 2(4,5)到直线l 2的距离相等,故|-3k 1-1+n -k 1m|k 21+1=|-4k 1-5+n +1k 1m|1k 2+1,化简得(2-m -n)k 1=m -n -3或(m -n +8)k 1=m +。
评估验收卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的)1.下列说法正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等答案:B2.若一个几何体的正视图和侧视图都是等腰三角形,俯视图是带圆心的圆,则这个几何体可能是()A.圆柱B.三棱柱C.圆锥D.球体解析:由三视图的特征,知几何体是圆锥.答案:C3.如图所示的直观图表示的四边形的平面图形A′B′C′D′是()A.任意梯形B.直角梯形C.任意四边形D.平行四边形解析:AB∥Oy,AD∥Ox,故A′B′⊥A′D′.又BC∥AD且BC≠AD,所以为直角梯形.答案:B4.半径为R的半圆卷成一个圆锥,则它的体积为()A.324πR3 B.38πR3C.524πR3 D.58πR3解析:设圆锥的底面半径为r,高为h.依题意πR=2πr,所以r=R2,则h=R2-T2=32R.所以圆锥的体积V=13πr2n=13π⎝⎛⎭⎫R22·32R=324πR3.答案:A5.一个几何体的三视图如图所示,则该几何体可以是()解析:由正视图和侧视图,几何体应为台体与主体的组合体.根据俯视图知是圆台与圆柱的组合体.答案:D6.若长方体相邻三个面的面积分别为2,3,6,则长方体的体积等于()A. 6 B.6C.6 6 D.36解析:设长方体的长、宽、高分别为a,b,c,则不妨设ab=6,ac=3,bc= 2.所以a2b2c2=2×3×6=6.故长方体的体积V=abc= 6.答案:A7.一个几何体的三视图如下图所示,已知这个几何体的体积为103,则h为()A.32B. 3C.3 3 D.5 3解析:由三视图可知,该几何体是四棱锥,其底面是长为6,宽为5的矩形,高为h,所以V =13×6×5×h =103,解得h = 3.答案:B8.过球的一条半径的中点作垂直于该半径的平面,则所得截面圆的面积与球的表面积的比值为( )A.316B.916C.38D.932解析:设球的半径为R ,截面圆的半径为r , 则⎝⎛⎭⎫R 22+r 2=R 2,所以r 2=34R 2. 故S 截面S 球=πr 24πR 2=14×34=316. 答案:A9.一个球与它的外切圆柱、外切等边圆锥(圆锥的轴截面为正三角形)的体积之比为( )A .2∶3∶5B .2∶3∶4C .3∶5∶8D .4∶6∶9解析:设球的半径为r ,则球的体积V 球=43πr 3.外切等边圆柱的体积V 圆柱=2πr 3. 外切等边圆锥的半径R =3r ,高h =3r . 所以外切等边圆锥的体积V 圆锥=13πR 2h =3πr 3.故V 球:V 圆柱:V 圆锥=4∶6∶9 答案:D10.(2014·重庆卷)某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30解析:由三视图可知该几何体是由如图所示的直三棱柱ABC -A 1B 1C 1截掉一个三棱锥D -A 1B 1C 1得到的,其中AC =4,BC =3,AA 1=5,AD =2,BC ⊥AC .所以几何体的体积V =12AC ·BC ·AA 1-13×12·A 1C 1·B 1C 1·A 1D =12×4×3×5-13×12×4×3×3=30-6=24.答案:C11.(2015·山东卷)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析:如图所示,过点D 作BC 的垂线,垂足为H .则由旋转体的定义可知,该梯形绕AD 所在的直线旋转一周而形成的曲面所围成的几何体为一个圆柱挖去一个圆锥.其中圆柱的底面半径R =AB =1,高h 1=BC =2,其体积V 1=πR 2h 1=π×12×2=2π.圆锥的底面半径r =DH =1,高h 2=1. 圆锥的体积V 2=13πr 2h =13×12×1=π3.故所求几何体的体积为V =V 1-V 2=2π-π3=5π3.答案:C12.(2015·北京卷)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A .2+ 5B .4+ 5C .2+2 5D .5解析:如图所示,在几何体P -ABC 中,PA ⊥底面ABC ,AB =AC 由三视图知,PA =l ,BC =2,且△ABC 的边BC 的高线为2. 所以S △ABC =12×2×2=2,S △PAC =S △PAB =12×5×1=52.S △PBC =12×2×5= 5.故该三棱锥的表面积S 表=2+2×52+5=2+2 5. 答案:C二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上) 13.圆台的底面半径为1和2,母线长为3,则此圆台的体积为________. 解析:作圆台的轴截面如图所示,则r 1=O 1D =1,r 2=O 2A =2,AD =3. 所以圆台的高h =AD 2-AH 2=32-(2-1)2=2 2.因此圆台的体积V =π3(r 21+r 22+r 1r 2)h =14 2 π3. 答案:1423π14.圆柱形容器内部盛有高度为8 cm 的水,若放入三个相同的球(球的半径为圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.解析:设球的半径为r ,放入3个球后,圆柱液面高度变为6r ,则有 πr 2·6r =8πr 2+3×43πr 3,即2r =8,所以r =4. 答案:415.已知一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如下图所示,侧视图是一个矩形,则这个矩形的面积是________.解析:设正三棱柱的侧棱与底面边长为a ,则V 三棱柱=34a 2·a =23,所以a =2, 因此底面正三角形的高2×sin 60°= 3. 故侧视图(矩形)的面积S =3×2=2 3. 答案:2 316.(2015·天津卷)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析:由三视图可知,该几何体由两个圆锥和一个圆柱构成的组合体.根据三视图的数据知,圆柱的底面圆的半径r =1 m ,高h =2 m ;圆锥的底面圆的半径和高都是1 m.所以V 柱=πr 2·h =2π,V 锥=2×13π×12×1=2π3,因此组合体的体积V =V 柱+V 锥=2π+2π3=8π3(m 3). 答案:8π3三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)如图所示是一个长方体截去一个角得到的几何体的直观图及正视图和侧视图(单位:cm).(1)画出该多面体的俯视图,并标上相应的数据; (2)按照给出的数据,求该几何体的体积.解:(1)该几何体的俯视图如图所示.(2)该几何体的体积V =V 长方体-V 三棱柱=4×4×6-13×(12×2×2)×2=2843(cm 3).18.(本小题满分12分)一个圆锥形容器和一个圆柱形容器的轴截面如图所示,两容器内所盛液体的体积正好相等,且液面高度h 也相等,用a 将h 表示出来.解:V 圆锥液=πh 2·h3,V 圆柱液=π·(a2)2·h ,由已知得πh 33=π·(a 2)2h ,所以h =32a .19.(本小题满分12分)将一个底面圆的直径为2、高为1的圆柱截成横截面为长方形的棱柱(如图),设这个长方形截面的一条边长为x ,对角线长为2,截面的面积为A .(1)求面积A 以x 为自变量的函数式; (2)求出截得棱柱的体积的最大值. 解:(1)横截面如图所示.由题意得A =x ·4-x 2(0<x <2). (2)V =x ·4-x 2=-(x 2-2)2+4,由(1)知0<x <2,所以,当x =2时,V max =2. 即截得棱柱的体积的最大值为2.20.(本小题满分12分)在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.解:设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S ,则R =OC =2,AC =4,AO =42-22=2 3.如图所示易知△AEB ∽△AOC , 所以AE AO =EB OC ,即323=r 2,所以r =1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以S =S 底+S 侧=2π+23π=(2+23)π.21.(本小题满分12分)如图所示是已知几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积. 解:(1)这个几何体的直观图如图所示.(2)这个几何体可看成是由正方体AC 1及直三棱柱B 1C 1Q A 1D 1P 的组合体. 由PA 1=PD 1=2,A 1D 1=AD =2,可得PA 1⊥PD 1. 故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),所求几何体的体积V =23+12×(2)2×2=10(cm 3).22.(本小题满分12分)已知球心O 到过球面上三点A ,B ,C 的截面的距离等于球半径的一半,且AB =BC =CA =3cm ,求球的表面积和体积.解:如图所示,设过A ,B ,C 三点的截面为圆O ′,连接OO ′,AO ,AO ′,因为AB =BC =CA =3cm ,所以O ′为正三角形ABC 的中心,且AO ′=33AB =3cm. 设球的半径为R ,则OO ′=12R .由球的截面性质,知△OO ′A 为直角三角形, 所以AO ′=OA 2-OO ′2=R 2-14R 2=32R ,所以R =2 cm.所以S 球=4πR 2=16π cm 2, V 球=43πR 3=323π cm 3.。
数学人教A必修2模块综合检测(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.直线l过点(-1,2)且与直线2x-3y+4=0垂直,则l的方程为( ) A.3x+2y-1=0 B.2x+3y-1=0C.3x+2y+1=0 D.2x-3y-1=02.已知直线(a-2)x+ay-1=0与直线2x+3y+5=0平行,则a的值为( )A.-6 B.6 C.45D.453.已知点M(-2,1,3)关于坐标平面xOz的对称点为A,关于y轴的对称点为B,则|AB|=( )A.2 B.. D.84.如图,在长方体ABCD-A1B1C1D1中,M,N分别是棱BB1,B1C1的中点,若∠CMN=90°,则异面直线AD1和DM所成角为( )A.30° B.45°C.60° D.90°5.已知水平放置的△ABC是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′ABC中∠ABC的大小是( )A.30° B.45° C.60° D.90°6.若直线y=kx+1与圆x2+y2+kx-2y=0的两个交点恰好关于y轴对称,则k=( )A .0B .1C .2D .37.已知实数x ,y 满足2x +y +5=0的最小值为( )A B .5 C .8.圆x 2+y 2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是( )A .36B .18C .D .9.把直线y x =绕原点逆时针转动,使它与圆x 2+y 2+-2y +3=0相切,则直线转动的最小正角是( )A .3π B .2π C .23π D .56π10.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC的体积为( )A .3 B .3 C .3 D .311.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A ..C .D .12.若直线y =x +b 与曲线3y =b 的取值范围是( )A .[-1, .[1-1+C .[1-3]D .[13]二、填空题(本大题共4小题,每小题4分,共16分)13.用a ,b ,c 表示三条不同的直线,γ表示平面,给出下列命题: ①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b .其中真命题的序号是__________.14.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为________cm 3.15.已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2-2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为__________.16.将一张坐标纸折叠一次,使得点P(1,2)与点Q(-2,1)重合,则直线y=x-4关于折痕对称的直线为__________.三、解答题(本大题共6小题,共74分)17.(12分)如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明PA⊥BD;(2)设PD=AD=1,求棱锥D-PBC的高.18.(12分)已知两条直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求分别满足下列条件的a,b的值.(1)直线l1过点(-3,-1),并且直线l1与直线l2垂直.(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.19.(12分)已知线段AB的端点B的坐标为(1,3),端点A在圆C:(x+1)2+y2=4上运动.(1)求线段AB的中点M的轨迹;(2)过B点的直线l与圆C有两个交点E,D,当CE⊥CD时,求l的斜率.20.(12分)请你帮忙设计2020年年玉树地震灾区小学的新校舍,如图,在学校的东北方有一块地,其中两面是不能动的围墙,在边界OAB内是不能动的一些体育设施.现准备在此建一栋教学楼,使楼的底面为一矩形,且靠围墙的方向须留有5米宽的空地,问如何设计,才能使教学楼的面积最大?21.(12分)如图,边长为4的正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点.(1)求四棱锥P-ABCD的体积.(2)求证:PA∥平面MBD.(3)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点N的位置,并证明你的结论;若不存在,请说明理由.22.(14分)如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△PAD中AD边上的高.(1)证明:PH⊥平面ABCD;(2)若PH=1,AD FC=1,求三棱锥E-BCF的体积;(3)证明:EF⊥平面PAB.参考答案1答案:A 2答案:B 3答案:C 4答案:D 5答案:C 6答案:A 7答案:A 8答案:C 9答案:B 10答案:C 11答案:B 12答案:C 13答案:①④ 14答案:6 15答案:216答案:x +7y +20=017答案:(1)证明:过D 作DF ⊥AB 于F ,因为∠DAB =60°,AB =2AD ,所以∠ADF =30°,2DF a =,32FB a =,所以∠FDB =60°.故BD ⊥AD .又PD ⊥底面ABCD ,可得BD ⊥PD .所以BD ⊥平面PAD .故PA ⊥BD . (2)解:如上图,作DE ⊥PB ,垂足为E . 已知PD ⊥底面ABCD , 则PD ⊥BC .由(1)知BD ⊥AD ,又BC ∥AD ,所以BC ⊥BD . 故BC ⊥平面PBD , 所以BC ⊥DE . 则DE ⊥平面PBC .由题设知PD =1,则BD =PB =2.根据DE ·PB =PD ·BD ,得2DE =,即棱锥D -PBC 的高为2. 18答案:解:(1)∵l 1⊥l 2, ∴a (a -1)+(-b )·1=0,即a 2-a -b =0.① 又点(-3,-1)在l 1上, ∴-3a +b +4=0.② 由①②解得a =2,b =2.(2)∵l 1∥l 2且l 2的斜率为1-a ,∴l 1的斜率也存在,a b =1-a ,1a b a =- 故l 1和l 2的方程可分别表示为l 1:(a -1)x +y +4(1)a a -=0,l 2:(a -1)x +y +1aa-=0.∵原点到l 1与l 2的距离相等,∴141a a a a -=-,a =2或23a =. 因此2,2ab =⎧⎨=-⎩或2,32.a b ⎧=⎪⎨⎪=⎩19答案:解:(1)设A (x 1,y 1),M (x ,y ),由中点公式得111,232x x y y +⎧=⎪⎪⎨+⎪=⎪⎩ ⇒ 1121,2 3.x x y y =-⎧⎨=-⎩因为A 在圆C 上,所以(2x -1+1)2+(2y -3)2=4,即223=12x y ⎛⎫+- ⎪⎝⎭.点M 的轨迹是以30,2⎛⎫⎪⎝⎭为圆心,1为半径的圆.(2)设l 的斜率为k ,则l 的方程为y -3=k (x -1),即kx -y -k +3=0. 因为CE ⊥CD ,△CED 为等腰直角三角形,圆心C (-1,0)到l=.=,所以4k 2-12k +9=2k 2+2. 即2k 2-12k +7=0,解得32k =±. 20答案:解:如图建立坐标系,可知AB 所在直线方程为=12020x y+,即x +y =20.设G (x ,y ),由y =20-x 可知G (x ,20-x ) .∴S =[39-5-(20-x )][25-(5+x )]=(14+x )(20-x )=-x 2+6x +20×14=-(x -3)2+289. 由此可知,当x =3时,S 有最大值289平方米.故在线段AB 上取点G (3,17),过点G 分别作墙的平行线,建一个长、宽都为17米的正方形,教学楼的面积最大.21答案:解:(1)∵Q 为AD 的中点,△PAD 为正三角形, ∴PQ ⊥AD .∵平面PAD ⊥平面ABCD ,且面PAD ∩面ABCD =AD , ∴PQ ⊥平面ABCD .∵AD =4,∴PQ = 四棱锥P -ABCD 的体积V =13S 正方形ABCD ·PQ=2143⨯⨯=.(2)证明:连接AC 交BD 于点O ,连接MO ,由正方形ABCD 知O 为AC 的中点, ∵M 为PC 的中点, ∴MO ∥PA .∵MO ⊂平面MBD ,PA ⊄平面MBD , ∴PA ∥平面MBD .(3)存在点N ,当N 为AB 中点时,平面PQB ⊥平面PNC ,证明如下: ∵四边形ABCD 是正方形,Q 为AD 的中点, ∴BQ ⊥NC .由(1)知,PQ ⊥平面ABCD ,NC ⊂平面ABCD , ∴PQ ⊥NC .又BQ ∩PQ =Q , ∴NC ⊥平面PQB . ∵NC ⊂平面PCN ,∴平面PCN ⊥平面PQB .22答案:(1)证明:因为AB ⊥平面PAD ,所以平面PAD ⊥平面ABCD ;因为PH 为△PAD 中AD 边上的高,所以PH ⊥AD ,又平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD .(2)解:因为E 为PB 的中点,所以E 点到平面ABCD 的距离为11=22PH ,S △BCF =12×CF ×AD =121222⨯⨯=. 所以三棱锥E -BCF 的体积V =112232212⨯⨯=. (3)证明:取AB 的中点M ,连接MF ,EM ,取PA 的中点N ,连接NE ,DN .因为AB ∥CD ,DF =12AB , 所以NE AM DF ,所以四边形DNEF 为平行四边形, 所以EF DN . 因为PD =AD , 所以DN ⊥PA .又因为AB ⊥平面PAD , 所以DN ⊥AB . 又PA ∩AB =A ,所以DN ⊥平面PAB , 所以EF ⊥平面PAB .。
高二周末检测题一、选择题1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2 .垂直于同一条直线的两条直线一定 ( )A 、平行B 、相交C 、异面D 、以上都有可能 3.若三个平面两两相交,有三条交线,则下列命题中正确的是( )A .三条交线为异面直线B .三条交线两两平行C .三条交线交于一点D .三条交线两两平行或交于一点4. 在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、 能相交于点P ,那么 ( )A 、点P 必在直线AC 上B 、点P 必在直线BD 上C 、点P 必在平面BCD 内 D 、点P 必在平面ABC 外5.若平面α⊥平面β,α∩β=l ,且点P ∈α,P ∉l ,则下列命题中的假命题是( )A .过点P 且垂直于α的直线平行于βB .过点P 且垂直于l 的直线在α内C .过点P 且垂直于β的直线在α内D .过点P 且垂直于l 的平面垂直于β 6.设a ,b 为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )A .若a ,b 与α所成的角相等,则a ∥bB .若a ∥α,b ∥β,α∥β,则a ∥bC .若a ⊂α,b ⊂β,a ∥b ,则α∥βD .若a ⊥α,b ⊥β,α⊥β,则a ⊥b 7.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是线段A 1B 1,B 1C 1上的不与端点重合的动点,如果A 1E =B 1F ,有下面四个结论:①EF ⊥AA 1; ②EF ∥AC ; ③EF 与AC 异面; ④EF ∥平面ABCD . 其中一定正确的有( )A .①②B .②③C .②④D .①④8.如图,在△ABC 中,∠BAC =90°,P A ⊥面ABC ,AB =AC ,D 是BC 的中点,则图中直角三角形的个数是( ) A .5 B .8 C .10D .69.如右图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,M 、N 分别是棱DD 1、D 1C 1的中点,则直线OM ( ) A .与AC 、MN 均垂直相交 B .与AC 垂直,与MN 不垂直 C .与MN 垂直,与AC 不垂直 D .与AC 、MN 均不垂直10、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A 、2V B 、3V C 、4V D 、5V 11.(2009·海南、宁夏高考)如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点 E 、F ,且EF =12,则下列结论错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A —BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等12.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 成60°的角;④AB 与CD 所成的角是60°. 其中正确结论的个数是( )A. 1B. 2C. 3D. 4 二、填空题13、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ,平行则四边形ABCD 一定是 .14.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的平面角大小为 .QP C'B'A'CBA15.如下图所示,以等腰直角三角形ABC斜边BC上的高AD为折痕.使△ABD和△ACD折成互相垂直的两个平面,则:(1)BD与CD的关系为________.(2)∠BAC=________.16.在正方体ABCD—A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则①四边形BFD′E一定是平行四边形.②四边形BFD′E有可能是正方形.③四边形BFD′E在底面ABCD内的投影一定是正方形.④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为__________.(写出所有正确结论的编号)三、解答题17、如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC⊥平面BCD.18.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M 为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.19.如图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1. 20.如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.21.如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.高二周末检测题答一、选择题 1-5 BDDAB 6-10 DDBAB 11-12 DC 二、填空题13、菱形 14、90° 15、(1)BD ⊥CD (2)60° 16、①③④ 三、解答题17、证明:(1)∵E 、F 分别是AB 、BD 的中点,∴EF ∥AD .又AD ⊂平面ACD ,EF ⊄平面ACD , ∴直线EF ∥面ACD .(2)在△ABD 中,∵AD ⊥BD ,EF ∥AD , ∴EF ⊥BD .在△BCD 中,∵CD =CB ,F 为BD 的中点,∴CF ⊥BD . ∵CF ∩EF =F ,∴BD ⊥平面EFC , 又∵BD ⊂平面BCD , ∴平面EFC ⊥平面BCD .18、[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA , ∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin60°= 3. ∵平面PCD ⊥平面ABCD ,∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM . ∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形,由勾股定理可求得EM =3,AM =6,AE =3, ∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,∴AM ⊥PM . (2)解:由(1)可知EM ⊥AM ,PM ⊥AM , ∴∠PME 是二面角P -AM -D 的平面角. ∴tan ∠PME =PE EM=33=1,∴∠PME =45°.∴二面角P -AM -D 的大小为45°.19[分析] 本题可以根据面面平行和面面垂直的判定定理和性质定理,寻找使结论成立的充分条件. [证明] (1)在正三棱柱ABC -A 1B 1C 1中,∵F 、F 1分别是AC 、A 1C 1的中点, ∴B 1F 1∥BF ,AF 1∥C 1F .又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F , ∴平面AB 1F 1∥平面C 1BF .(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1. 又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1⊂平面AB 1F 1, ∴平面AB 1F 1⊥平面ACC 1A 1.20.(1)证明:因为P ,Q 分别为AE ,AB 的中点, 所以PQ ∥EB .又DC ∥EB ,因此PQ ∥DC , 又PQ ⊄平面ACD , 从而PQ ∥平面ACD .(2)如图,连接CQ ,DP ,因为Q 为AB 的中点,且AC =BC ,所以CQ ⊥AB .因为DC ⊥平面ABC ,EB ∥DC , 所以EB ⊥平面ABC ,因此CQ ⊥EB . 故CQ ⊥平面ABE .由(1)有PQ ∥DC ,又PQ =12EB =DC ,所以四边形CQPD 为平行四边形,故DP ∥CQ , 因此DP ⊥平面ABE ,∠DAP 为AD 和平面ABE 所成的角, 在Rt △DP A 中,AD =5,DP =1, sin ∠DAP =55, 因此AD 和平面ABE 所成角的正弦值为55.21[分析] (1)转化为证明GF 平行于平面ABC 内的直线AC ;(2)转化为证明AC 垂直于平面EBC 内的两条相交直线BC 和BE ;(3)几何体ADEBC 是四棱锥C -ABED . [解] (1)证明:连接AE ,如下图所示.∵ADEB 为正方形,∴AE ∩BD =F ,且F 是AE 的中点, 又G 是EC 的中点,∴GF ∥AC ,又AC ⊂平面ABC ,GF ⊄平面ABC , ∴GF ∥平面ABC .(2)证明:∵ADEB 为正方形,∴EB ⊥AB ,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ⊂平面ABED , ∴BE ⊥平面ABC ,∴BE ⊥AC . 又∵AC =BC =22AB , ∴CA 2+CB 2=AB 2, ∴AC ⊥BC .又∵BC ∩BE =B ,∴AC ⊥平面BCE . (3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22, ∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.。
模块综合测试(时间120分钟,满分150分)知识点分布表知识点 题号 分值三视图与直观图 3,7 5空间几何体的表面积与体积 3,7,15 9点、线、面的位置关系 1 5直线、平面的平行与垂直 2,16,19 21角度、距离问题 10,14 9倾斜角与斜率 4 5直线的方程 9,5,13,20 22两条直线的平行与垂直 17 12圆的方程 8,18,22 26直线、圆的位置关系 6,11,20,22 19空间直角坐标系 12,21 17一、选择题(本大题共12小题,每小题5分,共60分)1.下面四个条件中,能确定一个平面的条件是( )A.空间中任意三点B.空间中两条直线C.一条直线和一个点D.两条平行直线2.已知直线l 和平面α,下面所给命题中,正确命题的个数是( )①若l 垂直α内两条直线,则l ⊥α②若l 垂直α内所有直线,则l ⊥α③若l 垂直α内两条相交直线,则l ⊥α④若l 垂直α内无数条直线,则l ⊥αA.0B.1C.2D.33.某几何体的三视图中,三个视图是三个全等的圆,圆的半径为R,则这个几何体的体积为() A.331R π B.332R πC.πR 3D.334R π 4.直线y =-t a n30°的斜率是( )A.0B.33C.-3D.33- 5.过点P (1,1)作直线l 与两坐标轴相交,所得三角形面积为10,则直线l 有( )A.1条B.2条C.3条D.4条 6.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为( )A.1B.22C.7D.37.一个几何体的三视图如图所示,其中正视图中△ABC 是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为( )A.23B.32C.12D.6 8.曲线x 2+y 2+4x -4y =0关于( )A.直线x =4对称B.直线x +y =0对称C.直线x -y =0对称D.点(-4,4)对称9.若直线l 到A (0,0)、B (2,2)的距离均等于2,则这样的直线有__________条.( )A.1B.2C.3D.410.已知在四面体ABCD 中,E 、F 分别是AC 、BD 的中点,若CD =2AB =4,EF ⊥AB ,则EF 与CD 所成的角为( )A.90°B.45°C.60°D.30°11.圆(x -1)2+(y +3)2=1的切线方程中有一个是( ) A.x -y =0B.x +y =0C.x =0D.y =012.已知空间两个动点A (m ,1+m ,2+m )、B (1-m ,3-2m ,3m ),则|AB |的最小值是( )A.179B.173C.17173D.17179 二、填空题(本大题共4小题,每小题4分,共16分)13.过P (1,2)且与原点距离最远的直线方程为__________.14.正△ABC 边长为a ,PA ⊥平面ABC ,PA =AB ,过A 作AO ⊥平面PBC ,O 为垂足,则AO =__________.15.在xOy 平面上,四边形ABCD 的四个顶点坐标依次为(0,0)、(1,0)、(2,1)、(0,3),则这个四边形绕x 轴旋转一周所得到的几何体的体积为____________.16.在正方体ABCDA 1B 1C 1D 1中,过对角线BD 1的一个平面交AA 1于E,交CC 1于F,则①四边形BFD 1E 一定是平行四边形;②四边形BFD 1E 有可能是正方形;③四边形BFD 1E 在底面ABCD 内的投影一定是正方形;④平面BFD 1E 有可能垂直于平面BB 1D .以上结论正确的为____________.(写出所有正确结论的编号)三、解答题(本大题共6小题,共74分)17.(12分)已知两条直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,问:当m 为何值时,l 1与l 2(ⅰ)相交;(ⅱ)平行;(ⅲ)重合.18.(12分)求圆心在3x+y=0上,过原点且被y轴截得的弦长为6的圆的方程.19.(12分)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.(1)求证:AF∥平面BCE;(2)求证:平面BCE⊥平面CDE.20.(12分)已知圆C:(x-1)2+(y-2)2=2,P点坐标为(2,-1),过点P作圆C的切线,切点为A,B.(1)求直线PA、P B的方程;(2)求过P点的圆的切线长;(3)求直线AB的方程.21.(12分)设有长方体ABCD A′B′C′D′,如右图所示,长、宽、高分别为|AB|=4 cm,|AD|=3 cm,|AA′|=5 cm,N是线段CC′的中点.分别以AB、AD、AA′所在的直线为x轴、y轴、z轴,以1 cm为单位长,建立空间直角坐标系.(1)求A、B、C、D、A′、B′、C′、D′的坐标;(2)求N的坐标;(3)求这个长方体的对角线AC′的长度.22.(14分)已知方程x2+y2-2x-4y+m=0,(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.参考答案1解析:由平面的基本性质,知“不共线的三点;两条相交或平行直线;直线和直线外一点”均能确定一个平面.答案:D2解析:由线面垂直的定义及判定定理,知若l 垂直α内任意直线,则l ⊥α;若l 垂直α内两条相交直线,则l ⊥α.所以①④错,②③正确,应选C.答案:C3解析:由已知,得该几何体是一个半径为R 的球,所以334R V π=. 答案:D4解析:因为直线y =-t a n30°和x 轴平行,所以倾斜角是0,斜率为0. 答案:A5解析:通过直线的截距式,再作对称即可发现有4条.答案:D6解析:设P (x 0,y 0)为直线y =x +1上一点,圆心C(3,0)到P 点的距离为d ,切线长为l ,则12-=d l .当d 最小时,l 最小.当PC 垂直于直线y =x +1时,d 最小,此时22=d .所以71)22(2min =-=l . 答案:C7解析:由三视图可知,该几何体是一个底面是边长为1的正六边形,侧棱长为2,顶点在底面上的射影是正六边形的中心的六棱锥.∴233321=⨯⨯=侧S . 答案:A8解析:因为圆一定关于直径所在直线对称,圆心在直线x +y =0上,所以直线x +y =0是一条直径所在的直线.答案:B9解析:有平行于直线AB 的两条直线和线段AB 的垂直平分线,共3条.答案:C10解析:取AD 中点M,连结ME 、MF .在△MEF 中,MF ⊥EF ,MF =1,ME =2,∴∠MEF =30°,即EF 与CD 所成的角为30°.答案:D11解析:本题考查直线与圆相切.利用圆心到切线的距离等于半径,可判断选项C 符合题意.答案:C12解析:179)1712(17)32()231()1(||2222+-=-+++--++-=m m m m m m m AB , ∴17173||min =AB . 答案:C 13解析:与原点距离最远的直线是过P 点且与OP 垂直的直线.∵20102=--=OP k ,∴)1(212--=-x y . ∴x +2y -5=0.答案:x +2y -5=014解析:∵PA ⊥面ABC ,∴PA ⊥AB ,PA ⊥AC .又PA =AB =AC =BC =a ,∴P B =PC =a 2.取BC 中点D ,连结PD 、AD ,则PD ⊥BC ,AD ⊥BC ,且a a a PD 27)21(2||22=-=, a AD 23||=. 由ABC P PBC A V V --=,知AD BC PA PD BC AO ⋅⋅⋅⋅=⋅⋅⋅⋅21312131, 即a a a a a AO 2327⋅⋅=⋅⋅. ∴a AO 721=. 答案:a 721 15解析:设O (0,0),A (1,0),B (2,1),C (0,3),OABC 绕x 轴旋转一周所得几何体是一个圆台(上、下底面半径分别为1、3,高为2)挖去一个圆锥(以1为半径,1为高).∴32511312)3131(31222πππ=⨯⨯-⨯⨯++=V . 答案:325π 16解析:同理,D 1E FB.因此①正确.∠D 1EB 在平面ABCD 上的射影为∠DAB ,∴∠D 1EB >∠D AB =90°.∴②错误.D 1EBF 在平面ABCD 上的射影ABCD 为正方形.因此③正确.当E 、F 分别为AA 1、CC 1中点时,因此④正确.答案:①③④17解:若m =0,l 1:x =-6,l 2:2x -3y =0,此时l 1与l 2相交;若m ≠0,由m m 312=-有m =-1或m =3, 由623m m =有m =±3; 故(ⅰ)当m ≠-1且m ≠3时,m m 312≠-,l 1与l 2相交; (ⅱ)当m =-1时,62312m m m ≠=-,l 1与l 2平行; (ⅲ)当m =3时,62312m m m ==-,l 1与l 2重合. 18解:如图所示,设圆心坐标为(a ,-3a ),所以22210)03()0(a a a r =--+-=.所以22223)10(=-a a .所以a 2=1.所以a =±1.所以圆的方程为(x -1)2+(y +3)2=10或(x +1)2+(y -3)2=10.19证明:(1)取CE 中点P ,连结FP 、BP ,∵F 为CD 的中点,∴FP ∥DE ,且DE FP 21=. 又AB ∥DE ,且DE AB 21=. ∴AB ∥FP ,且AB =FP .∴ABP F 为平行四边形.∴AF ∥BP .又∵AF ⊄平面BCE ,BP ⊂平面BCE ,∴AF ∥平面BCE .(2)∵△ACD 为正三角形,∴AF ⊥CD .∵AB ⊥平面ACD ,DE ∥AB ,∴DE ⊥平面ACD .又AF ⊂平面ACD ,∴DE ⊥AF .又AF ⊥CD ,CD ∩DE =D,∴AF ⊥平面CDE .又BP ∥AF ,∴BP ⊥平面CDE .又∵BP ⊂平面BCE ,∴平面BCE ⊥平面CDE .20解:(1)设过P 点的圆的切线方程为y +1=k (x -2),即kx -y -2k -1=0.∵圆心(1,2)到直线的距离为2,即21|3|2=+--k k , ∴k 2-6k -7=0.∴k =7或k =-1.∴所求的切线方程为y +1=7(x -2)或y +1=-(x -2),即7x -y -15=0或x +y -1=0.(2)在Rt△PCA 中,∵|10)21()12(||22=--+-=PC ,|CA |=2,∴|PA |2=|PC |2-|CA |2=8.∴过P 点的圆C 的切线长为22. (3)由⎩⎨⎧=-+-=--,2)2()1(,015722y x y x 得A (59,512).由⎩⎨⎧=-+-=-+,2)2()1(,0122y x y x 得B (0,1).∴直线AB 的方程是x -3y +3=0.21解:(1)A (0,0,0)、B (4,0,0)、C (4,3,0)、D (0,3,0),A ′(0,0,5)、B ′(4,0,5)、C ′(4,3,5)、D ′(0,3,5).(2)N 是线段CC′的中点,有向线段CN 的方向与z 轴正方向相同,|CN |=2.5,因此N 的空间坐标为(4,3,2.5).(3)连结AC ,则在Rt△ABC 中,可用勾股定理算出534||||||2222=+=+=BC AB AC (cm),CC′垂直于底面ABCD ,故CC′垂直于底面内的线段AC ,∠AC C′为直角,在Rt△AC C′中,25||||||22='+='C C AC C A (cm).故所求对角线AC ′的长度为25cm.22解:(1)原方程可化为(x -1)2+(y -2)2=5-m .所以5-m >0,即m <5. (2)由⎩⎨⎧=-+=+--+,042,04222y x m y x y x得(4-2y )2+y 2-2(4-2y )-4y +m =0,故5y 2-16y +8+m =0.设M (x 1,y 1),N(x 2,y 2),则5821+=m y y ,51621=+y y . 所以x 1x 2=(4-2y 1)(4-2y 2)=16+4y 1y 2-8(y 1+y 2)=5164-m . 因为OM ⊥ON ,所以x 1x 2+y 1y 2=0,即0585164=++-m m ,解得58=m . (3)∵58=m ,∴254851658421-=-⨯=x x . 又x 1+x 2=(4-2y 1)+(4-2y 2)=8-2(y 1+y 2)=58, ∴MN 的中点是(2,22121y y x x ++),即(58,54). 又||1||2212x x k MN r -+==.558)2548(4)58(254)()21(12212212=-⨯-⋅=-+⋅-+=x x x x ∴554=r . ∴以MN 为直径的圆的方程为516)58()54(22=-+-y x .。
新课标高中数学(必修2)单元测试卷目录第一章空间几何体[基础训练A组] (1)第一章空间几何体[综合训练B组] (3)第一章空间几何体[提高训练C组] (5)第二章点、直线、平面之间的位置关系[基础训练A组] ........................................... 错误!未定义书签。
第二章点、直线、平面之间的位置关系[综合训练B组] ........................................... 错误!未定义书签。
第二章点、直线、平面之间的位置关系[提高训练C组] ........................................... 错误!未定义书签。
第三章直线与方程[基础训练A组] .............................................................................. 错误!未定义书签。
第三章直线与方程[综合训练B组] ............................................................................... 错误!未定义书签。
第三章直线与方程[提高训练C组] ............................................................................... 错误!未定义书签。
第四章圆与方程[基础训练A组] .................................................................................. 错误!未定义书签。
第四章圆与方程[综合训练B组] ................................................................................... 错误!未定义书签。
高中数学必修第二册全册各章测验汇总章末质量检测(一) 平面向量及其应用 ............................................................................... 1 章末质量检测(二) 复数 ....................................................................................................... 8 章末质量检测(三) 立体几何初步 ..................................................................................... 14 章末质量检测(四) 统计 ..................................................................................................... 23 章末质量检测(五)概率 (32)章末质量检测(一) 平面向量及其应用一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在⊙O 中,向量OB →,OC →,AO →是( ) A .有相同起点的向量 B .共线向量 C .模相等的向量 D .相等的向量解析:由图可知OB →,OC →,AO →是模相等的向量,其模均等于圆的半径,故选C. 答案:C2.若A (2,-1),B (4,2),C (1,5),则AB →+2BC →等于( ) A .5 B .(-1,5) C .(6,1) D .(-4,9)解析:AB →=(2,3),BC →=(-3,3),∴AB →+2BC →=(2,3)+2(-3,3)=(-4,9). 答案:D3.设向量a ,b 均为单位向量,且|a +b |=1,则a 与b 的夹角θ为( ) A.π3 B.π2 C.2π3 D.3π4解析:因为|a +b |=1,所以|a |2+2a ·b +|b |2=1,所以cos θ=-12.又θ∈[0,π],所以θ=2π3.答案:C4.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( ) A .-3 B .-1 C .1 D .3解析:AB →∥BC →,(1-x,4)∥(1,2),2(1-x )=4,x =-1,故选B. 答案:B5.已知向量a ,b 满足a +b =(1,3),a -b =(3,-3),则a ,b 的坐标分别为( ) A .(4,0),(-2,6) B .(-2,6),(4,0) C .(2,0),(-1,3) D .(-1,3),(2,0)解析:由题意知,⎩⎪⎨⎪⎧a +b =1,3,a -b =3,-3,解得⎩⎪⎨⎪⎧a =2,0,b =-1,3.答案:C6.若a =(5,x ),|a |=13,则x =( ) A .±5 B.±10 C .±12 D.±13解析:由题意得|a |=52+x 2=13, 所以52+x 2=132,解得x =±12. 答案:C7.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( ) A .50 2 m B .50 3 m C .25 2 m D.2522m解析:由正弦定理得AB =AC ·sin∠ACB sin B=50×2212=502(m).答案:A8.已知平面内四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD →=d ,且a +c =b+d ,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形 解析:由题意知a -b =d -c , ∴BA →=CD →,∴四边形ABCD 为平行四边形,故选D. 答案:D9.某人在无风条件下骑自行车的速度为v 1,风速为v 2(|v 1|>|v 2|),则逆风行驶的速度的大小为( )A .v 1-v 2B .v 1+v 2C .|v 1|-|v 2| D.v 1v 2解析:题目要求的是速度的大小,即向量的大小,而不是求速度,速度是向量,速度的大小是实数,故逆风行驶的速度大小为|v 1|-|v 2|.答案:C10.已知O 为坐标原点,点A 的坐标为(2,1),向量AB →=(-1,1),则(OA →+OB →)·(OA→-OB →)等于( )A .-4B .-2C .0D .2解析:因为O 为坐标原点,点A 的坐标为(2,1), 向量AB →=(-1,1), 所以OB →=OA →+AB →=(2,1)+(-1,1)=(1,2), 所以(OA →+OB →)·(OA →-OB →)=OA →2-OB →2=(22+12)-(12+22) =5-5=0.故选C. 答案:C11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b+c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形 解析:∵sin A sin B =a c ,∴a b =ac,∴b =c .又(b +c +a )(b +c -a )=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.答案:C12.在△ABC 中,若|AB →|=1,|AC →|=3,|AB →+AC →|=|BC →|,则AB →·BC→|BC →|=( )A .-32 B .-12C.12D.32解析:由向量的平行四边形法则,知当|AB →+AC →|=|BC →|时,∠A =90°.又|AB →|=1,|AC →|=3,故∠B =60°,∠C =30°,|BC →|=2,所以AB →·BC →|BC →|=|AB →||BC →|cos 120°|BC →|=-12.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC 是共线向量,则m =________.解析:∵A ,B ,C 不共线,∴AB →与BC →不共线.又m 与AB →,BC →都共线,∴m =0. 答案:014.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 解析:方法一:设OB →=(x ,y ),由|OA →|=|OB →|知x 2+y 2=10,又OA →·OB →=x -3y=0,所以x =3,y =1或x =-3,y =-1.当x =3,y =1时,|AB →|=25;当x =-3,y =-1时,|AB →|=2 5.故|AB →|=2 5.方法二:由几何意义知,|AB →|就是以OA →,OB →为邻边的正方形的对角线长,又|OA →|=10,所以|AB →|=10×2=2 5.答案:2 515.给出以下命题:①若a ≠0,则对任一非零向量b 都有a·b ≠0; ②若a ·b =0,则a 与b 中至少有一个为0; ③a 与b 是两个单位向量,则a 2=b 2. 其中正确命题的序号是________.解析:上述三个命题中只有③正确,因为|a |=|b |=1,所以a 2=|a |2=1,b 2=|b |2=1,故a 2=b 2.当非零向量a ,b 垂直时,有a·b =0,显然①②错误.答案:③16.用两条成120°角的等长绳子悬挂一个灯具,已知灯具重量为10 N ,则每根绳子的拉力大小为________N.解析:如图,由题意得,∠AOC =∠COB =60°,|OC →|=10,则|OA →|=|OB →|=10,即每根绳子的拉力大小为10 N.答案:10三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图所示,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,OF →=f ,试用a ,b ,c ,d ,e ,f 表示:(1)AD →-AB →; (2)AB →+CF →; (3)EF →-CF →.解析:(1)因为OB →=b ,OD →=d , 所以AD →-AB →=BD →=OD →-OB →=d -b . (2)因为OA →=a ,OB →=b ,OC →=c ,OF →=f , 所以AB →+CF →=(OB →-OA →)+(OF →-OC →)=b +f -a -c . (3)EF →-CF →=EF →+FC →=EC →=OC →-OE →=c -e .18.(12分)已知|a |=2,|b |=3,a 与b 的夹角为60°,c =5a +3b ,d =3a +k b ,当实数k 为何值时,(1)c ∥d ;(2)c ⊥d .解析:由题意得a ·b =|a ||b |cos 60°=2×3×12=3.(1)当c ∥d ,c =λd ,则5a +3b =λ(3a +k b ). ∴3λ=5,且kλ=3,∴k =95.(2)当c ⊥d 时,c ·d =0,则(5a +3b )·(3a +k b )=0. ∴15a 2+3k b 2+(9+5k )a ·b =0, ∴k =-2914.19.(12分)已知向量a =(1,3),b =(m,2),c =(3,4),且(a -3b )⊥c . (1)求实数m 的值; (2)求向量a 与b 的夹角θ.解析:(1)因为a =(1,3),b =(m,2),c =(3,4), 所以a -3b =(1,3)-(3m,6)=(1-3m ,-3).因为(a -3b )⊥c ,所以(a -3b )·c =(1-3m ,-3)·(3,4) =3(1-3m )+(-3)×4 =-9m -9=0, 解得m =-1.(2)由(1)知a =(1,3),b =(-1,2), 所以a ·b =5,所以cos θ=a ·b |a ||b |=510×5=22.因为θ∈[0,π],所以θ=π4.20.(12分)已知向量a =(1,3),b =(2,-2). (1)设c =2a +b ,求(b -a )·c ; (2)求向量a 在b 方向上的投影.解析:(1)由a =(1,3),b =(2,-2),可得c =(2,6)+(2,-2)=(4,4),b -a=(1,-5),则(b -a )·c =4-20=-16.(2)向量a 在b 方向上的投影为a ·b |b |=-422=- 2. 21.(12分)已知O ,A ,B 是平面上不共线的三点,直线AB 上有一点C ,满足2AC→+CB →=0,(1)用OA →,OB →表示OC →;(2)若点D 是OB 的中点,证明四边形OCAD 是梯形. 解析:(1)因为2AC →+CB →=0, 所以2(OC →-OA →)+(OB →-OC →)=0, 2OC →-2OA →+OB →-OC →=0, 所以OC →=2OA →-OB →.(2)证明:如图, DA →=DO →+OA →=-12OB →+OA →=12(2OA →-OB →).故DA →=12OC →.故四边形OCAD 为梯形.22.(12分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知(a -3b )·cos C=c (3cos B -cos A ).(1)求sin B sin A的值;(2)若c =7a ,求角C 的大小.解析:(1)由正弦定理得,(sin A -3sin B )cos C =sin C (3cos B -cos A ), ∴sin A cos C +cos A sin C =3sin C cos B +3cos C sin B , 即sin(A +C )=3sin(C +B ),即sin B =3sin A ,∴sin Bsin A=3.(2)由(1)知b =3a ,∵c =7a ,∴cos C =a 2+b 2-c 22ab =a 2+9a 2-7a 22×a ×3a =3a 26a 2=12,∵C ∈(0,π),∴C =π3.章末质量检测(二) 复数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数i -i 2的实部为( ) A .0 B .1 C .i D .-2 解析:i -i 2=1+i. 答案:B2.用C ,R 和I 分别表示复数集、实数集和虚数集,那么有( ) A .C =R ∩I B .R ∩I ={0}C .R =C ∩ID .R ∩I =∅解析:由复数的概念可知R ⊂C ,I ⊂C ,R ∩I =∅. 答案:D3.下列说法正确的是( )A .如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等B .a i 是纯虚数(a ∈R )C .如果复数x +y i(x ,y ∈R )是实数,那么x =0,y =0D .复数a +b i(a ,b ∈R )不是实数解析:两个复数的实部的差和虚部的差都等于0,则它们的实部、虚部分别相等,所以A 正确;B 中,当a =0时,a i =0是实数,所以B 不正确;要使复数x +y i(x ,y ∈R )是实数,则只需y =0,所以C 不正确;D 中,当b =0时,复数a +b i 是实数,所以D 不正确.答案:A4.复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:由题意得复数z 的实部为-1,虚部为-2,因此在复平面内对应的点为(-1,-2),位于第三象限.答案:C5.设z 1=3-4i ,z 2=-2+3i ,则z 1-z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:z 1-z 2=5-7i. 答案:D6.复数1-7i 1+i 的虚部为( )A .0 B. 2 C .4 D .-4 解析:∵1-7i1+i=1-7i 1-i 1+i1-i =-6-8i2=-3-4i ,∴复数1-7i1+i 的虚部为-4,选D.答案:D7.复数z =(a 2-2a -3)+(a +1)i 为纯虚数,实数a 的值是( ) A .-1 B .3C .1D .-1或3解析:由题意知⎩⎪⎨⎪⎧a 2-2a -3=0,a +1≠0,解得a =3.故选B.答案:B8.已知z-1+i =2+i ,则复数z =( )A .-1+3iB .1-3iC .3+iD .3-i解析:由题意知z -=(1+i)(2+i)=2-1+3i =1+3i ,从而z =1-3i ,选B. 答案:B9.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞) D.(-∞,-3)解析:由已知可得复数z 在复平面内对应的点的坐标为(m +3,m -1),且该点在第四象限,所以⎩⎪⎨⎪⎧m +3>0,m -1<0,解得-3<m <1.答案:A10.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上所对应的点分别为A ,B ,C ,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值是( )A .1B .2C .3D .4解析:依题意3-4i =λ(-1+2i)+μ(1-i)=μ-λ+(2λ-μ)i ,∴⎩⎪⎨⎪⎧μ-λ=32λ-μ=-4,∴⎩⎪⎨⎪⎧λ=-1μ=2,∴λ+μ=1.答案:A11.复数z =x +y i(x ,y ∈R )满足条件|z -4i|=|z +2|,则|2x+4y|的最小值为( )A .2B .4C .4 2D .16解析:由|z -4i|=|z +2|得x +2y =3. 则2x+4y≥22x +2y=2·23=4 2.12.已知f (n )=i n -i -n (i 2=-1,n ∈N ),集合{f (n )}的元素个数是( ) A .2个 B .3个 C .4个 D .无数个 解析:f (0)=i 0-i 0=0,f (1)=i -i -1=i -1i=2i ,f (2)=i 2-i -2=0, f (3)=i 3-i -3=-2i.∴{f (n )}={0,-2i,2i}. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若复数z =(m -1)+(m +2)i 对应的点在直线y =2x 上,则实数m 的值是________.解析:由已知得2(m -1)-(m +2)=0,∴m =4. 答案:414.设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则z 的实部是________. 解析:设z =a +b i(a ,b ∈R ),则i(z +1)=i(a +1+b i)=-b +(a +1)i =-3+2i , 所以a =1,b =3,复数z 的实部是1. 答案:115.在复平面内,复数1+i 与-1+3i 分别对应向量OA →和OB →,其中O 为坐标原点,则|AB →|=________.解析:∵AB →=(-1+3i)-(1+i)=-2+2i , ∴|AB →|=2 2. 答案:2 216.设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为________. 解析:先利用复数的运算法则将复数化为x +y i(x ,y ∈R )的形式,再由纯虚数的定义求a .因为a -103-i =a -103+i 3-i 3+i=a -103+i10=(a -3)-i ,由纯虚数的定义,知a -3=0,所以a =3.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)实数m 为何值时,复数z =m +6m -1+(m 2+5m -6)i 是实数? 解析:复数z 为实数,则虚部为0,由于实部是分式,因此要求分式有意义,则⎩⎪⎨⎪⎧m 2+5m -6=0,m ≠1,解得m =-6.所以当m =-6时,复数z 是实数. 18.(12分)计算⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220.解析:⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220=[(1+2i)·1+(-i)5]2-i 10=(1+i)2-i 10=1+2i.19.(12分)复数z =(a 2+1)+a i(a ∈R )对应的点在第几象限?复数z 对应的点的轨迹方程是什么?解析:因为a 2+1≥1>0,复数z =(a 2+1)+a i 对应的点为(a 2+1,a ),所以z 对应的点在第一、四象限或实轴的正半轴上.设z =x +y i(x ,y ∈R ),则⎩⎪⎨⎪⎧x =a 2+1,y =a ,消去a 可得x =y 2+1,所以复数z 对应的点的轨迹方程是y 2=x -1.20.(12分)设复数z 1=(a 2-4sin 2θ)+(1+2cos θ)i ,a ∈R ,θ∈(0,π),z 2在复平面内对应的点在第一象限,且z 22=-3+4i.(1)求z 2及|z 2|;(2)若z 1=z 2,求θ与a 的值.解析:(1)设z 2=m +n i(m ,n ∈R ),则z 22=(m +n i)2=m 2-n 2+2mn i =-3+4i ,即⎩⎪⎨⎪⎧m 2-n 2=-3,2mn =4,解得⎩⎪⎨⎪⎧m =1,n =2,或⎩⎪⎨⎪⎧m =-1,n =-2,所以z 2=1+2i 或z 2=-1-2i.又因为z 2在复平面内对应的点在第一象限,所以z 2=-1-2i 应舍去, 故z 2=1+2i ,|z 2|= 5.(2)由(1)知(a 2-4sin 2θ)+(1+2cos θ)i =1+2i ,即⎩⎪⎨⎪⎧a 2-4sin 2θ=1,1+2cos θ=2,解得cos θ=12,因为θ∈(0,π),所以θ=π3,所以a 2=1+4sin 2θ=1+4×34=4,a =±2.综上,θ=π3,a =±2.21.(12分)虚数z 满足|z |=1,z 2+2z +1z<0,求z .解析:设z =x +y i(x ,y ∈R ,y ≠0),∴x 2+y 2=1.则z 2+2z +1z =(x +y i)2+2(x +y i)+1x +y i =(x 2-y 2+3x )+y (2x +1)i.∵y ≠0,z 2+2z +1z<0,∴⎩⎪⎨⎪⎧ 2x +1=0,x 2-y 2+3x <0,①②又x 2+y 2=1.③ 由①②③得⎩⎪⎨⎪⎧x =-12,y =±32.∴z =-12±32i.22.(12分)已知复数z 1=i(1-i)3. (1)求|z 1|;(2)若|z |=1,求|z -z 1|的最大值.解析:(1)|z 1|=|i(1-i)3|=|2-2i|=22+-22=2 2.(2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆,而z 1对应着坐标系中的点Z 1(2,-2).所以|z-z1|的最大值可以看成是点Z1(2,-2)到圆上的点的距离的最大值.由图知|z-z1|max=|z1|+r(r为圆的半径)=22+1.章末质量检测(三) 立体几何初步一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.关于直观图画法的说法中,不正确的是( )A.原图形中平行于x轴的线段,其对应线段仍平行于x′轴,其长度不变B.原图形中平行于y轴的线段,其对应线段仍平行于y′轴,其长度不变C.画与坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′可画成135°D.作直观图时,由于选轴不同,所画直观图可能不同解析:根据斜二测画法的规则可知B不正确.答案:B3.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是( )A .4SB .4πSC .πSD .2πS解析:由题意知圆柱的母线长为底面圆的直径2R , 则2R ·2R =4S ,得R 2=S .所以底面面积为πR 2=πS . 答案:C4.如果一个正四面体(各个面都是正三角形)的体积为9 cm 3,则其表面积为( ) A .18 3 cm 2B .18 cm 2C .12 3 cm 2D .12 cm 2解析:设正四面体的棱长为a cm ,则底面积为34a 2 cm 2,易求得高为63a cm ,则体积为13×34a 2×63a =212a 3=9,解得a =32,所以其表面积为4×34a 2=183(cm 2).答案:A5.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为( )A .16π B.32π C .36π D.64π解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+62+32=4,即球的半径为2,故这个球的表面积为4πr 2=16π.答案:A6.若平面α∥平面β,直线a ∥平面α,点B 在平面β内,则在平面β内且过点B 的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:当直线a ⊂平面β,且点B 在直线a 上时,在平面β内且过点B 的所有直线中不存在与a 平行的直线.故选A.答案:A7.若α∥β,A ∈α,C ∈α,B ∈β,D ∈β,且AB +CD =28,AB 、CD 在β内的射影长分别为9和5,则AB 、CD 的长分别为( )A .16和12B .15和13C .17和11D .18和10解析:如图,作AM ⊥β,CN ⊥β,垂足分别为M 、N ,设AB =x ,则CD =28-x ,BM =9,ND =5,∴x 2-81=(28-x )2-25, ∴x =15,28-x =13. 答案:B 8.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4 D .5解析:V 多面体P -BCC 1B 1=13S 正方形BCC 1B 1·PB 1=13×42×1=163.答案:B9.如图,在直三棱柱ABC -A 1B 1C 1中,D 为A 1B 1的中点,AB =BC =BB 1=2,AC =25,则异面直线BD 与AC 所成的角为( )A .30° B.45° C .60° D.90°解析:如图,取B1C1的中点E,连接BE,DE,则AC∥A1C1∥DE,则∠BDE即为异面直线BD与AC所成的角(或其补角).由条件可知BD=DE=EB=5,所以∠BDE=60°,故选C.答案:C10.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BCP⊥平面PAC,BC⊥PCD.AP⊥平面PBC解析:A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BCP⊥平面PAC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.答案:B11.在等腰Rt△ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C-BM-A的大小为( )A.30° B.60°C.90° D.120°解析:如图所示,由AB=BC=1,∠A′BC=90°,得A′C= 2.∵M为A′C的中点,∴MC=AM=22,且CM⊥BM,AM⊥BM,∴∠CMA为二面角C-BM-A的平面角.∵AC =1,MC =AM =22,∴∠CMA =90°. 答案:C12.在矩形ABCD 中,若AB =3,BC =4,PA ⊥平面AC ,且PA =1,则点P 到对角线BD 的距离为( )A.292 B.135C.175D.1195 解析:如图,过点A 作AE ⊥BD 于E ,连接PE . ∵PA ⊥平面ABCD ,BD ⊂平面ABCD , ∴PA ⊥BD ,∴BD ⊥平面PAE ,∴BD ⊥PE . ∵AE =AB ·AD BD =125,PA =1, ∴PE =1+⎝ ⎛⎭⎪⎫1252=135.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.正方形ABCD 绕对角线AC 所在直线旋转一周所得组合体的结构特征是________. 解析:由圆锥的定义知是两个同底的圆锥形成的组合体. 答案:两个同底的圆锥组合体14.若某空间几何体的直观图如图所示,则该几何体的表面积是________. 解析:根据直观图可知该几何体是横着放的直三棱柱,所以S 侧=(1+2+3)×2=2+2+6, S 底=12×1×2=22, 故S 表=2+2+6+2×22=2+22+ 6.答案:2+22+ 615.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.解析:∵EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,∴EF ∥AC ,∴F 为DC 中点.故EF =12AC = 2.答案: 216.矩形ABCD 中,AB =1,BC =2,PA ⊥平面ABCD ,PA =1,则PC 与平面ABCD所成的角是________.解析:tan∠PCA =PA AC=13=33,∴∠PCA =30°. 答案:30°三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图是由正方形ABCE 和正三角形CDE 所组成的平面图形,试画出其水平放置的直观图.解析:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴建立直角坐标系,如图(1),再建立坐标系x ′O ′y ′,使两轴的夹角为45°,如图(2).(2)以O ′为中点,在x ′轴上截取A ′B ′=AB ,分别过A ′,B ′作y ′轴的平行线,截取A ′E ′=12AE ,B ′C ′=12BC .在y ′轴上截取O ′D ′=12OD .(3)连接E ′D ′,E ′C ′,C ′D ′,并擦去作为辅助线的坐标轴,就得到所求的直观图,如图(3).18.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解析:(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a 26a 2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a33.19.(12分)如图,四边形ABCD 与四边形ADEF 都为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明:(1)设DF 与GN 交于点O ,连接AE ,则AE 必过点O ,且O 为AE 的中点,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO .因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为AD,EF的中点,四边形ADEF为平行四边形,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,N为AD的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE∩BD=D,BD,DE⊂平面BDE,所以平面BDE∥平面MNG.20.(12分)S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D、E分别为AC、AB的中点,∴DE∥BC,∴DE⊥AB,∵SA=SB,∴△SAB为等腰三角形,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)由于AB=BC,则BD⊥AC,由(1)可知,SD⊥平面ABC,BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.21.(12分)如图,在斜三棱柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,点E是AB的中点.(1)求证:OE∥平面BCC1B1;(2)若AC1⊥A1B,求证:AC1⊥BC.证明:(1)连接BC1,因为侧面AA1C1C是菱形,AC1与A1C交于点O,所以O为AC1的中点,又因为E是AB的中点,所以OE∥BC1,因为OE⊄平面BCC1B1,BC1⊂平面BCC1B1,所以OE∥平面BCC1B1.(2)因为侧面AA1C1C是菱形,所以AC1⊥A1C,因为AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,所以AC1⊥平面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.22.(12分)如图所示,在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连接ED,EC,EB和DB.(1)求证:平面EDB⊥平面EBC;(2)求二面角E-DB-C的正切值.解析:(1)证明:在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.所以△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.所以∠DEC=90°,即DE⊥EC.在长方体ABCD-A1B1C1D1中,BC⊥平面D1DCC1,又DE⊂平面D1DCC1,所以BC⊥DE.又EC∩BC=C,所以DE⊥平面EBC.因为DE⊂平面DEB,所以平面DEB⊥平面EBC.(2)如图所示,过E在平面D1DCC1中作EO⊥DC于O.在长方体ABCD-A1B1C1D1中,因为平面ABCD⊥平面D1DCC1,且交线为DC,所以EO⊥面ABCD.过O在平面DBC中作OF⊥DB于F,连接EF,所以EF⊥BD.∠EFO为二面角E-DB-C的平面角.利用平面几何知识可得OF=15,又OE=1,所以tan∠EFO= 5.章末质量检测(四) 统计一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某年级500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )A.500名学生是总体B.每个被抽查的学生是样本C.抽取的60名学生的体重是一个样本D.抽取的60名学生是样本容量解析:A×总体应为500名学生的体重B×样本应为每个被抽查的学生的体重C√抽取的60名学生的体重构成了总体的一个样本D×样本容量为60,不能带有单位2.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将70个同学按01,02,03,…,70进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第7个个体是( )(注:如表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54A .07B .44C .15D .51解析:找到第9行第9列数开始向右读,符合条件的是29,64,56,07,52,42,44,故选出的第7个个体是44.答案:B3.对于数据3,3,2,3,6,3,10,3,6,3,2,有以下结论: ①这组数据的众数是3.②这组数据的众数与中位数的数值不等. ③这组数据的中位数与平均数的数值相等. ④这组数据的平均数与众数的数值相等. 其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个解析:由题意知,众数与中位数都是3,平均数为4.只有①正确,故选A. 答案:A4.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10解析:若设高三学生数为x ,则高一学生数为x 2,高二学生数为x2+300,所以有x+x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取的高一学生数为800100=8.答案:A5.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为( )A .28B .40C .56D .60解析:设中间一组的频数为x ,则其他8组的频数和为52x ,所以x +52x =140,解得x =40.答案:B6.某校共有学生2 000名,各年级男、女生人数如表所示:一年级二年级三年级女生373380y男生377370z现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )A.24 B.18C.16 D.12解析:一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,于是三年级的学生人数为2 000-750-750=500,那么三年级应抽取的人数为500×642 000=16.故选C.答案:C7.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误的一个是( )A.甲的极差是29 B.乙的众数是21C.甲罚球命中率比乙高 D.甲的中位数是24解析:甲的极差是37-8=29;乙的众数显然是21;甲的平均数显然高于乙,即C成立;甲的中位数应该是23.答案:D8.为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .1B .8C .12D .18解析:由图知,样本总数为N =200.16+0.24=50.设第三组中有疗效的人数为x ,则6+x 50=0.36,解得x =12. 答案:C9.一组数据的方差为s 2,平均数为x ,将这组数据中的每一个数都乘以2,所得的一组新数据的方差和平均数为( )A.12s 2,12x B .2s 2,2x C .4s 2,2x D .s 2,x解析:将一组数据的每一个数都乘以a ,则新数据组的方差为原来数据组方差的a 2倍,平均数为原来数据组的a 倍.故答案选C.答案:C10.某超市连锁店统计了城市甲、乙的各16台自动售货机在12:00至13:00间的销售金额,并用茎叶图表示如图,则可估计有( )A .甲城市销售额多,乙城市销售额不够稳定B .甲城市销售额多,乙城市销售额稳定C .乙城市销售额多,甲城市销售额稳定D .乙城市销售额多,甲城市销售额不够稳定解析:十位数字是3,4,5时乙城市的销售额明显多于甲,估计乙城市销售额多,甲的数字过于分散,不够稳定,故选D.答案:D11.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加上2所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差解析:设A 样本数据为x i ,根据题意可知B 样本数据为x i +2,则依据统计知识可知A ,B 两样本中的众数、平均数和中位数都相差2,只有方差相同,即标准差相同.答案:D12.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( ) A.1169 B.367 C .36 D.677解析:由题图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x=91×7,解得x =4.故s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.故选B. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上) 13.将一个容量为m 的样本分成3组,已知第一组频数为8,第二、三组的频率为0.15和0.45,则m =________.解析:由题意知第一组的频率为 1-(0.15+0.45)=0.4, 所以8m=0.4,所以m =20.答案:2014.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽20人,各年龄段分别抽取的人数为________.解析:由于样本容量与总体个体数之比为20100=15,故各年龄段抽取的人数依次为45×15=9(人),25×15=5(人),20-9-5=6(人).答案:9,5,615.某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为________.解析:由频率分布图知,设90~100分数段的人数为x ,则0.40x =0.0590,所以x=720.答案:72016.设样本数据x 1,x 2,…,x 2017的方差是4,若y i =2x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2017的方差为________.解析:本题考查数据的方差.由题意得D (y i )=D (2x i -1)=D (2x i )=4D (x i )=4×4=16.答案:16三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某总体共有60个个体,并且编号为00,01,…,59.现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列的1开始.依次向下读数,到最后一行后向右,直到取足样本为止(大于59及与前面重复的数字跳过),求抽取样本的号码.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 39 90 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 35 46 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 79 20 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 30 71 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60解析:由随机数表法可得依次的读数为:18,24,54,38,08,22,23,0118.(12分)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%,为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解析:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc4x=10%.解得b =50%,c =10%. 故a =1-50%-10%=40%.即游泳组中,青年人、中年人、老年人各占比例分别为40%,50%,10%.(2)游泳组中,抽取的青年人数为200×34×40%=60;抽取的中年人数为200×34×50%=75;抽取的老年人数为200×34×10%=15.19.(12分)已知一组数据按从小到大的顺序排列为-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.解析:由于数据-1,0,4,x,7,14的中位数为5,所以4+x2=5,x =6.设这组数据的平均数为x -,方差为s 2,由题意得 x -=16×(-1+0+4+6+7+14)=5,s 2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743. 20.(12分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.解析:(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2. (2)设参加这次测试的学生有x 人,则0.1x =5, 所以x =50.即参加这次测试的学生有50人. (3)达标率为0.3+0.4+0.2=90%,所以估计该年级学生跳绳测试的达标率为90%.21.(12分)市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m)如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪位运动员的成绩更为稳定?(3)若预测跳过1.65 m就很可能获得冠军,该校为了获得冠军,可能选哪名运动员参赛?若预测跳过1.70 m才能得冠军呢?解析:(1)甲的平均成绩为:(1.70+1.65+1.68+1.69+1.72+1.73+1.68+1.67)÷8=1.69 m,乙的平均成绩为:(1.60+1.73+1.72+1.61+1.62+1.71+1.70+1.75)÷8=1.68 m;(2)根据方差公式可得:甲的方差为0.0006,乙的方差为0.00315∵0.0006<0.00315∴甲的成绩更为稳定;(3)若跳过1.65 m就很可能获得冠军,甲成绩均过1.65米,乙3次未过1.65米,因此选甲;若预测跳过1.70 m才能得冠军,甲成绩过1.70米3次,乙过1.70米5次,因此选乙.22.(12分)某中学高一女生共有450人,为了了解高一女生的身高(单位:cm)情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:(1)(2)画出频率分布直方图;(3)估计该校高一女生身高在[149.5,165.5]范围内的有多少人?解析:(1)由题意得M=80.16=50,落在区间[165.5,169.5]内的数据频数m=50-(8+6+14+10+8)=4,。
人教a版必修2高中数学测试题全套含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教a版必修2高中数学测试题全套含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教a版必修2高中数学测试题全套含答案(word版可编辑修改)的全部内容。
(数学2必修)第一章空间几何体[基础训练A组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B。
棱锥 C.棱柱 D。
都不对2.棱长都是1的三棱锥的表面积为()。
3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是()A.25π B.50π C.125π D.都不对4.正方体的内切球和外接球的半径之比为( )AB2 C.2: D35.在△ABC中,02, 1.5,120AB BC ABC==∠=,若使绕直线BC旋转一周,则所形成的几何体的体积是( )A。
92π B.72π C.52π D。
32π视图6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱.2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。
人教A 版必修第二册各章综合测验第六章平面向量及其应用 ............................................................................................... 1 第七章复数 ..................................................................................................................... 14 第八章立体几何初步 ..................................................................................................... 22 第九章统计 ..................................................................................................................... 36 第十章概率 (49)第六章平面向量及其应用(120分钟 150分)一、单选题(每小题5分,共40分)1.在△ABC 中,D 是AB 边上的中点,则CB → =( ) A .2CD → +CA → B .CD → -2CA →C .2CD → -CA → D .CD → +2CA→ 【解析】选C.在△ABC 中,D 是AB 边上的中点,则CB → =CD → +DB → =CD → +AD → =CD → +(AC → +CD → )=2CD → -CA → .2.已知向量a =(1,1),b =(0,2),且λa +μb =(2,8),则λ-μ=( ) A .5 B .-5 C .1 D .-1 【解析】选D.因为a =(1,1),b =(0,2), 所以λa +μb =(λ,λ+2μ), 因为λa +μb =(2,8),所以(λ,λ+2μ)=(2,8),所以λ=2,μ=3, 所以λ-μ=-1.3.向量a =(1,0),b =(2,1),c =(x ,1),若3a -b 与c 共线,则x =( ) A .1 B .-3 C .-2 D .-1【解析】选D.向量a =(1,0),b =(2,1),c =(x ,1),则3a -b =(1,-1),又3a -b 与c 共线,则1×1-(-1)·x=0,解得x =-1.4.(2021·宁波高一检测)平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |等于( )A . 3B .2 3C .4D .12 【解析】选B.因为a =(2,0),|b |=1 所以|a |=2,a·b =2×1×cos 60°=1 所以|a +2b |=a 2+4a·b +4b 2 =2 35.在△ABC 中,B =45°,C =60°,c =1,则最短边长为( ) A .62 B .63 C .12 D .32【解析】选B.A =180°-(60°+45°)=75°, 故最短边为b ,由正弦定理可得b sin B =csin C, 即b =c sin B sin C =1×sin 45°sin 60° =63. 6.如图所示,下列结论正确的是( )①PQ → =32 a +32 b ;②PT → =32 a -b ;③PS → =32 a -12 b ;④PR → =32a +b .A .①② B.③④ C.①③ D.②④【解析】选C.①根据向量的加法法则,得PQ → =32 a +32b ,故①正确;②根据向量的减法法则,得PT → =32 a -32 b ,故②错误;③PS → =PQ → +QS → =32 a +32 b -2b =32 a -12 b ,故③正确;④PR → =PQ → +QR →=32 a +32 b -b =32 a + 12b ,故④错误. 7.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(7,-3)同时作用于某物体上一点,为使该物体保持平衡,需再加上一个力f 4,则f 4=( ) A .(-2,-2) B .(2,-2) C .(-1,2)D .(-2,2)【解析】选D.由物理知识,知物体平衡,则所受合力为H ,所以f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(-2,2).8.(2021·济宁高一检测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若 tan C =7 ,cos A =528 ,b =3 2 ,则△ABC 的面积为( ) A .37B .372C .374D .378【解析】选B.因为tan C =sin C cos C =7 且sin 2C +cos 2C =1,解得sin C =144,cos C =24 .又cos A =528 ,所以sin A =1-cos 2A =148 ,故sin B =sin [π-(A +C)]=sin (A +C) =sin A cos C +cos A sin C =378. 因为a sin A =b sin B ,b =3 2 ,故a =b sin A sin B =2,S △ABC =12 ×ab sin C=12 ×2×3 2 ×144 =372.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得2分,有选错的得0分)9.对于任意的平面向量a ,b ,c ,下列说法正确的是( ) A .若a ∥b 且b ∥c ,则a ∥c B .(a +b )·c =a ·c +b ·cC .若a ·b =a ·c ,且a ≠0,则b =cD .(a +b )+c =a +(b +c )【解析】选BD.a ∥b 且b ∥c ,当b 为零向量时,则a 与c 不一定共线,即A 错误;由向量乘法的分配律可得:(a +b )·c =a ·c +b ·c ,即B 正确; 因为a ·b =a ·c ,则a·(b +c )=0, 又a ≠0,则b =c 或a ⊥(b +c ),即C 错误;向量加法满足结合律,即:(a +b )+c =a +(b +c ),即D 正确.10.(2021·青岛高一检测)已知平面向量a ,b ,c 满足|a |=|b |=|c |=1,若a ·b =12,则(a -b )·(2b -c )的值可能为( ) A .-2 B .3- 3 C .0D .- 2【解析】选ACD.|a|=|b|=|c|=1,a ·b =12 ,则cos θ=12 ,θ=60°,所以|b -a|=a 2+b 2-2a·b =1,则(a -b )·(2b -c )=2a·b -a·c -2b 2+b·c =1-2+c·(b -a )=-1+cos α,其中α为c 与b -a 的夹角,且α∈[0,π],因为cos α∈[-1,1], 所以cos α-1∈[-2,0].11.(2021·南通高一检测)如图,B 是AC 的中点,BE → =2OB → ,P 是平行四边形BCDE 内(含边界)的一点,且OP → =xOA → +yOB → ()x ,y∈R ,则下列结论正确的为( )A .当x =0时,y∈[]2,3B .当P 是线段CE 的中点时,x =-12 ,y =52C .若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .x -y 的最大值为-1【解析】选BCD.当x =0时,OP → =yOB → ,则P 在线段BE 上,故1≤y≤3,故A错.当P 是线段CE 的中点时,OP → =OE → +EP → =3OB → +12 (EB → +BC → )=3OB→ +12 (-2OB → +AB →) =-12 OA → +52OB →,故B 对.x +y 为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对.如图,过P 作PM∥AO,交OE 于M ,作PN∥OE,交AO 的延长线于N ,则:OP → =ON → +OM → ;又OP → =xOA → +yOB → ;所以x≤0,y≤1;由图形看出,当P 与B 重合时,OP →=0·OA → +1·OB → ;此时x 取最大值0,y 取最小值1;所以x -y 取最大值-1,故D 正确. 12.(2021·怀化高一检测)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,cos 2A-cos2B-cos2C=cosA cos B+cos C-cos 2B且c= 3 ,则下列结论中正确的是( )A.C=π3B.C=2π3C.△ABC面积的最大值为3 4D.△ABC面积的最大值为33 4【解析】选BC.因为cos2A-cos2B-cos2C=cosAcos B+cos C-cos 2B,所以(1-sin2A)-(1-sin2B)-(1-sin2C)=cosA cos B-cos (A+B)-(1-2sin2B),所以sinA sin B+sin2B+sin2A-sin2C=0,由正弦定理可得ab+b2+a2-c2=0,可得cosC=-12,可得C=2π3,故A错误;B正确;又c= 3 ,可得3=a2+b2+ab≥2ab+ab,解得ab≤1,当且仅当a=b=1时取等号,所以S△ABC =12ab sin C≤12×1×32=34,故C正确;D错误.三、填空题(每小题5分,共20分)13.已知a=(2,-2),b=(x,2),若a·b=6,则x=____________.【解析】因为a=(2,-2),b=(x,2),所以a·b=2x-4,又因为a·b=6,所以2x-4=6,解得x=5.答案:514.在锐角三角形ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边.若2a sin B = 3 b ,b +c =5,bc =6,则a =__________. 【解析】因为2a sin B = 3 b , 所以2sin A sin B = 3 sin B. 所以sin A =32, 因为△ABC 为锐角三角形, 所以cos A =12 ,因为bc =6,b +c =5, 所以b =2,c =3或b =3,c =2.所以a 2=b 2+c 2-2bc cos A =22+32-2×6×12 =7,所以a =7 .答案:715.在平行四边形ABCD 中,AD =1,∠BAD=60°,E 为CD 的中点.若AD → ·EB → =2,则AB → 的模为__________.【解析】因为在平行四边形ABCD 中,EB → =EC → +CB → =12 DC → -BC → ,又DC → =AB → ,BC → =AD → , 所以EB → =12AB → -AD → ,所以AD → ·EB → =AD → ·⎝ ⎛⎭⎪⎫12AB →-AD → =12 AB → ·AD → -AD → 2=12 |AB → ||AD→ |cos 60°-|AD → |2=14 |AB → |-1=2,所以|AB → |=12. 答案:1216.(2021·天津高一检测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若m =()b -c ,a -b ,n =()sin C ,sin A +sin B ,且m ⊥n ,则A =________;若△ABC 的面积为2 3 ,则△ABC 的周长的最小值为____________.【解析】由条件可知m ·n =()b -c sin C +()a -b ()sin A +sin B =0, 由正弦定理可得()b -c c +()a -b ()a +b =0, 所以bc -c 2+a 2-b 2=0即bc =b 2+c 2-a 2, cos A =b 2+c 2-a 22bc =bc 2bc =12 ,因为0<A<π,所以A =π3; S =12 bc sin A =34 bc =2 3 ,解得bc =8, a 2=b 2+c 2-2bc cos π3=b 2+c 2-bc≥2bc-bc =8即a≥2 2 ,当b =c =2 2 时,等号成立,b +c≥2bc =4 2 ,当b =c 时等号成立, 所以a +b +c≥2 2 +4 2 =6 2 , 当b =c 时,a +b +c 时取得最小值6 2 . 答案:π3 6 2四、解答题(共70分)17.(10分)在平面直角坐标系中,已知A(1,0),B(0,1),C(2,5),求: (1)2AB → +AC → 的模;(2)cos ∠BAC. 【解析】(1)如图,AB →=(-1,1),AC → =(1,5),故2AB → +AC → =(-2,2)+(1,5)=(-1,7), 故|2AB → +AC → |= (-1)2+72=5 2 ; (2)cos ∠BAC=AB →·AC →|AB →||AC →|=(-1,1)·(1,5)1+1 1+52=-1+5 2×26=2 1313. 18.(12分)如图所示,梯形ABCD 中,AB∥CD,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB → =a ,AD → =b ,试用a ,b 表示DC → ,BC → ,MN →.【解析】由题意知四边形ANCD 是平行四边形. 则DC → =AN →=12 AB → =12a ,BC →=NC → -NB → =AD → -12 AB → =b -12 a ,MN → =CN → -CM → =-AD →-12 CD →=-AD → -12 ⎝ ⎛⎭⎪⎫-12AB →=14a -b .19.(12分)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.【解析】(1)依题意知,∠BAC=120°,AB=12,AC=10×2=20,∠BCA=α.在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos ∠BAC=122+202-2×12×20×cos 120°=784,解得BC=28.所以渔船甲的速度为BC2=14(海里/时).(2)在△ABC中,AB=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理,得ABsin α=BCsin 120°,所以sin α=AB sin 120°BC=12×3228=3314.20.(12分)(2020·新高考全国Ⅰ卷)在①ac= 3 ,②c sin A=3,③c= 3 b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sin A= 3sin B,C=π6,________?注:如果选择多个条件分别解答,按第一个解答计分.【解析】选条件①ac= 3 .在△ABC中,sin A= 3 sin B,即b=33a,ac= 3 ,所以c=3a,cos C=a2+b2-c22ab=a2+a23-3a223a23=32,所以a= 3 ,b=1,c=1. 选条件②c sin A=3.在△ABC中,c sin A=a sin C=a sin π6=3,所以a=6.因为sin A= 3 sin B,即a= 3 b,所以b=2 3 ,cos C=a2+b2-c22ab=36+12-c22×6×23=32,所以c=2 3 ,选条件③c= 3 b.由sin A= 3 sin B可得a= 3 b,又c= 3 b,所以cos C=a2+b2-c22ab=36≠cosπ6,与已知条件C=π6相矛盾,所以问题中的三角形不存在.21.(12分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且满足a2+c2-b2= 3 ac.(1)求角B的大小;(2)若2b cos A= 3 (c cos A+a cos C),BC边上的中线AM的长为7 ,求△ABC【解析】(1)由余弦定理得cos B =a 2+c 2-b 22ac =3ac 2ac =32 ,因为B 是三角形的内角,所以B =π6. (2)由正弦定理得a sin A =b sin B =csin C ,代入2b cos A = 3 (c cos A +a cos C),可得2sin B cos A = 3 (sin C cos A +sin A cos C), 即2sin B cos A = 3 sin B , 因为sin B≠0,所以cos A =32, 所以A =π6, 于是C =π-A -B =2π3.设AC =m ,则BC =m ,AB = 3 m ,CM =12m ,由余弦定理可知AM 2=CM 2+AC 2-2CM·AC·cos 2π3,即(7 )2=14 m 2+m 2-2·12 m·m·(-12 )=74m 2,解得m =2. 于是S △ABC =12 CA·CB sin 2π3 =12 ×2×2×32= 3 .22.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sinA +C2=(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【解析】(1)由题设及正弦定理得sin A sinA +C2=sin B sin A. 因为sin A≠0,所以sinA +C2=sin B. 由A +B +C =180°,可得sin A +C 2 =cos B2, 故cos B 2 =2sin B 2 cos B2.因为cos B 2 ≠0,故sin B 2 =12 ,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =12 ac sin B =34 a. 由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12. 由于△ABC 为锐角三角形, 故0°<A<90°,0°<C<90°, 由(1)知A +C =120°,所以30°<C<90°,tan C >33 ,故12 <a<2,从而38 <S △ABC <32. 因此,△ABC 面积的取值范围是⎝ ⎛⎭⎪⎫38,32 .第七章复数(120分钟 150分)一、单选题(每小题5分,共40分) 1.i 是虚数单位,则i1+i的虚部是( ) A .12 iB .-12 iC .12D .-12【解析】选C.i 1+i =i (1-i )(1+i )(1-i ) =1+i 2 =12 +12i. 2.若(x -i)i =y +2i ,x ,y∈R ,则复数x +yi =( ) A .-2+i B .1-2i C .2+iD .1+2i【解析】选C.(x -i)i =y +2i 即xi +1=y +2i ,故y =1,x =2, 所以复数x +yi =2+i.3.设z 1=-3+4i ,z 2=2-3i ,其中i 为虚数单位,则z 1+z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【解析】选B.因为z 1=-3+4i ,z 2=2-3i , 所以z 1+z 2=-3+4i +2-3i =-1+i ,所以z 1+z 2在复平面内对应的点为(-1,1),位于第二象限.4.(2021·舟山高一检测)已知z1+i=2+i ,则复数z =( )A .1+3iB .1-3iC .3+iD .3-i【解析】选B.由题意,复数z1+i=2+i ,可得z =(2+i)(1+i)=1+3i ,所以z =1-3i.5.如图,在复平面内,向量OP → 对应的复数是1-i ,将OP → 向左平移一个单位后得到00O P ,则P 0对应的复数为( )A.1-iB .1-2iC .-1-iD .-i【解析】选 D.要求P 0对应的复数,根据题意,只需知道0OP ,而0000OP OO O P =+,从而可求P 0对应的复数.因为00O P =OP → ,0OO 对应的复数是-1,所以P 0对应的复数,即0OP 对应的复数是-1+(1-i)=-i.6.已知a ,b∈R ,i 是虚数单位,若a -i 与2+bi 互为共轭复数,则(a +bi)2=( ) A .5-4i B .5+4i C .3-4iD .3+4i【解析】选D.由a -i 与2+bi 互为共轭复数,可得a =2,b =1.所以(a +bi)2=(2+i)2=4+4i -1=3+4i.7.如果一个复数和它的模的和为5+ 3 i ,那么这个复数是( ) A .115B . 3 iC .115 + 3 iD .115+2 3 i【解析】选C.设这个复数为a +bi(a ,b∈R ). 由题意得a +bi +a 2+b 2 =5+ 3 i ,即a +a 2+b 2 +bi =5+ 3 i ,由复数相等可得:⎩⎪⎨⎪⎧a +a 2+b 2=5,b =3, 解得⎩⎨⎧a =115,b =3,所以复数为115+ 3 i.8.设复数z =cos x +isin x ,则函数f(x)=⎪⎪⎪⎪⎪⎪z +1z 的部分图象可能是( )【解析】选A.f(x)=⎪⎪⎪⎪⎪⎪cos x +isin x +1cos x +isin x =2|cos x|,所以f(x)的图象为A.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得2分,有选错的得0分) 9.已知复数z =21-i,则下列结论正确的是( ) A .z 的虚部为iB .|z|2=2C .z 2为纯虚数D .z =-1+i【解析】选BC.因为复数z =21-i =2(1+i )(1-i )(1+i )=1+i ,则z 的虚部为1,A 不正确.|z|2=2,B 正确.z 2=(1+i)2=2i 为纯虚数,C 正确.z =1-i ,D 不正确.10.已知i 为虚数单位,复数z 1=a +2i ,z 2=2-i ,且|z 1|=|z 2|,则实数a 的值不能为( )A .1B .-1C . 2D .- 2【解析】选CD.因为复数z 1=a +2i ,z 2=2-i ,且|z 1|=|z 2|,所以a 2+4=4+1,解得a =±1.11.已知z 1与z 2是共轭虚数,有下列4个命题,其中一定正确的有( ) A .z 21 <|z 2|2B .z 1z 2=|z 1z 2|C .z 1+z 2∈RD .z 1z 2∈R 【解析】选BC.z 1与z 2是共轭虚数,设z 1=a +bi ,z 2=a -bi(a ,b∈R ,b≠0). A .z 21 =a 2-b 2+2abi ,|z 2|2=a 2+b 2,虚数不能比较大小,因此不正确; B .z 1z 2=|z 1z 2|=a 2+b 2,正确; C .z 1+z 2=2a∈R ,正确;D .z 1z 2 =a +bi a -bi =(a +bi )2(a -bi )(a +bi ) =a 2-b 2a 2+b 2 +2ab a 2+b 2 i 不一定是实数,因此不一定正确.12.设i 为虚数单位,复数z =(a +i)(1+2i),则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是⎝ ⎛⎭⎪⎫-12,2C .实数a =-12 是z =z (z 为z 的共轭复数)的充要条件D .若z +|z|=x +5i(x∈R ),则实数a 的值为2 【解析】选ACD .z =(a +i)(1+2i)=a -2+(1+2a)i , 所以选项A :z 为纯虚数,有⎩⎨⎧a -2=0,1+2a≠0可得a =2,故正确;选项B :z 在复平面内对应的点在第三象限,有⎩⎨⎧a -2<0,1+2a<0 解得a<-12 ,故错误;选项C :a =-12 时z =z =-52 ;z =z 时1+2a =0即a =-12 ,它们互为充要条件,故正确;选项D :z +|z|=x +5i(x∈R )时,有1+2a =5即a =2,故正确. 三、填空题(每小题5分,共20分)13.i 是虚数单位,复数6+7i1+2i=________. 【解析】6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i ) =(6+14)-5i 12-(2i )2 =20-5i5 =4-i.答案:4-i 14.若1+ai1-i=2-i(其中i 是虚数单位),则实数a =________. 【解析】因为1+ai1-i=2-i ,所以1+ai =(1-i)(2-i)=1-3i ,所以a =-3. 答案:-315.已知复数z =(2a +i)(1-bi)的实部为2,其中a ,b 为正实数,则4a + ⎝ ⎛⎭⎪⎫12 1-b 的最小值为________. 【解析】因为复数z =(2a +i)(1-bi)=2a +b +(1-2ab)i 的实部为2,其中a ,b 为正实数,所以2a +b =2,所以4a+⎝ ⎛⎭⎪⎫12 1-b =22a +2b -1≥222a ·2b -1 =222a +b -1 =2 2 .当且仅当a =14 ,b =32 时取等号.答案:2 216.已知2+i ,2-i 是实系数一元二次方程x 2+px +q =0在复数范围内的两个根,则p =________,q =________.【解析】由题意得(2+i)+(2-i)=-p ,(2+i)(2-i)=q ,所以p =-4,q =5.答案:-4 5 四、解答题(共70分)17.(10分)计算:(1)(2+i )(1-i )21-2i;(2)4+5i(5-4i )(1-i ). 【解析】(1)(2+i )(1-i )21-2i =(2+i )(-2i )1-2i=2(1-2i )1-2i=2.(2)4+5i (5-4i )(1-i ) =(5-4i )i (5-4i )(1-i ) =i1-i =i (1+i )(1-i )(1+i ) =i -12 =-12 +12i. 18.(12分)设复数z =(a 2+a -2)+(a 2-7a +6)i ,其中a∈R ,当a 取何值时,(1)z∈R ;(2)z 是纯虚数;(3)z 是零. 【解析】(1)z∈R ,只需a 2-7a +6=0, 所以a =1或a =6.(2)z 是纯虚数,只需⎩⎨⎧a 2+a -2=0,a 2-7a +6≠0,所以a =-2.(3)因为z =0,所以⎩⎨⎧a 2+a -2=0,a 2-7a +6=0,所以a =1.19.(12分)已知z 1=m 2+1m +1 i ,z 2=(2m -3)+12i ,m∈R ,i 为虚数单位,且z 1+z 2是纯虚数. (1)求实数m 的值; (2)求z 1·z 2的值.【解析】(1)z 1+z 2=(m 2+2m -3)+(1m +1 +12)i ,因为z 1+z 2是纯虚数所以⎩⎨⎧m 2+2m -3=01m +1+12≠0解得m =1.(2)由(1)知z 1=1+12 i ,z 2=-1+12 i ,所以z 2=-1-12i ,所以z 1·z 2=⎝ ⎛⎭⎪⎫1+12i ·⎝ ⎛⎭⎪⎫-1-12i=-1-12 i -12 i +14 =-34-i.20.(12分)已知复数z 1=m +(m 2-2m)i ,z 2=1+(-m 2+3m -1)i ,其中x∈R . (1)若复数z 1为实数,求m 的值; (2)求|z 1+z 2|的最小值.【解析】(1)由复数z 1为实数,则m 2-2m =0,解得m =2或m =0. (2)因为z 1+z 2=(m +1)+(m -1)i , 所以|z 1+z 2|=(m +1)2+(m -1)2 =2m 2+2 ,当m =0时,故|z 1+z 2|的最小值为 2 . 21.(12分)已知x 2-(3-2i)x -6i =0. (1)若x∈R ,求x 的值; (2)若x∈C ,求x 的值. 【解析】(1)x∈R 时,由方程得(x 2-3x)+(2x -6)i =0. 则⎩⎨⎧x 2-3x =0,2x -6=0, 得x =3. (2)x∈C 时,设x =a +bi(a ,b∈R ),代入方程整理,得(a 2-b 2-3a -2b)+(2ab -3b +2a -6)i =0.则⎩⎨⎧a 2-b 2-3a -2b =0,2ab -3b +2a -6=0, 得⎩⎨⎧a =0,b =-2 或⎩⎨⎧a =3,b =0.故x =3或x =-2i.22.(12分)若z∈C ,4z +2z =3 3 +i ,ω=sin θ-icos θ(θ为实数),i 为虚数单位. (1)求复数z ;(2)求|z -ω|的取值范围.【解析】(1)设z =a +bi(a ,b∈R ),则z =a -bi , 所以4(a +bi)+2(a -bi)=3 3 +i , 即6a +2bi =3 3 +i ,所以⎩⎨⎧6a =33,2b =1⇒⎩⎪⎨⎪⎧a =32,b =12,所以z =32 +12i. (2)|z -ω|=⎪⎪⎪⎪⎪⎪32+12i -(sin θ-icos θ)=⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫32-sin θ+⎝ ⎛⎭⎪⎫12+cos θi=⎝ ⎛⎭⎪⎫32-sin θ2+⎝ ⎛⎭⎪⎫12+cos θ2=2-3sin θ+cos θ =2-2sin ⎝⎛⎭⎪⎫θ-π6 .因为-1≤sin ⎝⎛⎭⎪⎫θ-π6 ≤1,所以0≤2-2sin ⎝ ⎛⎭⎪⎫θ-π6 ≤4,所以0≤|z-ω|≤2,故|z -ω|的取值范围是[0,2].第八章立体几何初步(120分钟 150分)一、单选题(每小题5分,共40分)1.在棱长为1的正方体上,分别用过共顶点的三条棱的中点的平面截该正方体,则截去8个三棱锥后,剩下的几何体的体积是( ) A .23 B .76 C .45 D .56【解析】选D.棱长为1的正方体的体积为1,8个三棱锥的体积为8×13 ×12 ×12×12 ×12 =16 ,所以剩下的几何体的体积为1-16 =56. 2.如图,α∩β=l ,A ,B∈α,C∈β,C ∉l ,直线AB∩l=M ,过A ,B ,C 三点的平面记作γ,则γ与β的交线必通过( )A .点AB .点BC .点C 但不通过点MD .点C 和点M【解析】选D.通过A ,B ,C 三点的平面γ,即通过直线AB 与点C 的平面,因为M∈AB,所以M∈γ,而C∈γ,又M∈β,C∈β,所以γ和β的交线必通过点C 和点M.3.已知水平放置的△ABC,按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=32,那么原△ABC 的面积是( )A. 3 B .2 2 C .32 D .34【解析】选A.由斜二测画法的原则可得,BC=B′C′=2,AO=2A′O′=2×3 2= 3 ,由图易得AO⊥BC,所以S△ABC =12×2× 3 = 3 .4.如图所示的粮仓可近似为一个圆锥和圆台的组合体,且圆锥的底面圆与圆台的较大底面圆重合.已知圆台的较小底面圆的半径为1,圆锥与圆台的高分别为5 -1和3,则此组合体的外接球的表面积是( )A.16π B.20π C.24π D.28π【解析】选B.设外接球半径为R,球心为O,圆台较小底面圆的圆心为O1,则:OO21+12=R2,而OO1= 5 +2-R,故R2=1+( 5 +2-R)2,所以R= 5 ,所以S=4πR2=20π.5.如图所示,正方形ABCD中,E,F分别是AB,AD的中点,将此正方形沿EF 折成直二面角后,异面直线AF与BE所成角的余弦值为( )A.22B. 3 C.12D.32【解析】选C.过点F作FH∥DC,交BC于H,过点A作AG⊥EF,交EF于G,连接GH,AH,则∠AFH为异面直线AF与BE所成的角.设正方形ABCD的边长为2,在△AGH中,AH=52+24= 3 ,在△AFH中,AF=1,FH=2,AH= 3 ,所以cos ∠AFH=12 .6.用m,n表示两条不同的直线,α表示平面,则下列命题正确的是( ) A.若m∥n,n⊂α,则m∥αB.若m∥α,n⊂α,则m∥nC.若m⊥n,n⊂α,则m⊥αD.若m⊥α,n⊂α,则m⊥n【解析】选D.若m∥n,n⊂α,则m∥α或m⊂α,故排除A;若m∥α,n⊂α,则m∥n或m,n异面,故排除B;若m⊥n,n⊂α,则不能得出m⊥α,例如,m⊥n,n⊂α,m⊂α,则m与α不垂直,故排除C.7.在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【解析】选B.作AE⊥BD,交BD于E,因为平面ABD⊥平面BCD,所以AE⊥面BCD,BC⊂面BCD.所以AE⊥BC,而DA⊥平面ABC,BC⊂平面ABC,所以DA⊥BC,又因为AE∩AD=A,所以BC⊥面ABD,而AB⊂面ABD,所以BC⊥AB即△ABC为直角三角形.8.如图,四边形ABCD中,AB=AD=CD=1,BD= 2 ,BD⊥CD.将四边形ABCD 沿对角线BD折成四面体A′BCD,使平面A′BD⊥平面BCD,则下列结论正确的是( )A.A′C⊥BDB.∠BA′C=90°C.CA′与平面A′BD所成的角为30°D.四面体A′BCD的体积为1 3【解析】选B.若A成立可得BD⊥A′D,产生矛盾,故A不正确;由题设知:△BA′D为等腰Rt△,CD⊥平面A′BD,得BA′⊥平面A′CD,于是B正确;由CA′与平面A′BD所成的角为∠CA′D=45°知C不正确;VA′BCD =VCA′BD=16,D不正确.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得2分,有选错的得0分)9.等腰直角三角形直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积不可能是( )A. 2 π B.(1+ 2 )πC.2 2 π D.(2+ 2 π)【解析】选CD.若绕一条直角边旋转一周时,则圆锥的底面半径为1,高为1,所以母线长l= 2 ,这时表面积为12×2π·1·l+π·12=(1+ 2 )π;若绕斜边旋转一周时,旋转体为两个倒立圆锥对底组合在一起,且由题意底面半径为2 2,两个圆锥的母线长都为1,所以表面积S=2×12×2π·22×1= 2 π,综上所述该几何体的表面积为 2 π或(1+ 2 )π.故选项CD符合题意.10.如图,在平行六面体ABCDA1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则下列说法正确的是( )A.A1M∥D1PB.A1M∥B1QC.A1M∥平面DCC1D1D.A1M∥平面D1PQB1【解析】选ACD.连接PM,因为M、P为AB、CD的中点,故PM平行且等于AD.由题意知AD平行且等于A1D1,故PM平行且等于A1D1,所以PMA1D1为平行四边形,所以A1M∥D1P.故A正确;显然A1M与B1Q为异面直线,故B错误;由A知A1M∥D1P,由于D1P既在平面DCC1D1内,又在平面D1PQB1内,且A1M即不在平面DCC1D1内,又不在平面D1PQB1内,故C,D正确.11.正方体ABCDA1B1C1D1的棱长为1,E,F,G分别为BC,CC1,BB1的中点.则( )A.直线D1D与直线AF垂直B.直线A1G与平面AEF平行C.平面AEF截正方体所得的截面面积为9 8D.点C与点G到平面AEF的距离相等【解析】选BC.取DD1中点M,则AM为AF在平面AA1D1D上的射影,因为AM与DD1不垂直,所以AF与DD1不垂直,故A选项错误;因为A1G∥D1F,A1G⊄平面AEFD1,所以A1G∥平面AEFD1,故B选项正确;平面AEF截正方体所得截面为等腰梯形AEFD1,易知梯形面积为98,故C选项正确;假设C与G到平面AEF的距离相等,即平面AEF将CG平分,则平面AEF必过CG中点,连接CG交EF于H,而H不是CG中点,则假设不成立.故D选项错误.12.如图,在四棱锥PABCD中,底面ABCD为菱形,∠DAB=60°,侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法正确的是( )A.在棱AD上存在点M,使AD⊥平面PMBB.异面直线AD与PB所成的角为90°C.二面角PBCA的大小为45°D.BD⊥平面PAC【解析】选ABC.如图所示,A.取AD的中点M,连接PM,BM,连接对角线AC,BD 相交于点O.因为侧面PAD为正三角形,所以PM⊥AD.又底面ABCD为菱形,∠DAB=60°,所以△ABD 是等边三角形. 所以AD⊥BM.又PM∩BM=M. 所以AD⊥平面PMB ,因此A 正确. B .由A 可得:AD⊥平面PMB ,所以AD⊥PB,所以异面直线AD 与PB 所成的角为90°,正确. C .因为平面PBC∩平面ABCD =BC ,BC∥AD, 所以BC⊥平面PBM ,所以BC⊥PB,BC⊥BM. 所以∠PBM 是二面角PBCA 的平面角, 设AB =1,则BM =32 =PM ,在Rt△PBM 中,tan ∠PBM=PMBM=1, 所以∠PBM=45°,因此正确. D .因为BD 与PA 不垂直,所以BD 与平面PAC 不垂直,因此D 错误. 三、填空题(每小题5分,共20分)13.在三棱柱ABC A 1B 1C 1中,点P 是棱CC 1上一点,记三棱柱ABC A 1B 1C 1与四棱锥PABB 1A 1的体积分别为V 1与V 2,则V 2V 1=________.【解析】设AB =a ,在△ABC 中AB 边所对的高为b ,三棱柱ABC A 1B 1C 1的高为h , 则V 1=12 abh ,V 2=13 ×ah·b,所以V 2V 1 =13abh 12abh =23.答案:2314.如图(1)所示,一个装了水的密封瓶子,其内部可以看成是由半径为 1 cm 和半径为3 cm 的两个圆柱组成的简单几何体.当这个几何体如图(2)水平放置时,液面高度为20 cm ;当这个几何体如图(3)水平放置时,液面高度为28 cm ,则这个简单几何体的总高度为________cm.【解析】设上、下圆柱的半径分别是r cm ,R cm ,高分别是h cm ,H cm.由水的体积不变得πR 2H +πr 2(20-H)=πr 2h +πR 2(28-h),又r =1,R =3,故H +h =29.即这个简单几何体的总高度为29 cm. 答案:2915.如图所示,ABCDA 1B 1C 1D 1是长方体,AA 1=a ,∠BAB 1=∠B 1A 1C 1=30°,则AB 与A 1C 1所成的角为________,AA 1与B 1C 所成的角为________.【解析】长方体ABCDA 1B 1C 1D 1中,∠BAB 1=∠B 1A 1C 1=30°,因为AB∥A 1B 1,A 1B 1与A 1C 1所成的角,就是AB 与A 1C 1所成的角, 所以AB 与A 1C 1所成的角为30°,因为AA 1∥BB 1,BB 1与B 1C 所成的角就是AA 1与B 1C 所成的角,连接AC ,则AC∥A 1C 1, 所以∠BAC=30°,因为AA 1=a ,∠BAB 1=30°,所以AB = 3 a ,所以BC =a ,所以∠BB 1C =45°, 所以AA 1与B 1C 所成的角为45°. 答案:30° 45°16.在正方体ABCDA1B1C1D1中,M,N分别是AB,A1B1的中点,P在AD上,若平面CMN⊥平面A1BP,则ADAP=________.【解析】因为M,N分别是AB,A1B1的中点,所以AA1∥MN.根据正方体的性质可得MN⊥面ABCD,即可得MN⊥PB.当P为AD中点时,CM⊥PB,又CM∩MN=M.所以PB⊥面NMC,即可得平面CMN⊥平面A1BP.则ADAP=2.答案:2四、解答题(共70分)17.(10分)某高速公路收费站入口处的安全标识墩如图所示,墩的上半部分是正四棱锥PEFGH,下半部分是长方体ABCDEFGH.长方体的长、宽、高分别是40 cm、40 cm、20 cm,正四棱锥PEFGH的高为60 cm.(1)求该安全标识墩的体积;(2)求该安全标识墩的侧面积.【解析】(1)该安全标识墩的体积V=VPEFGH +VABCDEFGH=13×402×60+402×20=64000 cm3.(2)如图,连接EG,HF交于点O,连接PO,结合图象可知OP=60 cm,OG=12EG=20 2 cm,可得PG=602+(202)2=2011 cm.于是四棱锥PEFGH的侧面积S1=4×12×40×(2011)2-202=1 60010 cm2,四棱柱EFGHABCD的侧面积S2=4×40×20=3 200 cm2,故该安全标识墩的侧面积S=S1+S2=1 600(10 +2) cm2.18.(12分)如图,在四棱锥PABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD= 2 ,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(1)求证:PO⊥平面ABCD;(2)求这个四棱锥的体积.【解析】(1)在△PAD中PA=PD,O为AD中点,所以PO⊥AD.又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD.(2)因为PA=PD= 2 ,AO=1,所以PO=AP2-AO2=2-1 =1所以V=13×PO×S四边形ABCD=13×1×⎝⎛⎭⎪⎫1+22×1=12.19.(12分)如图所示,在四棱锥PABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.(1)若CD∥平面PBO,试指出点O的位置;(2)求证:平面PAB⊥平面PCD.【解析】(1)因为CD∥平面PBO,CD⊂平面ABCD,且平面ABCD∩平面PBO=BO,所以BO∥CD.又BC∥AD,所以四边形BCDO为平行四边形,则BC=DO,而AD=3BC,所以AD=3OD,即点O是靠近点D的线段AD的一个三等分点.(2)因为侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,AB⊂底面ABCD,且AB⊥AD,所以AB⊥平面PAD.又PD⊂平面PAD,所以AB⊥PD.又PA⊥PD,AB∩PA=A,AB,PA⊂平面PAB,所以PD⊥平面PAB.又PD⊂平面PCD,所以平面PAB⊥平面PCD.20.(12分)如图,三棱柱ABCA1B1C1的侧面BCC1B1是平行四边形,BC1⊥C1C,平面A1C1CA⊥平面BCC1B1,且P,E,F分别是AB,BC,A1B1的中点.(1)求证:BC1⊥平面A1C1CA;(2)求证:平面EFP⊥平面BCC1B1 .【证明】(1)因为平面A1C1CA⊥平面BCC1B1,平面A1C1C A∩平面BCC1B1=CC1,BC1⊥C1C,所以BC1⊥平面A1C1CA.(2)因为P,E,F分别是AB,BC,A1B1的中点.所以PF∥AA1,PE∥AC,因为PF∩PE=P,AA1∩AC=A,所以平面EFP∥平面A1C1 CA,因为平面A1C1CA⊥平面BCC1B1,所以平面EFP⊥平面BCC1B1 .21.(12分)如图①,在直角梯形ABCD中,AD∥BC,∠BAD=π2,AB=BC=12AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图②中△A1BE的位置,得到四棱锥A1BCDE.(1)证明:CD⊥平面A1OC;(2)当平面A1BE⊥平面BCDE时,四棱锥A1BCDE的体积为36 2 ,求a的值.【解析】(1)在图①中因为AB=BC=12AD=a,E是AD的中点,∠BAD=π2,所以BE⊥AC.即在图②中,BE⊥A1O,BE⊥OC,又A1O∩OC=O,从而BE⊥平面A1OC.因为BC=12AD=ED,所以四边形BCDE为平行四边形,所以CD∥BE,所以CD⊥平面A1OC.(2)由已知,平面A1BE⊥平面BCDE,且平面A1BE∩平面BCDE=BE,又由(1)可得A1O⊥BE,所以A1O⊥平面BCDE.即A1O是四棱锥A1BCDE的高.由图①知,A1O=22AB=22a,平行四边形BCDE的面积S=BC·AB=a2,从而四棱锥A1BCDE的体积为V=13S·A1O=13×a2×22a=26a3.由26a3=36 2 ,得a=6.22.(12分)如图,四棱锥PABCD中,底面ABCD是边长为2的菱形,∠BAD=π3,△PAD是等边三角形,F为AD的中点,PD⊥BF.(1)求证:AD⊥PB;(2)若E在线段BC上,且EC=14BC,能否在棱PC上找到一点G,使平面DEG⊥平面ABCD?若存在,求出三棱锥DCEG的体积;若不存在,请说明理由.【解析】(1)连接PF,因为△PAD是等边三角形,所以PF⊥AD.因为底面ABCD是菱形,∠BAD=π3,所以BF⊥AD.又PF∩BF=F,所以AD⊥平面BFP,又PB⊂平面BFP,所以AD⊥PB.(2)能在棱PC 上找到一点G ,使平面DEG⊥平面ABCD. 由(1)知AD⊥BF,因为PD⊥BF,AD∩PD=D , 所以BF⊥平面PAD. 又BF ⊂平面ABCD , 所以平面ABCD⊥平面PAD ,又平面ABCD∩平面PAD =AD ,且PF⊥AD, 所以PF⊥平面ABCD.连接CF 交DE 于点H ,过H 作HG∥PF 交PC 于G ,所以GH⊥平面ABCD. 又GH ⊂平面DEG , 所以平面DEG⊥平面ABCD. 因为AD ∥BC,所以△DFH∽△ECH, 所以CH HF =CE DF =12 ,所以CG GP =CH HF =12 ,所以GH =13 PF =33 ,所以V DCEG =V GCDE =13 S △CDE ·GH=13 ×12 DC·CE·sin π3 ·GH=112.第九章统计(120分钟150分)一、单选题(每小题5分,共40分)1.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( ) A.9 B.10 C.12 D.13【解析】选D.n=3+120×360+80×360=13.2.某校有住宿的男生400人,住宿的女生600人,为了解住宿生每天运动时间,通过分层随机抽样的方法抽到100名学生,其中男生、女生每天运动时间的平均值分别为100分钟、80分钟.结合此数据,请你估计该校全体住宿学生每天运动时间的平均值为( )A.98分钟 B.90分钟 C.88分钟 D.85分钟【解析】选 C.由分层抽样的性质可得抽取男生100×400400+600=40人,女生100×600400+600=60人,则样本中学生每天运动时间的平均值x=40×100+60×80100=88(分钟),故可估计该校全体住宿学生每天运动时间的平均值为88分钟.3.若样本1+x1,1+x2,1+x3,…,1+xn的平均数是10,方差为2,则对于样本2+2x1,2+2x2,2+2x3,…,2+2xn,下列结论正确的是( )A.平均数为20,方差为4 B.平均数为11,方差为4 C.平均数为21,方差为8 D.平均数为20,方差为8【解析】选D.样本1+x1,1+x2,1+x3,…,1+xn的平均数是10,方差为2,所以样本2+2x1,2+2x2,2+2x3,…,2+2xn的平均数为2×10=20,方差为22×2=8.4.某工厂12名工人的保底月薪如下表所示,第80百分位是( )工人保底月薪工人保底月薪1 2 890 7 2 8502 2 860 83 1303 3 050 9 2 8804 2 940 10 3 3255 2 755 11 2 9206 2 710 12 2 950A.3 050 B.2 950 C.3 130 D.3 325【解析】选A.把这组数据从小到大排序:2 710,2 755,2 850,2 860,2 880,2 890,2 920,2 940,2 950,3 050,3 130,3 325,所以i=n×p%=12×80%=9.6,所以第80百分位是3 050.5.某市在“一带一路”国际合作高峰论坛前夕,在全市高中学生中进行“我和‘一带一路’”的学习征文,收到的稿件经分类统计,得到如图所示的扇形统计图.又已知全市高一年级共交稿2000份,则高三年级的交稿数为( )A.2 800 B.3 000 C.3 200 D.3 400【解析】选D.高一年级交稿2 000份,在总交稿数中占比80360=29,所以总交稿数为2 000÷29=9 000,高二年级交稿数占总交稿数的144360=25,所以高三年级交稿数占总交稿数的1-2 9-25=1745,所以高三年级交稿数为9 000×1745=3 400.6.一般来说,一个班级的学生学号是从1开始的连续正整数,在一次课上,老师随机叫起班上8名学生,记录下他们的学号是:3,21,17,19,36,8,32,24,则该班学生总数最可能为( )A.39人B.49人C.59人D.超过59人【解析】选A.因为随机抽样中,每个个体被抽到的机会都是均等的,所以1~10,11~20,21~30,31~40,…,每组抽取的人数,理论上应均等;又所抽取的学生的学号按从小到大顺序排列为3,8,17,19,21,24,32,36,恰好使1~10,11~20,21~30,31~40四组中各有两个,因此该班学生总数应为40左右.7.对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[10,15)和[25,30)为二等品,在区间[10,15)和[30,35)为三等品.用频率估计概率,现从这批产品中随机抽取1件,则其为三等品的概率是( )A.0.03 B.0.05C.0.15 D.0.25【解析】选D.在区间[10,15)和[30,35)为三等品,由频率分布直方图得在区间[10,15)和[30,35)的频率为(0.02+0.03)×5=0.25,所以从这批产品中随机抽取1件,其为三等品的概率是0.25.8.“一世”又叫“一代”.东汉·王充《论衡·宜汉篇》:“且孔子所谓一世,三十年也”,清代·段玉裁《说文解字注》:“三十年为一世,按父子相继曰世”.而当代中国学者测算“一代”平均为25年.另根据国际一家研究机构的研究报告显示,全球家族企业的平均寿命其实只有26年,约占总量的28%的家族企业只能传到第二代,约占总量的14%的家族企业只能传到第三代,约占总量4%的家族企业可以传到第四代甚至更久远(为了研究方便,超过四代的可忽略不计).根据该研究机构的研究报告,可以估计该机构所认为的“一代”大约为( )A.23年 B.22年 C.21年 D.20年【解析】选B.设“一代”为x年,由题意得:企业寿命的频率分布表为:又因为全球家族企业的平均寿命其实只有26年,所以家族企业的平均寿命为:0.54×0.5x+0.28×1.5x+0.14×2.5x+0.04×3.5x=26,解得x≈22.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得2分,有选错的得0分)9.某旅行社调查了所在城市20户家庭2020年的旅行费用,汇总得到如下表格:则这20户家庭该年的旅行费用的( )A.众数是1.4 B.中位数是1.5C.中位数是1.6 D.众数是1.62【解析】选AB.依题意可得这组数据分别为:1.2,1.2,1.2,1.2,1.4,1.4,1.4,1.4,1.4,1.4,1.6,1.6,1.6,1.8,1.8,1.8,1.8,1.8,2,2;故众数为:1.4,中位数为:1.5.10.某学校对甲、乙两个班级的某次成绩进行统计分析,制成了如图的条形图与扇形图,则下列说法不正确的是( )A.甲班成绩优良人数超过了乙班成绩优良人数B.甲班平均成绩高于乙班平均成绩C.甲班学生比乙班学生发挥稳定D.甲班不及格率高于乙班不及格率【解析】选ABC.A.因为每个班的总人数不确定,故无法比较;B.甲班及格人数占比80%,乙班及格人数占比90%,故甲班平均成绩显然高于乙班平均成绩;C.无法确定甲班和乙班学生成绩的方差,故错误;D.甲班不及格率为20%,乙班不及格率为10%,故D 正确.11.某班统计一次数学测验的平均分与方差,计算完毕才发现有位同学的分数还未录入,只好重算一次.已知原平均分和原方差分别为x ,s 2,新平均分和新方差分别为x 1,s 21 ,若此同学的得分恰好为x ,则( ) A.x =x 1 B .s 2<s 21 C.s 2>s 21D .s 2=s 21【解析】选AC.设这个班有n 个同学,分数分别是a 1,a 2,a 3,…,a n ,假设第i 个同学的成绩没录入,这一次计算时,总分是()n -1 x ,方差为s 2=1n -1。
人教版高中数学必修2第二章测试题A组及答案解析第二章点、直线、平面之间的位置关系一、选择题1.设 $\alpha$,$\beta$ 为两个不同的平面,$l$,$m$ 为两条不同的直线,且 $l\subset\alpha$,$m\subset\beta$,有如下的两个命题:①若 $\alpha\parallel\beta$,则 $l\parallel m$;②若 $l\perp m$,则 $\alpha\perp\beta$。
那么()。
A。
①是真命题,②是假命题B。
①是假命题,②是真命题C。
①②都是真命题D。
①②都是假命题2.如图,ABCD为正方体,下面结论错误的是()。
A。
BD $\parallel$ 平面CBB。
AC $\perp$ BDC。
AC $\perp$ 平面CBD。
异面直线AD与CB角为60°3.关于直线 $m$,$n$ 与平面 $\alpha$,$\beta$,有下列四个命题:① $m\parallel\alpha$,$n\parallel\beta$ 且$\alpha\parallel\beta$,则 $m\parallel n$;② $m\perp\alpha$,$n\perp\beta$ 且 $\alpha\perp\beta$,则$m\perp n$;其中真命题的序号是()。
A。
①②B。
③④C。
①④D。
②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线 $l_1$,$l_2$ 与同一平面所成的角相等,则$l_1$,$l_2$ 互相平行④若直线 $l_1$,$l_2$ 是异面直线,则与 $l_1$,$l_2$ 都相交的两条直线是异面直线其中假命题的个数是()。
A。
1B。
2C。
3D。
45.下列命题中正确的个数是()。
①若直线 $l$ 上有无数个点不在平面 $\alpha$ 内,则$l\parallel\alpha$②若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都没有公共点A。
人教A 必修第二册各章综合测验1、平面向量及其应用............................................................................................................ - 1 -2、复数 ................................................................................................................................. - 11 -3、立体几何初步 ................................................................................................................. - 17 -4、统计 ................................................................................................................................. - 30 -5、概率 ................................................................................................................................. - 41 - 模块综合测验 ....................................................................................................................... - 52 -1、平面向量及其应用(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.向量a =(2,-1),b =(-1,2),则(2a +b )·a =( ) A .6 B .5 C .1D .-6A [由向量数量积公式知,(2a +b )·a =(3,0)·(2,-1)=6.]2.设非零向量a ,b ,c 满足|a|=|b|=|c|,a +b =c ,则向量a ,b 的夹角为( ) A .150° B .120° C .60°D .30°B [设向量a ,b 夹角为θ, |c|2=|a +b|2=|a|2+|b|2+2|a||b|cos θ,则cos θ=-12,又θ∈[0°,180°],∴θ=120°.故选B .]3.已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,则a ·b 的值为( ) A .1 B .2 C .3D .4 A [a +b =(3,k +2),∵a +b 与a 共线, ∴3k -(k +2)=0,解得k =1.]4.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若b 2+c 2-a 2=65bc ,则sin(B +C )的值为( )A .-45B .45C .-35D .35B [由b 2+c 2-a 2=65bc ,得cos A =b 2+c 2-a 22bc =35,则sin(B +C )=sin A =45.]5.已知点A ,B ,C 满足|AB →|=3,|BC →|=4,|CA →|=5,则AB →·BC →+BC →·CA →+CA →·AB →的值是( )A .-25B .25C .-24D .24A [因为|AB →|2+|BC →|2=9+16=25=|CA →|2, 所以∠ABC =90°,所以原式=AB →·BC →+CA →(BC →+AB →)=0+CA →·AC → =-AC →2=-25.]6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a 等于( )A .2B .1C .45D .53A [设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ), ∵AC →=2CB →,∴⎩⎨⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎨⎧x =3,y =3,∴C (3,3),又∵C 在直线y =12ax 上,所以3=12a ×3, ∴a =2.]7.如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λ+μ的值为( )A .49B .89C .23D .43 B [∵BP →=13BD →, ∴AP →-AB →=13(AD →-AB →), ∴AP →=23AB →+13AD →,又AD →=23AC →, ∴AP →=23AB →+29AC →=λAB →+μAC →, ∴λ=23,μ=29,∴λ+μ=89.]8.已知点M 是边长为2的正方形ABCD 的内切圆内(含边界)一动点,则MA →·MB →的取值范围是( )A .[-1,0]B .[-1,2]C .[-1,3]D .[-1,4]C [建立如图所示坐标系,设M (x ,y ),其中A (-1,-1),B (1,-1),易知x 2+y 2≤1,而MA →·MB →=(-1-x ,-1-y )·(1-x ,-1-y )=x 2+(y +1)2-1,若设E (0,-1),则MA →·MB →=|ME →|2-1,由于0≤|ME →|≤2,所以MA →·MB →=|ME →|2-1的取值范围是[-1,3],故选C .] 二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.对任意向量a ,b ,下列关系式中恒成立的是( ) A .|a ·b |≤|a ||b | B .|a -b |≤||a |-|b || C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 2ACD [|a ·b |=|a |·|b |·|cos 〈a ,b 〉|≤|a |·|b |,故A 正确;由向量的运算法则知C ,D 正确;当b =-a ≠0时,|a -b |>||a |-|b ||,故B 错误.故选ACD .]10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若A =π6,a =2,c =23,则角C 的大小是( )A .π6B .π3C .5π6D .2π3BD [由正弦定理可得a sin A =c sin C ,所以sin C =c a sin A =32,而a <c ,所以A <C ,所以π6<C <56π,故C =π3或23π.]11.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足B =π3,a +c =3b ,则ac =( )A .2B .3C .12D .13AC [∵B =π3,a +c =3b , ∴(a +c )2=a 2+c 2+2ac =3b 2,①由余弦定理可得,a 2+c 2-2ac cos π3=b 2,② 联立①②,可得2a 2-5ac +2c 2=0, 即2⎝ ⎛⎭⎪⎫a c 2-5⎝ ⎛⎭⎪⎫a c +2=0,解得a c =2或a c =12.故选AC .]12.点P 是△ABC 所在平面内一点,满足|PB →-PC →|-|PB →+PC →-2P A →|=0,则△ABC 的形状不可能是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形ACD [∵P 是△ABC 所在平面内一点,且 |PB →-PC →|-|PB →+PC →-2P A →|=0, ∴|CB →|-|(PB →-P A →)+(PC →-P A →)|=0, 即|CB →|=|AC →+AB →|, ∴|AB →-AC →|=|AC →+AB →|,两边平方并化简得AC →·AB →=0,∴AC →⊥AB →,∴∠A =90°,则△ABC 一定是直角三角形.故选ACD .]三、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.与向量a =(1,2)平行,且模等于5的向量为________.(1,2)或(-1,-2) [因为所求向量与向量a =(1,2)平行,所以可设所求向量为(x,2x ),又因为其模为5,所以x 2+(2x )2=5,解得x =±1.因此所求向量为(1,2)或(-1,-2).]14.已知向量a =(m,2),b =(-1,n )(n >0),且a ·b =0,点P (m ,n )在圆x 2+y 2=5上,则m +n =________,|2a +b |=________.(本题第一空2分,第二空3分)334 [因为向量a =(m,2),b =(-1,n )(n >0),且a ·b =0,P (m ,n )在圆x 2+y 2=5上,∴⎩⎨⎧-m +2n =0,m 2+n 2=5,解得m =2,n =1,即m +n =2+1=3. ∴2a +b =(3,5),∴|2a +b |=34.]15.在△ABC 中,S △ABC =14(a 2+b 2-c 2),b =1,a =2,则c =________.1 [∵S △ABC =12ab sin C , ∴12ab sin C =14(a 2+b 2-c 2), ∴a 2+b 2-c 2=2ab sin C .由余弦定理得,2ab cos C =2ab sin C ,∴tan C =1,∴C =45°,∴c =a 2+b 2-2ab cos C =3-2=1.]16.如图所示,半圆的直径AB =2,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值是________.-12 [因为点O 是AB 的中点, 所以P A →+PB →=2PO →,设|PC →|=x ,则|PO →|=1-x (0≤x ≤1), 所以(P A →+PB →)·PC →=2PO →·PC →=-2x (1-x ) =2⎝ ⎛⎭⎪⎫x -122-12. 所以当x =12时,(P A →+PB →)·PC →取到最小值-12.]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求|a +b |;(2)求向量a 在向量a +b 方向上的投影. [解] (1)因为(2a -3b )·(2a +b )=61, 所以4|a |2-4a·b -3|b |2=61.因为|a |=4,|b |=3,所以a·b =-6, 所以|a +b |=|a |2+|b |2+2a·b =42+32+2×(-6)=13.(2)因为a ·(a +b )=|a |2+a·b =42-6=10,所以向量a 在向量a +b 方向上的投影为a ·(a +b )|a +b |=1013=101313.18.(本小题满分12分)如图所示,在平面直角坐标系中,|OA →|=2|AB →|=2,∠OAB=2π3,BC →=(-1,3).(1)求点B ,C 的坐标;(2)求证:四边形OABC 为等腰梯形.[解] (1)连接OB (图略),设B (x B ,y B ),则x B =|OA →|+|AB →|·cos(π-∠OAB )=52, y B =|AB →|·sin(π-∠OAB )=32,∴OC →=OB →+BC →=⎝ ⎛⎭⎪⎫52,32+(-1,3)=⎝ ⎛⎭⎪⎫32,332, ∴B ⎝ ⎛⎭⎪⎫52,32,C ⎝ ⎛⎭⎪⎫32,332. (2)证明:∵OC →=⎝ ⎛⎭⎪⎫32,332, AB →=⎝ ⎛⎭⎪⎫12,32,∴OC →=3AB →,∴OC →∥AB →. 又易知OA 与BC 不平行, |OA →|=|BC →|=2,∴四边形OABC 为等腰梯形.19.(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =3a sin C -c cos A .(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c . [解] (1)由c =3a sin C -c cos A ,及正弦定理得 3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A , 故b 2+c 2=8. 解得b =c =2.20.(本小题满分12分)已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. [解] (1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1), 所以⎩⎨⎧cos α+cos β=0, ①sin α+sin β=1, ②由①得,cos α=cos(π-β), 由0<β<π,得0<π-β<π. 又0<α<π,故α=π-β. 代入sin α+sin β=1, 得sin α=sin β=12, 而α>β,所以α=5π6,β=π6.21.(本小题满分12分)如图,在△OAB 中,已知P 为线段AB 上的一点,OP →=x ·OA →+y ·OB →.(1)若BP →=P A →,求x ,y 的值;(2)若BP →=3P A →,|OA →|=4,|OB →|=2,且OA →与OB →的夹角为60°时,求OP →·AB →的值. [解] (1)∵BP →=P A →, ∴BO →+OP →=PO →+OA →, 即2OP →=OB →+OA →,∴OP →=12OA →+12OB →,即x =12,y =12. (2)∵BP →=3P A →,∴BO →+OP →=3PO →+3OA →, 即4OP →=OB →+3OA →,∴OP →=34O A →+14OB →.∴x =34,y =14. OP →·AB →=⎝ ⎛⎭⎪⎫34OA →+14OB →·(OB →-OA →)=14OB →·OB →-34OA →·OA →+12OA →·OB →=14×22-34×42+12×4×2×12=-9.22.(本小题满分12分)如图,我国南海某处的一个圆形海域上有四个小岛,小岛B 与小岛A 、小岛C 相距都为5 n mile ,与小岛D 相距为3 5 n mile.小岛A 对小岛B 与D 的视角为钝角,且sin A =35.(1)求小岛A 与小岛D 之间的距离和四个小岛所形成的四边形的面积; (2)记小岛D 对小岛B 与C 的视角为α,小岛B 对小岛C 与D 的视角为β,求sin(2α+β)的值.[解] (1)∵sin A =35,且角A 为钝角, ∴cos A =-1-⎝ ⎛⎭⎪⎫352=-45. 在△ABD 中,由余弦定理得:AD 2+AB 2-2AD ·AB ·cos A =BD 2. ∴AD 2+52-2AD ·5·⎝ ⎛⎭⎪⎫-45=(35)2⇒AD 2+8AD -20=0. 解得AD =2或AD =-10(舍).∴小岛A 与小岛D 之间的距离为2 n mile. ∵A ,B ,C ,D 四点共圆, ∴角A 与角C 互补.∴sin C =35,cos C =cos(180°-A )=-cos A =45. 在△BDC 中,由余弦定理得: CD 2+CB 2-2CD ·CB ·cos C =BD 2, ∴CD 2+52-2CD ·5·45=(35)2⇒CD 2-8CD -20=0, 解得CD =-2(舍)或CD =10. ∴S 四边形ABCD =S △ABD +S △BCD=12AB ·AD ·sin A +12CB ·CD ·sin C =12×5×2×35+12×5×10×35=3+15=18. ∴四个小岛所形成的四边形的面积为18平方n mile.(2)在△BDC 中,由正弦定理得:BC sin α=BD sin C ⇒5sin α=3535⇒sin α=55.∵DC 2+DB 2>BC 2, ∴α为锐角,∴cos α=255.又∵sin(α+β)=sin(180°-C )=sin C =35, cos(α+β)=cos(180°-C )=-cos C =-45. ∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=55×⎝⎛⎭⎪⎫-45+255×35=2525.2、复数(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知z=11-20i,则1-2i-z等于()A.z-1B.z+1C.-10+18i D.10-18iC[1-2i-z=1-2i-(11-20i)=-10+18i.]2.3+i1+i=()A.1+2i B.1-2i C.2+i D.2-iD[3+i1+i=(3+i)(1-i)(1+i)(1-i)=3-3i+i+12=2-i.故选D.]3.若复数z满足z1-i=i,其中i为虚数单位,则z=()A.1-i B.1+iC.-1-i D.-1+iA[由已知得z=i(1-i)=i+1,则z=1-i,故选A.]4.若复数z满足i z=2+4i,则在复平面内,z对应的点的坐标是() A.(2,4) B.(2,-4)C .(4,-2)D .(4,2)C [z =2+4ii =4-2i 对应的点的坐标是(4,-2),故选C .] 5.若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1D .2B [∵(2+a i)(a -2i)=-4i ,∴4a +(a 2-4)i =-4i. ∴⎩⎨⎧4a =0,a 2-4=-4.解得a =0.故选B .] 6.若复数2-b i1+2i(b ∈R )的实部与虚部互为相反数,则b =( ) A . 2 B .23 C .-23 D .2C [因为2-b i 1+2i =(2-b i )(1-2i )5=2-2b 5-4+b 5i ,又复数2-b i1+2i(b ∈R )的实部与虚部互为相反数,所以2-2b 5=4+b 5,即b =-23.]7.设z ∈C ,若z 2为纯虚数,则z 在复平面上的对应点落在( ) A .实轴上B .虚轴上C .直线y =±x (x ≠0)上D .以上都不对C [设z =x +y i(x ,y ∈R ),则z 2=(x +y i)2=x 2-y 2+2xy i.∵z 2为纯虚数,∴⎩⎨⎧x 2-y 2=0,xy ≠0.∴y =±x (x ≠0).] 8.已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是( ) A .(1,5) B .(1,3) C .(1,5)D .(1,3)C [由已知,得|z |=a 2+1. 由0<a <2,得0<a 2<4, ∴1<a 2+1<5.∴|z |=a 2+1∈(1,5).故选C .]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分)9.给出下列复平面内的点,这些点中对应的复数为虚数的为()A.(3,1) B.(-2,0)C.(0,4) D.(-1,-5)ACD[易知选项A、B、C、D中的点对应的复数分别为3+i、-2、4i、-1-5i,因此A、C、D中的点对应的复数为虚数.]10.已知复数z=a+b i(a,b∈R,i为虚数单位),且a+b=1,下列命题正确的是()A.z不可能为纯虚数B.若z的共轭复数为z,且z=z,则z是实数C.若z=|z|,则z是实数D.|z|可以等于1 2BC[当a=0时,b=1,此时z=i为纯虚数,A错误;若z的共轭复数为z,且z=z,则a+b i=a-b i,因此b=0,B正确;由|z|是实数,且z=|z|知,z是实数,C正确;由|z|=12得a2+b2=14,又a+b=1,因此8a2-8a+3=0,Δ=64-4×8×3=-32<0,无解,即|z|不可以等于12,D错误.故选BC.]11.已知复数z0=1+2i(i为虚数单位)在复平面内对应的点为P0,复数z满足|z-1|=|z-i|,下列结论正确的是()A.P0点的坐标为(1,2)B.复数z0的共轭复数对应的点与点P0关于虚轴对称C.复数z对应的点Z在一条直线上D.P0与z对应的点Z间的距离的最小值为2 2ACD[复数z0=1+2i在复平面内对应的点为P0(1,2),A正确;复数z0的共轭复数对应的点与点P0关于实轴对称,B错误;设z=x+y i(x,y∈R),代入|z-1|=|z-i|,得|(x-1)+y i|=|x+(y-1)i|,即(x-1)2+y2=x2+(y-1)2,整理得,y=x ,即Z 点在直线y =x 上,C 正确;易知点P 0到直线y =x 的垂线段的长度即为P 0、Z 之间距离的最小值,结合平面几何知识知D 正确.故选ACD .]12.对任意z 1,z 2,z ∈C ,下列结论成立的是( ) A .当m ,n ∈N *时,有z m z n =z m +nB .当z 1,z 2∈C 时,若z 21+z 22=0,则z 1=0且z 2=0C .互为共轭复数的两个复数的模相等,且|z |2=|z |2=z ·zD .z 1=z 2的充要条件是|z 1|=|z 2| AC [由复数乘法的运算律知A 正确;取z 1=1,z 2=i ,满足z 21+z 22=0,但z 1=0且z 2=0不成立,B 错误;由复数的模及共轭复数的概念知结论成立,C 正确; 由z 1=z 2能推出|z 1|=|z 2|, 但|z 1|=|z 2|推不出z 1=z 2,因此z 1=z 2的必要不充分条件是|z 1|=|z 2|,D 错误.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.已知复数z =(5+2i)2(i 为虚数单位),则z 的实部为________. 21 [复数z =(5+2i)2=21+20i ,其实部是21.]14.a 为正实数,i 为虚数单位,⎪⎪⎪⎪⎪⎪a +i i =2,则a =________. 3 [a +i i =(a +i )·(-i )i·(-i )=1-a i ,则⎪⎪⎪⎪⎪⎪a +i i =|1-a i|=a 2+1=2, 所以a 2=3.又a 为正实数,所以a = 3.] 15.设a ,b ∈R ,a +b i =11-7i1-2i(i 为虚数单位),则a +b 的值为________. 8 [a +b i =11-7i 1-2i =(11-7i )(1+2i )(1-2i )(1+2i )=25+15i5=5+3i ,依据复数相等的充要条件可得a =5,b =3.从而a +b =8.]16.设z 的共轭复数是z ,若z +z =4,z ·z =8,则|z |=________,z-z =________(本题第一空2分,第二空3分).22 ±i [设z =x +y i(x ,y ∈R ),则z =x -y i ,由z +z =4,z ·z =8得, ⎩⎨⎧ x +y i +x -y i =4,(x +y i )(x -y i )=8,⇒⎩⎨⎧ x =2,x 2+y 2=8,⇒⎩⎨⎧x =2,y =±2.∴|z |=2 2.所以zz =x -y i x +y i =x 2-y 2-2xy ix 2+y 2=±i.]四、简答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,当m 为何值时,(1)z 是实数? (2)z 是纯虚数? [解] (1)要使复数z 为实数, 需满足⎩⎨⎧ m 2-2m -2>0,m 2+3m +2=0,解得m =-2或-1.即当m =-2或-1时,z 是实数. (2)要使复数z 为纯虚数, 需满足⎩⎨⎧m 2-2m -2=1,m 2+3m +2≠0,解得m =3.即当m =3时,z 是纯虚数.18.(本小题满分12分)已知复数z 1=1-i ,z 1·z 2+z 1=2+2i ,求复数z 2. [解] 因为z 1=1-i ,所以z 1=1+i , 所以z 1·z 2=2+2i -z 1=2+2i -(1+i)=1+i. 设z 2=a +b i(a ,b ∈R ),由z 1·z 2=1+i , 得(1-i)(a +b i)=1+i , 所以(a +b )+(b -a )i =1+i ,所以⎩⎨⎧a +b =1,b -a =1,解得a =0,b =1,所以z 2=i.19.(本小题满分12分)已知复数z 满足|z |=1,且(3+4i)z 是纯虚数,求z 的共轭复数z .[解] 设z =a +b i(a ,b ∈R ),则z =a -b i 且|z |=a 2+b 2=1,即a 2+b 2=1.① 因为(3+4i)z =(3+4i)(a +b i)=(3a -4b )+(3b +4a )i ,而(3+4i)z 是纯虚数, 所以3a -4b =0,且3b +4a ≠0.② 由①②联立, 解得⎩⎪⎨⎪⎧a =45,b =35,或⎩⎪⎨⎪⎧a =-45,b =-35.所以z =45-35i ,或z =-45+35i.20.(本小题满分12分)复数z =(1+i )2+3(1-i )2+i ,若z 2+az <0,求纯虚数a .[解] 由z 2+a z <0可知z 2+az 是实数且为负数. z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i 2+i =1-i.因为a 为纯虚数,所以设a =m i(m ∈R ,且m ≠0),则z 2+a z =(1-i)2+m i 1-i =-2i +m i -m 2=-m 2+⎝ ⎛⎭⎪⎫m 2-2i <0,故⎩⎪⎨⎪⎧-m2<0,m2-2=0,所以m =4,即a =4i.21.(本小题满分12分)已知等腰梯形OABC 的顶点A ,B 在复平面上对应的复数分别为1+2i ,-2+6i ,OA ∥BC .求顶点C 所对应的复数z .[解] 设z =x +y i(x ,y ∈R ),C (x ,y ), 因为OA ∥BC ,|OC |=|BA |, 所以k OA =k BC ,|z C |=|z B -z A |,即⎩⎨⎧21=y -6x +2,x 2+y 2=32+42,解得⎩⎨⎧ x 1=-5,y 1=0或⎩⎨⎧x 2=-3,y 2=4.因为|OA |≠|BC |,所以x 2=-3,y 2=4(舍去), 故z =-5.22.(本小题满分12分)已知复数z 满足(1+2i)z =4+3i. (1)求复数z ;(2)若复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围. [解] (1)∵(1+2i)z =4+3i , ∴z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i5=2-i , ∴z =2+i.(2)由(1)知z =2+i ,则(z +a i)2=(2+i +a i)2=[2+(a +1)i]2=4-(a +1)2+4(a +1)i , ∵复数(z +a i)2在复平面内对应的点在第一象限, ∴⎩⎨⎧4-(a +1)2>0,4(a +1)>0, 解得-1<a <1,即实数a 的取值范围为(-1,1).3、立体几何初步(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面给出了四个条件:①空间三个点;②一条直线和一个点;③和直线a都相交的两条直线;④两两相交的三条直线.其中,能确定一个平面的条件有()A.3个B.2个C.1个D.0个D[①当空间三点共线时不能确定一个平面;②点在直线上时不能确定一个平面;③两直线若不平行也不相交时不能确定一个平面;④三条直线交于一点且不共面时不能确定一个平面. 故以上4个条件都不能确定一个平面.] 2.在长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°D[由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.]3.已知a,b,c是直线,则下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等.其中真命题的个数为()A.0 B.3C.2 D.1D[异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确.]4.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为()A.24 cm2B.36 cm2C.72 cm2D.84 cm2C[棱柱的侧面积S侧=3×6×4=72(cm2).]5.在正方体ABCD-A1B1C1D1中,动点E在棱BB1上,动点F在线段A1C1上,O为底面ABCD的中心,若BE=x,A1F=y,则四面体O-AEF的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关B[因为V O-AEF=V E-OAF,考察△AOF的面积和点E到平面AOF的距离的值,因为BB1∥平面ACC1A1,所以点E到平面AOF的距离为定值,又AO∥A1C1,所以OA为定值,点F到直线AO的距离也为定值,即△AOF的面积是定值,所以四面体O-AEF的体积与x,y都无关,故选B.]6.如图,点S在平面ABC外,SB⊥AC,SB=AC=2,E,F分别是SC和AB 的中点,则EF的长是()A.1 B. 2C.22D.12B[取CB的中点D,连接ED,DF,则∠EDF(或其补角)为异面直线SB与AC所成的角,即∠EDF=90°.在△EDF中,ED=12SB=1,DF=12AC=1,所以EF=ED2+DF2= 2.]7.在四面体ABCD中,已知棱AC的长为2,其余各棱长都为1,则二面角A-CD-B的余弦值为()A .12B .13C .33D .23C [取AC 的中点E ,CD 的中点F ,连接BE ,EF ,BF ,则EF =12,BE =22,BF =32,因为EF 2+BE 2=BF 2,所以△BEF 为直角三角形,cos θ=EF BF =33.]8.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( )A .5π12B .π3C .π4D .π6B [如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠P AO 即为P A 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3,则S =34×(3)2=334,VABC -A 1B 1C 1=S ×PO =94, ∴PO = 3. 又AO =33×3=1, ∴tan ∠P AO =PO AO =3,∴∠P AO =π3.]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列命题为真命题的是( )A .若两个平面有无数个公共点,则这两个平面重合B.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直C.垂直于同一条直线的两条直线相互平行D.若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面不垂直BD[A错,两个平面相交时,也有无数个公共点;C错,比如a⊥α,b⊂α,c⊂α,显然有a⊥b,a⊥c,但b与c也可能相交.故选BD.]10.如图,圆柱的轴截面是四边形ABCD,E是底面圆周上异于A,B的一点,则下列结论中正确的是()A.AE⊥CEB.BE⊥DEC.DE⊥平面CEBD.平面ADE⊥平面BCEABD[由AB是底面圆的直径,得∠AEB=90°,即AE⊥EB.∵圆柱的轴截面是四边形ABCD,∴AD⊥底面AEB,BC⊥底面AEB.∴BE⊥AD.又AD∩AE=A,AD,AE⊂平面ADE,∴BE⊥平面ADE,∴BE⊥DE.同理可得,AE⊥CE,易得平面BCE⊥平面ADE.可得A,B,D正确.∵AD∥BC,∴∠ADE(或其补角)为DE与CB所成的角,显然∠ADE≠90°,∴DE⊥平面CEB不正确,即C错误.故选ABD.]11.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°,侧面P AD 为正三角形,且平面P AD⊥平面ABCD,则下列说法正确的是()A.在棱AD上存在点M,使AD⊥平面PMBB.异面直线AD与PB所成的角为90°C.二面角P-BC-A的大小为45°D.BD⊥平面P ACABC[如图,对于A,取AD的中点M,连接PM,BM,∵侧面P AD为正三角形,∴PM⊥AD,又底面ABCD是菱形,∠DAB=60°,∴△ABD是等边三角形,∴AD⊥BM,又PM∩BM=M,PM,BM⊂平面PMB,∴AD⊥平面PBM,故A正确.对于B,∵AD⊥平面PBM,∴AD⊥PB,即异面直线AD与PB所成的角为90°,故B正确.对于C,∵平面PBC∩平面ABCD=BC,BC∥AD,∴BC⊥平面PBM,∴BC⊥PB,BC⊥BM,∴∠PBM是二面角P-BC-A的平面角,设AB=1,则BM=32,PM=32,在Rt△PBM中,tan∠PBM=PMBM=1,即∠PBM=45°,故二面角P-BC-A的大小为45°,故C正确.对于D,因为BD与P A不垂直,所以BD与平面P AC不垂直,故D错误.故选ABC.]12.如图所示,在四个正方体中,l是正方体的一条体对角线,点M、N、P 分别为其所在棱的中点,能得出l⊥平面MNP的图形为()AD[如图所示,正方体ABCD-A′B′C′D′.连接AC,BD.∵M、P分别为其所在棱的中点,∴MP∥AC.∵四边形ABCD为正方形,∴AC⊥BD,∵BB′⊥平面ABCD,AC⊂平面ABCD,∴BB′⊥AC,∵AC⊥BD,BD∩BB′=B,∴AC⊥平面DBB′,∵DB′⊂平面DBB′,∴AC⊥DB′.∵MP∥AC,∴DB′⊥MP,同理,可证DB′⊥MN,DB′⊥NP,∵MP∩NP=P,MP⊂平面MNP,NP⊂平面MNP,∴DB′⊥平面MNP,即l垂直平面MNP,故A正确.故D中,由A中证明同理可证l⊥MP,l⊥MN,又∵MP∩MN=M,∴l⊥平面MNP.故D正确.故选AD.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的表面积为________,体积为________.(本题第一空2分,第二空3分)3π33π[设圆锥的底面半径为r,根据题意,得2πr=2π,解得r=1,根据勾股定理,得圆锥的高为22-12=3,所以圆锥的表面积S=12×π×22+π×12=3π,体积V=13×π×12×3=33π.]14.已知正四棱锥的侧棱长为23,侧棱与底面所成的角为60°,则该四棱锥的高为________.3[如图,过点S作SO⊥平面ABCD,连接OC,则∠SCO=60°,∴SO=sin 60°·SC=32×23=3.]15.如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=________.1∶24[因为D,E分别是AB,AC的中点,所以S△ADE ∶S△ABC=1∶4. 又F是AA1的中点,所以A1到底面的距离H为F到底面距离h的2倍,即三棱柱A1B1C1-ABC的高是三棱锥F-ADE高的2倍,所以V1∶V2=13S△ADE·hS△ABC·H=124=1∶24.]16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________.36π[如图,连接OA,OB.由SA=AC,SB=BC,SC为球O的直径,知OA⊥SC,OB⊥SC.由平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,OA⊥SC,知OA⊥平面SCB.设球O的半径为r,则OA=OB=r,SC=2r,∴三棱锥S-ABC的体积V=13×⎝⎛⎭⎪⎫12SC·OB·OA=r33,即r33=9,∴r=3,∴S球表=4πr2=36π.]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长为10 cm,求圆锥的母线长.[解]如图,设圆锥的母线长为l,圆台上、下底面的半径分别为r、R.因为l-10l=rR,所以l-10l=14,所以l=403cm.即圆锥的母线长为403cm.18.(本小题满分12分)如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D是AB的中点.(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.[证明](1)∵C1C⊥平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,∴AC⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于点O,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD⊂平面CDB1,AC1⊄平面CDB1.∴AC1∥平面CDB1.19.(本小题满分12分)如图,已知三棱锥P-ABC,P A⊥平面ABC,∠ACB=90°,∠BAC=60°,P A=AC,M为PB的中点.(1)求证:PC⊥BC;(2)求二面角M-AC-B的大小.[解](1)证明:由P A⊥平面ABC,所以P A⊥BC,又因为∠ACB=90°,即BC⊥AC,P A∩AC=A,所以BC⊥平面P AC,所以PC⊥BC.(2)取AB中点O,连接MO,过O作HO⊥AC于H,连接MH,因为M是BP的中点,所以MO∥P A,又因为P A⊥平面ABC,所以MO⊥平面ABC,所以∠MHO为二面角M-AC-B的平面角,设AC=2,则BC=23,MO=1,OH=3,在Rt△MHO中,tan∠MHO=MOHO=33,所以二面角M-AC-B的大小为30°.20.(本小题满分12分)已知一个圆锥的底面半径为R,高为H, 在其中有一个高为x的内接圆柱.(1)求圆柱的侧面积;(2)x为何值时,圆柱的侧面积最大?[解](1)设圆柱的底面半径为r, 则它的侧面积为S=2πrx, rR=H-xH,解得r=R-RH x,所以S圆柱侧=2πRx-2πRH x2.(2)由(1)知S圆柱侧=2πRx-2πRH x2,在此表达式中,S圆柱侧为x的二次函数,因此,当x=H2时,圆柱的侧面积最大.21.(本小题满分12分)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.[解](1)如图,由已知AD∥BC,故∠DAP或其补角为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得AP=AD2+PD2=5,所以cos∠DAP=ADAP=55.所以异面直线AP与BC所成角的余弦值为5 5.(2)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又BC∥AD,所以PD⊥BC,又PD⊥PB,PB∩BC=B,所以PD⊥平面PBC.(3)过点D作AB的平行线交BC于点F,连接PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF与平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC-BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得DF=CD2+CF2=25,在Rt△DPF中,可得sin∠DFP=PDDF=55.所以直线AB与平面PBC所成角的正弦值为5 5.22.(本小题满分12分)如图①,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图②.①②(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[解](1)证明:∵D,E分别为AC,AB的中点,∴DE∥BC.又∵DE⊄平面A1CB,BC⊂平面A1CB,∴DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,∴DE⊥AC.∵DE⊥A1D,DE⊥CD,A1D∩CD=D,∴DE⊥平面A1DC.而A1F⊂平面A1DC,∴DE⊥A1F.又∵A1F⊥CD,DE∩CD=D,∴A1F⊥平面BCDE,∵BE⊂平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,A1C⊂平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP,DE∩DP=D,∴A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q(中点),使得A1C⊥平面DEQ.4、统计(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.对一个容量为N 的总体抽取容量为n 的样本,当选取抽签法抽样、随机数法抽样和分层随机抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3D [在抽签法抽样、随机数法抽样和分层随机抽样中,每个个体被抽中的概率均为nN ,所以p 1=p 2=p 3,故选D .]2.某公司从代理的A ,B ,C ,D 四种产品中,按分层随机抽样的方法抽取容量为110的样本,已知A ,B ,C ,D 四种产品的数量比是2∶3∶2∶4,则该样本中D 类产品的数量为( )A .22B .33C .40D .55C [根据分层随机抽样,总体中产品数量比与抽取的样本中产品数量比相等,∴样本中D 类产品的数量为110×42+3+2+4=40.]3.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a ,b ]是其中的一组.已知该组的频率为m ,该组上的频率分布直方图的高为h ,则|a -b |等于( )A .mhB .h mC .m hD .m +hC [在频率分布直方图中小长方形的高等于频率组距,所以h =m |a -b |,|a -b |=mh ,故选C .]4.我市对上、下班交通情况作抽样调查,上、下班时间各抽取12辆机动车测其行驶速度(单位:km/h)如下表:上班时间182021262728303233353640下班时间161719222527283030323637A.28与28.5 B.29与28.5C.28与27.5 D.29与27.5D[上班时间行驶速度的中位数是28+302=29,下班时间行驶速度的中位数是27+282=27.5.]5.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m o,平均值为x,则()A.m e=m o=x B.m e=m o<xC.m e<m o<x D.m o<m e<xD[由条形图可知,中位数为m e=5.5,众数为m o=5,平均值为x≈5.97,所以m o<m e<x.]6.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg),将所得数据整理后,画出了频率分布直方图,如图所示,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60]内适合投掷相关方面训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为()A.4∶3∶1 B.5∶3∶1C.5∶3∶2 D.3∶2∶1B[体重在[45,50)内的频率为0.1×5=0.5,体重在[50,55)内的频率为0.06×5=0.3,体重在[55,60]内的频率为0.02×5=0.1,∵0.5∶0.3∶0.1=5∶3∶1,∴可估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为5∶3∶1,故选B.]7.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()A.64 B.54C.48 D.27B[前两组中的频数为100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组频数和为38.所以第三组频数为38-16=22.又最大频率为0.32,故第四组频数为0.32×100=32.所以a=22+32=54.故选B.]8.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是()A.85,85,85 B.87,85,86C.87,85,85 D.87,85,90C[∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.某地区经过一年的建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中正确的是()A.建设后,种植收入减少B.建设后,其他收入增加了一倍以上C.建设后,养殖收入增加了一倍D.建设后,养殖收入与第三产业收入的总和超过了经济收入的一半BCD[设建设前经济收入为a,则建设后经济收入为2a,由题图可知:种植收入第三产业收入养殖收入其他收入建设前经济收入0.6a 0.06a 0.3a 0.04a建设后经济收入0.74a 0.56a 0.6a 0.1a10.在某次高中学科竞赛中,4 000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间中点值为代表,则下列说法中正确的是()A .成绩在[70,80)分的考生人数最多B .不及格的考生人数为1 000C .考生竞赛成绩的平均分约为70.5分D .考生竞赛成绩的中位数为75分ABC [由频率分布直方图可得,成绩在[70,80)内的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为4 000×0.25=1 000,故B 正确;由频率分布直方图可得,平均分为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5,故C 正确;因为成绩在[40,70)内的频率为0.45,[70,80)的频率为0.3,所以中位数为70+10×0.050.3≈71.67,故D 错误.故选ABC .]11.甲、乙两班举行电脑汉字录入比赛,参赛学生每分钟录入汉字的个数经统计计算后填入下表:班级 参加人数中位数 方差 平均数 甲 55 149 191 135 乙55151110135A .甲、乙两班学生成绩的平均数相同B .甲班的成绩波动比乙班的成绩波动大C .乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀)D .甲班成绩的众数小于乙班成绩的众数ABC [甲、乙两班学生成绩的平均数都是135,故两班成绩的平均数相同,∴A 正确;s 2甲=191>110=s 2乙,∴甲班成绩不如乙班稳定,即甲班的成绩波动较大,∴B 正确;甲、乙两班人数相同,但甲班的中位数为149,乙班的中位数为151,从而易知乙班不少于150个的人数要多于甲班,∴C 正确;由题表看不出两班学生成绩的众数,∴D错误.]12.在某地区某高传染性病毒流行期间,为了建立指标来显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是()A.平均数x≤3B.平均数x≤3且标准差s≤2C.平均数x≤3且极差小于或等于2D.众数等于1且极差小于或等于4CD[A错,举反例:0,0,0,0,2,6,6,其平均数x=2≤3,不符合指标.B错,举反例:0,3,3,3,3,3,6,其平均数x=3,且标准差s=187≤2,不符合指标.C对,若极差等于0或1,在x≤3的条件下,显然符合指标;若极差等于2且x≤3,则每天新增感染人数的最小值与最大值有下列可能:(1)0,2,(2)1,3,(3)2,4,符合指标.D对,若众数等于1且极差小于或等于4,则最大值不超过5,符合指标.故选CD.]三、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.下列数据的70%分位数为________.20,14,26,18,28,30,24,26,33,12,35,22.28[把所给的数据按照从小到大的顺序排列可得:12,14,18,20,22,24,26,26,28,30,33,35,因为有12个数据,所以12×70%=8.4,不是整数,所以数据的70%分位数为第9个数28.]14.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球的时间x(单位:小时)与当天投篮命中率y之间的关系:。
单元质量评估(一)(第一、二章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列推理错误的是( )A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α【解析】选C.若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.2.一个等腰三角形绕它的底边所在直线旋转360°形成的曲面所围成的几何体是( )A.球体B.圆柱C.圆台D.两个共底面的圆锥组成的组合体【解析】选D.等腰三角形的底边所在直线为旋转轴,所得几何体是两个共底面的圆锥组成的组合体.3.如图所示为某一平面图形的直观图,则此平面图形可能是下图中的( )【解析】选A.由直观图知,原四边形一组对边平行且不相等为梯形,且梯形两腰不能与底垂直.4.下列命题正确的是( )A.一直线与一个平面内的无数条直线垂直,则此直线与平面垂直B.两条异面直线不能同时垂直于一个平面C.直线与平面所成的角的取值范围是:0°<θ≤180°D.两异面直线所成的角的取值范围是:0°<θ<90°.【解析】选B. A错误,一直线与一个平面内的无数条直线垂直,并不意味着和平面内的任意直线垂直,所以此直线与平面不一定垂直;B正确,由线面垂直的性质定理可知,两条异面直线不能同时垂直于一个平面;C错误,直线与平面所成的角的取值范围是:0°≤θ≤90°;D错误,两异面直线所成的角的取值范围是:0°<θ≤90°.5.(2015·深圳高二检测)用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是( )【解析】选B. D选项为正视图或侧视图,俯视图中显然应有一个被遮挡的圆,所以内圆是虚线.【补偿训练】某几何体的三视图如图所示,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【解题指南】本题考查的是几何体的三视图,在判断时要结合三种视图进行判断.【解析】选B.由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱.6.(2015·安徽高考)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【解析】选D.7.(2015·长白山高一检测)已知一平面平行于两条异面直线,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是( )A.平行B.垂直C.斜交D.不能确定【解析】选B.根据线面平行的性质,在已知平面内可以作出两条相交直线与已知两条异面直线分别平行.因此,一直线与两异面直线都垂直,一定与这个平面垂直.8.如图,将一个正方体沿相邻三个面的对角线截出一个棱锥,则棱锥的体积与原正方体的体积之比为( )A.1∶3B.1∶4C.1∶5D.1∶6【解析】选D.设正方体的棱长为a,则棱锥的体积V1=错误!未找到引用源。
模块综合测评(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z满足(z-1)i=1+i,则z等于()A.-2-i B.-2+iC.2-i D.2+iC[由(z-1)i=1+i,两边同乘以-i,则有z-1=1-i,所以z=2-i。
]2.已知向量a与b的夹角为30°,且|a|=1,|2a-b|=1,则|b|等于()A. 6 B.错误!C.错误!D.错误!C[由题意可得a·b=|b|cos 30°=错误!|b|,4a2-4a·b+b2=1,即4-23|b|+b2=1,由此求得|b|=错误!,故选C.]3.设z=错误!+i,则|z|等于()A.错误!B.错误!C.错误! D.2B[∵z=错误!+i=错误!+i=错误!+i=错误!+错误!i,∴|z|=错误!=错误!.]4.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是()A.45 B.50C.55 D.60B[由频率分布直方图,知低于60分的频率为(0。
01+0.005)×20=0.3.∴该班学生人数n=错误!=50.]5.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )A.1 cm B.2 cmC.3 cm D.错误!cmB[S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2(cm).]6.已知向量a=(cos θ-2,sin θ),其中θ∈R,则|a|的最小值为()A.1 B.2 C.错误!D.3A[因为a=(cos θ-2,sin θ),所以|a|=错误!=错误!=错误!,因为θ∈R,所以-1≤cos θ≤1,故|a|的最小值为错误!=1.故选A.]7.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6C.0.8 D.1B[5件产品中有2件次品,记为a,b,有3件合格品,记为c,d,e,从这5件产品中任取2件,样本点有(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)共10种.恰有一件次品的结果有6种,则其概率为P=错误!=0。
高中数学必修2同步测试卷全套[新课标人教A版]目录 ......................................................................................................................................... 错误!未定义书签。
第一章空间几何体 (2)1.1 空间几何体的结构 (2)1.3 柱体、锥体、台体的表面积 (7)1.3 柱体、锥体与台体的体积 (10)1.4 球的体积和表面积 (14)第一章空间几何体单元测试1 (18)第二章空间几何体单元测试2 (21)第一章空间几何体检测题3 (24)第一章空间几何体单元测试4 (28)第二章空间点、直线、平面间的位置关系 (31)2.1空间点、直线、平面间的位置关系 (31)2.2 直线、平面平行的判定及其性质 (39)2.3 直线平面垂直的判定及其性质 (55)第二章点、直线、平面之间的位置单元测试1 (65)第二章点、直线、平面之间的位置关系单元测试2 (67)第二章点、直线、平面之间的位置关系单元测试3 (70)第三章直线与方程 (74)3.1.1 直线的倾斜角和斜率 (74)3.1.2 两条直线平行与垂直的判定 (76)3.1.3 直线的倾斜角和斜率 (80)3.2.1 直线的方程 (83)3.2.2 直线的方程 (85)3.2.3 直线的方程 (87)3.2.4 直线的方程 (89)新课标高一数学同步测试—3.2直线方程(1) (91)3.2 直线的方程单元测试(2) (97)3.2直线的方程同步测试(3) (102)3.3 直线的交点坐标与距离公式同步测试 (110)3.3直线的交点坐标与距离公式 (113)第三章直线与方程单元测试1 (123)第三章直线与方程单元测试2 (128)第三章直线与方程单元测试3 (132)第四章圆的方程 (136)4.2 圆的方程同步测试 (139)4.2 直线、圆的位置关系测试 (145)4.3空间直角坐标系 (151)直线和圆 (157)第一章空间几何体1.1 空间几何体的结构一、选择题1.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行2.将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形()3.如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是()A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、44.如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4D.AB=A1B1,BC=B1C1,CA=C1A15.有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的.其中正确的是()A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)6.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形7.图1是由图2中的哪个平面图旋转而得到的()二、填空题8如图,长方体ABCD—A1B l C l D1中,AD=3,AA l=4,AB=5,则从A点沿表面到C l的最短距离为______.9在三棱锥S—ABC中,SA=SB=SC=1,∠ASB=∠ASC=∠BSC=30°,如图,一只蚂蚁从点A出发沿三棱锥的表面爬行一周后又回到A点,则蚂蚁爬过的最短路程为_____.10高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是______.11图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是____.(注:把你认为正确的命题的序号都填上)三、解答题12请给以下各图分类.13别画一个三棱锥和一个四棱台.14面体至少有几个面?这个多面体是怎样的几何体?15合下图,说说它们分别是怎样的多面体?16察以下几何体的变化,通过比较,说出他们的特征.17一个圆锥截成圆台,已知圆台的上下底面半径的比是1∶4,母线长为10cm,求圆锥的母线长____.参考答案巩固练习 一、选择题1.D 2. B 3C 4C 5D 6。
B 7、A 二、填空题8.749、2 10.B 11.②④ 三、解答题 12.解:(1)(8)为球体,(2)为圆柱体,(3)为圆锥体 (4)为圆台体,(5)为棱锥体,(6)为棱柱体,(7)为两棱锥的组合体. 13.解:画三棱锥可分三步完成 第一步:画底面——画一个三角形; 第二步:确定顶点——在底面外任一点;第三步:画侧棱——连结顶点与底面三角形各顶点.画四棱可分三步完成 第一步:画一个四棱锥;第二步:在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段; 第三步:将多余线段擦去.14.解:多面体至少有4个面,它是三棱锥. 15.解:第一个图是二十面体,它有二十个面; 第二个图是十二面体,它有十二个面; 第三个图是八面体,它有八个面; 第四个图是六面体,它有六个面 第五个图是四面体,它有四个面. 16.略17.340cm1.3 柱体、锥体、台体的表面积一、选择题1.正四棱柱的对角线长是9cm ,全面积是144cm 2,则满足这些条件的正四棱柱的个数是() A .0个 B .1个 C .2个 D .无数个2.三棱柱ABC —A 1B 1C 1中,AB =AC ,且侧面A 1ABB 1与侧面A 1ACC l 的面积相等,则∠BB 1C 1等于() A .45° B .60° C .90° D .120°3.边长为5cm 的正方形EFGH 是圆柱的轴截面,则从正点沿圆柱的侧面到相对顶点G 的最短距离是()A .10cmB .52cmC .512+πcm D .4252+πcm4.中心角为43π,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于()A .11∶8B .3∶8C .8∶3D .13∶8 5.正六棱台的上、下底面的边长分别为a 、b (a <b ),侧面和底面所成的二面角为60°,则它的侧面积是()A .33(b 2-a 2)B .23(b 2-a 2)C .3(b 2-a 2)D .23(b 2-a 2)6.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥的侧面分成的三部分的面积之比为() A .1∶2∶3 B .1∶3∶5 C .1∶2∶4 D .1∶3∶97.若圆台的上、下底面半径的比为3∶5,则它的中截面分圆台上、下两部分面积之比为() A .3∶5 B .9∶25C .5∶41D .7∶98.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是()A .ππ221+B .ππ421+C .ππ21+D .ππ241+9.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则S T等于()A .91B .94C .41D .3110.一个斜三棱柱,底面是边长为5的正三角形,侧棱长为4,侧棱与底面三角形两边所成的角都是60°,则这个斜三棱柱的侧面积是()A .40B .)31(20+C .)31(30+D .303 二、填空题11.长方体的高为h ,底面面积是M ,过不相邻两侧棱的截面面积是N ,则长方体的侧面积是______. 12.正四棱台上、下底面的边长为b 、a (a >b )且侧面积等于两底面面积之和,则棱台的高是______. 13.圆锥的高是10 cm ,侧面展开图是半圆,此圆锥的侧面积是_____;轴截面等腰三角形的顶角为______.14.圆台的母线长是3 cm ,侧面展开后所得扇环的圆心角为180°,侧面积为10πcm 2,则圆台的高为_____;上下底面半径为_______. 三、解答题15.已知正三棱台的侧面和下底面所成的二面角为60°,棱台下底面的边长为a ,侧面积为S ,求棱台上底面的边长.16.圆锥的底面半径为5 cm ,高为12 cm ,当它的内接圆柱的底面半径为何值时,圆锥的内接圆柱全面积有最大值?最大值是多少?17.圆锥底面半径为r ,母线长是底面半径的3倍,在底面圆周上有一点A ,求一个动点P 自A 出发在侧面上绕一周到A 点的最短路程.参考答案一、选择题1.C 设正四棱柱的底面边长为a ,高为c ,由题意 2a 2+c 2=81①2a 2+4ac 2=144 即a 2+2ac 2=72②①×8-②×9得7a 2-18ac +8c 2=0即(7a -4c )(a -2c )=0,因此7a -4c =0或a =2c ,由此可见由①②构成方程组有两组满足条件的解,故正确答案选C . 2.C 3.D 4.A 5.A 6.B 7.D8.A 设底面圆半径为r ,母线即高为h .∴h =2πr .∴侧全S S =rh rh r πππ2222+=h h r +=r r r ππ22+=ππ221+.∴应选A .9.A10.B 可计算出直截面的周长为5+35,则S 侧=4(5+35)=20(1+3).另解:如图,若∠A 1AC =∠A 1AB =60°,则可证明□BB 1C 1C 为矩形,因此,S 侧=2S □B B AA 11+C C BB 11矩形S =2×4×5×sin60°+4×5=20(1+3).二、填空题11.2222Mh N +.设长方体的长和宽分别为a ,b 则有a ·b =M ,22b a +·h =N ,2(a +b )h =22)+(b a ·h =M h N 2222+·h =2222Mh N +.12.b a ab + 13.π3200;60° 14.233cm ;211cm ,229cm三、解答题.15.设O ,O 1分别为下,上底面中心,连接OO 1,则OO 1⊥平面AB C ,上底面边长为x ,连接AO ,A 1O 1并延长交BC ,B 1C 1分别于D 、D 1两点.则AD ⊥BC ,连接DD 1,则DD 1⊥BC ,∠ADD 1为二面角A -BC -D 1的平面角,即∠ADD 1=60°,过D 1作D 1E ∥OO 1交AD 于E ,则D 1E ⊥平面ABC .在正△ABC ,△A 1B 1C 1中,AD =a 23,A 1D 1=x23.在Rt △D 1ED 中,ED =OD -OE =31(AD -A 1D 1)=63(a -x ). 则D 1D =2ED =33(a -x ),由题意S =3·233)-()+(x a a x .即S =23(a 2-x 2).解得x =S a 3322-.16.如图SAB 是圆锥的轴截面,其中SO =12,OB =5.设圆锥内接圆柱底面半径为O 1C =x ,由△SO 1C ∽△SOB ,则C O SO 11=OB SO ,SO 1=OB SO ·O 1C =x512,∴OO 1=SO -SO 1=12-x 512,则圆柱的全面积S =S 侧+2S 底=2π(12-x 512)x +2πx 2=2π(12x -257x ).当x =730cm 时,S 取到最大值 7360cm 2.17.如图扇形SAA ′为圆锥的侧面展开图,AA ′即为所求的最知路程,由已知SA =SA ′=3r ,θ=SA r 360°=120°,在等腰△SAA ′中可求得AA ′=r 33.1.3 柱体、锥体与台体的体积一、选择题1.若正方体的全面积增为原来的2倍,那么它的体积增为原来的()A .2倍B .4倍C .2倍D .22倍2.一个长、宽、高分别为a 、b 、c 长方体的体积是8cm 2,它的全面积是32 cm 2,且满足b 2=ac ,那么这个长方体棱长的和是()A 、28cmB .32 cmC .36 cmD .40 cm3.正六棱台的两底面的边长分别为a 和2a ,高为a ,则它的体积为()A .32321aB .3233aC .337a D .3237a4.若球的体积与其表面积的数值相等,则球的半径为()A .1B .3C .2D .215.一个球的外切正方体的全面积的数值等于6cm 2,则此球的体积为()A .334cm πB .386cm πC .361cm π D .366cm π6.正六棱锥的底面边长为a ,体积为323a,那么侧棱与底面所成的角为()A .6πB .4πC .3πD .125π7.正四棱锥的底面面积为Q ,侧面积为S ,则它的体积为()A 、S Q 31B .)(2122Q S Q -C 、)(2122Q S S -D 、)(6122Q S Q -8.棱台上、下底面面积之比为1∶9,则棱台的中截面分棱台成两部分的体积之比是() A .1∶7 B .2∶7 C .7∶19 D .3∶169.正方体、等边圆柱与球它们的体积相等,它们的表面积分别为S 1、S 2、S 3,下面关系中成立的是() A .S 3>S 2>S 1 B .S 1>S 3>S 2 C .S 1>S 2>S 3 D .S 2>S l >S 310.沿棱长为1的正方体的交于一点的三条棱的中点作一个截面,截得一个三棱锥,那么截得的三棱锥的体积与剩下部分的体积之比是()A .1∶5B .1∶23C .1∶11D .1∶47 二、填空题11.底面边长和侧棱长都是a 的正三棱锥的体积是_______.12.将4×6的矩形铁皮作为圆柱的侧面卷成一个圆柱,则圆柱的最大体积是_______. 13.半径为1的球的内接正方体的体积是________;外切正方体的体积是_______.14.已知正三棱台上、下底面边长分别为2、4,且侧棱与底面所成角是45°,那么这个正三棱台的体积等于_______. 三、解答题15.三棱锥的五条棱长都是5,另一条棱长是6,求它的体积.16.两底面边长分别是15cm 和10cm 的正三棱台,它的侧面积等于两底面积的和,求它的体积. 17.一个圆锥形容器和一个圆柱形容器,它们的轴截面尺寸如图所示,两容器内所盛液体的体积正好相等,且液面高度h 正好相同,求h .18.如图所示,已知正方体ABCD —A 1B 1C l D l 的棱长为a ,E 为棱AD 的中点,求点A 1到平面BED 1的距离.参考答案一、选择题 1.D2.B 解:由已知⎪⎩⎪⎨⎧③=②=++①=acb ca bc ab c b a 2168··③代入①得b 3=8,b =2,ac =4,代入②a +c =6. ∴长方体棱长的和为4(a +b +c )=4×8=32(cm 2). 3.D 4.B 5.C 6.B7.D 设正四棱锥的底面边长和高分别为a ,h ,斜高为h ′,则h ′=222)+(a h ,S =21(4a )h ′=2a224a h +解得 h =22244a a S -=442Q Q S -=Q Q S 2221-.V =31h ·Q =31(Q Q S 2221-)Q =)-(2261Q S Q .8.C 9.B10.D 由E 、F 、G 分别为BB 1,B 1C 1,B 1A 1的中点,可证明平面EFG ∥平面BC 1A 1,因此1111A BC B EFGB V V --=31)(BC EF =(21)3=81.即EFG B V -1=81111A BC B V -=81·31AD A BC B V 111- =81(31·211111D C B A ABCD V -)=4811111D C B A ABCD V -,EFGB DC B A ABCDEFGB V V V ----111111=471.二、填空题.11.3122a12.π36 13.938;8 14.31415.三棱锥A -BCD 中,AB =6,设E 为AB 的中点,连结CE ,DE ,则CE ⊥AB ,DE ⊥AB . 在直角△AED 中,DE =22AE AD -=2235-=4.同理CE =4,F 为CD 中点,连接EF ,则EF ⊥CD ,在Rt △DFE 中,EF =2225)-(DE =22254)-(=239. ∴S △CED =4395.V A -BCD =V A -ECD +V B -ECD =31AE ·S △CED +31BE ·S △CED=31(AE +BE )S △CDE =31×6×4395=3925.16.设正三棱台的高为h ,则斜高h ′=22101563)]-(+[ ⎝⎛h =12252+h , 由已知212251531032+)+(h ⨯⨯=43(152+102),解得h =32.因此V =31·32(43·102+43·152+2215·1043)=2475(cm 3).别解:设上、下底面面积分别是S 1,S 2(S 1<S 2),侧面与底面成二面角为α,由已知,S 侧=S 1+S 2①. 又S 侧cos α=S 2-S 1②,②÷①,cos α=2112S S S S +-=22221043154310431543⨯⨯⨯⨯+-=135.然后再求棱台的高和体积.17.设圆锥形容器的液面的半径为R ,则液体的体积为31πR 2h ,圆柱形容器内的液体体积为π(2a)2h .根据题意,有31πR 2h =π(2a)2h ,解得R =a 23.再根据圆锥轴截面与内盛液体轴截面是相似三角形,得a a23=a h ,所以h =a23.18.解:E D A S 11∆=21A 1D 1·AA 1=22a .D 1B =3a ,D 1E =BE =22AB AE +=2221a a +)(=a 25.等腰△EBD 1的高为2122)-(B D BE =222325)-()(a a =a 22.1BED S ∆=21(a 3)(a 22)=246a .设A 1到平面BED 1的距离为h ,而11BED A V -=E D A B V 11-,即131BED S ∆·h =E D A S 1131∆·AB .∴31·246a·h =31·22a ·a ,解得h =a 631.1.4 球的体积和表面积一、选择题1.若球的大圆面积扩大为原来的4倍,则球的表面积比原来增加() A .2倍 B .3倍 C .4倍 D ,8倍2.若球的大圆周长是C ,则这个球的表面积是()A .π42cB .π42cC .π2c D .2πc 23.已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =BC =CA =2,则球面面积是()A .916πB .38πC .4πD .964π4、球的大圆面积增大为原来的4倍,那么球的体积增大为原来的() A .4倍 B .8倍 C .16倍 D .32倍5.三个球的半径之比为1∶2∶3,那么最大球的体积是其余两个球的体积和的() A 、1倍 B .2倍 C .3倍 D .4倍6.棱长为1的正方体内有一个球与正方体的12条棱都相切,则球的体积为()A .4πB .4πC .π32 D .42π7.圆柱形烧杯内壁半径为5cm ,两个直径都是5 cm 的铜球都浸没于烧杯的水中,若取出这两个铜球,则烧杯内的水面将下降()A 、35cmB .310cmC .340cmD .65cm8.已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =BC =CA =2,则球面面积为()A 、916π B .38π C .4π D .964π9.长方体一个顶点上的三条棱的长度分别为3、4、5,且它的8个顶点都在同一球面上,这个球的表面积为()A .202πB .252πC .50πD .200π 10.等体积的球与正方体,其表面积的大小关系为() A .S 球>S 正方体 B .S 球=S 正方体 C .S 球<S 正方体 D .大小关系不确定 二、填空题11.已知三个球的表面积之比为1∶4∶9,若它们的体积依次为V 1、V 2、V 3,则V 1+V 2=_____V 3. 12.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且相距为l ,则球的体积为_________.13.将一个玻璃球放人底面面积为64πcm 2的圆柱状容器中,容器水面升高34cm ,则玻璃球的半径为__________.14.将一个半径为R 的木球削成一个尽可能大的正方体,则此正方体的体积为______.15.表面积为Q 的多面体的每个面都外切于半径为R 的一个球,则多面体与球的体积之比为______. 16.国际乒乓球比赛已将“小球”改为“大球”,“小球”的外径为38 mm ,“大球”的外径为40 mm ,则“小球”与“大球”的表面积之比为__________. 三、解答题17.已知正三棱柱的底面边长为1,侧棱长为2,则这样的三棱柱内能否放进一个体积为16π的小球?18.用刀切一个近似球体的西瓜,切下的较小部分的圆面直径为30 cm,高度为5 cm,该西瓜体积大约有多大?19.三棱锥A-BCD的两条棱AB=CD=6,其余各棱长均为5,求三棱锥的内切球的体积.20.表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.参考答案一、选择题1.B 2.C 3.D 4.B 5.C 6.C 7.A 8.D 9.C 10.C 二、填空题11.331V提示:三个球半径之比为1∶2∶3,体积为1∶8∶27. 12.36π设球的半径为R ,由题意得52-R -82-R =1, ∴R =3,∴V 球=334Rπ=36π.13.4cm 14.3938R15.Q ∶4πR 2 16.361∶400三、解答题17.设球半径为R ,则343R π=16π,∴R =433.而正三棱柱底面内切圆半径r =63,比较R 与r 的大小,R 6=6243=649=62·327·641,r 6=6627=662·327=62·327·2431, ∴R 6>r 6,∴R >r ,所以不能放进一个体积为16π的小球.18.解:如图,设球半径为R cm ,切下的较小部分圆面半径为15cm ,∴OO ′=R -5. Rt △OO ′A 中,R 2-(R -5)2=15, ∴R =25(cm ).V =334Rπ=32534)(π=362500π(cm 3).19.设球半径为R ,三棱锥A -BCD 表面积为S ,则V 三棱锥=3RS.取CD 中点M ,连结AM 、BM .∵AC =AD =5,∴CD ⊥AM .同理CD ⊥BM ,∴CD ⊥平面ABM ,∴V 三棱锥=31(CM +MD ),S △AMB =2S △AMB .∵AM =BM =4,取AB 中点N ,连结MN , 则MN ⊥AB ,且MN =2234-=7, ∴S △ABM =73,∴V 三棱锥=76. 又三棱锥每个面面积和都为12,∴S =4×12=48,∴V 三棱锥=R 348=16R .20.解:设球的半径为R,正四棱柱底面边长为a,∵4πR2=324π,∴R=9,∴142+(a2)2=182,∴a2=64,∴a=8.∴S四棱柱=2a2+4a·14=64×2+32×14=576.第一章空间几何体单元测试1 一、选择题1.下图是由哪个平面图形旋转得到的()A B C D2.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A.1:2:3B.1:3:5C.1:2:4D.1:3:93.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后,剩下的几何体的体积是()A.23B.76C.45D.564.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V和2V,则12:V V=()A. 1:3B. 1:1C. 2:1D. 3:15.如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A. 8:27B. 2:3C. 4:9D. 2:96.有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为:A.224cmπ,212cmπ B.215cmπ,212cmπC.224cmπ,236cmπ D. 以上都不正确二、填空题1. 若圆锥的表面积是15π,侧面展开图的圆心角是060,则圆锥的体积是_______。