初三数学函数综合题型及解题方法讲解
- 格式:docx
- 大小:422.93 KB
- 文档页数:11
初中数学函数解题技巧总结
引言
初中数学中的函数是一个重要的概念,是解决实际问题和推理推导的重要工具之一。
本文总结了一些初中数学函数解题的技巧,希望能够帮助同学们更好地理解和应用函数。
技巧一:函数图像的认识与应用
要解决函数题,首先需要对函数图像有一个基本的认识。
函数图像的特征包括图像的形状、对称性、增减性等,通过观察和理解这些特征,可以快速推导出函数的性质。
技巧二:函数的性质与变换
函数的性质是解题过程中的关键要素,包括函数的定义域、值域、单调性、奇偶性等。
对于给定的函数,要充分利用这些性质来进行推导和计算,从而得出正确的答案。
技巧三:利用函数关系解决实际问题
函数与实际问题的关系紧密,可以通过函数来解决一系列实际问题。
例如,通过建立变量之间的函数关系,可以求解两个未知数之间的关系,或者给定某些条件,可以求解函数取值的范围等。
技巧四:运用代数方法解题
解决函数题时,运用代数方法是常见且有效的途径。
通过列方程、消元、因式分解等代数方法,可以将函数问题转化为代数问题进行求解,从而得到准确的答案。
技巧五:实例分析与经验总结
要提高解题能力,不仅要理解函数的概念和性质,还需要进行实例分析和经验总结。
通过多做题目和总结经验,可以掌握更多的解题技巧,并提高解题的速度和准确性。
结论
初中数学函数解题技巧的总结包括对函数图像的认识与应用、函数的性质与变换、利用函数关系解决实际问题、运用代数方法解题以及实例分析与经验总结。
掌握这些技巧,同学们将能够更好地理解和应用函数,提高数学解题的能力。
希望本文能对同学们的学习有所帮助。
初三数学复习函数与方程解题思路初三数学复习:函数与方程解题思路函数与方程是初三数学中的重要内容,对于解题思路的掌握至关重要。
本文将为你介绍一些常见的函数与方程解题思路,帮助你更好地复习数学知识。
以下将从函数和方程两个部分展开。
一、函数解题思路1. 理解函数的定义函数是一种特殊的关系,它将一个自变量的值映射到一个唯一的因变量的值。
在解函数题时,首先要理解函数的定义,并确定自变量和因变量的关系。
2. 掌握函数图像的性质函数图像是函数与自变量和因变量之间的关系的直观呈现。
解题时,可以通过观察函数图像的性质,如增减性、奇偶性、周期性等,来推导函数的性质和解函数方程。
3. 利用函数的性质和特点解题在解题过程中,可以利用函数的性质和特点进行推导。
例如,利用增减性来确定函数的最值;利用奇偶性来简化函数的计算;利用周期性来推导函数的周期等。
4. 联立函数方程解题有时候,需要联立多个函数方程来求解问题。
在联立方程时,可以通过消元法、代入法、变量替换法等方法来简化方程,最终求得函数的解。
二、方程解题思路1. 把握方程的类型方程有不同的类型,如一元一次方程、一元二次方程、三角方程等。
在解题前,需要明确方程的类型,并掌握解不同类型方程的方法。
2. 运用等式性质和等价变形解题过程中,可以利用等式的性质和等价变形的方法来推导方程的解。
例如,使用加法逆元进行等式变形,使用对称性简化方程的计算等。
3. 联立方程组解题当问题需要用多个方程来求解时,需要联立方程组解题。
可以通过消元法、代入法、加减消法等方法,将方程组化简为更简单的形式,并求得方程组的解。
4. 检验解的合理性在解得方程的解之后,需要进行解的合理性的检验。
一般可以将解代入方程进行验证,确保所得解满足原方程的条件。
总结:函数与方程是初三数学中的重要内容,对于解题思路的掌握至关重要。
在解函数题时,要理解函数的定义,掌握函数图像的性质,并利用函数的性质和特点进行推导。
在解方程题时,要明确方程的类型,运用等式性质和等价变形的方法解题,联立方程组时要选择合适的解题方法,并检验解的合理性。
中考压轴题反比例函数综合(八大题型+解题方法)1.求交点坐标联立反比例函数与一次函数图象的解析式进行求解,特别地,反比例函数与正比例函数图象的两个交点关于原点对称.2.结合图象比较函数值的大小如图,一次函数y=k1x+b与反比例函数图象交于A,B 两点,过点A,B分别作y 轴的平行线,连同y 轴,将平面分为I,Ⅱ,Ⅲ,IV 四部分,在I,Ⅲ区域内,y₁<y₂,自变量的取值范围为x<x B或0<x<x A;在Ⅱ,IV区域内,y1>y₂,自变量的取值范围为x B<x<0或x>x A.3.反比例函数系数k的几何意义及常用面积模型目录:题型1:反比例函数与几何的解答证明 题型2:存在性问题题型3:反比例函数的代数综合 题型4:动态问题、新定义综合 题型5:定值问题 题型6:取值范围问题 题型7:最值问题题型8:情景探究题(含以实际生活为背景题)题型1:反比例函数与几何的解答证明1.(2024·湖南株洲·一模)如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴上,OC 在y 轴上,4OA =,2OC =(不与B ,C 重合),反比例函数()0,0k y k x x=>>的图像经过点D ,且与AB 交于点E ,连接OD ,OE ,DE .(1)若点D 的横坐标为1. ①求k 的值;②点P 在x 轴上,当ODE 的面积等于ODP 的面积时,试求点P 的坐标; (2)延长ED 交y 轴于点F ,连接AC ,判断四边形AEFC 的形状 【答案】(1)①2;②15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭(2)四边形AEFC 是平行四边形,理由见解析【分析】(1)①根据矩形的性质得到90BCO B AOC ∠=∠=∠=︒,得()1,2D ,把()1,2D 代入()0,0ky k x x=>>即可得到结论;②由D ,E 都在反比例函数ky x =的图像上,得到1COD AOE S S ==△△,根据三角形的面积公式得到1111315241243222224ODE S =⨯−⨯⨯−⨯⨯−⨯⨯=△,设(),0P x ,根据三角形的面积公式列方程即可得到结论;(2)连接AC ,根据题意得到,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫ ⎪⎝⎭,设EF 的函数解析式为y ax b =+,解方程得到84k OF +=,求得24kCF OF AE =−==,根据平行四边形的判定定理即可得到结论.【解析】(1)解:①∵四边形ABCO 是矩形,4OA =, ∴90BCO B AOC ∠=∠=∠=︒,4BC OA ==, ∵2OC =,点D 的横坐标为1, ∴()1,2D ,2AB OC ==,∵反比例函数()0,0ky k x x =>>的图像经过点D ,∴122k =⨯=, ∴k 的值为2; ②∵()1,2D ,∴1CD =,∵D ,E 都在反比例函数2y x =的图像上,∴1COD AOE S S ==△△,∴111422AOE S OA AE AE==⋅=⨯△,∴12AE =,∴13222BE AB AE =−=−=, ∴1111315241243222224ODES =⨯−⨯⨯−⨯⨯−⨯⨯=△,∵点P 在x 轴上,ODE 的面积等于ODP 的面积, 设(),0P x ,∴115224ODP S x =⨯⨯=△, 解得:154x =或154x =−,∴点P 的坐标为15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭;(2)四边形AEFC AEFC 是平行四边形. 理由:连接AC ,∵4OA =,2OC =,D ,E 都在反比例函数()0,0ky k x x =>>的图像上,∴,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫⎪⎝⎭,设EF 的函数解析式为:y ax b =+,∴2244k a b k a b ⎧⨯+=⎪⎪⎨⎪+=⎪⎩,解得:1284a kb ⎧=−⎪⎪⎨+⎪=⎪⎩, ∴EF 的函数解析式为:1824k y x +=−+, 当0x =时,得:84ky +=,∴84k OF +=, ∴24kCF OF AE =−==,又∵CF AE ∥,∴四边形AEFC 是平行四边形.【点睛】本题是反比例函数与几何的综合,考查待定系数法确定解析式,反比例函数图像上的点的坐标的特征,矩形的性质,平行四边形的判定,三角形的面积等知识点.掌握反比例函数图像上的点的坐标的特征,矩形的性质是解题的关键.题型2:存在性问题2.(2024·四川成都·二模)如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,4sin 5AOB ∠=,反比例函数(0)ky k x =>在第一象限内的图象经过点A ,与BC 交于点F .(1)若10OA =,求反比例函数解析式;(2)若点F 为BC 的中点,且AOF 的面积12S =,求OA 的长和点C 的坐标;(3)在(2)中的条件下,过点F 作EF OB ∥,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连接PA ,PO .是否存在这样的点P ,使以P 、O 、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由. 【答案】(1)48(0)y x x =>C(3)存在,满足条件的点P 或(或或(【分析】(1)先过点A 作AH OB ⊥,根据4sin 5AOB ∠=,10OA =,求出AH 和OH 的值,从而得出A 点坐标,再把它代入反比例函数中,求出k 的值,即可求出反比例函数的解析式; (2)先设(0)OA a a =>,过点F 作FM x ⊥轴于M ,根据4sin 5AOB ∠=,得出45AH a =,35OH a=,求出AOHS △的值,根据12AOF S =△,求出平行四边形AOBC 的面积,根据F 为BC 的中点,求出6OBF S =△,根据12BF a =,FBM AOB ∠=∠,得出12BMFS BM FM =⋅,23650FOM S a =+△,再根据点A ,F 都在k y x =的图象上,12AOHSk=,求出a ,最后根据AOBC S OB AH =⋅平行四边形,得出OB AC ==C 的坐标;(3)分别根据当90APO ∠=︒时,在OA 的两侧各有一点P ,得出1P ,2P ;当90PAO ∠=︒时,求出3P ;当90POA ∠=︒时,求出4P 即可.【解析】(1)解:过点A 作AH OB ⊥于H ,4sin 5AOB ∠=,10OA =,8AH ∴=,6OH =,A ∴点坐标为(6,8),根据题意得:86k=,可得:48k =,∴反比例函数解析式:48(0)y x x =>;(2)设(0)OA a a =>,过点F 作FM x ⊥轴于M ,过点C 作CN x ⊥轴于点N , 由平行四边形性质可证得OH BN =,4sin 5AOB ∠=,45AH a ∴=,35OH a=, 2143625525AOHS a a a ∴=⋅⋅=△,12AOF S =△,24AOBC S ∴=平行四边形,F 为BC 的中点,6OBFS∴=,12BF a=,FBM AOB ∠=∠,25FM a ∴=,310BM a =,2112332251050BMF S BM FM a a a ∴=⋅=⋅⋅=△,23650FOMOBFBMFSSSa ∴=+=+,点A ,F 都在ky x =的图象上,12AOH FOM S S k ∴==△△,∴226362550a a =+,a ∴OA ∴=AH ∴=OH =24AOBC S OB AH =⋅=平行四边形,OB AC ∴==ON OB OH ∴=+=C ∴;(3)由(2)可知A ,B 0),F .存在三种情况:当90APO ∠=︒时,在OA 的两侧各有一点P ,如图,设PF 交OA 于点J ,则J此时,AJ PJ OJ ==,P ∴,(P ',当90PAO ∠=︒时,如图,过点A 作AK OB ⊥于点K ,交PF 于点L .由AKO PLA △∽△,可得PLP ,当90POA ∠=︒时,同理可得(P .综上所述,满足条件的点P 的坐标为或(或或(.【点睛】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,解题的关键是数形结合思想的运用.3.(2024·广东湛江·一模)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC BC ⊥,AB BE ⊥,ED BD ⊥,垂足分别为C ,B ,D ,AB BE =.求证:ACB BDE ≌;【类比迁移】(2)如图2,点()3,A a −在反比例函数3y x=图象上,连接OA ,将OA 绕点O 逆时针旋转90︒到OB ,若反比例函数k y x =经过点B .求反比例函数ky x=的解析式; 【拓展延伸】(3)如图3抛物线223y x x +−与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点,已知点()0,1Q −,连接AQ ,抛物线上是否存在点M ,便得45MAQ ∠=︒,若存在,求出点M 的横坐标.【答案】(1)见解析;(2)3y x =−;(3)M 的坐标为39,24⎛⎫ ⎪⎝⎭或()1,4−−.【分析】(1)根据题意得出90C D ABE ︒∠=∠=∠=,A EBD ∠=∠,证明()AAS ACB BDE ≌,即可得证;(2)如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .求解()3,1A −−,1AC =,3OC =.利用ACO ODB ≌△△,可得()1,3B −;由反比例函数ky x =经过点()1,3B −,可得3k =−,可得答案;(3)如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y⊥轴于点E .证明AQO QDE ≌,可得AO QE =,OQ DE =,可得()1,2D ,求解1322AM y x =+:,令2132322x x x +=+−, 可得M 的坐标为39,24⎛⎫ ⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,可得M 的坐标是()1,4−−.【解析】证明:(1)如图,∵AC BC ⊥,AB BE ⊥,ED BD ⊥, ∴90C D ABE ︒∠=∠=∠=,∴90,90ABC A ABC EBD ∠+∠=︒∠+∠=︒, ∴A EBD ∠=∠, 又∵AB BE =, ∴()AAS ACB BDE ≌.(2)①如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .将()3,A a −代入3y x =得:1a =−,∴()3,1A −−,1AC =,3OC =.同(1)可得ACO ODB ≌△△, ∴1OD AC ==,3BD OC ==, ∴()1,3B −,∵反比例函数ky x =经过点()1,3B −,∴3k =−, ∴3y x =−;(3)存在;如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y ⊥轴于点E .∵45MAQ ∠=︒,QD AQ ⊥, ∴45MAQ ADQ ∠=∠=︒, ∴AQ QD =,∵DE y ⊥轴,QD AQ ⊥,∴90AQO EQD EQD QDE ∠+∠=∠+∠=︒,90AOQ QED ∠=∠=︒, ∴AQO QDE ∠=∠, ∵AQ QD =, ∴AQO QDE ≌, ∴AO QE =,OQ DE =,令2230y x x =+−=,得13x =−,21x =,∴3AO QE ==,又()0,1Q −,∴1OQ DE ==, ∴()1,2D ,设AM 为y kx b =+,则230k b k b +=⎧⎨−+=⎩,,解得:1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴1322AM y x =+: 令2132322x x x +=+−,得132x =,23x =−(舍去), 当32x =时,233923224y ⎛⎫=+⨯−= ⎪⎝⎭, ∴39,24M ⎛⎫⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,得11x =−,23x =−(舍去)∴当=1x −时,()()212134y =−+⨯−−=−,∴()1,4M −−.综上:M 的坐标为39,24⎛⎫⎪⎝⎭或()1,4−−.【点睛】本题考查的是全等三角形的判定与性质,反比例函数的应用,二次函数的性质,一元二次方程的解法,熟练的利用类比的方法解题是关键.题型3:反比例函数的代数综合4.(2024·湖南长沙·一模)若一次函数y mx n =+与反比例函数ky x=同时经过点(),P x y 则称二次函数2y mx nx k +=-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数()122=+++y n x m 与反比例函数2024y x=存在“共享函数”()()2102024y m t x m t x ++−=-,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−,见解析 (2)2(3)2429y x x =+−或(29155y x x −−−=【分析】(1)判断21y x =−与3y x =是否有交点,计算即可;(2)根据定义,12210n m tm m t +=+⎧⎨+=−⎩,得到39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,结合8t n m <<,构造不等式组解答即可. (3)根据定义,得“共享函数”为()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=结合6m x m ≤≤+,“共享函数”的最小值为3,分类计算即可.本题考查了新定义,解方程组,解不等式组,抛物线的增减性,熟练掌握定义,抛物线的增减性是解题的关键.【解析】(1)21y x =−与3y x =存在“共享函数”,理由如下:根据题意,得213y x y x =−⎧⎪⎨=⎪⎩,解得322x y ⎧=⎪⎨⎪=⎩,13x y =−⎧⎨=−⎩,故函数同时经过3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−, 故21y x =−与3y x =存在“共享函数”.(2)∵一次函数()122=+++y n x m 与反比例函数2024y x =存在“共享函数”()()2102024y m t x m t x ++−=-,∴12210n m tm m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, ∵8t n m <<, ∴82489869n n m n n +⎧=⎪⎪⎨+⎪⎪⎩<>,解得24n 6<<, ∴327n +9<<, ∴339n +1<<,∴13m <<, ∵m 是整数, ∴2m =.(3)根据定义,得一次函数y x m =+和反比例函数213m y x +=的“共享函数”为 ()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=,∵()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=.∴抛物线开口向上,对称轴为直线2mx =−,函数有最小值25134m −−,且点与对称轴的距离越大,函数值越大,∵6m x m ≤≤+,当62mx m =−+≥时,即4m ≤−时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭>, ∴6x m =+时,函数取得最小值,且为2225613182324m m y m m m ⎛⎫=++−−=++ ⎪⎝⎭,又函数有最小值3,∴218233m m ++=,解得99m m =−=−故9m =− ∴“共享函数”为(29155y x x −−−=当2m x m =−≤时,即0m ≥时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭<, ∴x m =时,函数取得最小值,且为2225131324m m y m m ⎛⎫=+−−=− ⎪⎝⎭,又函数有最小值3,∴2133m −=,解得4,4m m ==−(舍去); 故4m =,∴“共享函数”为2429y x x =+−; 当62mm m −+<<时,即40m −<<时,∴2mx =−时,函数取得最小值,且为25134m y =−−,又函数有最小值3,∴251334m −−=, 方程无解,综上所述,一次函数y x m =+和反比例函数213m y x += 的“共享函数”为2429y x x =+−或(29155y x x −−−=5.(2024·江苏南京·模拟预测)若一次函数y mx n =+与反比例函数ky x=同时经过点(,)P x y 则称二次函数2y mx nx k =+−为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x=存在“共享函数” 2()(10)2024y m t x m t x =++−−,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)点P 的坐标为:3(2,2)或(1,3)−−;(2)2m =(3)222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【分析】(1)联立21y x =−与3y x =并整理得:2230x x −−=,即可求解;(2)由题意得12210n m t m m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,而8t n m <<,故624n <<,则9327n <+<,故13m <<,m 是整数,故2m =;(3)①当162m m +≤−时,即4m ≤−,6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,即可求解;②当162m m m <−<+,即40m −<<,函数在12x m=−处取得最小值,即22211()13322m m m −−−−=,即可求解;③当0m ≥时,函数在x m =处,取得最小值,即可求解. 【解析】(1)解:(1)21y x =−与3y x =存在“共享函数”,理由如下:联立21y x =−与3y x =并整理得:2230x x −−=,解得:32x =或1−, 故点P 的坐标为:3(2,2)或(1,3)−−;(2)解:一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++−−,依据“共享函数”的定义得: 12210n m tm m t +=+⎧⎨+=−⎩,解得:39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, 8t n m <<,∴8698249n n n n +⎧<⎪⎪⎨+⎪<⎪⎩, 解得:624n <<;9327n ∴<+<, 13m ∴<<,m 是整数,2m ∴=;(3)解:由y x m =+和反比例函数213m y x +=得:“共享函数”的解析式为22(13)y x mx m =+−+, 函数的对称轴为:12x m=−; ①当162m m+≤−时,即4m ≤−, 6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,解得9m =−9−②当162m m m <−<+,即40m −<<, 函数在12x m =−处取得最小值,即22211()13322m m m −−−−=,无解;③当0m ≥时,函数在x m =处,取得最小值,即222133m m m +−−=,解得:4m =±(舍去4)−,综上,9m =−4,故“共享函数”的解析式为222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【点睛】本题是一道二次函数的综合题,主要考查了一次函数与反比例函数的性质,一次函数与反比例函数图象上点的坐标的特征,二次函数的性质,一元一次不等式组的解法,一元二次方程的解法.本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.6.(2024·湖南长沙·模拟预测)我们规定:若二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)与x 轴的两个交点的横坐标1x ,2x 满足122x x =−,则称该二次函数为“强基函数”,其中点()1,0x ,()2,0x 称为该“强基函数”的一对“基点”.(1)判断:下列函数中,为“强基函数”的是______(仅填序号).①228y x x =−−;②21y x x =++.(2)已知二次函数()2221y x t x t t =−+++为“强基函数”,求:当12x −≤≤时,函数22391y x tx t =+++的最大值.(3)已知直线1y x =−+与x 轴交于点C ,与双曲线()20y x x=−<交于点A ,点B 的坐标为()3,0−.若点()1,0x ,()2,0x 是某“强基函数”的一对“基点”,()12,P x x 位于ACB △内部.①求1x 的取值范围;②若1x 为整数,是否存在满足条件的“强基函数”2y x bx c =++?若存在,请求出该“强基函数”的解析式;若不存在,请说明理由. 【答案】(1)① (2)当23t =−时函数最大值为8或当13t =−时函数最大值为4;(3)①1x 的取值范围是:120x −<<或110x −<<;②21122y x x =+−【分析】(1)根据抛物线与x 轴的交点情况的判定方法分别判定①与②与x 轴的交点情况,再求解交点坐标,结合新定义,从而可得答案; (2)由()22210y x t x t t =−+++=时,可得1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,根据新定义可得23t =−或13t =−,再分情况求解函数的最大值即可;(3))①先得到点A 、B 、C 的坐标,然后分122x x =−或212x x =−两种情况,列出关于1x 的不等式组,然后解不等式组即可;②根据1x 为整数,先求出1x 的值,然后根据二次函数的交点式直接得到二次函数的解析式即可.【解析】(1)解:①∵228y x x =−−; ∴()()2Δ2418432360=−−⨯⨯−=+=>,∴抛物线与x 轴有两个交点,∵228=0x x −−,∴14x =,22x =−,∴122x x =−,∴228y x x =−−是“强基函数” ②∵21y x x =++, ∴214111430∆=−⨯⨯=−=−<,∴抛物线与x 轴没有交点,∴21y x x =++不是“强基函数” 故答案为:①; (2)∵二次函数()2221y x t x t t=−+++为“强基函数”,∴()()22Δ21410t t t ⎡⎤=−+−+=>⎣⎦,∵()22210y x t x t t =−+++=时, ∴1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,∴()21t t =−+或12t t +=−,解得:23t =−或13t =−,当23t =−时,函数为225y x x =−+,如图,∵12x −≤≤,此时当=1x −时,函数最大值为1258y =++=; 当13t =−时,函数为22y x x =−+,如图,∵12x −≤≤,此时当=1x −或2x =时,函数最大值为1124y =++=;(3)①联立()201y x x y x ⎧=−<⎪⎨⎪=−+⎩,解得:12x y =−⎧⎨=⎩, ∴点A 的坐标为:()1,2−,把0y =代入 1y x =−+得:10x −+=, 解得:1x =,∴点C 的坐标为()1,0, 设直线AB 为1y kx b =+,∴11302k b k b −+=⎧⎨−+=⎩,解得:113k b =⎧⎨=⎩,∴直线AB 的解析式为:3y x =+, ∵点()1,0x ,()2,0x 是某“强基函数”的一对“基点”, ()12,P x x 位于ACB △内部.当122x x =−时, ∴111,2P x x ⎛⎫− ⎪⎝⎭, ∴点P 在直线2xy =−上,∵点111,2P x x ⎛⎫− ⎪⎝⎭位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111103212x x x x x ⎧⎪<⎪⎪−+⎨⎪⎪−−+⎪⎩<<, 解得:120x −<<;当212x x =−时,∵P 点坐标为()11,2x x −,∴点P 在直线2y x =−上,∵点P 位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111102321x x x x x <⎧⎪−<+⎨⎪−<−+⎩,解得:110x −<<;综上分析可知,1x 的取值范围是:120x −<<或110x −<<;②存在;理由如下:∵1x 为整数,∴当120x −<<时,11x =−,∴此时212x =,此时,“强基函数”的一对“基点”为()1,0−,1,02⎛⎫ ⎪⎝⎭, ∴“强基函数”为()21111222y x x x x ⎛⎫=+−=+− ⎪⎝⎭; 当110x −<<时,则没有符合条件的整数1x 的值,不存在符合条件的“强基函数”; 综上,“强基函数”为21122y x x =+−. 【点睛】本题考查的是一次函数,反比例函数,二次函数的综合应用,新定义的含义,本题难度大,灵活应用各知识点,理解新定义的含义是解题的关键.题型4:动态问题、新定义综合7.(2024·山东济南·一模)如图1,直线14y ax =+经过点()2,0A ,交反比例函数2k y x=的图象于点()1,B m −,点P 为第二象限内反比例函数图象上的一个动点.(1)求反比例函数2y 的表达式;(2)过点P 作PC x ∥轴交直线AB 于点C ,连接AP ,BP ,若ACP △的面积是BPC △面积的2倍,请求出点P 坐标;(3)平面上任意一点(),Q x y ,沿射线BA Q ',点Q '怡好在反比例函数2k y x=的图象上;①请写出Q 点纵坐标y 关于Q 点横坐标x 的函数关系式3y =______;②定义}{()()min ,a a b a b b a b ⎧≤⎪=⎨>⎪⎩,则函数{}13min ,Y y y =的最大值为______. 【答案】(1)26y x =−(2)点P 坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭ (3)①3621y x =−++;②8【分析】本题考查了反比例函数与一次函数的交点问题,坐标与图形,解题的关键是运用分类讨论的思想.(1)先根据点()2,0A 求出1y 的解析式,然后求出点B 的坐标,最后将点B 的坐标代入2y 中,求出k ,即可求解;(2)分两种情况讨论:当点P 在AB 下方时,当点P 在AB 上方时,结合“若ACP △的面积是BPC △面积的2倍”,求出点C 的坐标,将点C 的纵坐标代入反比例函数解析式,即可求解;(3)①根据题意可得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',则()1,2Q x y +'−,将其代入26y x =−中,即可求解;②分为:当{}131min ,Y y y y ==时,13y y ≤;当{}133min ,Y y y y ==时,13y y >;分别解不等式即可求解.【解析】(1)解:直线14y ax =+经过点()2,0A ,,∴240x +=, 解得:2a =−,∴124y x =−+,点()1,B m −在直线124y x =−+上,∴()2146m =−⨯−+=,∴()1,6B −,∴166k =−⨯=−, ∴26y x =−;(2)①当点P 在AB 下方时,2ACP BPC S S =,∴:2:1AC BC =,过点C 作CH x ⊥轴于点H ,过点B 作BR x ⊥轴于点R ,∴23AC CH AB BR ==, ∴23C B y y =,()1,6B −,∴4C y =,把4C y =代入26y x =−中, 得:32C x =−, ∴3,42P ⎛⎫− ⎪⎝⎭; ②当点P 在AB 上方时,2ACP BPC S S =,∴:1:1AB BC =,∴B 为AC 的中点,()2,0A ,()1,6B −,∴()4,12C −,把12y =代入26y x =−中,得:12x =−, ∴1,122P ⎛⎫− ⎪⎝⎭,综上所述,点P 的坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭;(3)① 由(),Q x y ,沿射线BA Q ', 得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',∴()1,2Q x y +'−,点()1,2Q x y +'−恰好在反比例函数26y x =−的图象上, ∴621y x −=−+, ∴3621y x =−++;②a .当{}131min ,Y y y y ==时,13y y ≤, 即62421x x −+≤−++, 当1x >−时,()()()2141621x x x x −+++≤−++,解得:2x ≥或2x ≤−(舍去),∴2x =时,函数{}131min ,Y y y y ==有最大值,最大值为2240−⨯+=;当1x <−时,()()()2141621x x x x −+++≥−++,解得:21x −≤<−,∴2x =−时,函数{}131min ,Y y y y ==有最大值,最大值为()2248−⨯−+=;b .当{}133min ,Y y y y ==时,13y y >, 即62421x x −+>−++,当1x >−时,()()()2141621x x x x −+++>−++,解得:2x >或<2x −(舍去), ∴362021y >−+=+,即0Y >;当1x <−时,()()()2141621x x x x −+++<−++,解得:2<<1x −−,∴328y <<,即28Y <<;综上所述,函数{}13min ,Y y y =的最大值为8,故答案为:8.8.(2024·四川成都·一模)如图,矩形OABC 交反比例函数k y x=于点D ,已知点()0,4A ,点()2,0C −,2ACD S =△.(1)求k 的值;(2)若过点D 的直线分别交x 轴,y 轴于R ,Q 两点,2DRDQ =,求该直线的解析式; (3)若四边形有一个内角为60︒,且有一条对角线平分一个内角,则称这个四边形为“角分四边形”.已知点P在y 轴负半轴上运动,点Q 在x 轴正半轴上运动,若四边形ACPQ 为“角分四边形”,求点P 与点Q 的坐标.【答案】(1)4k =−;(2)26y x =+或22y x =−+;(3)(()020P ,,Q ,−或 ()()04320P ,,−或()()040P ,,Q −【分析】(1)利用面积及矩形的性质,用待定系数法即可求解;(2)分两种情况讨论求解:R 在x 轴正半轴上和在负半轴上两种情况分别求解即可;(3)分三种情况:当AO 平分CAQ ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60AQP ∠=︒时,分别结合图形求解. 【解析】(1)解:2ACD S =△, 即122AD OA ⨯⨯=, ()0,4A ,1422AD ∴⨯=,1AD ∴=,()1,4D ∴−, 41k∴=−,4k ∴=−;(2)①如图,当2DR DQ =时,13DQ RQ =,AD OR ,13DQ AD RQ OR ∴==,1AD =,3OR ∴=,()3,0R ∴−,设直线RQ 为11y k x b =+, 把()3,0R −,()1,4D −代入11y k x b =+,得1111304k b k b −+=⎧⎨−+=⎩,解得1126k b =⎧⎨=⎩,直线RQ 为26y x =+,②如图,当2DR DQ =时,1DQ RQ =,AD OR ,1DQ AD RQ OR ∴==,1AD =,1OR ∴=,()1,0R ∴,设直线RQ 为22y k x b =+,把()1,0R ,()1,4D −代入22y k x b =+,得222204k b k b +=⎧⎨−+=⎩,解得2222k b =−⎧⎨=⎩,直线RQ 为22y x =−+,综上所述,直线RQ 的表达式为26y x =+或22y x =−+;(3)解:①当AO 平分CAQ ∠,60CPQ ∠=︒时,CAO QAO AO AOAOC AOQ ∠=∠⎧⎪=⎨⎪∠=⎩,()ASA AOC AOQ ∴≌, CO QO ∴=即AP 垂直平分CQ ,()2,0Q ∴,60CPQ ∠=︒,30CPO ∴∠=︒,tan30OC OP ∴===︒,(0,P ∴−,②当CO 平分ACP ∠,60CPQ ∠=︒时,同理ACO PCO ≌,得4OA OP ==,()0,4P ∴−,PC == 作CM PQ ⊥于M ,60CPQ ∠=︒,1cos602PM PC ∴=⨯︒==sin60CM PC =⨯︒== 90POQ CMQ ,PQO PQO ∠=∠=︒∠=∠,CMQ POQ ∴∽,MQ CM OQ OP ∴=,即MQ OQ =,)2222OQ OP PQ MQ +==② ,联立①,②,解得32OQ =或32OQ =(舍),()32,0Q ∴,③当CO 平分ACP ∠,60AQP ∠=︒时,同理 ACO PCO ≌,得4OA OP ==,AC CP = 同理ACQ PCQ ≌,得AQ PQ =∴APQ 是等边三角形()0,4P ∴−,8AP AQ PQ ,===OQ =, ()Q ∴,综上所述,P 、Q 的坐标为(()0,,2,0P Q −或 ()()0,4,32,0P Q −或()()0,4,P Q −.【点睛】此题是反比例函数综合题,主要考查了待定系数法,解直角三角形,求一次函数解析式,相似三角形的性质和判定,正确作出辅助线,解方程组,灵活运用待定系数法求函数解析式是解本题的关键. 题型5:定值问题9.(2024·山东济南·模拟预测)如图①,已知点()1,0A −,()0,2B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT 的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)()0,6或()0,2或()0,6− (3)12MN HT =,其值不发生改变,证明见解析【分析】(1)根据中点坐标公式可得,1D x =,设()1,D t ,由平行四边形对角线中点坐标相同可知()2,2C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:∵()1,0A −,E 为AD 中点且点E 在y 轴上,1D x ∴=, 设()1,D t ,()C m n ,,∵四边形ABCD 是平行四边形,∴AC BD 、的中点坐标相同, ∴101222022m t n +−⎧=⎪⎪⎨−+⎪=⎪⎩, ∴22m n t ==−,()22C t ∴−,,∵C 、D 都在反比例函数4y x =的图象上,()22k t t ∴==−,4t ∴=, 4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,①当AB 为边时:如图1,若ABPQ 为平行四边形,则1002240422p q p −++⎧=⎪⎪⎨−⎪−=⎪⎩,解得16p q =⎧⎨=⎩,此时()11,4P ,()10,6Q ;如图2,若ABQP 为平行四边形,则1002242022p q p −++⎧=⎪⎪⎨−+⎪+=⎪⎩,解得16p q =−⎧⎨=−⎩,此时()21,4P −−,()20,6Q −;②如图3,当AB 为对角线时,则010*******p q p +−+⎧=⎪⎪⎨+⎪−=⎪⎩解得12p q =−⎧⎨=⎩,()31,4P ∴−−,()30,2Q ;综上所述,满足题意的Q 的坐标为()0,6或()0,2或()0,6−;(3)解:12MN HT =,其值不发生改变,证明如下: 如图4,连NH 、NT 、NF ,∵M 是HT 的中点,MN HT ⊥,∴MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,45ABF ABH ∴∠=∠=︒,在BFN 与BHN △中,BF BH NBF NBH BN BN =⎧⎪∠=∠⎨⎪=⎩,()SAS BFN BHN ∴≌,NF NH NT ∴==,BFN BHN ∠=∠,∵90BFA BHA ==︒∠∠,NTF NFT AHN ∴∠=∠=∠,∵180ATN NTF ∠+∠=︒,∴180ATN AHN ∠+∠=︒,∴3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.10.(2024·山东济南·二模)如图①,已知点(1,0)A −,(0,2)B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)1(0,6)Q ,2(0,6)Q −,3(0,2)Q(3)结论:MN HT 的值不发生改变,12MN HT =证明见解析【分析】(1)设(1,)D t ,由DC AB ∥,可知(2,2)C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设(0,)Q y ,4(,)P x x ,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:(1,0)A −,(0,2)B −,E 为AD 中点, 1D x ∴=,设(1,)D t ,又DC AB ∥,(2,2)C t ∴−,24t t ∴=−,4t ∴=,4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设(0,)Q y ,4(,)P x x , ①当AB 为边时:如图1,若ABPQ 为平行四边形,则102x −+=,解得1x =,此时1(1,4)P ,1(0,6)Q ;如图2,若ABQP 为平行四边形,则122x −=, 解得=1x −,此时2(1,4)P −−,2(0,6)Q −;②如图3,当AB 为对角线时,AP BQ =,且AP BQ ∥; ∴122x −=,解得=1x −,3(1,4)P ∴−−,3(0,2)Q ;故1(1,4)P ,1(0,6)Q ;2(1,4)P −−,2(0,6)Q −;3(1,4)P −−,3(0,2)Q ;(3) 解:结论:MNHT 的值不发生改变,理由:如图4,连NH 、NT 、NF ,MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,ABF ABH ∴∠=∠,在BFN 与BHN △中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,()BFN BHN SAS ∴≌,NF NH NT ∴==, NTF NFT AHN ∴∠=∠=∠,四边形ATNH 中,180ATN NTF ∠+∠=︒,而NTF NFT AHN ∠=∠=∠,所以,180ATN AHN ∠+∠=︒,所以,四边形ATNH 内角和为360︒,所以3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.【点睛】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.题型6:取值范围问题11.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =−−∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =−,②41y x =−,③23y x =−+,④31y x =−−中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号) (2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =−+是函数2)304(2y x x x =−++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.【答案】(1)①④;(2)25y x =−+;(3)7t ≤−或9t ≥.【分析】(1)根据定义,结合图象,可判断出直线为3y x =−或31y x =−−与双曲线6(0)y x x =<及正方形ABCD最多有一个公共点,即可求解;(2)先作出以原点O 为圆心且经过EDF 的顶点D 的圆,再过点D 作O 的切线,求出该直线的解析式即可;(3)先由抛物线与直线组成方程组,则该方程组有唯一一组解,再考虑直线与正方形有唯一公共点的情形,数形结合,分类讨论,求出t【解析】(1)解:如图,从图可知,2y x =−与双曲线6(0)y x x =<和正方形OABC 只有一个公共点,31y x =−−与双曲线6(0)y x x =<和正方形OABC 没有公共点,41y x =−、23y x =−+不在双曲线6(0)y x x =<及正方形ABCD 之间, 根据“楚河汉界线”定义可知,直线2y x =−,31y x =−−是双曲线6(0)y x x =<与正方形OABC 的“楚河汉界线”, 故答案为:①④;(2)解:如图,连接OD ,以O 为圆心,OD 长为半径作O ,作DG x ⊥轴于点G ,过点D 作O 的切线DM ,则MD OD ⊥,∵MD OD ⊥,DG x ⊥轴, ∴90ODM OGD ∠=∠=︒, ∴90MOD OMD ∠+∠=︒, ∵90MOD DOG ∠+∠=︒, ∴OMD DOG ∠=∠, ∴tan tan OMD DOG ∠=∠, ∵()2,1D ,∴1DG =,2OG =,∴1tan tan 2DG OMD DOG OG ∠=∠==,OG ==∵tan ODOMD DM ∠=,∴12=,∴1122MN DM ∴==⨯=∴5OM =,∴()0,5M ,设直线MD 的解析式为y mx n =+,把()0,5M 、()2,1D 代入得,521n m n =⎧⎨+=⎩,解得25m n =−⎧⎨=⎩,∴25y x =−+,∴EDF 与O 的“楚河汉界线”为25y x =−+; (3)解:由2223y x b y x x =−+⎧⎨=−++⎩得,2430x x b −+−=, ∵直线与抛物线有唯一公共点, ∴0=,∴164120b −+=,解得7b =, ∴此时的“楚河汉界线”为27y x =−+,当正方形1111D C B A 在直线27y x =−+上方时,如图,∵点()2,M t 是此正方形的中心,∴顶点()10,2A t −,∵顶点()10,2A t −不能在直线27y x =−+下方,得27t −≥,解得9t ≥;当正方形1111D C B A 在直线27y x =−下方时,如图,对于抛物线223y x x =−++,当0x =时,3y =;当4x =时,5y =−; ∴直线23y x =−+恰好经过点()0,3和点()4,5−;对于直线23y x =−+,当4x =时,5y =−,由()12,2C t +不能在直线23y x =−+上方,得25t ≤−+, 解得7t ≤−;综上所述,7t ≤−或9t ≥.【点睛】此题考查了一次函数、正方形的性质、三角函数、一次函数的应用、二元二次方程组,一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.题型7:最值问题12.(2024·辽宁·一模)【发现问题】随着时代的发展,在现代城市设计中,有许多街道是设计的相互垂直或平行的,因此往往不能沿直线行走到目的地,只能按直角拐弯的方式行走.我们可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间的“折线距离”:()1212,d A B x x y y =−+−.【提出问题】(1)①已知点()4,1A ,则(),d O A =______;②函数()2630y x x =+−≤≤的图象如图1,B 是图象上一点,若(),5d O B =,则点B 的坐标为______; (2)函数()30y x x=>的图象如图2,该函数图象上是否存在点C ,使(),2d O C =?若存在,求出其坐标;若不存在,请说明理由; 【拓展运用】(3)已知函数()21460y x x x =−+≥和函数()2231y x x =+≥−的图象如图3,D 是函数1y 图象上的一点,E是函数2y 图象上的一点,当(),d O D 和(),d O E 分别取到最小值的时候,请求出(),d D E 的值.【答案】(1)①5;②()14,(2)不存在,理由见解析(3)()15,4d D E =【分析】本题在新定义下考查了一次方程和分式方程的解法,二次函数的最值,关键是紧靠定义来构造方程和函数.(1)①代入定义中的公式求; ②设出函数()2630y x x =+−≤≤的图象上点B 的坐标,通过(),5d O B =建立方程,解方程;(2)设出函数()30y x x =>的图象上点C 的坐标,通过(),2d O C =建立方程,看方程解的情况;(3)设出函数()21460y x x x =−+≥的图象上点D 的坐标,将()d O D ,表示成函数,利用二次函数的性质求函数最值,可求得点D 的坐标;设出函数()2231y x x =+≥−的图象上点E 的坐标,利用一次函数的性质,可求得点E 的坐标;再按定义求得(),d D E 的值即可.【解析】 解:(1)①∵点()4,1A ,点()00O ,,∴()40105d O A =−+−=,;故答案为:5; ②设点()26B x x +,,∵(),5d O B =, ∴265x x ++=,∵30x −≤≤, ∴265x x −++=, ∴=1x −, ∴点()14B ,.故答案为:()14,; (2)不存在,理由如下:设点3C m m ⎛⎫ ⎪⎝⎭,, ∵(),2d O C =,∴32m m +=,∵0m >, ∴32m m +=,∴2230m m −+=,∵80∆=−<,∴此方程没有实数根, ∴不存在符合条件的点C ;(3)设点D 为()246n nn −+,,∴()246d O D n n n =+−+,,∵0n ≥,()2246220n n n −+=−+>,∴()222315463624d O D n n n n n n ⎛⎫=+−+=−+=−+⎪⎝⎭,, ∴当32n =时,()d O D ,最小,最小值为154,此时点D 坐标为3924⎛⎫ ⎪⎝⎭,. 设点E 为()23e e +,,∴()23d O Ee e =++,,当10e −≤<时,()233d O Ee e e =−++=+,,∴当1e =−时,()d O E ,最小,最小值为2;当0e ≥时,()2333d O Ee e e =++=+,,∴当0e =时,()d O E ,最小,最小值为3;∴此时点E 坐标为()11−,.∴()395515,1124244d D E =−−+−=+=.13.(2024·四川成都·模拟预测)如图,在平面直角坐标系中,已知直线132y x =−与反比例函数ky x=的图象交于点()8,Q t ,与y 轴交于点R ,动直线()08x m m =<<与反比例函数的图象交于点K ,与直线QR 交于点T .(1)求t 的值及反比例函数的表达式;(2)当m 为何值时,RKT △的面积最大,且最大值为多少? (3)如图2,ABCO 的顶点C 在反比例函数()0ky x x=>的图象上,点P 为反比例函数图象上一动点,过点P 作MN x ∥轴交OC 于点N ,交AB 于点M .当点P 的纵坐标为2,点C 的横坐标为1且8OA =时,求PNPM的值.【答案】(1)1t =,反比例函数的表达式为8y x =; (2)当3m =时,RKT △的面积最大,且最大值为254;(3)1517PN PM =【分析】(1)将()8,Q t 代入直线132y x =−,求出t 的值,再将点Q 的坐标代入反比例函数,求出k 的值,即可得到反比例函数解析式;(2)设8,K m m ⎛⎫ ⎪⎝⎭,1,32T m m ⎛⎫− ⎪⎝⎭,则81813322KT m m m m ⎛⎫=−−=−+ ⎪⎝⎭,进而表示出 RKT RTKQTKS SS=+△()2125344m =−−+,结合二次函数的性质,即可求出最值;(3)先求出P 、C 两点的坐标,再利用待定系数法求出直线OC 的解析式,进而得到点N 的坐标,得出PN的长,然后利用平行四边形的性质,得出PM 的长,即可求出PNPM 的值.【解析】(1)解:()8,Q t 在直线132y x =−上,18312t ∴=⨯−=,()8,1Q ∴,()8,1Q 在反比例函数ky x =上,818k ∴=⨯=,。
中考总复习:函数综合—知识讲解(基础)【考纲要求】1.平面直角坐标系的有关知识平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等;2.函数的有关概念求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法;3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置;4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值.一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】【考点梳理】考点一、平面直角坐标系 1.相关概念(1)平面直角坐标系 (2)象限 (3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标 (1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标 (3)平行于坐标轴的直线上的点的坐标 (4)关于x 轴、y 轴、原点对称的点的坐标 4.距离(1)平面上一点到x 轴、y 轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离 (3)平面上任意两点间的距离 5.坐标方法的简单应用(1)利用坐标表示地理位置 (2)利用坐标表示平移 要点诠释:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ;(3)点P(x,y)到原点的距离等于22y x .考点二、函数及其图象 1.变量与常量 2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象 要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义3.正比例函数与一次函数的性质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题 要点诠释:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k ;确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.考点四、反比例函数 1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题 要点诠释:反比例函数中反比例系数的几何意义,如下图,过反比例函数)0(≠=k xky 图像上任一点),(y x P 作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙.,y xk=∴||k S k xy ==,.考点五、二次函数 1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题 要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法) 如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-.2、函数平移规律:左加右减、上加下减.考点六、函数的应用1.一次函数的实际应用2. 反比例函数的实际应用3. 二次函数的实际应用要点诠释:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题1.已知一次函数y=(3a-2)x+(1-b),求字母a, b的取值范围,使得:(1)y随x的增大而增大;(2)函数图象与y轴的交点在x轴的下方;(3)函数的图象过第一、二、四象限.【思路点拨】(1)y=kx+b (k≠0)的图象,当k>0时,y随x的增大而增大;(2)当b<0时,函数图象与y轴的交点在x轴的下方;(3)当k<0, b>0时时,函数的图象过第一、二、四象限.【答案与解析】解:a、b的取值范围应分别满足:(1)由一次函数y=kx+b(k≠0)的性质可知:当k>0时,函数值y随x的增大而增大,即3a-2>0,∴23a>, 且b取任何实数.(2)函数图象与y 轴的交点为(0,1-b ), ∵ 交点在x 轴的下方,∴ ,即a≠, b >1.(3)函数图象过第一、二、四象限,则必须满足 .【总结升华】下面是y=kx(k≠0), y=kx+b (k≠0)的图象的特点和性质的示意图,如图1,当k >0时,y 随x 的增大而增大;当b >0时,图象过一、二、三象限,当b=0时,是正比例函数,当b <0时,图象过一、三、四象限;当y=x 时,图象过一、三象限,且是它的角平分线.由于常数k 、b 不同,可得到不同的函数,k 决定直线与x 轴夹角的大小,b 决定直线与y 轴交点的位置,由k 定向,由b 定点.同样,如图2,是k <0的各种情况,请你指出它们的图象的特点和性质.举一反三:【变式】作出函数y=x, 2x y x=,2()y x =的图象,它们是不是同一个函数?【答案】 函数2()y x =的自变量x 的取值范围是x≥0;函数2x y x=在x≠0时,就是函数y=x ;而x=0不在函数2x y x=的自变量x 的取值范围之内.由此,作图如下:可见它们不是同一个函数.类型二、函数图象及性质2.已知:(1)m为何值时,它是一次函数.(2)当它是一次函数时,画出草图,指出它的图象经过哪几个象限?y是随x的增大而增大还是减小?(3)当图象不过原点时,求出该图象与坐标轴交点间的距离,及图象与两轴所围成的三角形面积. 【思路点拨】一次函数应满足:一次项(或自变量)的指数为1,系数不为0.【答案与解析】(1)依题意:,解得m=1或m=4.∴当m=1或m=4时,它是一次函数.(2)当m=4时,函数为y=2x,是正比例函数,图象过一,三象限,y随x的增大而增大.当m=1时,函数为y=-x-3,直线过二,三,四象限,y随x的增大而减小.(3)直线y=-x-3不过原点,它与x轴交点为A(-3,0),与y轴交点为B(0,-3),..∴直线y=-x-3与两轴交点间的距离为,与两轴围成的三角形面积为.【总结升华】(1)某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.(2)判断函数的增减性,关键是确定直线y=kx+b(k≠0)中k、b的符号.(3)直线y=kx+b(k≠0)与两轴的交点坐标可运用x轴、y轴上的点的特征来求,当直线y=kx+b(k ≠0)上的点在x轴上时,令y=0,则,交点为;当直线y=kx+b(k≠0)上的点在y轴上时,令x=0,则y=b,即交点为(0,b).举一反三:【高清课程名称:函数综合1 高清ID号:369111关联的位置名称(播放点名称):经典例题2】【变式】已知关于x的方程2(3)40--+-=.x m x m(1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m 的取值范围;(3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值. 【答案】证明:(1)22224(3)4(4)1025(5)b ac m m m m m ∆=-=---=-+=-≥0,所以方程总有两个实数根.解:(2)由(1)2(5)m ∆=-,根据求根公式可知,方程的两根为:23(5)2m m x -±-= 即11x =,24x m =-,由题意,有448m <-<,即812m <<.(3)易知,抛物线2(3)4y x m x m =--+-与y 轴交点为M (0,4m -),由(2)可知抛物线与x 轴的交点为(1,0)和(4m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 4m -), 由题意,可得14m -=-或44m m -=-,所以3m =或4m =.3.抛物线y=x 2+bx+c 图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x 2﹣2x﹣3,则b 、c 的值为( )A .b=2,c=2B .b=2,c=0C .b=﹣2,c=﹣1D .b=﹣3,c=2 【思路点拨】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b ,c 的值. 【答案】B . 【解析】解:由题意得新抛物线的顶点为(1,﹣4), ∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解析式为y=(x ﹣h )2+k 代入得:y=(x+1)2﹣1=x 2+2x , ∴b=2,c=0. 故选B .【总结升华】抛物线的平移不改变二次项系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.4.若一次函数y=kx+1的图象与反比例函数1y x=的图象没有公共点,则实数k 的取值范围是 . 【思路点拨】因为反比例函数1y x = 的图象在第一、三象限,故一次函数y=kx+1中,k <0,将解方程组 11y kx y x =+⎧⎪⎨=⎪⎩转化成关于x 的一元二次方程,当两函数图象没有公共点时,只需△<0即可.【答案】1-4k<.【解析】由反比例函数的性质可知,1yx=的图象在第一、三象限,∴当一次函数y=kx+1与反比例函数图象无交点时,k<0,解方程组11y kxyx=+⎧⎪⎨=⎪⎩,得kx2+x-1=0,当两函数图象没有公共点时,△<0,即1+4k<0,解得1-4k<,∴两函数图象无公共点时,1-4k<.故答案为:1-4k<.【总结升华】本题考查了反比例函数与一次函数的交点问题.关键是转化成关于x的一元二次方程,再确定k的取值范围.类型三、函数综合题5.已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3 B.y1>y3>y2 C.y3>y1>y2 D.y2>y3>y1【思路点拨】先判断出函数反比例函数y=的图象所在的象限,再根据图象在每一象限的增减性及每一象限坐标的特征进行判断.【答案】B.【解析】解:∵k2≥0,∴﹣k2≤0,﹣k2﹣1<0,∴反比例函数y=的图象在二、四象限,∵点(﹣1,y1)的横坐标为﹣1<0,∴此点在第二象限,y1>0;∵(2,y2),(3,y3)的横坐标3>2>0,∴两点均在第四象限y2<0,y3<0,∵在第四象限内y随x的增大而增大,∴0>y3>y2,∴y1>y3>y2.故选B.【总结升华】本题考查了反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限,横纵坐标同号;当k<0时,图象分别位于第二、四象限,横纵坐标异号.举一反三:【变式】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A. B. C. D.【答案】由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选D.类型四、函数的应用6.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,求绳子的最低点距地面的距离为多少米?【思路点拨】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答. 【答案】解:以左边树与地面交点为原点,地面水平线为x 轴,左边树为y 轴建立平面直角坐标系, 由题意可得A (0,2.5),B (2,2.5),C (0.5,1)设函数解析式为y=ax 2+bx+c ,把A 、B 、C 三点分别代入得出c=2.5, 同时可得4a+2b+c=2.5,0.25a+0.5b+c=1 解之得a=2,b=﹣4,c=2.5.∴y=2x 2﹣4x+2.5=2(x ﹣1)2+0.5. ∵2>0,∴当x=1时,y=0.5米. ∴故答案为:0.5米.【总结升华】本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题. 举一反三:【高清课程名称: 函数综合1 高清ID 号: 369111 关联的位置名称(播放点名称):经典例题3】 【变式】抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.(1)求证:1023b a +>; (2)抛物线经过点1(,)2P m ,Q (1,)n .① 判断mn 的符号;② 抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (A 在B 左侧),请说明116x <,2112x <<.【答案】(1)证明:∵ 2360a b c ++=,∴ 12362366b a b c c a a a a++==-=-. ∵ a >0,c <0,∴0c a <,0c a->. ∴ 1023b a +>.(2)解:∵ 抛物线经过点P 1(,)2m ,点Q (1,)n , ∴ 11 ,42 .a b c m a b c n ⎧++=⎪⎨⎪++=⎩① ∵ 2360a b c ++=,a >0,c <0,∴ 223a b c +=-,223a b c =--. ∴ 1112111()42424312b c m a b c a a a a +=++=+=+-=-<0. 2(2)33a a n a b c a c c c =++=+--+=->0. ∴ 0mn <.② 由a >0知抛物线2y ax bx c =++开口向上.∵ 0m <,0n >,∴ 点P 1(,)2m 和点Q (1,)n 分别位于x 轴下方和x 轴上方.∵ 点A ,B 的坐标分别为A 1(,0)x ,B 2(,0)x (点A 在点B 左侧),∴ 由抛物线2y ax bx c =++的示意图可知,对称轴右侧的点B 的横坐标2x 满足2112x <<. ∵ 抛物线的对称轴为直线2b x a =-,由抛物线的对称性可1222x x b a +=-,由(1)知123b a -<, ∴ 12123x x +<. ∴ 12221332x x <-<-,即116x <.。
中考数学函数解题技巧数学是中考中必考的科目之一,其中函数解题是数学考试中的重点和难点。
掌握一些函数解题技巧,可以帮助我们更好地应对中考数学考试。
本文将为大家介绍几种常用的中考数学函数解题技巧。
I. 函数的概念和性质在解题过程中,我们首先要对函数的概念和性质有清晰的认识。
函数是一种特殊的关系,它将一个变量的值映射到另一个变量的值上。
函数的性质包括定义域、值域、单调性等,通过理解和掌握这些性质,可以帮助我们解题。
II. 函数的图像与性质通过函数的图像,我们可以更直观地理解函数的性质。
在解题过程中,我们可以根据函数的图像来判断其单调性、奇偶性、周期性等。
同时,函数的图像还可以帮助我们推断函数的零点、极值点等特征。
III. 常用函数的解题技巧1. 一次函数的解题技巧一次函数是最简单的函数类型之一,其表达式为y = kx + b。
解一次函数的关键是确定k和b的值,我们可以利用已知条件构建方程来求解。
常见的一次函数问题包括直线的交点问题、函数值的计算等。
2. 二次函数的解题技巧二次函数是中考数学中的重要内容,其表达式为y = ax^2 + bx + c。
解二次函数的关键是确定二次项系数a、一次项系数b和常数项c的值。
我们可以利用二次函数的顶点、轴对称性等性质来解题。
常见的二次函数问题包括函数的最值、函数的零点等。
3. 反比例函数的解题技巧反比例函数是一个常见的函数类型,其表达式为y = k/x。
在解题过程中,我们需要注意定义域和值域的限制,同时可以通过已知条件建立方程求解。
常见的反比例函数问题包括函数值的计算、函数图像的分析等。
4. 复合函数的解题技巧复合函数是由一个函数和另一个函数组合而成的函数。
在解题过程中,我们可以根据已知条件和函数性质,将复合函数进行拆解和化简,帮助我们理清思路。
常见的复合函数问题包括函数的复合、函数图像的变换等。
IV. 利用函数解决实际问题数学函数不仅仅是一种抽象的概念,它在实际生活中有着广泛的应用。
中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解【经典母题】如图Z6-1是一个光学仪器上用的曲面横截面示意图,图中的曲线是一段反比例函数的图象,端点A的纵坐标为80,另一端点B的坐标为B(80,10).求这段图象的函数表达式和自变量的取值范围.【解析】利用待定系数法设出反比例函数的表达式后,代入点B的坐标即可求得反比例函数的表达式.解:设反比例函数的表达式为y=k x ,∵一个端点B的坐标为(80,10),∴k=80×10=800,∴反比例函数的表达式为y=800x.∵端点A的纵坐标为80,∴80=800x,x=10,∴点A的横坐标为10,∴自变量的取值范围为10≤x≤80.【思想方法】求反比例函数的表达式宜用待定系数法,设y=kx,把已知一点代入函数表达式求出k的值即可.【中考变形】1.已知正比例函数y=ax与反比例函数y=bx的图象有一个公共点A(1,2).(1)求这两个函数的表达式;图Z6-1(2)在图Z6-2中画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.图Z6-2中考变形1答图解:(1)把A (1,2)代入y =ax ,得2=a , 即y =2x ;把A (1,2)代入y =b x ,得b =2,即y =2x ; (2)画草图如答图所示.由图象可知,当x >1或-1<x <0时,正比例函数值大于反比例函数值. 2.如图Z6-3,已知一次函数y =k 1x +b 与反比例函数y =k 2x 的图象交于第一象限内P ⎝ ⎛⎭⎪⎫12,8,Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P ′的坐标; (3)求∠P ′AO 的正弦值.图Z6-3【解析】①将P 点坐标代入反比例函数关系式,即可求出反比例函数表达式;将Q 点代入反比例函数关系式,即可求出m 的值;将P ,Q 两个点的坐标分别代入一次函数关系式,即可求出一次函数的表达式.②根据平面直角坐标系中,两点关于原点对称,则横、纵坐标互为相反数,可以直接写出点P ′的坐标;③过点P ′作P ′D ⊥x 轴,垂足为D ,可构造出′AD ,又∵点A 在一次函数的图象上,∴可求出点A 坐标,得到OA 长度,利用P ′ 点坐标,可以求出P ′D ,P ′A ,即可得到∠P ′AO 的正弦值. 解:(1)∵点P 在反比例函数的图象上,∴把点P ⎝ ⎛⎭⎪⎫12,8代入y =k 2x ,得k 2=4,∴反比例函数的表达式为y =4x ,∴Q 点坐标为(4,1).把P ⎝ ⎛⎭⎪⎫12,8,Q (4,1)分别代入y =k 1x +b 中,得⎩⎨⎧8=12k 1+b ,1=4k 1+b ,解得⎩⎪⎨⎪⎧k 1=-2,b =9.∴一次函数的表达式为y =-2x +9; (2)P ′⎝ ⎛⎭⎪⎫-12,-8;(3)如答图,过点P ′作P ′D ⊥x 轴,垂足为D . ∵P ′⎝ ⎛⎭⎪⎫-12,-8,中考变形2答图∴OD =12,P ′D =8.∵点A 在y =-2x +9的图象上,∴点A 坐标为⎝ ⎛⎭⎪⎫92,0,即OA =92,∴DA =5,∴P ′A =P ′D 2+DA 2=89. ∴sin ∠P ′AD =P ′D P ′A =889=88989.∴sin ∠P ′AO =88989.3.[2017·成都]如图Z6-4,在平面直角坐标系xOy 中,已知正比例函数y =12x与反比例函数y =kx 的图象交于A (a ,-2),B 两点. (1)求反比例函数表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连结PO ,若△POC 的面积为3,求点P 的坐标.图Z6-4 中考变形3答图解:(1)∵点A (a ,-2)在正比例函数y =12x 图象上, ∴-2=12a ,∴a =-4, ∴点A 坐标为(-4,-2).又∵点A 在反比例函数y =kx 的图象上, ∴k =xy =-4×(-2)=8, ∴反比例函数的表达式为y =8x .∵A ,B 既在正比例函数图象上,又在反比例函数图象上, ∴A ,B 两点关于原点O 中心对称, ∴点B 的坐标为(4,2);(2)如答图,设点P 坐标为⎝ ⎛⎭⎪⎫a ,8a (a >0),∵PC ∥y 轴,点C 在直线y =12x 上,∴点C 的坐标为⎝ ⎛⎭⎪⎫a ,12a ,∴PC =⎪⎪⎪⎪⎪⎪12a -8a =⎪⎪⎪⎪⎪⎪a 2-162a , ∴S △POC =12PC ·a =12⎪⎪⎪⎪⎪⎪a 2-162a ·a =⎪⎪⎪⎪⎪⎪a 2-164=3, 当a 2-164=3时,解得a =28=27, ∴P ⎝⎛⎭⎪⎫27,477. 当a 2-164=-3时,解得a =2,∴P (2,4).综上所述,符合条件的点P 的坐标为⎝⎛⎭⎪⎫27,477,(2,4). 4.如图Z6-5,一次函数y =kx +b 与反比例函数y =mx 的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的表达式; (2)求一次函数的表达式;(3)P 是x 轴上的一个动点,试确定点P 并求出它的坐标,使得P A +PB 最小.图Z6-5解:(1)∵点A (1,4)在函数y =mx 上, ∴m =xy =4,∴反比例函数的表达式为y =4x ; (2)把B (4,n )代入y =4x ,4=xy =4n ,得n =1, ∴B (4,1),∵直线y =kx +b 经过A ,B , ∴⎩⎪⎨⎪⎧4=k +b ,1=4k +b ,解得⎩⎪⎨⎪⎧k =-1,b =5, ∴一次函数的表达式为y =-x +5; (3)点B 关于x 轴的对称点为B ′(4,-1), 设直线AB ′的表达式为y =ax +q , ∴⎩⎪⎨⎪⎧4=a +q ,-1=4a +q ,解得⎩⎪⎨⎪⎧a =-53,q =173,∴直线AB ′的表达式为y =-53x +173, 令y =0,解得x =175,∴当点P 的坐标为⎝ ⎛⎭⎪⎫175,0时,P A +PB 最小.5.[2017·广安]如图Z6-6,一次函数y =kx +b 的图象与反比例函数y =mx 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,图Z6-6且OB =6.(1)求函数y =mx 和y =kx +b 的表达式.(2)已知直线AB 与x 轴相交于点C .在第一象限内,求反比例函数y =mx 的图象上一点P ,使得S △POC =9.解:(1)∵点A (4,2)在反比例函数y =mx 的图象上, ∴m =4×2=8,∴反比例函数的表达式为y =8x . ∵点B 在y 轴的负半轴上,且OB =6, ∴点B 的坐标为(0,-6),把点A (4,2)和点B (0,-6)代入y =kx +b 中, 得⎩⎪⎨⎪⎧4k +b =2,b =-6,解得⎩⎪⎨⎪⎧k =2,b =-6. ∴一次函数的表达式为y =2x -6; (2)设点P 的坐标为⎝ ⎛⎭⎪⎫n ,8n (n >0).在直线y =2x -6上,当y =0时,x =3, ∴点C 的坐标为(3,0),即OC =3, ∴S △POC =12×3×8n =9,解得n =43. ∴点P 的坐标为⎝ ⎛⎭⎪⎫43,6.6.[2017·黄冈]如图Z6-7,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为E ;过点B 作BD ⊥y 轴,垂足为D ,且点D 的坐标为(0,-2),连结DE . (1)求k 的值;(2)求四边形AEDB 的面积.图Z6-7 中考变形6答图解:(1)将点A (-1,m )代入一次函数y =-2x +1, 得-2×(-1)+1=m ,解得m =3.∴A 点的坐标为(-1,3).将A (-1,3)代入y =kx ,得k =(-1)×3=-3;(2)如答图,设直线AB 与y 轴相交于点M ,则点M 的坐标为(0,1), ∵D (0,-2),则点B 的纵坐标为-2,代入反比例函数,得DB =32, ∴MD =3.又∵A (-1,3),AE ∥y 轴, ∴E (-1,0),AE =3. ∴AE ∥MD ,AE =MD .∴四边形AEDM 为平行四边形. ∴S 四边形AEDB =S ▱AEDM +S △MDB =3×1+12×32×3=214.7.[2016·金华]如图Z6-8,直线y =33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx (k >0)的图象交于点C ,D ,过点A 作x 轴的垂线交该反比例函数图象于点E . (1)求点A 的坐标;(2)若AE =AC ,①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称?并说明理由.图Z6-8中考变形7答图解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0);(2)①如答图,过点C 作CF ⊥x 轴于点F .设AE =AC =t ,点E 的坐标是(3,t ),则反比例函数y =k x 可表示为y =3tx . ∵直线y =33x -3交y 轴于点B , ∴B (0,-3).在Rt △AOB 中,tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是⎝⎛⎭⎪⎫3+32t ,12t .∴⎝⎛⎭⎪⎫3+32t ×12t =3t ,解得t 1=0(舍去),t 2=2 3. ∴k =3t =6 3.②点E 的坐标为()3,23,设点D 的坐标是⎝ ⎛⎭⎪⎫x ,33x -3,∴x ⎝ ⎛⎭⎪⎫33x -3=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是()-3,-23, ∴点E 与点D 关于原点O 成中心对称. 【中考预测】如图Z6-9,一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C ,CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =6. (1)求一次函数与反比例函数的表达式; (2)求两函数图象的另一个交点的坐标;(3)直接写出不等式kx +b ≤nx 的解集.图Z6-9解:(1)∵OB =2OA =3OD =6, ∴OB =6,OA =3,OD =2, ∵CD ⊥DA ,∴DC ∥OB , ∴OB DC =AO AD ,∴6DC =35, ∴DC =10,∴C (-2,10),B (0,6),A (3,0), 代入一次函数y =kx +b , 得⎩⎪⎨⎪⎧b =6,3k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6. ∵反比例函数y =nx 经过点C (-2,10), ∴n =-20,∴反比例函数的表达式为y =-20x ;(2)由⎩⎨⎧y =-2x +6,y =-20x ,解得⎩⎪⎨⎪⎧x =-2,y =10或⎩⎪⎨⎪⎧x =5,y =-4, ∴另一个交点坐标为(5,-4);(3)由图象可知kx +b ≤nx 的解集为-2≤x <0或x ≥5.。
初中数学中常见的函数与方程综合题解题技巧近年来,初中数学课程的改革使得函数与方程的学习成为了一个重要的环节。
而函数与方程综合题作为其中的一种题型,不仅考察了对函数与方程知识的理解,更要求学生具备一定的解题技巧。
本文将详细介绍一些常见的函数与方程综合题解题技巧,帮助同学们更好地应对这类题型。
一、绘制函数图像法在解决函数与方程综合题时,了解函数的性质以及图像特点非常重要。
通过绘制函数的图像,有助于我们对函数的性质有更直观的认识,从而更容易解决综合题。
例如,在一道题目中,给出了一个函数f(x)的定义域和值域,并且要求求出其中满足某一条件的x的取值范围。
首先,我们可以根据所给的定义域和值域,画出函数f(x)的图像。
然后,通过观察图像,可以确定满足条件的x的取值范围。
二、函数与方程的联立解法在解决函数与方程综合题时,往往需要联立函数和方程来进行求解。
掌握函数与方程的联立解法是解决综合题的关键。
例如,在一道题目中,给出两个函数f(x)和g(x),并且要求求出满足f(x) > g(x)的x的取值范围。
我们可以先将f(x)和g(x)两个函数设为相等,得到一个方程,然后通过解方程找出相等点。
接着,根据f(x) >g(x),确定满足条件的x的取值范围。
三、函数的增减性与极值问题在解决函数与方程综合题时,函数的增减性与极值问题经常出现。
了解函数的增减性及其与方程的关系,可以帮助我们更快地解决综合题。
例如,在一道题目中,给出了一个函数f(x)的定义域,并且要求求出f(x)在该定义域上的最大值和最小值。
我们可以通过计算函数的导数,找到函数的增减区间,进而确定函数的极值点。
然后,通过比较在定义域上的极值点和端点,求出函数f(x)的最大值和最小值。
四、方程的两端性质在解决函数与方程综合题时,我们常常需要通过方程的两端性质进行推导与比较。
掌握方程的两端性质是解决综合题的基础。
例如,在一道题目中,给出了一个方程,要求求出该方程的解。
初三函数题型及解题方法初三函数是一个重要的高中数学学科,学习这个学科的学生应该具备一定的函数基础知识,以及函数题型及解题方法。
函数题也是考察学生数学基础的核心考试内容之一,它的出题越多,越值得学生们重视。
因此,本文将要介绍如何正确解决初三函数题。
初三函数题一般分为三类:映射函数型、反函数型和综合函数型。
一、映射函数型映射函数型中,学生可能会遇到求函数值、求最值、求导数等问题。
解决方法是:1、求函数值:学生需要根据给定的函数公式,得出被测量点的函数值。
2、求最值:学生需要根据函数的特征,如单调性和平滑性,得出函数的最大值或最小值。
3、求导数:学生需要根据函数的定义,利用微分运算计算出函数的导数值。
二、反函数型反函数型中的题目是求函数的反函数,解决方法是:1、首先计算原函数的导数。
2、然后利用反函数的定义:若函数y=f(x)满足f(x)>0,则函数y=f^(-1)(x)满足f^(-1)(x)<0;若函数y=f(x)满足f(x)=0,则函数y=f^(-1)(x)满足f^(-1)(x)=0。
3、根据定义求出反函数的导数,即可得到反函数的表达式。
三、综合函数型综合函数型中的题目比较复杂,要求学生将映射函数与反函数结合起来,解答求反函数与求函数最值等问题。
解决方法是:1、根据所给函数公式计算出其原函数以及反函数的表达式。
2、根据定义求出原函数与反函数的导数表达式。
3、利用函数是单调函数或函数最值的定义,求出其最大值或最小值。
总之,解决初三函数题要根据题目的不同,掌握正确的解题方法,以便把握住函数的特点,有效解决函数题。
学生们在复习的过程中,要多练习,多加强初三函数的专项训练,以期达到高分的考试成绩。
本文就介绍了初三函数题的基本类型及解题方法,希望能为学生们提供一定的参考和帮助,从而能够在考试中取得理想的成绩。
初三锐角三角函数题型及解题方法初三数学中,锐角三角函数是一个非常重要的内容。
学习锐角三角函数,不仅需要掌握其概念和公式,还需要掌握一些常见的题型及解题方法。
本文将介绍一些常见的锐角三角函数题型及解题方法,帮助初三学生更好地掌握这一内容。
一、求三角函数值求三角函数值是锐角三角函数中最基本的题型。
一般来说,题目都会给出三角函数的角度,要求求出其对应的正弦、余弦、正切等函数值。
解题方法:对于这类题目,我们需要掌握三角函数的定义和公式。
例如,正弦函数的定义是:在直角三角形中,对于一个锐角角度A,其对边长度与斜边长度的比值称为正弦值sinA。
因此,我们只需要根据这个定义和公式进行计算即可。
举个例子,题目给出角度A=30度,要求求出其正弦值sinA。
根据正弦函数的定义和公式,我们得到:sinA=对边长度/斜边长度=sqrt(3)/2因此,sinA=√3/2。
二、三角函数的基本关系式三角函数的基本关系式指的是三角函数之间的基本等式。
例如,正切函数的基本关系式是tanA=sinA/cosA。
这类题目一般要求将一个三角函数用另外一个三角函数表示出来,或者将两个三角函数相互表示。
解题方法:对于这类题目,我们需要掌握三角函数之间的基本关系式。
例如,正切函数的基本关系式是:tanA=sinA/cosA因此,如果题目给出sinA的值,要求求出tanA的值,我们只需要将sinA/cosA代入上式,即可得到:tanA=sinA/cosA=√3/3三、三角函数值的范围三角函数值的范围是指,每个三角函数的取值范围。
例如,正弦函数的取值范围是[-1,1],余弦函数的取值范围也是[-1,1]。
解题方法:对于这类题目,我们需要掌握每个三角函数的取值范围。
例如,正弦函数的取值范围是[-1,1],因此,如果题目给出sinA=-0.5,我们就可以知道sinA的值在[-1,1]范围之内。
四、三角函数的性质三角函数的性质指的是,它们在不同象限中的正负性和大小关系。
初中数学函数题解题方法梳理在初中数学中,函数是一个重要的概念,也是数学的基础,掌握好函数的解题方法对于学好数学非常重要。
在本文中,我将梳理一些初中数学中常见的函数题解题方法,帮助同学们更好地理解和应用函数。
一、找出题目中的函数关系首先,我们需要找出题目中所给的函数关系。
这可以通过阅读题目中的文字描述以及在图表中寻找规律来实现。
例如,当题目给出一个数对(x,y)的集合,并且要求写出函数关系式,我们可以先观察数对中x和y的变化规律,然后尝试使用代数符号表示函数关系。
二、确定函数的定义域和值域在解题过程中,我们需要确定函数的定义域和值域。
定义域是指函数中自变量可能取的值的范围,而值域则是函数中因变量可能取的值的范围。
通过确定函数的定义域和值域,我们可以更好地理解函数的性质和变化规律。
三、图像法解题对于某些题目,我们可以利用图像法来解题。
图像法是通过绘制函数图像来观察函数的特点和趋势,并从中得出结论。
例如,当题目给出一个函数的图像,我们可以利用图像来确定函数的性质、变化规律以及特定点的坐标等。
四、函数的运算在初中数学中,我们经常遇到函数的运算问题。
常见的函数运算有函数的加减、乘除和复合运算等。
对于函数的加减和乘除运算,我们可以根据定义对函数关系式进行相应的操作。
对于函数的复合运算,我们需要将一个函数的输出作为另一个函数的输入,并根据函数关系式进行运算。
五、函数的性质和特点在解题过程中,我们需要了解函数的性质和特点。
例如,对于奇偶函数,我们可以利用对称性质判断函数的对称轴和图像的对称形态;对于增减函数,我们可以通过函数的导数符号来判断函数的增减性;对于周期函数,我们可以利用函数的周期性质来进行相关计算等。
六、联立方程解题有时,我们需要通过联立方程组来解决函数问题。
联立方程是指将两个以上的方程组合起来,并求解出函数的变量值。
在联立方程解题中,我们可以通过代入法、消元法或图像法等方法来求解方程组,并得到相应的函数解。
函数基本性质题型及解题技巧函数基本性质题型及解题技巧一、函数解析式的求法:1.配凑法:将关系式配凑成括号内的形式。
例如,已知$f(x+)=\frac{x^2}{2}$,求解析式$f(x)$。
解:因为$f(x+)=\frac{x^2}{2}=(x+)^2-2$,所以$f(x)=x^2-2$,$x\in(-\infty,-2]\cup[2,\infty)$。
2.换元法:令括号内的部分等于$t$,然后解出$x$,带入得到关于$t$的解析式,最后再换回$x$。
例如,已知$f(x+1)=x+2x$,求$f(x)$的解析式。
解:令$t=x+1$,则$x=(t-1)^2$,$(t\geq1)$,因此$f(t)=(t-1)^2+2(t-1)=t^2-1$。
所以$f(x)=x^2-1$,$(x\geq1)$。
3.待定系数法:根据已知函数类型,设相应的函数解析式,然后根据已知条件算出相应系数。
例如,已知$f(x)$是二次函数,且$f(0)=2$,$f(x+1)-f(x)=x-1$,求$f(x)$。
解:设$f(x)=ax^2+bx+c$,由$f(0)=2$得$c=2$,由$f(x+1)-f(x)=x-1$,得恒等式$2ax+a+b=x-1$,解得$a=\frac{1}{2}$,$b=-\frac{1}{2}$。
因此,所求函数的解析式为$f(x)=\frac{1}{2}x^2-\frac{1}{2}x+2$。
4.消元法(方程组法):若函数方程中同时出现$f(x)$与$f(-x)$,则一般用$x$代之或用$-x$代之,构造另一个方程,然后联立解方程组得到$f(x)$。
例如,已知$3f(x)+2f(-x)=x+3$,求$f(x)$。
解:因为$3f(x)+2f(-x)=x+3$,令$x=-x$得$3f(-x)+2f(x)=-x+3$,消去$f(-x)$得$f(x)=\frac{x}{5}+\frac{3}{5}$。
二、绝对值图像的画法:5.对于函数$y=ax^2+b|x|+c$,找出$x=0$的点和两个对称轴上的点,然后将它们连起来。
函数的各种题型及解法
函数题一般涉及函数的定义、性质、图像、图像变换、参数的选择、最值等内容。
以下是一些常见的函数题型及解法:
1. 函数的定义:给定一个函数的表达式或性质,求该函数的定义域、值域等。
解法通常是通过观察函数的表达式、性质,确定函数的定义域、值域等。
2. 函数的性质:给定一个函数的性质,如奇偶性、周期性、单调性等,求解函数的表达式或其他性质。
解法通常是通过观察函数的性质和具体的数学性质,推导出函数的表达式和其他性质。
3. 函数的图像:给定一个函数的表达式,画出函数的图像。
解法通常是通过求解函数的特殊点(如零点、极值点、破折点等)和函数的形状,画出函数的图像。
4. 函数的图像变换:给定一个函数的图像,求变换后的函数的图像。
常见的图像变换包括平移、伸缩、翻转等。
解法通常是根据函数的图像变换规律,将原函数的图像进行相应的平移、伸缩、翻转等操作,得到变换后的函数的图像。
5. 函数的参数选择:给定一个函数的性质或图像,求满足条件的参数取值。
解法通常是根据函数的性质或图像的特点,确定使得函数满足条件的参数取值。
6. 函数的最值:给定一个函数的表达式或性质,求函数的最大
值或最小值。
解法通常是通过求解函数的零点、极值点或函数的性质,确定函数的最值。
以上是一些常见的函数题型及解法,具体题目的解法还要根据具体题目的情况而定。
要熟练掌握函数的基本概念、性质和常见的解题方法,通过多做题、多总结,提高解题能力。
重难点数学函数与方程解题方法详解数学函数与方程是数学中的重难点内容,对学生来说常常是比较困难的题型。
本文将详细解析数学函数与方程的解题方法,帮助学生更好地理解和应用这些知识点。
一、数学函数解题方法函数是数学中一种重要的关系。
解题时,我们常常需要根据给定条件,找到函数的定义域、值域、图像等相关信息。
以下是数学函数解题的方法和步骤:1. 确定函数的定义域:首先要根据给定条件找到函数的定义域。
定义域是指函数自变量的取值范围,根据具体条件来确定。
2. 寻找函数的值域:值域是函数的因变量的取值范围,通常通过分析函数的图像、对称性等方式来确定。
3. 绘制函数图像:绘制函数的图像可以帮助我们更好地理解函数的性质,同时也可以使解题更加直观。
4. 分析函数的性质:根据函数的定义和图像,分析函数的单调性、奇偶性、周期性等特点,并结合题目要求进行推断。
5. 使用函数的性质解题:根据具体要求,可以利用函数的性质进行解题。
比如,如果函数具有周期性,可以通过函数的周期来简化计算过程。
二、数学方程解题方法方程是数学中另一个重要的内容,解题时常常需要找到方程的根、解的个数或范围等相关信息。
以下是数学方程解题的方法和步骤:1. 观察方程形式:首先要观察方程的形式,确定是一元方程、二元方程还是多元方程,以及方程中是否含有幂函数、指数函数、对数函数等特殊函数。
2. 利用等式性质化简方程:根据等式的性质,可以通过加减、乘除、代入等方式对方程进行化简,使得方程更易求解。
3. 使用解方程的方法:根据方程的形式和要求,可以选择合适的解方程方法。
常见的解方程方法有试探法、代入法、消元法、因式分解法等。
4. 检验解的合理性:在得到方程的解之后,要将解代入方程中进行检验,确保解的合理性以及满足题目条件。
5. 求解范围与特殊解:有时方程的解不是唯一的,因此需要求解范围或特殊解。
这时需要根据题目的要求进行具体分析和推导。
三、数学函数与方程综合解题方法除了单独解题外,数学函数与方程常常在实际问题中交叉运用。
九年级数学上册综合算式如何运用函数解题数学是一门重要的学科,它在生活中的应用非常广泛。
特别是在综合算式中,函数的运用成为解题的关键。
本文将探讨九年级数学上册中如何运用函数解题。
一、函数的基本概念在开始讨论如何用函数解题之前,我们先来了解一下函数的基本概念。
在数学中,函数表示一个变量与另一个变量之间的依赖关系。
通常用 f(x) 表示函数,x 称为自变量,f(x) 称为因变量。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
二、函数与综合算式的关系在综合算式中,我们经常会遇到复杂的运算问题。
而函数的运用可以将这些复杂的运算问题转化为简单的函数关系,从而更容易解决。
通过建立函数,我们可以利用函数的性质来简化计算过程,并得到准确的结果。
三、函数的运用实例以下是一些具体的例子,来说明函数在综合算式中的运用。
例 1:制作贺卡小明要制作贺卡送给朋友,他购买了 5 张贺卡,每张贺卡的价格为10 元。
若小明还花了额外的 15 元购买装饰品,并且每张贺卡上都使用了相同数量的装饰品,问小明总共花了多少钱?我们可以建立一个函数 f(x),表示花费的总金额与购买贺卡的数量之间的关系。
其中 f(x) = 10x + 15,x 表示贺卡的数量。
通过代入 x 的值,我们可以很轻松地求得小明总共花费的金额。
例 2:物品折扣某商场正在进行促销活动,一种商品原价为 100 元,现在打 8 折出售。
小红买了 3 件该商品,她要支付多少钱?我们可以建立一个函数 g(x),表示小红需要支付的金额与购买商品的数量之间的关系。
其中 g(x) = 100 * 0.8 * x,x 表示购买商品的数量。
通过代入 x 的值,我们可以得出小红需要支付的金额。
四、总结通过以上实例,我们可以看出函数在解决综合算式中的运用效果非常明显。
通过建立函数,我们能够抽象出复杂的计算过程,简化问题,更好地理解和解决问题。
因此,在九年级数学上册中,函数的运用是解决综合算式问题必不可少的工具。
初三数学函数综合题型及解题方法讲解(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三数学函数综合题型及解题方法讲解(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三数学函数综合题型及解题方法讲解(2)(word版可编辑修改)的全部内容。
二次函数综合题型精讲精练题型一:二次函数中的最值问题例1:如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 经过A (﹣2,﹣4),O(0,0),B (2,0)三点.(1)求抛物线y=ax 2+bx+c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM+OM 的最小值.解析:(1)把A (﹣2,﹣4),O(0,0),B(2,0)三点的坐标代入y=ax 2+bx+c 中,得解这个方程组,得a=﹣,b=1,c=0 所以解析式为y=﹣x 2+x .(2)由y=﹣x 2+x=﹣(x ﹣1)2+,可得抛物线的对称轴为x=1,并且对称轴垂直平分线段OB ∴OM=BM∴OM+AM=BM+AM连接AB 交直线x=1于M 点,则此时OM+AM 最小 过点A 作AN ⊥x 轴于点N , 在Rt △ABN 中,AB===4,因此OM+AM 最小值为.方法提炼:已知一条直线上一动点M 和直线同侧两个固定点A 、B ,求AM+BM 最小值的问题,我们只需做出点A 关于这条直线的对称点A',将点B 与A ’连接起来交直线与点M ,那么A'B 就是AM+BM 的最小值。
同理,我们也可以做出点B 关于这条直线的对称点B ’,将点A 与B'连接起来交直线与点M,那么AB ’就是AM+BM 的最小值。
二次函数综合题型精讲精练题型一:二次函数中的最值问题例1:如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 经过A (﹣2,﹣4),O (0,0),B (2,0)三点.(1)求抛物线y=ax 2+bx+c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM+OM 的最小值.解析:(1)把A (﹣2,﹣4),O (0,0),B (2,0)三点的坐标代入y=ax 2+bx+c 中,得解这个方程组,得a=﹣,b=1,c=0 所以解析式为y=﹣x 2+x .(2)由y=﹣x 2+x=﹣(x ﹣1)2+,可得 抛物线的对称轴为x=1,并且对称轴垂直平分线段OB ∴OM=BM∴OM+AM=BM+AM连接AB 交直线x=1于M 点,则此时OM+AM 最小 过点A 作AN ⊥x 轴于点N , 在Rt △ABN 中,AB===4,因此OM+AM 最小值为.方法提炼:已知一条直线上一动点M 和直线同侧两个固定点A 、B ,求AM+BM 最小值的问题,我们只需做出点A 关于这条直线的对称点A ’,将点B 与A ’连接起来交直线与点M ,那么A ’B 就是AM+BM 的最小值。
同理,我们也可以做出点B 关于这条直线的对称点B ’,将点A 与B ’连接起来交直线与点M ,那么AB ’就是AM+BM 的最小值。
应用的定理是:两点之间线段最短。
AAB B M或者 MA ’B ’例2:已知抛物线1C 的函数解析式为23(0)y ax bx a b =+-<,若抛物线1C 经过点(0,3)-,方程230ax bx a +-=的两根为1x ,2x ,且124x x -=。
(1)求抛物线1C 的顶点坐标.(2)已知实数0x >,请证明:1x x +≥2,并说明x 为何值时才会有12x x+=. (3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线2C ,设1(,)A m y ,2(,)B n y 是2C 上的两个不同点,且满足:090AOB ∠=,0m >,0n <.请你用含有m 的表达式表示出△AOB 的面积S ,并求出S 的最小值及S 取最小值时一次函数OA 的函数解析式。
二次函数综合题型精讲精练时间:2021.03.07 创作:欧阳德主讲:姜老师题型一:二次函数中的最值问题例1:如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B (2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.解析:(1)把A(﹣2,﹣4),O(0,0),B(2,0)三点的坐标代入y=ax2+bx+c中,得解这个方程组,得a=﹣,b=1,c=0所以解析式为y=﹣x2+x.(2)由y=﹣x2+x=﹣(x﹣1)2+,可得抛物线的对称轴为x=1,并且对称轴垂直平分线段OB ∴OM=BM∴OM+AM=BM+AM连接AB交直线x=1于M点,则此时OM+AM最小过点A作AN⊥x轴于点N,在Rt△ABN中,AB===4,因此OM+AM最小值为.方法提炼:已知一条直线上一动点M和直线同侧两个固定点A、B,求AM+BM最小值的问题,我们只需做出点A关于这条直线的对称点A’,将点B与A’连接起来交直线与点M,那么A’B就是AM+BM的最小值。
同理,我们也可以做出点B关于这条直线的对称点B ’,将点A 与B ’连接起来交直线与点M ,那么AB ’就是AM+BM 的最小值。
应用的定理是:两点之间线段最短。
A A B BM 或者 M A ’B ’例2:已知抛物线1C 的函数解析式为23(0)y ax bx a b =+-<,若抛物线1C 经过点(0,3)-,方程230ax bx a +-=的两根为1x ,2x ,且124x x -=。
(1)求抛物线1C 的顶点坐标.(2)已知实数0x >,请证明:1x x +≥2,并说明x 为何值时才会有12x x +=. (3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线2C ,设1(,)A m y ,2(,)B n y 是2C 上的两个不同点,且满足:090AOB ∠=,0m >,0n <.请你用含有m 的表达式表示出△AOB 的面积S ,并求出S 的最小值及S 取最小值时一次函数OA 的函数解析式。
初中数学函数型综合题的解题策略,分五个步骤去解答题目
方法指导:
函数型综合题的解题策略
一、分解大题,分散难点:将大题分解成若干相关小题分散解答,以分散难点,降低解题难度
二、建立方程或函数关系:充分利用函数关系式,几何图形的基本性质,题中给定的等量关系等,建立方程或函数关系式,从而寻找到解题途径。
三、用代数式的计算反映动态几何量间关系
四、分类讨论:当所求等腰三角形的底边不确定,直角三角形的直角边不确定,图形的位置不确定,相似三角形的对应边不确定,要分类讨论,在分类讨论时首先要注意分类标准要统一,其次要做到不重不漏。
五、数形结合:抓住数与形之间的本质上的联系,以“形”直观的表示“数”,以“数”精确的研究“形”。
初三数学上册综合算式专项练习题解函数的增减性问题在初三数学上册中,综合算式是一个重要的知识点。
而在综合算式中,函数的增减性问题也是一个常见的考点。
本文将重点解析函数的增减性问题,介绍解题的方法和技巧。
首先,我们先来了解一下函数的定义。
函数是一个数学上的概念,是指根据某个变量的取值,通过一定的映射关系得到另一个变量的值。
通常用f(x)表示,其中x是自变量,f(x)是因变量。
函数的增减性是指当自变量的取值增加时,因变量的值是增加还是减少。
在解决函数的增减性问题时,常用的方法是通过函数的导数来进行分析。
函数的导数表示函数曲线在某个点的切线斜率,可以用来判断函数在该点附近的增减性。
接下来,我们通过一些具体的例题来详细讲解函数的增减性问题的解题方法。
例题一:已知函数f(x) = x^2 + 3x,求函数f(x)的增减区间。
解析:首先,我们需要求出函数的导函数f'(x)。
对于给定的函数f(x),求导得到f'(x) = 2x + 3。
其次,我们需要找出导函数f'(x)的零点和间断点。
导函数f'(x)的零点即为函数f(x)的极值点,也就是函数f(x)的增减区间的分界点。
将f'(x) = 0进行求解,可得x = -3/2。
因此,x = -3/2为函数f(x)的一个增减区间的分界点。
然后,我们可以选择一个测试点来验证函数在不同区间的增减性。
我们选择x = -2,x = 0和x = 1作为测试点。
将这些测试点代入函数f'(x)进行计算,如果得到的结果为正数,则函数在该区间是增加的;如果得到的结果为负数,则函数在该区间是减少的。
通过多次计算,我们可以得到以下结论:当x < -3/2时,f'(x) < 0,即函数f(x)在该区间是减少的;当-3/2 < x < -1时,f'(x) > 0,即函数f(x)在该区间是增加的;当-1 < x < +∞时,f'(x) > 0,即函数f(x)在该区间是增加的。
中考数学函数题解题技巧如下:
1、注重“类比”思想:类比函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似,采用
类比的方法有助于学生理解和应用。
2、注重审题:审题时,应特别注意每一句话的内在涵义,并从中找出隐含条件,结合所学知识进行解答。
3、注意图像:函数图像是解题的关键,通过观察图像可以得出规律、性质、特征等信息。
4、注重解题方法:函数题解题方法灵活多样,需要根据具体情况选择合适的解题方法,如代入法、消元法、降次
法等。
5、注意解题思路:在解题过程中,需要注重思路和方法,避免死记硬背和生搬硬套,通过思考和分析找到解题思
路。
6、注意细节:在解题过程中,需要注意细节,避免因为细节问题导致解题出错。
7、注意检查:在解题完成后,需要检查答案是否符合题意,并进行验证。
总之,在中考数学函数题的解题过程中,需要注重类比思想、审题、图像、解题方法、思路、细节等方面的技巧,通过不断练习和思考,提高解题能力。
二次函数综合题型精讲精练题型一:二次函数中的最值问题例1:如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 经过A (﹣2,﹣4),O (0,0),B (2,0)三点.(1)求抛物线y=ax 2+bx+c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM+OM 的最小值.解析:(1)把A (﹣2,﹣4),O (0,0),B (2,0)三点的坐标代入y=ax 2+bx+c 中,得 解这个方程组,得a=﹣,b=1,c=0 所以解析式为y=﹣x 2+x .(2)由y=﹣x 2+x=﹣(x ﹣1)2+,可得抛物线的对称轴为x=1,并且对称轴垂直平分线段OB ∴OM=BM∴OM+AM=BM+AM连接AB 交直线x=1于M 点,则此时OM+AM 最小 过点A 作AN ⊥x 轴于点N , 在Rt △ABN 中,AB===4, 因此OM+AM 最小值为.方法提炼:已知一条直线上一动点M 和直线同侧两个固定点A 、B ,求AM+BM 最小值的问题,我们只需做出点A 关于这条直线的对称点A ’,将点B 与A ’连接起来交直线与点M ,那么A ’B 就是AM+BM 的最小值。
同理,我们也可以做出点B 关于这条直线的对称点B ’,将点A 与B ’连接起来交直线与点M ,那么AB ’就是AM+BM 的最小值。
应用的定理是:两点之间线段最短。
A AB B M 或者 MA ’B ’ 例2:已知抛物线1C 的函数解析式为23(0)y ax bx a b =+-<,若抛物线1C 经过点(0,3)-,方程230ax bx a +-=的两根为1x ,2x ,且124x x -=。
(1)求抛物线1C 的顶点坐标.(2)已知实数0x >,请证明:1x x+≥2,并说明x 为何值时才会有12x x+=. (3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线2C ,设1(,)A m y ,2(,)B n y 是2C 上的两个不同点,且满足:090AOB ∠=,0m >,0n <.请你用含有m 的表达式表示出△AOB 的面积S ,并求出S 的最小值及S 取最小值时一次函数OA 的函数解析式。
解析:(1)∵抛物线过(0,-3)点,∴-3a =-3 ∴a =1 ∴y=x 2+bx -3∵x 2+bx -3=0的两根为x 1,x 2且21x -x =4∴21221214)(x x x x x x -+=-=4且b <0∴b =-2∴y=x 2-2x -3=(x -1)2-4∴抛物线C1的顶点坐标为(1,-4) (2)∵x >0,∴0)1(212≥-=-+xx xx ∴,21≥+x x 显然当x =1时,才有,21=+xx(3)方法一:由平移知识易得C2的解析式为:y=x 2∴A(m ,m 2),B (n ,n 2) ∵ΔAOB 为Rt Δ ∴OA 2+OB 2=AB 2∴m 2+m 4+n 2+n 4=(m -n )2+(m 2-n 2)2化简得:m n =-1 ∵SΔAOB =OB OA •21=424221n n m m +•+ ∵m n =-1 ∴SΔAOB =22221221221mm n m ++=++ =1221121)1(212=⨯≥⎪⎭⎫ ⎝⎛+=+m m m m ∴SΔAOB 的最小值为1,此时m =1,A(1,1)∴直线OA 的一次函数解析式为y=x方法提炼:①已知一元二次方程两个根x 1,x 2,求|x 1-x 2|。
因为|x 1-x 2|=212214x x )x (x -+ ②,取得最小值。
时,当211);(,21=+=>≥+mm m o m m m 例3:如图,已知抛物线经过点A (﹣1,0)、B (3,0)、C (0,3)三点.(1)求抛物线的解析式.(2)点M 是线段BC 上的点(不与B ,C 重合),过M 作MN ∥y 轴交抛物线于N ,若点M 的横坐标为m ,请用m 的代数式表示MN 的长.(3)在(2)的条件下,连接NB 、NC ,是否存在m ,使△BNC 的面积最大?若存在,求m 的值;若不存在,说明理由. 解析:(1)设抛物线的解析式为:y=a (x+1)(x ﹣3),则: a (0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x ﹣3)=﹣x 2+2x+3. (2)设直线BC 的解析式为:y=kx+b ,则有:,解得;故直线BC 的解析式:y=﹣x+3.已知点M 的横坐标为m ,则M (m ,﹣m+3)、N (m ,﹣m 2+2m+3);∴故MN=﹣m 2+2m+3﹣(﹣m+3)=﹣m 2+3m (0<m <3). (3)如图;∵S △BNC =S △MNC +S △MNB =MN (OD+DB )=MN ×OB , ∴S △BNC =(﹣m 2+3m )×3=﹣(m ﹣)2+(0<m <3); ∴当m=时,△BNC 的面积最大,最大值为.方法提炼:因为△BNC 的面积不好直接求,将△BNC 的面积分解为△MNC 和△MNB的面积和。
然后将△BNC 的面积表示出来,得到一个关于m 的二次函数。
此题利用的就是二次函数求最值的思想,当二次函数的开口向下时,在顶点处取得最大值;当二次函数的开口向上时,在顶点处取得最小值。
题型二:二次函数与三角形的综合问题例4:如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点.(1)求抛物线的解析式;(2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.解:(1):由题意得,A (3,0),B (0,3)∵抛物线经过A 、B 、C 三点,∴把A (3,0),B (0,3),C (1,0)三点分别代入2y ax bx c =++得方程组解得:⎪⎩⎪⎨⎧=-==341c b a∴抛物线的解析式为243y x x =-+(2)由题意可得:△ABO 为等腰三角形,如图所示, 若△ABO∽△AP 1D ,则1DP OBAD AO =∴DP 1=AD=4 ,∴P 1(1,4)-若△ABO∽△ADP 2 ,过点P 2作P 2 M⊥x 轴于M ,AD=4, ∵△ABO 为等腰三角形, ∴△ADP 2是等腰三角形,由三线合一可得:DM=AM=2= P 2M , 即点M 与点C 重合 ∴P 2(1,2) (3)如图设点E (,)x y ,则①当P 1(-1,4)时,S 四边形AP1CE =S △ACP1+S △ACE = 4y +∴24y y =+ ∴4y =∵点E 在x 轴下方 ∴4y =-代入得: 2434x x -+=-,即 0742=+-x x ∵△=(-4)2-4×7=-12<0 ∴此方程无解②当P 2(1,2)时,S 四边形AP2CE =S 三角形ACP2+S 三角形ACE = 2y +∴22y y =+ ∴2y =∵点E 在x 轴下方 ∴2y =- 代入得:2432x x -+=-即 0542=+-x x ,∵△=(-4)2-4×5=-4<0 ∴此方程无解综上所述,在x 轴下方的抛物线上不存在这样的点E 。
方法提炼:①求一点使两个三角形相似的问题,我们可以先找出可能相似的三角形,一般是有几种情况,需要分类讨论,然后根据两个三角形相似的边长相似比来求点的坐标。
②要求一个动点使两个图形面积相等,我们一般是设出这个动点的坐标,然后根据两个图形面积相等来求这个动点的坐标。
如果图形面积直接求不好求的时候,我们要考虑将图形面积分割成几个容易求解的图形。
例5:如图,点A 在x 轴上,OA=4,将线段OA 绕点O 顺时针旋转120°至OB 的位置. (1)求点B 的坐标;(2)求经过点A .O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,说明理由. 解析:(1)如图,过B 点作BC⊥x 轴,垂足为C ,则∠BCO=90°, ∵∠AOB=120°, ∴∠BOC=60°, 又∵OA=OB=4,∴OC=OB=×4=2,BC=OB?sin60°=4×=2,∴点B 的坐标为(﹣2,﹣2); (2)∵抛物线过原点O 和点A .B ,∴可设抛物线解析式为y=ax 2+bx , 将A (4,0),B (﹣2.﹣2)代入,得,解得,∴此抛物线的解析式为y=﹣x 2+x(3)存在,如图,抛物线的对称轴是x=2,直线x=2与x 轴的交点为D ,设点P 的坐标为(2,y ), ①若OB=OP ,则22+|y|2=42,解得y=±2,当y=2时,在Rt△POD中,∠PDO=90°,sin∠POD==,∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2),方法提炼:求一动点使三角形成为等腰三角形成立的条件,这种题型要用分类讨论的思想。
因为要使一个三角形成为等腰三角形,只要三角形的任意两个边相等就可以,所以应该分三种情况来讨论。
题型三:二次函数与四边形的综合问题例6:综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于A.B两点,与y 轴交于点C,点D是该抛物线的顶点.(1)求直线AC的解析式及B,D两点的坐标;(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A.P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.解析:(1)当y=0时,﹣x2+2x+3=0,解得x 1=﹣1,x2=3.∵点A在点B的左侧,∴A.B的坐标分别为(﹣1,0),(3,0).当x=0时,y=3.∴C点的坐标为(0,3)设直线AC的解析式为y=k1x+b1(k1≠0),则,解得,∴直线AC的解析式为y=3x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4).(2)抛物线上有三个这样的点Q,①当点Q在Q1位置时,Q1的纵坐标为3,代入抛物线可得点Q1的坐标为(2,3);②当点Q在点Q2位置时,点Q2的纵坐标为﹣3,代入抛物线可得点Q2坐标为(1+,﹣3);③当点Q在Q3位置时,点Q3的纵坐标为﹣3,代入抛物线解析式可得,点Q3的坐标为(1﹣,﹣3);综上可得满足题意的点Q有三个,分别为:Q1(2,3),Q2(1+,﹣3),Q3(1﹣,﹣3).(3)点B作BB′⊥AC于点F,使B′F=BF,则B′为点B关于直线AC 的对称点.连接B′D交直线AC与点M,则点M为所求,过点B′作B′E⊥x轴于点E.∵∠1和∠2都是∠3的余角,∴∠1=∠2.∴Rt△AOC~Rt△AFB,∴,由A(﹣1,0),B(3,0),C(0,3)得OA=1,OB=3,OC=3,∴AC=,AB=4.∴,∴BF=,∴BB′=2BF=,由∠1=∠2可得Rt△AOC∽Rt△B′EB,∴,∴,即.∴B′E=,BE=,∴OE=BE﹣OB=﹣3=.∴B′点的坐标为(﹣,).设直线B′D的解析式为y=k2x+b2(k2≠0).∴,解得,∴直线B'D的解析式为:y=x+,联立B'D与AC的直线解析式可得:,解得,∴M点的坐标为(,).方法提炼:求一动点使四边形成为平行四边形成立的条件,这种题型要用分类讨论的思想,一般需要分三种情况来讨论。