分子生物学实验
- 格式:doc
- 大小:1.51 MB
- 文档页数:16
分子生物学实验方法1.DNA提取与纯化DNA提取是分子生物学实验中最常用的技术之一,用于从不同种类样本中提取纯化DNA。
常见的提取样本包括细菌、动植物组织以及人体样本。
提取过程通常包括细胞破碎、蛋白质除去、DNA溶解和纯化等步骤。
常用的提取方法包括酚/氯仿提取法、CTAB提取法和商业化提取试剂盒。
2.PCR(聚合酶链反应)PCR是一种高效扩增DNA的技术,可将一小段目标DNA序列扩增成数百万个拷贝。
PCR反应通常包括DNA模板、两个引物、dNTPs(四种核苷酸单元)和DNA聚合酶等成分。
反应的核心步骤是多个高温循环,包括变性(解开DNA的双链)、退火(引物结合到目标序列)和延伸(DNA聚合酶合成新链)等步骤。
PCR广泛应用于分子克隆、基因表达研究、疾病诊断等领域。
3.转染和转化转染和转化是将外源DNA导入宿主细胞中的技术。
转染是指将DNA导入非真核细胞(如细菌)或真核无性细胞中,常用的方法包括电穿孔法、化学法和病毒载体介导等。
转化是指将外源DNA导入真核多细胞直至整个个体范围内,常见的方法包括冷冻转化、冲击转化和基因枪法等。
4.蛋白质表达和纯化蛋白质表达和纯化是研究蛋白质结构和功能的关键步骤。
常见的表达系统包括细菌系统(如大肠杆菌)、酵母系统(如酵母菌)和哺乳动物细胞系统(如CHO细胞)。
表达后,蛋白质需要经过多个步骤进行富集和纯化,如离心、柱层析和亲和层析等。
以上仅是分子生物学实验方法中的一部分,随着技术的发展,分子生物学实验方法也在不断更新和扩展。
这些实验方法在疾病诊断、基因工程、生物学研究等领域发挥了重要作用。
分子生物学实验技术目录实验一细菌的培养 2实验二质粒DNA的提取 3实验三紫外吸收法测定核酸浓度与纯度 4实验四水平式琼脂糖凝胶电泳法检测DNA 5实验五质粒DNA酶切及琼脂糖电泳分析鉴定 7实验六植物基因组DNA提取、酶切及电泳分析 8实验七聚合酶链反应(PCR)技术体外扩增DNA 9实验八 RNA提取与纯化 11实验九 RT-PCR扩增目的基因cDNA 13实验十质粒载体和外源DNA的连接反应 15实验十一感受态细胞的制备及转化 16实验十二克隆的筛选和快速鉴定 18实验十三 DNA分析——Southern杂交 19一基本操作实验一、细菌培养实验二、质粒DNA提取实验三、紫外吸收法测定核酸浓度与纯度实验四、水平式琼脂糖凝胶电泳法检测DNA实验五、质粒DNA酶切及琼脂糖电泳分析鉴定实验六、植物基因组DNA提取、定量、酶切及电泳分析实验八、植物RNA提取及纯化二、目的基因获取实验七、聚合酶链式反应(PCR)技术体外扩增DNA实验九、RT-PCR扩增目的基因cDNA三、目的基因的克隆和表达实验十、质粒载体和外源DNA的连接反应实验十一、感受态细胞的制备及转化实验十二、克隆的筛选和快速鉴定实验十三、DNA分析——Southern杂交实验一细菌的培养一、目的学习细菌的培养方法及培养基的配置。
二、原理在基因工程实验和分子生物学实验中,细菌是不可缺少的实验材料。
质粒的保存、增殖和转化;基因文库的建立等都离不开细菌。
特别是常用的大肠杆菌。
大肠杆菌是含有长约3000kb的环状染色体的棒状细胞。
它能在仅含碳水化合物和提供氮、磷和微量元素的无机盐的培养基上快速生长。
当大肠杆菌在培养基中培养时,其开始裂殖前,先进入一个滞后期。
然后进入对数生长期,以20~30min复制一代的速度增殖。
最后,当培养基中的营养成分和氧耗尽或当培养基中废物的含量达到抑制细菌的快速生长的浓度时,菌体密度就达到一个比较恒定的值,这一时期叫做细菌生长的饱和期。
分子生物学实验(1)琼脂糖凝胶电泳进行DNA分离原理琼脂糖是从琼脂中提取的一种多糖,具亲水性,但不带电荷,是一种很好的电泳支持物。
DNA分子在琼脂糖凝胶中时有电荷效应和分子筛效应。
DNA分子在高于等电点的溶液中带负电荷,在电场中向正极移动。
在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应。
具有不同的相对分子质量的DNA片段泳动速度不一样,可进行分离。
相对分子质量相同,但构型不同的DNA分子泳动速度不一样。
最前沿的是SCDNA,其后依次是L DNA和OC DNAEB(溴化乙锭)的作用是染色剂,可以插入到DNA的双链中,在紫外线的作用下,会发出白光电泳缓冲液的PH在6~9之间,离子强度0.02~0.05最合适,琼脂糖凝胶约可区分相差100bp的DNA片段,。
(2)SDS法提取植物基因组DNA的原理利用含高浓度SDS的抽提缓冲液在较高温度(55~65度)条件下裂解植物细胞,使染色体离析,蛋白质变性,释放出核酸,然后提高盐浓度(KAc)和降低温度(冰上保温)的办法沉淀除去蛋白质和多糖(在低温下KAc与蛋白质及多糖结合成不溶物),离心除去沉淀后,上清液中的DNA用酚/氯仿抽提,反复抽提后用乙醇沉淀水相中的DNA。
(3)DNA回收试剂盒回收DNA原理从琼脂糖凝胶中回收DNA片段.可得到大小一致的DNA片段。
先使凝胶被溶胶液溶解,然后DNA与HiBindTM DNA柱子结合,再从HiBindTM DNA柱子中洗脱出DNA片段。
HiBindTM DNA柱子可以在某种适宜的情况下高效而可逆地结合DNA/RNA,除去蛋白质及其他杂质,而被结合的核酸能很容易地被去离子水或低盐缓冲液洗脱出来。
(4)利用PCR扩增目的基因原理利用DNA半保留复制,在试管中进行DNA的扩人工复制,在很短时间内,将DNA扩增几百万倍甚至几十亿倍,使实验室所需的遗传物质不再受限于活的生物体。
PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA 经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。
常见分子生物学实验方法1.DNA/RNA提取DNA和RNA提取是进行分子生物学实验的第一步。
常见的提取方法包括酚/氯仿法、离心法、基于载体的提取等。
这些方法可以从细胞、组织或血液中提取出高质量的DNA或RNA用于后续实验。
2.PCR扩增聚合酶链反应(PCR)是一种常用的体外DNA扩增技术,用于复制特定DNA片段。
通过PCR,可以从少量的DNA样本中扩增目标序列,并与特异性引物一起进行扩增。
PCR具有高度特异性和灵敏度,广泛应用于基因克隆、基因检测和定量分析等领域。
3.基因克隆基因克隆是指将特定目标基因从一个有机体中分离并插入到另一个有机体中。
常见的基因克隆方法包括限制性内切酶消化、连接、转化、筛选等。
基因克隆可以用于生成重组DNA、构建表达载体、设计并构建突变基因、重组蛋白质等。
4.蛋白质表达和纯化蛋白质表达和纯化是研究蛋白质功能和结构的重要步骤。
常见的表达系统包括细菌、酵母、昆虫细胞、哺乳动物细胞等。
表达后,通过亲和纯化、离子交换层析、凝胶过滤等手段纯化所得蛋白质。
5.基因敲除/敲入基因敲除或敲入是通过改变目标基因的DNA序列来研究基因功能的方法。
基因敲除可以通过CRISPR-Cas9系统、RNA干扰、转座酶介导的基因敲入等方法实现。
6.DNA测序DNA测序是分析DNA序列的方法。
常见的测序技术包括Sanger测序、下一代测序(包括Illumina、Ion Torrent、PacBio等)等。
DNA测序可以应用于基因组学、转录组学、评估其中一区域的突变等领域。
7.西方印迹西方印迹是一种蛋白质检测方法,用于检测和定量特定蛋白质的存在和表达水平。
通过电泳将蛋白质分离,然后转移到膜上,并使用特异性抗体与目标蛋白质结合,最后通过酶标记二抗或荧光二抗的检测。
8.荧光定量PCR荧光定量PCR(qPCR)是一种用于定量分析DNA或RNA浓度的方法。
通过特异性引物、探针与目标序列的结合,实时检测并记录PCR扩增产物的信号,进而测定起始目标序列的数量。
分子生物学实验分子生物学实验是一种研究生物体分子结构、功能和交互作用的实验方法。
本文将介绍分子生物学实验的一般步骤和常用技术,并以DNA提取和PCR扩增为例,详细描述了实验的具体步骤和操作。
分子生物学实验一般包括以下几个步骤:实验前的准备、生物样品的采集和处理、核酸提取、酶切和电泳、PCR扩增、蛋白质表达等。
实验前的准备包括实验设计、试剂的准备和设备的调试。
根据实验目的和问题,确定实验设计和具体操作步骤,选择适当的试剂和设备,并对实验条件进行优化。
生物样品的采集和处理是分子生物学实验的基础。
根据研究对象不同,可以采集细胞、组织、血液等生物样品,并进行预处理,如细胞培养、组织切片、离心等。
核酸提取是从生物样品中分离出核酸的步骤。
核酸提取可以使用化学方法或基于特定原理的商业试剂盒。
其中,常用的方法有酚/氯仿法、骨架蛋白法、磁珠法等。
酶切和电泳是分子生物学实验中常用的技术手段。
酶切是通过限制性内切酶对DNA进行特异性切割,生成特定大小的DNA片段。
电泳是利用电场对DNA片段进行分离和检测,可通过琼脂糖凝胶电泳或聚丙烯酰胺凝胶电泳进行。
PCR扩增是一种重要的分子生物学实验技术。
PCR通过不断循环的变性、退火和延伸过程,在体外扩增DNA序列。
PCR 需要DNA模板、引物、核苷酸和聚合酶等关键试剂。
PCR扩增过程包括初始变性、循环扩增和最终延伸。
扩增产物可通过琼脂糖凝胶电泳进行分析和检测。
蛋白质表达是研究蛋白质功能和结构的重要实验手段。
常用的蛋白质表达系统包括原核表达系统和真核表达系统。
表达载体经过构建和转染后,利用细胞的表达机制使蛋白质在体内合成。
总之,分子生物学实验是研究生物体分子结构和功能的重要方法。
通过实验前的准备、生物样品的采集和处理、核酸提取、酶切和电泳、PCR扩增、蛋白质表达等步骤,可以获得关于生物体分子结构和功能的有价值的信息。
分子生物学实验分子生物学实验是研究生命分子结构和功能的基础。
分子生物学的研究对象是生命体内的DNA、RNA、蛋白质等生物分子,通过实验可深入了解生命分子的结构及其功能,为治疗疾病等产生重要的科研意义。
本文将着重介绍PCR扩增、基因克隆、蛋白质表达和酶联免疫吸附实验等分子生物学实验。
PCR扩增PCR扩增是分子生物学领域中使用最广泛的实验技术之一。
PCR扩增技术是通过不断的复制,使DNA分子增多。
PCR主要操作步骤包括:DNA样品提取、模板DNA扩增、DNA回收纯化和定量检测等。
PCR扩增实验分为两部分:第一部分是制备PCR反应混合物,包括模板DNA、引物(Primer)、反应缓冲液、酶、脱离剂、种子液等。
制备反应混合物的过程中,需要将所有的试剂按照一定比例混合后,将混合液均匀吸入PCR管内。
第二部分是PCR反应实验本身,包括控制PCR反应温度变化、确保每个PCR 反应的时间和温度一致、等等。
PCR反应时间通常在2-6小时之间,取决于所扩增的DNA片段的长度和针对不同目标所使用的引物。
基因克隆基因克隆是利用重组DNA技术将外源DNA和载体DNA组装重组成新的DNA分子,然后通过转化等方式将新的DNA分子转移到感受态宿主细胞中,使得新的DNA分子被细胞所接受并复制,从而达到克隆目的的一种实验方法。
基因克隆实验的主要操作步骤包括:选取适当的载体,将所需要的外源DNA和载体DNA连接起来组成重组DNA分子,将重组DNA分子转化至感受态宿主细胞中,最后从发酵液中提取所需的目标DNA分子。
基因克隆技术在分子生物学实验研究中起到了重要的作用,使得我们能够制备大量目标分子用于进一步的研究。
蛋白质表达蛋白质表达是一种将蛋白质合成出来的实验技术。
蛋白质表达技术的主要目的是利用外源基因的扩增技术,将目标蛋白表达并纯化出来,从而进一步深入了解蛋白质的结构及其功能。
蛋白质表达实验的主要操作步骤是:蛋白质的基因落库、基因克隆到重组基因载体中、启动子、子纯化表达及活性鉴定等。
分子生物学实验技术
第一篇:PCR技术
PCR(聚合酶链反应)是一种基于体外体内 DNA 复制的技术。
PCR 技术广泛应用于分子生物学、生物医学研究、医学诊断、生物技术等领域。
在 PCR 中,核酸模板、引物、聚合酶和反应缓冲液是必不可少的组成部分。
PCR 引物是在特定位置的 DNA 片段,用于诱导聚合酶模板 DNA 的扩增。
聚合酶通过催化模板 DNA 在 DNA 引物的引导下合成相应的 DNA 片段,产生大量的重复 DNA 片段。
PCR 是一种快速、高效、灵敏的 DNA 分析技术,可以对非常小的样本进行扩增。
PCR 的操作流程如下:
1.取得合适的 DNA 样品。
2.准备 PCR 反应体系,包括 PCR 反应缓冲液、聚合酶、DNA 模板和引物。
3.用 PCR 机进行程序设定和反应。
4.检查 PCR 反应产物,包括 PCR 产物的带型和验证PCR 产物的特异性和纯度等。
PCR 的应用
1.DNA 序列鉴定以及 DNA 序列变异检测。
2.基因表达分析、基因定量、等位基因分析等基因功能研究操作。
3.分子诊断,可以根据染色体、基因、蛋白质等材料进行分析。
4.农业和畜牧业生物工程的研究。
优点:
PCR 反应时间逐渐缩短,灵敏度高,重现性好,稳定性强。
PCR 技术可以在非常小范围内进行 DNA 分析,并可以处理复杂的实验体系。
缺点:
PCR 技术还有一些局限性,比如需要合理设计引物,需要准确的温度控制,需要恰当的试剂,且对样品的纯度和净化度有严格的要求。
分子生物学实验第一篇:PCR技术在分子生物学中的应用PCR(聚合酶链式反应)是分子生物学中一项广泛应用的技术,被用于DNA的扩增和检测。
PCR技术已经成为了分子生物学和生物医学研究的基础技术之一。
PCR技术被广泛的应用于遗传学、人类学、医学研究、植物学和动物学研究等各领域。
PCR技术的基本原理是:通过提取DNA,将DNA特异性引物与模板DNA相结合,利用热稳定DNA聚合酶和四种脱氧核苷酸为反应体系提供能量,使其在一定条件下循环扩增目标DNA片段。
通过PCR扩增后的DNA片段可以进行进一步的分析和检测。
PCR技术的扩增具有明显的优势,可同时扩增不同长度的DNA片段,扩增时间短,扩增的精度和重复性高,且所需的样本量小。
PCR技术在分子诊断、基因组学和分子系统学等领域的应用不断扩展和深化。
随着PCR技术的不断发展,PCR在分子生物学研究中的应用越来越广泛,成为分子生物学研究的重要工具。
第二篇:RNA干扰技术在分子生物学中的应用RNA干扰(RNAi)是分子生物学中一种重要的现象,其中小分子RNA片段通过RNAi途径参与靶基因的沉默和调节。
RNAi技术是人类基因功能研究中最具前途的一种技术之一。
RNA干扰技术的基本原理是通过利用RNAi分子的特异性配对功能,引导RNAi分子与靶基因mRNA相结合,导致mRNA的降解和翻译的抑制,实现对基因表达的调控。
RNA干扰技术在分子生物学研究中有广泛的应用,如:功能基因的筛选、基因表达调节、基因功能验证等。
RNA干扰技术具有多种优点,如高效性、特异性强、节约时间、资源和成本等方面的优势,逐步成为生命科学研究中的重要工具。
在研究过程中,RNA干扰技术常用于寻找分子病理学中新的治疗靶点,鉴定靶点基因和靶点蛋白,为新药物的开发和临床治疗提供了重要的理论和实验基础。
第三篇:基因克隆技术在分子生物学中的应用基因克隆技术始于20世纪70年代,是指将DNA分子导入到载体中,使其在细胞中进行表达的过程。
分子生物学实验在分子生物学领域,实验是非常重要的手段,可以帮助科学家们深入研究细胞和遗传信息的奥秘。
本文将介绍分子生物学实验的一般步骤和常见技术,为读者提供一个全面的了解。
实验准备在进行任何分子生物学实验之前,实验室必须准备好所有必需的试剂和器材。
这些试剂包括DNA酶、引物、缓冲液等,而器材则包括PCR仪、电泳仪、热循环仪等。
此外,实验室还需要保持清洁、有序,以确保实验结果的准确性和可重复性。
核酸提取在进行分子生物学实验时,研究人员通常需要提取目标细胞或组织中的核酸,如DNA和RNA。
这个步骤非常关键,因为核酸是遗传信息的载体,对后续实验至关重要。
PCR扩增PCR(聚合酶链反应)是一种常用的技术,可以在体外复制DNA片段。
通过PCR扩增,科学家们可以快速获得大量特定DNA序列,为后续实验提供充足的材料。
凝胶电泳凝胶电泳是一种常用的分离和分析DNA片段的技术。
通过在凝胶电泳仪中施加电场,可以使DNA片段根据大小在凝胶中移动,从而实现分离和检测。
蛋白表达和纯化在分子生物学研究中,研究人员经常需要表达和纯化特定蛋白。
通过基因工程技术,科学家们可以将目标基因插入表达载体中,在宿主细胞中大量表达目标蛋白,并通过纯化步骤获得纯净的蛋白样品。
分子克隆分子克隆是将某一DNA片段插入到另一DNA分子中的过程,常用于构建重组DNA、重组蛋白等。
通过分子克隆技术,科学家们可以研究和改变生物体内的基因组成。
实验结果分析一旦实验完成,科学家们需要对实验结果进行分析和解读。
这通常涉及到数据处理、图表绘制、统计学分析等工作,以确保实验结论的准确性和可靠性。
结论与展望分子生物学实验在揭示生命的奥秘和解决重大疾病方面起着至关重要的作用。
随着技术的不断发展和创新,我们相信分子生物学实验将在未来展现出更广阔的发展前景,为人类健康和生活质量带来更多的希望。
希望本文能够帮助读者更好地了解分子生物学实验的基本原理和方法,激发更多人对分子生物学这一神奇领域的兴趣和热爱。
分子生物学实验室常见实验1.基因克隆实验:基因克隆实验是一种常见的分子生物学实验,其目的是将感兴趣的DNA序列克隆到重组DNA分子中。
这个实验通常包括DNA的摘取、PCR扩增、限制性内切酶的消化、连接载体、转化大肠杆菌等步骤。
2. 蛋白质表达实验:蛋白质表达实验是一种常见的分子生物学实验,其目的是将感兴趣的蛋白质表达到大肠杆菌等宿主细胞中。
这个实验通常包括将感兴趣的基因克隆到表达载体中,表达载体转化至宿主细胞,利用诱导剂等物质诱导表达蛋白质等步骤。
3. PCR实验:PCR实验是一种基于酶催化反应的分子生物学实验。
该实验通过模板DNA、引物、酶及核苷酸等原料,经一系列温度变化,扩增目标DNA片段。
该实验通常用于基因克隆、DNA测序、点突变检测等领域。
4. DNA测序实验:DNA测序实验是一种常见的分子生物学实验,其目的是确定DNA序列。
这个实验通常包括PCR扩增、DNA纯化、测序反应、数据分析等步骤。
5. RNA干扰实验:RNA干扰实验是一种常见的分子生物学实验,其目的是利用RNA干扰技术抑制特定基因的表达。
这个实验通常包括制备siRNA、合成siRNA、转染细胞等步骤。
6. 蛋白质纯化实验:蛋白质纯化实验是一种常见的分子生物学实验,其目的是将感兴趣的蛋白质从混合物中提纯出来。
这个实验通常包括细胞裂解、纯化、检测等步骤。
7. 荧光检测实验:荧光检测实验是一种常见的分子生物学实验,其目的是利用荧光分子标记分子或细胞等,观察其分布、表达及功能等。
这个实验通常包括荧光染色、荧光显微镜观察等步骤。
8. 基因编辑实验:基因编辑实验是一种新兴的分子生物学实验,其目的是通过基因编辑技术,直接改变DNA序列,从而实现对基因的修饰。
这个实验通常包括CRISPR/Cas9等基因编辑技术的设计、实现、检测等步骤。
分子生物学实验分子生物学实验I. 实验概述分子生物学是生物学的一个重要分支,主要研究生物分子的结构、功能及其在生命过程中的作用。
在现代生命科学研究中,分子生物学技术的应用越来越广泛,包括基因克隆、基因表达、蛋白质结构、信号转导等多个方面。
本实验将介绍几种基本的分子生物学实验操作,包括DNA的提取、PCR扩增、电泳检测和蛋白质的SDS-PAGE分析,旨在提高学生对分子生物学基础知识和实验技能的掌握。
II. 实验材料及设备1. 细菌培养基、磷酸盐缓冲液、EDTA、裂解液等试剂;2. 离心管、洗涤管、PCR管、电泳槽等设备;3. 离心机、PCR仪、电泳仪等设备。
III. 实验步骤1. DNA的提取(1) 收集细胞收集需要提取DNA的细胞,如细菌、白细胞等。
将细胞转移到1.5mL离心管中。
(2) 细胞裂解加入200μl裂解液,轻轻摇晃离心管,使细胞充分裂解。
离心管可置于65°C水浴中处理10分钟,使DNA完全裂解。
(3) DNA提取加入500μl磷酸盐缓冲液和10μl EDTA,混匀后离心5分钟。
取上清液转移至新的离心管中,加入等体积的异丙醇,并轻轻倒置,使DNA在异丙醇界面上结团。
放置室温下10分钟,使用洗涤管将DNA结团转移到另一离心管中。
加入70%乙醇溶液洗涤2-3次,最后去除乙醇,用无菌水溶解DNA。
2. PCR扩增(1) 设计引物、制备PCR反应液按照所需扩增的DNA序列设计引物,制备PCR反应液,包括所需模板DNA、引物、Taq聚合酶、MgCl2等。
(2) PCR条件将PCR反应管放置PCR仪中,经过若干个循环,达到最终PCR产物的扩增。
PCR条件通常应选择对应引物特异性、Tm温度适中,并根据Taq聚合酶的活性和反应体系的最适条件优化所得。
常用的PCR条件为95℃预变性5min,94℃变性30s,Tm温度退火30s,72℃延伸1min,循环30-35次,最后72℃加延伸10min。
分子生物学实验引言分子生物学实验是研究生物体分子层面的结构和功能的实验方法。
通过在分子水平上研究细胞中的基因表达、蛋白质合成和代谢等过程,可以全面了解生物体的生理机制和疾病发生的分子基础。
本文将介绍常见的分子生物学实验方法和技术。
1. DNA提取实验DNA提取是分子生物学实验中的基础步骤,它的目的是从细胞中分离出DNA。
常用的DNA提取方法有酚/氯仿法、CTAB法和商业试剂盒法等。
以下是酚/氯仿法的步骤:1.收集样本组织或细胞:可以使用动植物组织、细菌、真菌等样本。
2.细胞破碎:使用细胞破碎缓冲液将样本破碎,释放出内部的细胞和胞浆。
3.蛋白质沉淀:加入酚/氯仿缓冲液,使蛋白质从细胞裂解物中沉淀。
4.DNA沉淀:将上一步的上清液加入异丙醇中沉淀DNA。
5.洗涤和溶解:用乙醇洗涤并净化DNA沉淀,最后用缓冲液溶解DNA。
2. PCR实验PCR(聚合酶链反应)是分子生物学中的一种重要技术,用于扩增特定的DNA片段。
PCR实验一般包括以下步骤:1.DNA模板准备:提取好的DNA作为PCR反应的模板。
2.反应组分配置:配置PCR反应体系,包括引物、脱氧核苷酸(dNTPs)、聚合酶和缓冲液等。
3.反应条件设定:设置PCR反应的温度和时间参数,包括变性、退火和延伸步骤。
4.PCR扩增反应:将PCR反应体系放入热循环仪中进行循环扩增。
5.PCR产物分析:使用凝胶电泳等方法对PCR产物进行分析和检测。
3. 克隆实验克隆实验是将DNA片段插入到载体DNA中,并通过细胞转化和筛选得到含有目标DNA的克隆。
以下是常见的克隆实验步骤:1.DNA片段选择:根据需要选择目标DNA片段,并通过酶切或PCR方法制备。
2.载体准备:选择适当的载体,如质粒或噬菌体,并进行酶切或PCR扩增。
3.构建重组体:将目标DNA片段和载体DNA连接,形成重组DNA。
4.细胞转化:将重组DNA引入宿主细胞中。
5.筛选克隆:通过筛选方法(如抗生素筛选)获得含有目标DNA的克隆。
分子生物学实验1. 幸免长时刻的培养,大肠杆菌一样培养12个小时就能够挑取克隆子进行验证了。
要紧是因为培养时刻过长,专门是含有Amp抗性的质粒。
重组菌能够分泌酶降解Amp,造成平板中局部Amp浓度太低。
其他未重组菌在A mp存在的情形下只是生长受抑制而非死亡,当Amp浓度降低时就能够生长了。
卫星菌落,由于阳性菌落大量分解抗生素,造成周围区域抗生素浓度降低,则无抗性的菌也生长出来了。
一句话,你的板子培养时刻过长了。
这是amp抗性质粒特有的卫星菌落,确实是又抗性的E col分泌beta 内酰胺酶分解周围的amp,从而使没有抗性的e coli生长。
2.3. 乙醇能够排除核酸的水化层,使带负电荷的磷酸基团暴露出来。
Na+之类的平稳离子能够与这些带电基团结合,在沉淀形成部位降低多核苷酸链之间的排斥作用。
因此只有在阳离子的量足以中和暴露的磷酸残基的电荷时才会发生乙醇沉淀。
1.什么原因用无水乙醇沉淀DNA?用无水乙醇沉淀DNA,这是实验中最常用的沉淀DNA的方法。
乙醇的优点是能够任意比和水相混溶,乙醇与核酸可不能起任何化学反应,对DNA专门安全,因此是理想的沉淀剂。
DNA溶液是DNA以水合状态稳固存在,当加入乙醇时,乙醇会夺去DNA周围的水分子,使DNA失水而易于聚合。
一样实验中,是加2倍体积的无水乙醇与DNA相混合,其乙醇的最终含量占67%左右。
因而也可改用95%乙醇来替代无水乙醇(因为无水乙醇的价格远远比95%乙醇昂贵)。
然而加95%的乙醇使总体积增大,而DNA在溶液中有一定程度的溶解,因而DNA缺失也增大,专门用多次乙醇沉淀时,就会阻碍收得率。
折中的做法是初次沉淀DNA时可用95%乙醇代替无水乙酵,最后的沉淀步骤要使用无水乙醇。
也能够用0.6倍体积的异丙醇选择性沉淀DNA。
一样在室温下放置15-30分钟即可。
2.在用乙醇沉淀DNA时,什么原因一定要加NaAc或NaCl至最终浓度达0.1~0.25mol/L?在pH为8左右的溶液中,DNA分子是带负电荷的,加一定浓度的N aAc或NaCl,使Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,易于互相聚合而形成DNA钠盐沉淀,当加入的盐溶液浓度太低时,只有部分DNA形成DNA钠盐而聚合,如此就造成DNA沉淀不完全,当加入的盐溶液浓度太高时,其成效也不行。
分子生物学实验技术目录实验一细菌的培养 (2)实验二质粒DNA的提取 (3)实验三紫外吸收法测定核酸浓度与纯度 (5)实验四水平式琼脂糖凝胶电泳法检测DNA (6)实验五质粒DNA酶切及琼脂糖电泳分析鉴定 (8)实验六植物基因组DNA提取、酶切及电泳分析 (9)实验七聚合酶链反应(PCR)技术体外扩增DNA (10)实验八RNA提取与纯化 (12)实验九RT-PCR扩增目的基因cDNA (15)实验十质粒载体和外源DNA的连接反应 (17)实验十一感受态细胞的制备及转化 (18)实验十二克隆的筛选和快速鉴定 (20)实验十三DNA分析——Southern杂交 (22)一基本操作实验一、细菌培养实验二、质粒DNA提取实验三、紫外吸收法测定核酸浓度与纯度实验四、水平式琼脂糖凝胶电泳法检测DNA实验五、质粒DNA酶切及琼脂糖电泳分析鉴定实验六、植物基因组DNA提取、定量、酶切及电泳分析实验八、植物RNA提取及纯化二、目的基因获取实验七、聚合酶链式反应(PCR)技术体外扩增DNA实验九、RT-PCR扩增目的基因cDNA三、目的基因的克隆和表达实验十、质粒载体和外源DNA的连接反应实验十一、感受态细胞的制备及转化实验十二、克隆的筛选和快速鉴定实验十三、DNA分析——Southern杂交实验一细菌的培养一、目的学习细菌的培养方法及培养基的配置。
二、原理在基因工程实验和分子生物学实验中,细菌是不可缺少的实验材料。
质粒的保存、增殖和转化;基因文库的建立等都离不开细菌。
特别是常用的大肠杆菌。
大肠杆菌是含有长约3000kb的环状染色体的棒状细胞。
它能在仅含碳水化合物和提供氮、磷和微量元素的无机盐的培养基上快速生长。
当大肠杆菌在培养基中培养时,其开始裂殖前,先进入一个滞后期。
然后进入对数生长期,以20~30min复制一代的速度增殖。
最后,当培养基中的营养成分和氧耗尽或当培养基中废物的含量达到抑制细菌的快速生长的浓度时,菌体密度就达到一个比较恒定的值,这一时期叫做细菌生长的饱和期。
分子生物学实验方法
分子生物学实验方法是研究生物分子结构、功能和相互作用的技术手段。
以下是常用的分子生物学实验方法:
1. PCR(聚合酶链式反应):PCR是一种通过体外DNA扩增技术来复制DNA 片段的方法,可以快速、高效地扩增特定DNA序列。
2. 基因克隆:通过将目标DNA片段插入到载体DNA中,形成重组DNA分子,再将重组DNA导入到宿主细胞中,从而得到大量目标DNA的方法。
3. 电泳:电泳是一种利用电场将DNA、RNA或蛋白质分子按照大小和电荷进行分离的方法。
常用的电泳包括琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳。
4. 蛋白质表达与纯化:通过在宿主细胞中表达目标蛋白质的基因,然后利用蛋白质的特异性结构、功能或抗体亲和纯化技术,从宿主细胞中纯化目标蛋白质。
5. 免疫沉淀:利用抗体与特定蛋白质结合来纯化对应的蛋白质复合物的方法。
6. 荧光显微镜:利用荧光探针标记目标生物分子,通过荧光显微镜观察和分析分子在细胞或组织中的位置和数量。
7. Northern blot和Western blot:用于检测和分析RNA和蛋白质的方法。
Northern blot可以检测特定的RNA序列,Western blot可以检测特定蛋白质。
8. 基因敲除和基因转染:通过基因敲除技术可以去除或禁止特定基因的表达,而基因转染技术可以将外源基因导入细胞中,从而改变细胞的表型。
9. 蛋白质相互作用分析:利用蛋白质相互作用分析技术,如酵母双杂交、质谱分析等,研究蛋白质之间的相互作用关系。
这些方法是分子生物学研究中常用的实验技术,可以用于从分子水平解析生物学问题,探索生物的结构和功能。
分子生物学实验分子生物学实验是一种基于分子水平研究生物学现象和分子机制的实验方法。
它通过对DNA、RNA、蛋白质等生物分子的研究,揭示生物体内发生的各种生物学现象及其分子机制,从而推动生物学的发展和进步。
分子生物学实验的方法多种多样,常用的实验手段包括DNA提取、PCR、Western blot、RT-PCR等。
其中,DNA提取是一项常用的实验技术,用于从生物样品中提取出DNA分子。
这一技术可以应用于许多领域,如基因检测、疾病诊断和亲子鉴定等。
PCR是一种用于扩增DNA片段的技术,可以快速获得大量特定的DNA序列。
Western blot则是用于检测蛋白质的一种实验方法,可以用来研究蛋白质的表达水平和功能。
RT-PCR是一种将RNA逆转录为DNA的技术,可以用于检测和测定RNA的含量及其转录水平。
在分子生物学实验中,实验者需要进行一系列实验操作,如样品处理、核酸或蛋白质分离、电泳、转染等。
在样品处理过程中,实验者需要注意样品的选择、保存和预处理,确保实验结果的准确性。
核酸或蛋白质分离是将混合物中的目标分子从其他成分中分离出来的过程。
电泳则是一种利用电场将分子按照大小和电荷进行分离的方法,常用于检测DNA、RNA和蛋白质。
转染是将外源DNA或RNA导入到细胞中的过程,通常用于基因表达、基因沉默以及细胞信号传导等研究中。
分子生物学实验还需要合理选择实验方法和实验设计,制定实验方案和步骤,并采集实验数据进行分析和解释。
通过科学的实验设计和精确的实验操作,可以获得可靠的实验结果,为生物学研究提供有力的支持。
总之,分子生物学实验是一种重要的实验方法,它为我们深入了解生物体内分子机制提供了有力的手段。
通过不断开展分子生物学实验,我们可以揭示更多生物学现象的分子机制,推动生物学领域的发展和进步。
分子生物学实验引言分子生物学是研究生物分子结构与功能的一门学科,通过实验手段来研究分子水平上的生物现象。
分子生物学实验是该学科的基础,通过实验可以得到有关分子生物学的重要数据和结论。
本文将介绍分子生物学实验的基本原理、实验方法和常用技术。
实验目的分子生物学实验的目的是为了研究和探究生物分子结构、功能和相互作用,揭示生物体内基因表达和调控的机制。
具体实验目的可以根据研究方向和课题的需求来确定。
实验材料和仪器•DNA/RNA样品:可通过提取方法从细胞或组织中获得。
•酶:常见的酶有限制性核酸内切酶、DNA/RNA聚合酶等。
•缓冲液和试剂:用于调节反应条件和提供必要的物质。
•电泳仪:用于分离和检测DNA/RNA片段。
•PCR仪:用于DNA扩增反应。
•逆转录仪:用于合成cDNA。
•光镜和荧光显微镜:用于观察和记录实验结果。
基本原理DNA/RNA提取DNA/RNA提取是分子生物学实验的基础步骤,通过此步骤可以从细胞或组织中提取出DNA或RNA,并用于后续反应。
提取方法主要包括细胞破碎、蛋白酶处理、有机溶剂抽提和纯化等。
聚合酶链式反应(PCR)PCR是一种在体外合成DNA的方法,能快速扩增DNA序列。
PCR反应需要DNA模板、引物、聚合酶和核苷酸等组分,通过多个循环的温度变化,重复进行DNA的核酸链分离、引物结合和DNA合成等步骤,达到扩增目标序列的目的。
凝胶电泳凝胶电泳是一种常用的分离DNA/RNA片段的方法。
将DNA/RNA样品加入琼脂糖凝胶孔隙中,加电使其迁移,根据片段大小不同,进行分离和检测。
凝胶电泳主要分为琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳等。
聚合酶链反应-限制性片段长度多态性(PCR-RFLP)PCR-RFLP是一种通过PCR扩增后的DNA样品再经由限制性核酸内切酶的切割,根据不同的酶切位点产生不同的DNA片段组合,从而区分不同基因型的方法。
PCR-RFLP常用于基因型鉴定和基因突变检测等。
基因克隆基因克隆是研究分子生物学的重要方法之一,通过将DNA片段插入到载体DNA中,形成重组DNA,再将其转化到宿主细胞中,实现大量复制和表达目的基因。
分子生物学实验学院:生命科学班级:生技103姓名:赵辉学号:2010013654西北农林科技大学2012. 6目录质粒DNA的提取与电泳检测P38的PCR及酶切GFP和TA克隆的转化和观察植物基因组DNA提取,酶切及电泳植物RNA提取,电泳及PT—PCR扩增Southern杂交质粒DNA的提取与电泳检测P38的PCR及酶切一、目的1. 学习碱裂解法提取质粒的原理。
2. 学习PCR反应的基本原理和实验技术,了解引物设计的一般要求。
3.学习质粒的酶切及电泳分析。
二、原理1.质粒DNA提取:质粒是一种染色体外的稳定遗传因子,具有双链闭环结构的DNA分子。
它具有自主复制能力,能使子代细胞保持它们恒定的拷贝数,可表达它携带的遗传信息。
目前,经人工改造的质粒已广泛用作基因工程中目的基因的运载工具——载体。
质粒DNA的提取是依据质粒DNA分子较染色体DNA分子小,且具有超螺旋共价闭合环状的特点,从而将质粒DNA与大肠杆菌染色体DNA分离。
现在常用的方法有:碱裂解法、密度梯度离心法、煮沸裂解法等。
实验室普遍采用的碱裂解法具有操作简便、快速、得率高的优点。
其主要原理:利用染色体DNA与质粒DNA的变性与复性的差异而达到分离的目的。
在碱变性条件下,染色体DNA的氢键断裂,双螺旋解开而变性,质粒DNA氢键也大部分断裂,双螺旋也有部分解开,但共价闭合环状结构的两条互补链不会完全分离,当pH=4.8的乙酸钠将其pH调到中性时,变性的质粒DNA又恢复到原来的构型,而染色体DNA不能复性,形成缠绕的致密网状结构,离心后,由于浮力密度不同,染色体DNA与大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。
2. PCR原理:聚合酶链反应(polymerase chain reaction,PCR)是体外酶促合成DNA片段的一种技术。
利用PCR技术可在数小时之内大量扩增目的基因或DNA片段,以用于基因工程操作。
PCR进行的基本条件:⑴DNA模板(在RT-PCR中模板是RNA)⑵引物⑶dNTP(dATP、dTTP、dGTP、dCTP)⑷Taq DNA聚合酶⑸反应缓冲体系PCR循环由三个步骤组成:⑴变性使模板DNA解离成单链;⑵退火使引物与模板DNA所需扩增序列结合;⑶延伸DNA聚合酶利用dNTP合成与模板碱基序列互补的DNA链。
每一个循环的产物可作为下一个循环的模板,通过30个左右循环后,目的片段的扩增可达106倍。
引物设计:要保证PCR反应能准确,特异,有效的对引物DNA进行扩增,通常引物设计要遵循以下原则:⑴引物长度:15~25个核苷酸;⑵GC含量为40%~60%;⑶Tm值为55℃(Tm=4(C+G)+2(A+T)计算;⑷引物与非特异配对位点的配对率小于70%;⑸引物自身配对形成的茎环结构,茎的碱基对小于3,⑹两条引物间配对碱基数小于5个。
由于影响引物的设计的因素比较多,所以常常利用计算机来辅助设计。
本实验以实验二中提取的质粒DNA为模板,进行PCR扩增,大量得到目的DNA片段。
3. 酶切与电泳限制性内切酶可以识别双链DNA特定位点,并产生特异的切割,形成粘性末端或平末端,这样有利于DNA片段再连接。
限制性内切酶对环状质粒DNA有多少切点,酶切后就能产生多少个片段。
因此,鉴定酶切后的片段在电泳凝胶的区带数,就可以推断切点的数目;从片段迁移率的大小可以判断酶切片段大小的差别。
用已知相对分子量DNA为对照,通过电泳迁移率的比较,可以粗略地测出分子形状相同的未知DNA的相对分子质量。
质粒DNA在细胞内有三种构象:①共价闭环DNA,常以超螺旋形式存在;②如果两条链中有一条链发生一处或多处断裂,分子就能旋转而消除链的张力,形成开环DNA;③线状DNA,双链DNA断开成线状。
电泳时,三种构象中,共价闭环DNA迁移率最大,其次是线状DNA和开环DNA。
因此在本实验中,质粒在电泳中呈现2~3条区带。
三.步骤1.裂解法提取质粒:(一)培养细菌将带有质粒的大肠杆菌接种于LB平板培养基上,37℃培养24小时,然后从平板上挑取单菌落,接种于5ml液体培养基中,37℃培养12小时。
(二)提取步骤1、将菌液移入1.5ml 离心管,离心30秒(13000rpm),倒去上清液,如收集3ml 菌液,重复一次,倒转于滤纸除净残液。
2、加入100μl预冷的溶液Ⅰ(含5ug/μl RNAase),用涡旋震荡器充分悬浮。
3、加入150μl溶液Ⅱ,快速颠倒温和混匀,室温放置5分钟。
此时溶液应非常粘稠。
4、加入150μl 预冷的溶液Ⅲ,温和混匀(此时应有可见沉淀),在冰浴中5分钟。
5、12000rpm离心3分钟。
转移上清液至另一1.5ml离心管中。
6、加800μl乙醇到上清液中,混匀,12000rpm离心5分钟,除去上清(尽可能除去残液)。
7、用0.5ml 70% 乙醇洗DNA沉淀一次,离心2分钟,除去乙醇(尽可能除去残液)。
8、离心干燥DNA。
9、加40μl TE溶解DNA,待用(或-20℃保存)。
2. PCR:(一)PCR扩增12、设置94 ℃ 180s94 ℃ 45s30 cycles: 55℃ 45s72 ℃ 60s72 ℃ 600s3、运行PCR程序(二)PCR产物鉴定反应结束后,取20μl PCR产物进行1.2%琼脂糖电泳分析。
3 .酶切:(一)质粒DNA酶切1、按下表将各种试剂分别加入每个Eppendorf管中,要注意管号。
2、加样后混匀,置于37℃水浴中,保温2小时。
然后每个管中加入4μlLoading buffer。
(二)琼脂糖凝胶电泳1、琼脂糖凝胶的制备称取0.4g琼脂糖加入40ml 0.5×TBE缓冲液中,加热熔解。
冷却至65℃时加入2μl EB,混匀。
2、胶板制备将凝胶槽洗净擦干,两端用胶布封好,并在一端插好梳子。
然后倒入熔好的琼脂糖,待凝胶完全凝固后,去掉两端封条,将凝胶槽移至电泳槽(槽中已加入0.5× TBE缓冲液),拔掉梳子。
注意:缓冲液要高出胶面2毫米。
3、加样每个样品中加入1/10体积点样缓冲液,混匀后小心地加入样品槽中,要避免相互污染。
4、电泳观察接通电源,电压为80V,电泳1小时左右,当溴酚蓝到达下沿1--2㎝处时,停止泳。
5、观察及照相将胶板拿出,用自来水小心地冲洗一下。
在紫外灯下观察结果,如果有条件也可用凝胶成像系统照相。
四.实验结果与分析1.质粒DNA提取与电泳检测结果上图所示,为第一次提取的质粒DNA产物,上排为GFP,下排为P38;上排第一个,下排两个胶的第一个均为MARKER,由于在点样过程中,部分同学将P38加在第一排,故导致GFP条带的颜色很深。
由上图可以看出,只有少数P38提取较成功,主要由于提取过程中菌体用量较少。
上图为第二次提取的P38检测结果,因此次菌体的浓度比首次提取所用的大得多,所以条带颜色明显较深,且位于同一直线上。
2. PCR结果:由上图可知,PCR扩增效果较好。
左边的第一条带为MARKER,后面PCR的产物。
由于第13个孔在点样时遗漏,故无条带产生,而其他的颜色都较亮,且PCR产物都位居同一条线上。
因为引物M13F和M13R中间的产物呈指数扩增,故分析可知,中间最亮条带的即为M13F和M13R之间的产物。
3.酶切后的电泳检测结果:由上图知,第一条带为MARKER, 之后为P38的酶切结果。
若无RNA,图像为两条带,下为DNA,上酶蛋白,而10的那个则是没有加RNaseGFP和TA克隆的转化和观察一.目的掌握感受态细胞制备和转化的基本方法。
二.原理受体细胞经过一些特殊方法如电击法, 化学试剂法(CaCl2 ,RbCl,KCl)等的处理后,细胞膜的通透性发生了暂时性的改变,成为能允许外源DNA分子进入的感受态细胞。
三.步骤·感受态细胞的制备(0.1M CaCl2方法)1、从LB固体平板挑单克隆于5ml LB液体培养基中(不加抗生素),37℃×200rpm×12-16h,可过夜培养。
2、将活化菌体按1`~5%接种到LB中,扩大培养37℃×200rpm×2h,至OD600约为0.4。
3、取培养好的菌液1.5 ml于一离心管中,4℃离心8 000rpm×1 min。
4、弃上清,加500 ul0.1M CaCl2 (灭菌预冷)洗菌体,4℃冷冻离心8000rpm×1 min。
5、彻底除去残液, 加200 ul0.1M CaCl2 (灭菌预冷),悬浮菌体。
6、冰浴静置30 min ,4℃冷冻离心8000rpm×1 min。
7、弃上清,加100 ul0.1M CaCl2 (灭菌预冷),悬浮菌体,即为制备好的感受态细胞。
附注:①、整个过程注意无菌操作和保持低温。
②、培养物处于对数生长期是制备感受态细胞的关键。
③、如果要求高转化效率,不建议使用简单深冻保存的感受态细胞。
④、 LB液体培养基建议用不加抗生素和加抗生素的两种培养基,检查菌体是否污染。
⑤、 D600值指细胞密度,用于判断培养物是否处于对数生长期。
OD600值在0.4 - 0.5时,此时培养物处于对数生长期,细胞数在20min内加倍。
质粒对大肠杆菌的转化1、将连接产物加入100 ul制备好的感受态细胞,冰上放置30 min。
2、42℃热激90S。
3、迅速冰浴3min。
4、加入300 ul LB液体培养基,37℃轻摇培养45min。
5、加入30 ul X-gal和6 ul IPTG,混匀。
6、取100 ul涂布在含有50 ug/ml氨苄的LB固体培养基中。
7、37℃倒置,避光培养16-20 h。
8、蓝白斑筛选,挑取单菌落进行菌落PCR鉴定。
四.结果与分析上图为菌落的PCR电泳结果,中起靠右的第一条带为MArKER,其余为菌落的PCR结果,分析上图可知,个别组未产生条带,主要由于菌落挑取不足或失败,从而导致缺少DNA,故PCR扩增后无产物。
上图为GFP绿色荧光蛋白图,绿色荧光蛋白(GFP)基因来自海底生物多孔水母,该基因表达产物在紫外光照射下可发出绿色荧光。
现已将该基因克隆到阿拉伯糖启动子驱动的原核表达pGLO中,通过阿拉伯糖的诱导,可使该基因在细菌中进行表达。
植物基因组DNA提取,酶切及电泳一、目的掌握植物基因组DNA提取的一般方法及注意事项。
大分子量DNA分子的酶切分析。
二、原理十六烷基三甲基溴化胺(CTAB)是一种去污剂,可溶解细胞膜,它能与核酸形成复合物,在高盐溶液中是可溶的,当降低溶液盐浓度到一定程度时,从溶液中沉淀。
在本实验方案中,首先通过含有CTAB高盐抽提液使DNA充分溶出,然后加入氯仿使蛋白和细胞碎片沉淀,离心后,溶液分为三层,上层为CTAB与核酸的复合物的高盐溶液,中层为蛋白质和细胞碎片,下层为氯仿。