北师大版2016.1八年级数学期末试卷及答案
- 格式:doc
- 大小:340.50 KB
- 文档页数:9
八年级期末试题数学第Ⅰ卷选择题一、选择题:1.下面的图形是天气预报中的图标,其中既是轴对称又是中心对称图形的是()A.霾B.大雪 C.拂尘 D.大雨2.已知a>b,下列不等式中正确的是()A.a+3<b+3 B.>C.﹣a>﹣b D.a﹣1<b﹣13.若a+b=3,ab=﹣2,则代数式a2b+ab2的值为()A.1 B.﹣1 C.﹣6 D.64.如图,将△ABC沿着水平方向向右平移后得到△DEF,若BC=3,CE=2,则平移的距离为()A.1 B.2 C.3 D.45.若不等式组,只有三个正整数解,则a的取值范围为()A.0≤a<1 B.0<a<1 C.0<a≤1 D.0≤a≤16.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③ B.①②④ C.①③④ D.②③④7.已知关于x的分式方程mx-1+31-x=1的解是非负数,则m的取值范围是( )A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3 8.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm9.从图1到图2的拼图过程中,所反映的关系式是()A.x2+5x+6=(x+2)(x+3) B.x2+5x﹣6=(x+6)(x﹣1)C.x2﹣5x+6=(x﹣2)(x﹣3) D.(x+2)(x+3)=x2+5x+610.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.1611.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.12.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114°D.124°13.若方程组的解为x,y,且x+y>0,则k的取值范围是()A.k>4 B.k>﹣4 C.k<4 D.k<﹣414.如图,已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2015个三角形的周长为()A. B. C. D.15.如图,已知函数y=x+的图象与x 轴交于点A ,与y 轴交于点B ,点P 是x 轴上一点,若△PAB 为等腰三角形,则点P 的坐标不可能是( )A .(﹣3﹣2,0)B .(3,0)C .(﹣1,0)D .(2,0)第Ⅱ卷 非选择题二、填空题:16.分解因式x 3+6x 2+9x=17.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是 .18.关于x 的方程12123x ++=+-x mx 无解,则m 的值_________________19.如图,已知△ABC 中,AB=AC ,AD 平分∠BAC ,E 是AB 的中点,若AC=7,则DE 的长为 .20.如图,平行四边形ABCD 中,点E ,F 分别是线段AO ,BO 的中点.若AC+BD=24厘米,△OAB 的周长是20厘米,则EF= 厘米.21.如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 .22.如图,在△ABC 中,AC=BC=2,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,AD 的垂直平分线交AB 于点F ,则△DEF 的面积为 .23.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (3,0),B (0,4),则点B 100的坐标为 .三、解答题:24.若,求A、B的值.25.在数学课上,教师对同学们说:“你们任意说出一个x的值(x≠0,1,2),我立刻就知道式子(1+1x-2)÷x-1x2-2x的计算结果.”请你说出其中的道理.26.27.火车站有某公司待运的甲种货物1530吨,乙种货物1150吨,现计划用50节A、B两种型号的车厢将这批货物运至北京,已知每节A型货厢的运费是万元,每节B节货厢的运费是万元;甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,共有哪几种方案请你设计出来;并说明哪种方案的运费最少28.甲乙两人加工同一种机器零件,每时甲比乙少加工2个这种零件,甲加工64个这种零件所用的时间与乙加工80个这种零件所用的时间相等.(1)求甲乙两人每时各加工多少个这种零件(2)某公司拟从甲乙两人中聘用一人来加工该种机器零件,已知两人加工的质量相同,需支付给甲的工资标准是:基本工资为每天50元,另每加工一个零件支付2元;需支付给乙的工资标准是:每加工一个零件支付4元,请问该公司应聘用哪一人,才可使每天所支付的工资更少26.(7分)如图,在△ABC中,AB=4,AC=3,AD、AE分别是△ABC角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,求线段EF的长.27.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.28.如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系请说明理由.29.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP= ;DP= ;BQ= ;CQ= .(2)当t为何值时,四边形APQB是平行四边形(3)当t为何值时,四边形PDCQ是平行四边形。
北师大版八年级数学期末复习试题一.选择题1. 下列从左边到右边的变形,是因式分解的是( )A.322842(42)m n mn mn m n +=+B.))((2233n mn m n m n m ++-=-C.)1)(3()3)(1(+--=-+y y y yD.z yz z y z z yyz +-=+-)2(22422.下列变形中,错误的是( ). A .若3a+5>2,则3a >2-5 B .若213x ->,则23x <- C .若115x -<,则x >-5 D .若1115x >,则511x > 3. 在平面直角坐标系内,点P(3-m ,5-m )在第三象限,则m 的取值范围是( )A.5<mB.53<<mC.3<mD.3-<m4. 若分式4242--x x 的值为零,则x 等于( ) A.2 B.-2 C.±2 D.05.若解分式方程441+=+-x m x x 产生增根,则( ) A. B. C.D.6.如图,在ABC ∆中,75CAB ∠= ,在同一平面内,将ABC ∆绕点A 旋转到''ABC ∆的位置,使得'//CC AB ,则'BAB ∠=( )A.30 B.35 C.40D.506题图 7题图 8题图 9题图7. 如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )A.1.5cmB. 2cmC. 2.5cmD. 3cm8. 如图,在周长为20cm 的□ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为DA.4cmB.6cmC.8cmD.10cm9.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ 的长为A.32B.52 C.3 D.410. 已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是() A. 65a -<<- B. 65a -≤<- C. 65a -<≤- D.65a -≤≤-11.一个多边形的每个内角均为108°,则这个多边形是().A .七边形B .六边形C .五边形D .四边形12. 如图,ABC ∆中,AB 边的垂直平分线交AB 于点E ,交BC 于点D ,已知5AC =cm ,ADC ∆的周长为17cm ,则BC 的长为()A B CO EA. 7cmB.10cmC.12cmD. 22cm12题图 13题图 14题图13.如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为( )A.24B.36C.40D.4814.如图3,在等边ABC ∆中,,D E 分别是,BC AC 上的点,且BD CE =,AD 与BE 相交于点P ,则12∠+∠的度数是( ).A .045B .055C .060D .07515.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四个条件:①AD ∥BC ②AD =BC ③OA =OC④OB =OD 。
2016-2017学年第一学期初二数学期末试卷一.选择题(共10小题)1.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x>12.方程组的解是()A.B.C.D.3.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个B.可以有2个C.有2个以上,但有限D.有无数个4.李大伯有一片果林,共80棵果树,某日,李大伯开始采摘今年第一批成熟的果子,他随机选取2棵果树共摘得果子,质量分别为(单位:kg):0.28,0.26,0.24,0.23,0.25,0.24,0.26,0.26,0.25,0.23,以此计算,李大伯收获的这批果子的单个质量和总质量分别约为()A.0.25kg,200kg B. 2.5kg,100kg C.0.25kg,100kg D. 2.5kg,200kg5.如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A.30,2 B.60,2 C.60,D.60,6.如果m是任意实数,则点P(m﹣4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限7.不等式组的整数解有()个.A. 1 B. 2 C. 3 D. 48.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>49.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A. 1 B. 2 C. 3 D. 410.如图,在平行四边形ABCD中,过对角线BD上一点P,作EF∥BC,HG∥AB,若四边形AEPH和四边形CFPG的面积分另为S1和S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2C.S1<S2D.不能确定二.填空题(共7小题)11.144的算术平方根是_________,的平方根是_________.12.如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是_________.(结果保留根号)13.已知方程组的解满足方程x+2y=k,则k=_________.14.有一组数据:6、3、4、x、7,它们的平均数是10,则这组数据的中位数是_________.15.已知点A(2a﹣1,3a+1),直线l经过点A,则直线l的解析式是_________.16.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________cm2.17.不等式组的解集是_________.三.解答题(共9小题)18.计算:(1)()﹣1﹣+(5﹣π)0 (2)(2x﹣1)2+(x﹣2)(x+2)﹣4x(x﹣)19.(1)计算:﹣52﹣+(﹣)﹣2+π0;(2)先化简,再求值:a(2﹣a)﹣(1+a)(1﹣a),其中a=.20.解方程组.21.6月5日是世界环境日,某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成统计图:根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整;平均数(分)中位数(分)众数(分)一班 a b 90二班87.6 80 c①从平均数和中位数方面比较一班和二班的成绩;②从平均数和众数方面比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.22.如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10,AB=20.求∠A的度数.23.如图,△AOB中,A,B两点的坐标分别为(2,4)、(6,2),求:△AOB的面积.(△AOB的面积可以看作一个长方形的面积减去一些小三角形的面积)24.2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?25.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?26.直线y=﹣x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S=时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.参考答案一.选择题(共10小题)1.B2.D3.B4.C5.C6.D7.D8.C9.C10.A二.填空题(共7小题)11.12,±2.12.213.﹣3.14.6.15.y=x+.16.317.﹣1<x<.三.解答题(共9小题)18.(1);(2)x2﹣2x﹣3.19.(1)﹣18;(2)0.20..21.解答:解:(1)一班中C级的有25﹣6﹣12﹣5=2人.故统计图为:(2)a=(6×100+12×90+2×80+70×5)÷25=87.6;b=90c=100;(3)①从平均数和中位数的角度,一班和二班平均数相等,一班的中位数大于二班的中位数,故一班成绩好于二班.②从平均数和众数的角度,一班和二班平均数相等,一班的众数小于二班的众数,故二班成绩好于一班.③从B级以上(包括B级)的人数的角度,一班有18人,二班有12人,故一班成绩好于二班.22.∠A=30°.23.解答:解:过点A、B分别作x轴、y轴的垂线CE、CF交点为C,垂足分别为E、F∵A(2,4)、B(6,2)∴OE=AC=4,EA=CB=BF=2,OF=6,∴S ECFO=6×4=24 …(2分)S△AOE=×4×2=4 …(4分)S△ACB=×4×2=4 …(6分)S△BOF=×6×2=6 …(8分)∴S△AOB=S ECFO﹣S△AOE﹣S△ACB﹣S△BOF=24﹣4﹣4﹣6=10 …(10分)∴△AOB的面积是10.24.解答:解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,,由①得,x≥5,由②得,x≤7,∴,5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)方法一:由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y 元,由题意得,y=1500x+1200(16﹣x),=300x+19200,∵300>0,∴y随x值增大而增大,当x=5时,y有最小值,∴y最小=300×5+19200=20700元;方法二:当x=5时,16﹣5=11,5×1500+11×1200=20700元;当x=6时,16﹣6=10,6×1500+10×1200=21000元;当x=7时,16﹣7=9,7×1500+9×1200=21300元;答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.25.解答:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.26.解答:解:(1)y=0,x=0,求得A(8,0),B(0,6),(2)∵OA=8,OB=6,∴AB=10.∵点Q由O到A的时间是(秒),∴点P的速度是=2(单位长度/秒).当P在线段OB上运动(或O≤t≤3)时,OQ=t,OP=2t,S=t2.当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10﹣2t=16﹣2t,如图,过点P作PD⊥OA于点D,由,得PD=.∴S=OQ•PD=﹣.(3)当S=时,∵,∴点P在AB上当S=时,﹣=∴t=4∴PD==,AP=16﹣2×4=8AD==∴OD=8﹣=∴P(,)M1(,),M2(﹣,),M3(,﹣)。
2016年北师大版八年级上学期数学期末质量检测试卷同学们:学期就要结束了,老师准备了一些题目来检查本学期同学们的学习情况,希望你能沉着、认真、冷静思考,出色完成答卷。
考生注意:1、全卷三大题,共8页,考试时间90分钟,满分100分。
2、答题前,请在监考老师的指导下,填好试卷密封线内的学校、班级、姓名 和考号,不得写在密封线以外,不得在试卷上作任何标记。
...面. 的答题表一内....... 1.81的算术平方根是A . 3±B . 9±C . 3D . 9 2.在实数0,49,8,5,320,2,23,,7,31,933---π中,无理数的个数是 A .5 B .6 C .7 D .83.如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为A .8B . 9C.10D .124.下列扑克牌中,哪一张经过旋转180°后可以与原来的完全重合? AB C DA B C D5.若点()b a P ,关于y 轴的对称点在第四象限, 则点P 到x 轴的距离是A .aB .bC .a -D .b - 6.在x 轴上到点()0,3A 的距离为4的点一定是一、选择题(本题有12小题,每题3分,共36分)第3题图A .()0,7B .()0,1-C .()0,7和()0,1-D .以上都不对 7k kx y +-=的图象大致是A B C D8.一个直角三角形的两边长是3和4,那么第三边的长是A .5B .7C .5或7D .25或79.已知⎩⎨⎧==31y x 和⎩⎨⎧-==2y x 都是关于y x , 的二元一次方程b y ax =-的解,则b 、a 的值分别是A .5-、2B .5、2-C .5、2D .以上都不对10.甲、乙两根绳子共长19米,若乙绳加长2米后其长为甲绳长度的34,求两绳子的长? 若设甲绳长x 米,乙绳长y 米,则下列方程组正确的是A .19324x y x y +=⎧⎪⎨+=⎪⎩B .19324x y y x -=⎧⎪⎨+=⎪⎩C .19324x y y x +=⎧⎪⎨-=⎪⎩ D .19324x y x y +=⎧⎪⎨-=⎪⎩ 11.如图是一次函数323+-=x y 的图象,当33<<-y 时, x 的取值范围是A .4>xB .20<<xC .40<<xD .42<<x12.如图,在△ABC 中,2==BC AC ,∠ACB 090=,D 是BC 边的中点,E 是AB 边上一动点,则ED EC +的最小值是A .3B .3C .5 D.22第11题图第12题图13.16的平方根是 .14. 甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为5,5,x ,7,若这组数据的众数和平均数恰好相等,其中x 值是 .15.如图,已知函数2y x =-和21y x =-+的图象交于点P ,根据图象可得方程组2,21x y x y -=⎧⎨+=⎩的解是 .16.现有一张长52cm ,宽28cm 的矩形纸片,要从中剪出长15cm ,宽12cm 的矩形小纸片(不能粘贴),则最多能剪出 张.答题表一17.(6)计算:(1))22)(12(-+ (2)8163)2426(-⨯-二、填空题(本题有5小题,每题3分,共15分.请把答案填在以下答题表.......二内..相应的题号下.) 三、解答题(本大第20、21题818.(6)已知一次函数b kx y +=的图象经过点()5,1--,且与正比例函数x y 21=的图象相交于点()a ,2. (1)求实数a 的值及一次函数的解析式;(2)求这两个函数图象与x 轴所围成的三角形面积.19.(6分)某汽车制造厂开发了一款新式电动车,计划一年内投入生产安装.由于抽调不出足够的熟练工来完成新式电动车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动车的安装,生产开始后,调研部门发现;1名熟练工和2名新工人每月共可安装8辆电动车;2名熟练工和3名新工人每月共可安装14辆电动车.问每名熟练工和新工人每月分别可以安装多少辆电动车?1500(1)求这30户家庭月用水量的平均数、众数和中位数;(2)根据上述数据,试估计该社区的月用水量;(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m (吨),家庭月用水量不超过m (吨)的部分按原价收费,超过m (吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由. 21.(8分)如图,在等边△ABC 的边AB 上任意取一点D ,作等边△CDE .(1)求证:AE ∥BC.(2)若已知等边△ABC 的边长是2,点D 恰好是AB 边的中点,求四边形求ABCE 的周长. 22.(9分)已知:甲、乙两车分别从相距300(km )的M 、N 两地同时出发相向而行,其中甲到达N 地后立即返回,图1、图2分别是它们离各自出发地的距离y (km )与行驶时间x (h )之间的函数图象.(1)试求线段AB 所对应的函数关系式,并写出自变量的取值范围;(2)当它们行驶到与各自出发地的距离相等时,用了29h ,求乙车的速度;第21题图yh 图1y h图2(3)在(2)的条件下,求它们在行驶的过程中相遇的时间. 23.(9分)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你学过的特殊四边形中是勾股四边形的两种图形的名称 , ;(2)如图(1),已知格点(小正方形的顶点)(00)O ,,(30)A ,,(04)B ,,请你画出 以格点为顶点,OA OB ,为勾股边且对角线相等的勾股四边形OAMB ;(3)如图(2),将ABC △绕顶点B 按顺时针方向旋转60,得到DBE △,连结A D D C ,,30DCB =∠.求证:222DC BC AC +=,即四边形ABCD 是勾股四边形.图(1)A图(2)第23题图参考答案及评分标准三、解答题(本大题有七题,其中第16题10分、第17题8分,第18题8分,第19题7分第20题8分,第21题7分、第22题7分,共55分)17.(1)原式=2 ……(3分) (2)原式= 22321223-- = 2221-……(3分) 18.解:(1)∵x y 21=的图象过()a ,2 ∴1=a ……(1分)∵ 一次函数b kx y +=的图象经过点()5,1--、 ()1,2∴⎩⎨⎧+=+-=-b k bk 215 ……(2分)解得:⎩⎨⎧-==32b k ……(3分)(2)一次函数为32-=x y ……(4分)交x 轴于点⎪⎭⎫ ⎝⎛0,23 ……(5分)∴这两个函数图象与x 轴所围成的三角形面积为:4312321=⨯⨯……(6分) 19.解:设每名熟练工每月可以安装x 辆电动车,每名新工人每月可以安装y 辆电动车,依题意得⎩⎨⎧=+=+143282y x y x ……(4分)解得:⎩⎨⎧==24y x ……(6分)答:每名熟练工每月可以安装4辆电动车,每名新工人可以安装2辆. ……(7分)20.(1)解:()2.61102948117553443301=⨯+⨯+⨯+⨯+⨯+⨯+⨯=x ,…(2分) 众数是7,中位数是7……(4分)(2)93002.61500=⨯(吨)∴该社区月用水量约为9300吨……(6分) (3)以中位数或众数作为月基本用水量较为合理.因为这样既可满足大多数家庭的月用水量,也可以引导用水量高于7吨的家庭节约用水. ……(8分) 21.证明:(1)等边三角形ABC ∆和等边三角形CDE ∆中∵ AC BC = DC EC = 且 60OBCA DCE ∠=∠=∴ACE BCD ∠=∠ ∴ △BCD ≌ △ACE (SAS )∴ 60OCAE CBD ∠=∠= 从而CAE ACB ∠=∠ ∴ AE ∥BC ……(4分)(2)在等边三角形ABC ∆中,∵BD AD = ∴ 90OBDC ∠= 且1BD =在BCD ∆中 应用勾股定理得出:CD = 再由△BCD ≌ △ACE 知道:1,AE CE = ∴四边形ABCE 的周长是5……(4分)22.(1)解:线段AB 所对应的函数关系式: 54080+-=x y ……(2分) 自变量的取值范围:4273≤≤x 元 ……(1分) (2)解:甲车与出发地M 的距离y (km )与行驶时间x (h )之间的函数⎩⎨⎧+-=540801001x x y当=x 29时, 18012==y y 所以乙车速度是40km/h ……(3分)(3) 乙车与出发地M 的距离y (km )与行驶时间x (h )之间的函数 300402+-=x y令 21y y = 得出: 6或715==x x 答:甲乙两车在行驶的过程中相遇两次,第一次的时间是715=x h 第二次的时间是6=x h ……(3分)23.解(1)正方形、长方形、直角梯形.(任选两个均可)…(2分)(填正确一个得1分)(2)答案如图所示.(34)M ,或(43)M ,.(没有写出不扣分)……(2分)(根据图形给分,一个图形正确得1分)(3)证明:连结ECABC DBE △≌△AC DE ∴=,BC BE = ……(5分) 60CBE = ∠EC BC ∴=,60BCE = ∠ ……(6分) 30DCB = ∠90DCE ∴= ∠ 222DC EC DE ∴+= 222DC BC AC ∴+=,即四边形ABCD 是勾股四边形 ……(7分) A。
八年级数学期末检测题(本试卷满分:120分,时间:120分钟)一、选择题(每小题3分,共30分)1.如图,在△错误!未找到引用源。
中,错误!未找到引用源。
,点错误!未找到引用源。
是斜边错误!未找到引用源。
的中点,错误!未找到引用源。
,且错误!未找到引用源。
,则∠错误!未找到引用源。
( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
2.如图,在□ABCD 中,EF ∥AB ,GH ∥AD ,EF 与GH 交于点O ,则该图中的平行四边形的个数为( )A.7 B .8 C .9 D.113.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是( )A.1个B.2个C.3个D.4个 4.下列命题,其中真命题有( )①4的平方根是2; ②有两边和一角相等的两个三角形全等; ③连接任意四边形各边中点的四边形是平行四边形.A.0个B.3个C.2个D.1个5.已知不等式组2112x x a-⎧⎪⎨⎪⎩≥,≥的解集是错误!未找到引用源。
,则错误!未找到引用源。
的取值范围为( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
6.分式方程123-=x x 的解为( ) A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
7.下列条件中,能判定四边形是平行四边形的是( ) A.一组对角相等 B.对角线互相平分 C.一组对边相等 D.对角线互相垂直8.要使分式错误!未找到引用源。
有意义,则错误!未找到引用源。
应满足( )A .错误!未找到引用源。
≠-1B .错误!未找到引用源。
≠2C .错误!未找到引用源。
≠±1D .错误!未找到引用源。
≠-1且错误!未找到引用源。
≠2 9.如图,在□错误!未找到引用源。
中,错误!未找到引用源。
⊥错误!未找到引用源。
于点错误!未找到引用源。
2015-2016学年八年级上学期期末数学试卷一、选择题(每小题3分,共24分)1.(3分)的算术平方根是()A.4B.2C. D.±22.(3分)在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.0C. 3 D.3.(3分)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50°B.45°C.35°D.30°4.(3分)一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限 D.第四象限5.(3分)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣46.(3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民(户) 1 3 2 4月用电量(度/户) 40 50 55 60那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.方差是29 D.平均数是547.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D. 1,,38.(3分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时二、选择题(每小题3分,共21分)9.(3分)计算:(+1)(﹣1)=.10.(3分)命题“相等的角是对顶角”是命题(填“真”或“假”).11.(3分)若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为.12.(3分)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.13.(3分)按如图的运算程序,请写出一组能使输出结果为3的x,y的值:.14.(3分)已知函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则二元一次方程组的解是.15.(3分)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标.三、解答题(共55分)16.(6分)证明三角形内角和定理三角形内角和定理内容:三角形三个内角和是180°.已知:求证:证明:17.(6分)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.18.(6分)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?19.(9分)九(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表参赛同学答对题数答错题数未答题数A 19 0 1B 17 2 1C 15 2 3D 17 1 2E / / 7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)20.(8分)如图1,A,B,C是郑州市二七区三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=40米.八位环卫工人分别测得的BC长度如下表:甲乙丙丁戊戌申辰BC(单位:米)84 76 78 82 70 84 86 80他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中BC长度的平均数、中位数、众数;(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为BC的长度,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:=1.732)21.(10分)观察下列各式及其验证过程:,验证:.,验证:.(1)按照上述两个等式及其验证过程,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用a(a为任意自然数,且a≥2)表示的等式,并给出验证.(3)针对三次根式及n次根式(n为任意自然数,且n≥2),有无上述类似的变形?如果有,写出用a(a为任意自然数,且a≥2)表示的等式,并给出验证.22.(10分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?2015-2016学年八年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)的算术平方根是()A.4B.2C. D.±2考点:算术平方根.分析:先求出=2,再根据算术平方根的定义解答.解答:解:∵=2,∴的算术平方根是.故选C.点评:本题考查了算术平方根的定义,易错题,熟记概念是解题的关键.2.(3分)在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.0C. 3 D.考点:实数大小比较.专题:常规题型.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣2<0<<3,故选:C.点评:本题考查了实数比较大小,是解题关键.3.(3分)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50°B.45°C.35°D.30°考点:平行线的性质;直角三角形的性质.专题:几何图形问题.分析:根据平行线的性质,可得∠3与∠1的关系,根据两直线垂直,可得所成的角是90°,根据角的和差,可得答案.解答:解:如图,∵直线a∥b,∴∠3=∠1=60°.∵AC⊥AB,∴∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣60°=30°,故选:D.点评:本题考查了平行线的性质,利用了平行线的性质,垂线的性质,角的和差.4.(3分)一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限 D.第四象限考点:一次函数图象与系数的关系.专题:数形结合.分析:先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.解答:解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.5.(3分)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4考点:二元一次方程的解.专题:计算题.分析:将x与y的两对值代入方程计算即可求出m与n的值.解答:解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.(3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民(户) 1 3 2 4月用电量(度/户) 40 50 55 60那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.方差是29 D.平均数是54考点:方差;加权平均数;中位数;众数.专题:常规题型.分析:根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否.解答:解:用电量从大到小排列顺序为:60,60,60,60,55,55,50,50,50,40.A、月用电量的中位数是55度,故A正确;B、用电量的众数是60度,故B正确;C、用电量的方差是39度,故C错误;D、用电量的平均数是54度,故D正确.故选:C.点评:考查了中位数、众数、平均数和方差的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.7.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D. 1,,3考点:勾股定理的逆定理.专题:计算题.分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解答:解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故B选项正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;D、12+()2=3≠32,不可以构成直角三角形,故D选项错误.故选:B.点评:本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.8.(3分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时考点:函数的图象.专题:行程问题.分析:结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5千米;平均速度=总路程÷总时间.解答:解:A、由函数图象可知,体育场离张强家2.5千米,故A选项正确;B、由图象可得出张强在体育场锻炼30﹣15=15(分钟),故B选项正确;C、体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5=1(千米),故C选项错误;D、∵张强从早餐店回家所用时间为95﹣65=30(分钟),距离为1.5km,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D选项正确.故选:C.点评:此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.二、选择题(每小题3分,共21分)9.(3分)计算:(+1)(﹣1)=1.考点:二次根式的乘除法;平方差公式.专题:计算题.分析:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).解答:解:(+1)(﹣1)=.故答案为:1.点评:本题应用了平方差公式,使计算比利用多项式乘法法则要简单.10.(3分)命题“相等的角是对顶角”是假命题(填“真”或“假”).考点:命题与定理.分析:对顶角相等,但相等的角不一定是对顶角,从而可得出答案.解答:解:对顶角相等,但相等的角不一定是对顶角,从而可得命题“相等的角是对顶角”是假命题.故答案为:假.点评:此题考查了命题与定理的知识,属于基础题,在判断的时候要仔细思考.11.(3分)若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为(﹣3,﹣2).考点:关于x轴、y轴对称的点的坐标;非负数的性质:偶次方;非负数的性质:算术平方根.专题:计算题.分析:先求出a与b的值,再根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出M的对称点的坐标.解答:解:∵+(b+2)2=0,∴a=3,b=﹣2;∴点M(a,b)关于y轴的对称点的坐标为(﹣3,﹣2).点评:本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,也考查了非负数的性质.12.(3分)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75度.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:根据三角形三内角之和等于180°求解.解答:解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.点评:考查三角形内角之和等于180°.13.(3分)按如图的运算程序,请写出一组能使输出结果为3的x,y的值:x=1,y=﹣1.考点:解二元一次方程.专题:图表型.分析:根据运算程序列出方程,取方程的一组正整数解即可.解答:解:根据题意得:2x﹣y=3,当x=1时,y=﹣1.故答案为:x=1,y=﹣1.点评:此题考查了解二元一次方程,弄清题中的运算程序是解本题的关键.14.(3分)已知函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则二元一次方程组的解是.考点:一次函数与二元一次方程(组).分析:函数图象的交点坐标即是方程组的解,有几个交点,就有几组解.解答:解:∵函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),∴点P(﹣4,﹣2),满足二元一次方程组;∴方程组的解是.故答案为:.点评:本题不用解答,关键是理解两个函数图象的交点即是两个函数组成方程组的解.15.(3分)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标(0,2),(0,﹣2),(﹣3,0),(3,0).考点:勾股定理;坐标与图形性质.专题:压轴题;分类讨论.分析:需要分类讨论:①当点C位于x轴上时,根据线段间的和差关系即可求得点C的坐标;②当点C位于y轴上时,根据勾股定理求点C的坐标.解答:解:如图,①当点C位于y轴上时,设C(0,b).则+=6,解得,b=2或b=﹣2,此时C(0,2),或C(0,﹣2).如图,②当点C位于x轴上时,设C(a,0).则|﹣﹣a|+|a﹣|=6,即2a=6或﹣2a=6,解得a=3或a=﹣3,此时C(﹣3,0),或C(3,0).综上所述,点C的坐标是:(0,2),(0,﹣2),(﹣3,0),(3,0).故答案是:(0,2),(0,﹣2),(﹣3,0),(3,0).点评:本题考查了勾股定理、坐标与图形的性质.解题时,要分类讨论,以防漏解.另外,当点C在y轴上时,也可以根据两点间的距离公式来求点C的坐标.三、解答题(共55分)16.(6分)证明三角形内角和定理三角形内角和定理内容:三角形三个内角和是180°.已知:求证:证明:考点:三角形内角和定理.专题:证明题.分析:先写出已知、证明,过点C作CD∥AB,点E为BC的延长线上一点,利用平行线的性质得到∠1=∠A,∠2=∠B,然后根据平角的定义进行证明.解答:已知:△ABC,如图,求证:∠A+∠B+∠C=180°,证明:过点C作CD∥AB,点E为BC的延长线上一点,如图,∵CD∥AB,∴∠1=∠A,∠2=∠B,∵∠C+∠1+∠2=180°,∴∠A+∠B+∠C=180°.点评:本题考查了三角形内角和定理:三角形内角和是180°.本题的关键时把三角形三个角的和转化为一个平角,同时注意文字题证明的步骤书写.17.(6分)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为(﹣2,3).考点:作图-平移变换;关于x轴、y轴对称的点的坐标.专题:作图题.分析:(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A、O、B向左平移后的对应点A1、O1、B1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出坐标即可.解答:解:(1)B点关于y轴的对称点坐标为(﹣3,2);(2)△A1O1B1如图所示;(3)A1的坐标为(﹣2,3).故答案为:(1)(﹣3,2);(3)(﹣2,3).点评:本题考查了利用平移变换作图,关于y轴对称点的坐标,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.(6分)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?考点:平面展开-最短路径问题.分析:根据题意画出图形,再根据勾股定理求解即可.解答:解:如图所示,在如图所示的直角三角形中,∵BC=20尺,AC=5×3=15尺,∴AB==25(尺).答:葛藤长为25尺.点评:本题考查的是平面展开﹣最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.19.(9分)九(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表参赛同学答对题数答错题数未答题数A 19 0 1B 17 2 1C 15 2 3D 17 1 2E / / 7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)考点:算术平均数;统计表.分析:(1)直接算出A,B,C,D四位同学成绩的总成绩,再进一步求得平均数即可;(2)①设E同学答对x题,答错y题,根据对错共20﹣7=13和总共得分58列出方程组成方程组即可;②根据表格分别算出每一个人的总成绩,与实际成绩对比:A为19×5=95分正确,B为17×5+2×(﹣2)=81分正确,C为15×5+2×(﹣2)=71错误,D为17×5+1×(﹣2)=83正确,E正确;所以错误的是C,多算7分,也就是答对的少一题,打错的多一题,由此得出答案即可.解答:解:(1)=[(19+17+15+17)×5+(2+2+1)×(﹣2)]=82.5(分),答:A,B,C,D四位同学成绩的平均分是82.5分;(2)①设E同学答对x题,答错y题,由题意得,解得,答:E同学答对12题,答错1题;②C同学,他实际答对14题,答错3题,未答3题.点评:此题考查加权平均数的求法,二元一次方程组的实际运用,以及有理数的混合运算等知识,注意理解题意,正确列式解答.20.(8分)如图1,A,B,C是郑州市二七区三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=40米.八位环卫工人分别测得的BC长度如下表:甲乙丙丁戊戌申辰BC(单位:米)84 76 78 82 70 84 86 80他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中BC长度的平均数、中位数、众数;(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为BC的长度,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:=1.732)考点:条形统计图;扇形统计图;加权平均数;中位数;众数.分析:(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比,进而求出垃圾总量,进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长,进而得出运垃圾所需的费用.解答:解:(1)==80(米),众数是:84米,中位数是:82米;(2)∵C处垃圾存放量为:320kg,在扇形统计图中所占比例为:50%,∴垃圾总量为:320÷50%=640(千克),∴A处垃圾存放量为:(1﹣50%﹣37.5%)×640=80(kg),占12.5%.补全条形图如下:(2)垃圾总量是:320÷50%=640(千克),则A处的垃圾量是:640×(1﹣50%﹣37.5%)=80(千克),(3)在直角△ABC中,AB===40=69.28(米).∵运送1千克垃圾每米的费用为0.005元,∴运垃圾所需的费用为:69.28×80×0.005≈27(元),答:运垃圾所需的费用为27元.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)观察下列各式及其验证过程:,验证:.,验证:.(1)按照上述两个等式及其验证过程,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用a(a为任意自然数,且a≥2)表示的等式,并给出验证.(3)针对三次根式及n次根式(n为任意自然数,且n≥2),有无上述类似的变形?如果有,写出用a(a为任意自然数,且a≥2)表示的等式,并给出验证.考点:二次根式的性质与化简.专题:规律型.分析:(1)利用已知,观察.,可得的值;(2)由(1)根据二次根式的性质可以总结出一般规律;(3)利用已知可得出三次根式的类似规律,进而验证即可.解答:解:(1)=4,理由是:===4;(2)由(1)中的规律可知3=22﹣1,8=32﹣1,15=42﹣1,∴=a,验证:==a;正确;(3)=a(a为任意自然数,且a≥2),验证:===a.点评:此题主要考查二次根式的性质与化简,善于发现题目数字之间的规律,是解题的关键.22.(10分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=40米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?考点:一次函数的应用.专题:行程问题.分析:(1)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的1.5倍,可得甲的速度,根据路程与时间的关系,可得a 的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.解答:解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t<1时,d2+d1>10,即﹣60t+60+40t>10,解得0≤t<2.5,∵0≤t<1,∴当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2﹣d1>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.点评:本题考查了一次函数的应用,(1)利用了路程速度时间三者的关系,(2)分段函数分别利用待定系数法求解,(3)当0≤t<1时,d2﹣d1>10;当1≤t≤3时,d1﹣d2>10,分类讨论是解题关键.。
瓜州二中2012-2013学年第一学期数学期末考试卷题号-一--二二三四总分得分、选择题:(每小题3分,共30分)1 .下列各数中是无理数的是().2 .点p (3,- 5)关于y 轴对称的点的坐标为()A . (- 3,- 5)B .(5,3) C . (- 3,5) D .(3,5)3 .下列条件中不能确定四边形A 、AB=CD , AD // BCC 、AB // CD , AD // BC ABCD 是平行四边形的是(B 、AB=CD , AB // CDD 、AB=CD , AD=BCF 列一次函数中,y 的值随着x 值的增大而减小的是(4 .一个多边形的内角和是 720,则这个多边形的边数为(A. 4B. 5C. 6D. 7点P (m+3, m+1)在直角坐标系的x 轴上,则点P 的坐标为(A . (0, 2) 如图,矩形则矩形的边长 B . (2, 0)ABCD 的两条对角线相交于点 BC 的长是( )A . 2B.D. 4.3)ODCC . (4, 0)O , AOB = 60A. 3B.316 C.38 D.22 7A. y = xB. y =—xC. y =x + 1D . y 若 2a 3x b y 5 与5a 2⑷b 2x 是同类项,则 ()x =1x = 2x = 0A .B .C .Dy =2 y —1 y =2y =19. 如图1,在矩形MNPQ 中,动点R 从点N 出发,沿NP T Q T M 方向运动至点 M 处停止.设点R 运动的路程为x , △ MNR 的面积为y ,如果y 关于x 的函数图象如图2所示,则当x =9时,点R 应运动到( A. N 处B. P 处C. Q 处D. M 处y/ o8. *x将此长方形折叠,使点 B 与点D 重合,拆痕为EF, 则重叠部分 △ DEF 的边ED 的长是 . 15 .小明家的窗户高 9米,小明用长为10米的梯子斜靠在墙上,但梯子的低端距地面不能超过 4米,否则危险。
B A马场中学2015-2016学年度第二学期期末学生学业水平检测试卷八年级 数学学校: 考号: 班级: 姓名: .一、选择题:1.下列各式中,是分式的是 ( )A. B. C. D. 2x 231x 312-+x x 2-πx 2.下列等式从左到右的变形是因式分解的是( )A . B .32632a b a ab =⋅2(2)(2)4x x x +-=-C . D. 22432(2)3x x x x +-=+-()ax ay a x y -=-3. 如图,中, =,是中点,下列结论中不正确的是( )ABC ∆AB AC D BC A . B. C. 平分 D. B C ∠=∠AD BC ⊥AD CAB ∠2AB BD=4.不等式组的解集在数轴上表示正确的是()312840x x ->⎧⎨-≤⎩5. 如图,□中,对角线、交于点,点是的中点.若ABCD AC BD O E BC cm ,则的长为( )3OE =AB A .cm B .cm C .cm D .cm369126. 以下命题的逆命题为真命题的是( )A .对顶角相等 B. 同旁内角互补,两直线平行C. 若则D. 若则a b =22a b =0,0a b >>220a b +>7. 如图,在中,,在同一平面内,将绕点旋转到的位置,使得ABC ∆75CAB ∠= ABC ∆A ''AB C ∆,则( )'//CC AB 'BAB ∠=A. B. C. D.30 35 40 508. 若解分式方程产生增根,则( )441+=+-x m x x m =A. B. C. D. 104-5-9. 将 因式分解后的结果是( )201320142(2)-+-A . B . C . D .201322-20132-1-10. 如图,中,边的垂直平分线交于点,交于点,已知ABC ∆AB AB E BC D cm ,的周长为cm ,则的长为( )5AC =ADC ∆17BC A. cm B. cm C. cm D. cm710122211. 已知关于的不等式组的整数解共有6个,则的取值范围是( )x 0220x a x ->⎧⎨->⎩a A. B. C. D. 65a -<<-65a -≤<-65a -<≤-65a -≤≤-12. 如图1,在平面直角坐标系中,将□放置在第一象限,且轴.直线从原点出发ABCD //AB x y x =-沿轴正方向平移,在平移过程中直线被平行四边形截得的线段长度与直线在轴上平移的距离的函x l x m 数图象如图2,那么□的面积为( )ABCDA.C.D. 48二、填空题:本题共4小题,每小题3分,共12分,把答案填在答题卡上13. 分解因式:= .2216ax ay -14. 如图,已知函数和的图象交于点,则不等式的解集13y x b =+23y ax =-(2,5)P --33x b ax +>-第16题图3ax -15. 已知是完全平方式,则的值是______224x mxy y ++m17.(1)(4分)解不等式 (2)(5分)解方程: 5132x x -+>-2213311x x x x -=---18.(6分)先化简,然后从的范围内选取一个合适的整数作为22122121x x x x x x x x ---⎛⎫-÷ ⎪+++⎝⎭11x -≤≤x 的值代入求值.19.(6分)在平面直角坐标系中的位置如图所示.ABC ∆xoy (1)作关于点成中心对称的,并写出点的坐标ABC ∆C 111A B C ∆1A (2)将向右平移4个单位,作出平移后的,并写出点的坐标111A B C ∆222A B C ∆2A20.(9分)由于受到手机更新换代的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每yx132GDFC EB A ÐJKL = 59.95°台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?21.(7分)如图,在□中,是高,,交于点.ABCD AE AF 、30,2,1BAE BE CF ∠=== DE AF G (1)求□的面积ABCD (2)求证:是等边三角形AEG ∆。
八年级质量检测数学试卷第1页(共7页)12016年秋学期期末考试模拟试卷八年级数学一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( ) A.2个 B.3个 C.4个 D.5个3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( )A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行八年级质量检测数学试卷第2页(共7页)2 9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( ) A.平均数 B.众数 C.中位数 D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11. 在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。
12. 一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13. 在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为 。
○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________ ○…………内…………○…………装…………○…………订…………○…………线…………○………… 2015-2016学年度第二学期期末考试试卷 八年级数学 一、选择题(每题3分,共36分) 1.下列图形中,不是中心对称图形的是( ). 2.若0<<n m ,那么下列结论错误的是( ) A .99-<-n m B .n m ->- C .m n 11> D .n m 22< 3.如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58° 4.如果分式11--x x 的值为零,那么x 等于( ) A .1 B .﹣1 C .0 D .±1 5.下面几组条件中,能判断一个四边形是平行四边形的是( ) A .一组对边相等 B .两条对角线互相平分 C .一组对边平行 D .两条对角线互相垂直 6.下列各式可以用完全平方公式分解因式的是( ) A .2242b ab a +- B .4142+-m m C .269y y +- D .222y xy x -- 7.已知正n 边形的一个内角为135°,则边数n 的值是( ) 8.如图,数轴上所表示的不等式组的解集是( ) A .x≤2 B .-1≤x≤2 C .-1<x≤2 D .x >-1 9.点)3.(-a A 和点).2(b B 关于错误!未找到引用源。
轴对称,则错误!未找到引用源。
( ) A 、8 B 、6 C 、9 D 、-8 10.如果把分式x y xy +中的x 、y 同时扩大为原来的2倍,那么该分式的值( ). A .不变 B .扩大为原来的2倍 C .缩小为原来的14 D .缩小为原来的12 11.如图,函数y=ax ﹣1的图象过点(1,2),则不等式ax ﹣1>2的解集是( ) A .x <1 B .x >1 C .x <2 D .x >2 12.某市为治理污水,需要铺设一段全长为2000米的污水排放管道,为了尽量减少施工对市民生活的影响,实际施工时每天比原计划多铺设50米,结果比原计划提前两天完成任务.如果设实际每天铺设管道x 米,那么可列方程为( ) A .20002000250x x -=+ B .20002000250x x -=+ C .20002000250x x -=- D .20002000250x x -=- 二、填空题(每题3分,共24分) 13.因式分解:3269x x x -+= . 14.分式212x x -与1x 的最简公分母是__________. 15.若一个多边形内角和等于900°,则该多边形是一个 边形. 16.若不等式(21)21k x k +<+的解集是1x >,则k 的取值范围是 ; 17.如果关于x 的分式方程x m x x -=--552无解,则m 的值为 . A . B . C . D . 0 1 2 -1 第6题○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※ 18.如图,∠ABC=50°,AD 垂直平分线段BC 于点D ,∠ABC 的平分线BE 交AD 于点E ,连接EC ,则∠AEC 的度数是 . (第18题) (第19题) (第20题) 19.如图,在□ABCD 中,AB=5,AD =8,DE 平分∠A DC ,则B E =_____________. 20.如图,AB ⊥BC ,AB=BC=2cm ,弧OA 与弧OC 关于点O 中心对称,则AB 、BC 、弧CO 、弧OA 所围成的面积是__________ cm 2. 三、解答题(共60分) 21.(本题12分)解下列分式方程: (1)123-=x x (2)x x x -=+--2312322(8分).化简求值:9)323(2-÷+-+m mm mm m 其中.3=m23(8分).解下列不等式组,并把解集在数轴上表示出来.24(10分).已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点O ,BO=DO .求证:四边形ABCD 是平行四边形.A BCDE ⎪⎩⎪⎨⎧->+≤--13214)2(3x x x x○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________ ○…………内…………○…………装…………○…………订…………○…………线…………○………… 25(10分).如图,在正方形网络中,△ABC 的三个顶点都在格点上,点A 、B 、C 的坐标分别为(-2,4)、(-2,0)、(-4,1),将△ABC 绕原点O 旋转180度得到△A 1B 1C 1.平移△ABC 得到△A 2B 2C 2,使点A 移动到点A2(0,2),结合所给的平面直角坐标系解答下列问题: (1)请画出△A 1B 1C 1; (2)请直接写出点B 2、C 2的坐标; (3)在△ABC 、△A 1B 1C 1、△A 2B 2C 2中 ,△A 2B 2C 2与 成中心对称,其对称中心的坐标为 . 26(12分).“六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元. (1)求第一批玩具每套的进价是多少元? (2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?参考答案一、选择题 :1.B 2.C . 3.B 4.B .5.B 6.C .7.C 8.C 9.A 10.D 11.B 12.D . 填空题:13.2)2(-x x . 14.)2(-x x 15.7 16.21-<k 17.3- 18.115°. 19.3 20.2 解答题21.(1)x=3;(2)x=1.22.0解:原式=(3)(3)33m m m m m m-+-⨯=-++ 当m =3时,原式=-3+3=0.23.解集为:41<≤x24.证明:∵AB ∥CD ,∴∠ABO=∠CDO ,在△ABO 与△CDO 中, ∵,∴△ABO ≌△CDO (ASA ),∴AB=CD ,∴四边形ABCD 是平行四边形.25.(1)如图;(2)B 2(0,-2),C 2(-2,-1);(3)△A 1B 1C 1,(1,-1).26.解:(1)设第一批玩具每套的进价是x 元,根据题意可得: 150045001.5=10xx ⨯+ 解得 50=x经检验50=x 是分式方程的解,符合题意.答:第一批玩具每套的进价是50元;(2)设每套售价是y 元,2500 1.5=7550⨯(套). 25%4500)(2500450025007550⨯+≥--+y y70≥y ,答:如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是70元.。
(2016)北师大版八年级上册数学期末试卷及答案一、选择题(题型注释)1.已知三角形的三边分别为4,a,8,那么该三角形的周长c的取值范围是()A.4<c<12 B.12<c<24 C.8<c<24 D.16<c<242.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A. B. C. D.3.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B.4 C.5 D.64.下列运算正确的是()A.3a+2a=5a2 B.x2﹣4=(x+2)(x﹣2) C.(x+1)2=x2+1 D.(2a)3=6a35.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20° B.25° C.30° D.35°6.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B 地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A. B.C. +4=9 D.7.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于E 点,如果BC=10,△BDC的周长为22,那么△ABC的周长是()A.24 B.30 C.32 D.348.△ABC中,∠C=90°,AD为角平分线,BC=32,BD:DC=9:7,则点D到AB的距离为()A.18cm B.16cm C.14cm D.12cm9.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.910.计算2x3•(﹣x2)的结果是()A.﹣2x5 B.2x5 C.﹣2x6 D.2x6二、填空题(题型注释)11.分解因式:m2n﹣2mn+n= .12.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手讲:“另两条边长为3、6或4.5、4.5”,你认为小明回答是否正确:,理由是.13.已知:a+b= ,ab=1,化简(a﹣2)(b﹣2)的结果是. 14.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是.(只填一个即可)15.已知分式,当x=2时,分式无意义,则a= ;当a为a<6的一个整数时,使分式无意义的x的值共有个.16.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有条对角线.17.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=3,则点D到AB的距离是.18.关于x的方程的解是正数,则a的取值范围是.19.计算: = .20.已知x为正整数,当时x= 时,分式的值为负整数.三、计算题(题型注释)21.计算:(1)﹣22+30﹣(﹣)﹣1(2)(﹣2a)3﹣(﹣a)•(3a)2(3)(2a﹣3b)2﹣4a(a﹣2b)(4)(m﹣2n+3)(m+2n﹣3).22.解方程:.23.先化简,再求值:,其中x=2,y=﹣1.四、解答题(题型注释)24.化简求值:(1),其中a=﹣,b=1(2),其中x满足x2﹣2x﹣3=0.25.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,求该种干果的第一次进价是每千克多少元?26.如图,已知∠BAC=∠BCA,∠BAE=∠BCD=90°,BE=BD.求证:∠E=∠D.27.己知:如图,E、F分别是▱ABCD的AD、BC边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.一、选择题(题型注释)1.已知三角形的三边分别为4,a,8,那么该三角形的周长c的取值范围是()A.4<c<12 B.12<c<24 C.8<c<24 D.16<c<24三角形三边关系.根据三角形的三边关系可求得a的范围,进一步可求得周长的范围.解:∵三角形的三边分别为4,a,8,∴8﹣4<a<8+4,即4<a<12,∴4+4+8<4+a+8<4+8+12,即16<c<24.故选D.本题主要考查三角形三边关系,掌握三角形两边之和大于第三边、两边之差小于第三边是解题的关键.2.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A. B. C. D.轴对称图形.依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答题目.解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意.D、不是轴对称图形,不符合题意;故选:C.此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B.4 C.5 D.6多边形内角与外角.设多边形的边数为n,则根据多边形的内角和公式与多边形的外角和为360°,列方程解答.解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°=360°,n﹣2=2,n=4.故选B.本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为360°.4.下列运算正确的是()A.3a+2a=5a2 B.x2﹣4=(x+2)(x﹣2) C.(x+1)2=x2+1 D.(2a)3=6a3幂的乘方与积的乘方;合并同类项;完全平方公式.A选项利用合并同类项得到结果,即可做出判断;B选项利用平方差公式计算得到结果,即可做出判断;C选项利用完全平方公式计算得到结果,即可做出判断;D选项利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断.解:A、3a+2a=5a,故原题计算错误;B、x2﹣4=(x+2)(x﹣2),故原题分解正确;C、(x+1)2=x2+2x+1,故原题计算错误;D、(2a)3=8a3,故原题计算错误.故选B.此题主要考查了平方差公式、合并同类项、幂的乘方与积的乘方、同底数幂的除法,关键是熟练掌握各计算法则.5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20° B.25° C.30° D.35°平行线的性质.首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得答案∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=25°,∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣25°=20°,∴∠2=∠3=20°.故选A.此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.6.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B 地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A. B.C. +4=9 D.由实际问题抽象出分式方程.应用题.本题的等量关系为:顺流时间+逆流时间=9小时.解:顺流时间为:;逆流时间为:.所列方程为: + =9.故选A.未知量是速度,有速度,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.7.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于E 点,如果BC=10,△BDC的周长为22,那么△ABC的周长是()A.24 B.30 C.32 D.34线段垂直平分线的性质;等腰三角形的性质.由AB的中垂线DE交AC于点D,交AB于点E,可得AD=BD,又由BC=10,△DBC的周长为22,可求得AC的长,继而求得答案.解:∵AB的中垂线DE交AC于点D,交AB于点E,∴AD=BD,∵△DBC的周长为22,∴BC+CD+BD=BC+CD+AD=BC+AC=22,∵BC=10,∴AC=12,∵AB=AC,∴AB=12,∴△ABC的周长为12+12+10=34,故选D.此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.8.△ABC中,∠C=90°,AD为角平分线,BC=32,BD:DC=9:7,则点D到AB的距离为()A.18cm B.16cm C.14cm D.12cm角平分线的性质.根据题意画出图形分析.根据已知线段长度和关系可求DC的长;根据角平分线性质解答.解:如图所示.作DE⊥AB于E点.∵BC=32,BD:DC=9:7,∴CD=32× =14.∵AD平分∠CAB,∠C=90°,DE⊥DE,∴DE=DC=14.即D点到AB的距离是14cm.故选C.此题考查角平分线的性质,属基础题.9.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9等腰三角形的判定.分类讨论.根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.10.计算2x3•(﹣x2)的结果是()A.﹣2x5 B.2x5 C.﹣2x6 D.2x6单项式乘单项式.先把常数相乘,再根据同底数幂的乘法性质:底数不变指数相加,进行计算即可.解:2x3•(﹣x2)=﹣2x5.故选A.本题考查了同底数幂的乘法,牢记同底数幂的乘法,底数不变指数相加是解题的关键.二、填空题(题型注释)11.分解因式:m2n﹣2mn+n= n(m﹣1)2 .提公因式法与公式法的综合运用.计算题.原式提取公因式后,利用完全平方公式分解即可.解:原式=n(m2﹣2m+1)=n(m﹣1)2.故答案为:n(m﹣1)2此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手讲:“另两条边长为3、6或4.5、4.5”,你认为小明回答是否正确:不正确,理由是两边之和不大于第三边.等腰三角形的性质;三角形三边关系.分类讨论.根据等腰三角形的性质,确定出另外两边后,还需利用“两边之和大于第三边”判断能否构成三角形.解:当另两条边长为3、6时,∵3+3=6,不能构成三角形,∴另两条边长为3、6错误;当另两条边长为4.5、4.5时,4.5+3>4.5,能构成三角形;∴另两条边长为3、6或4.5、4.5,不正确,故答案为:不正确,两边之和不大于第三边.本题主要考查了等腰三角形的性质与三角形三边关系,利用三角形三边关系作出判断是解答此题的关键.13.已知:a+b= ,ab=1,化简(a﹣2)(b﹣2)的结果是 2 .整式的混合运算—化简求值.整体思想.根据多项式相乘的法则展开,然后代入数据计算即可.解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b= ,ab=1时,原式=1﹣2× +4=2.故答案为:2.本题考查多项式相乘的法则和整体代入的数学思想.14.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是BD=CE .(只填一个即可)全等三角形的判定.开放型.此题是一道开放型的题目,答案不,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.15.已知分式,当x=2时,分式无意义,则a= 6 ;当a为a<6的一个整数时,使分式无意义的x的值共有 2 个.分式有意义的条件;根与系数的关系.计算题.根据分式无意义的条件:分母等于零求解.解:由题意,知当x=2时,分式无意义,∴分母=x2﹣5x+a=22﹣5×2+a=﹣6+a=0,∴a=6;当x2﹣5x+a=0时,△=52﹣4a=25﹣4a,∵a<6,∴△=25﹣4a>0,故当a<6的整数时,分式方程有两个不相等的实数根,即使分式无意义的x的值共有2个.故答案为6,2.本题主要考查了分式无意义的条件及一元二次方程根的判别式.(2)中要求当a<6时,使分式无意义的x的值的个数,就是判别当a<6时,一元二次方程x2﹣5x+a=0的根的情况.16.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有6 条对角线.多边形内角与外角;多边形的对角线.首先根据多边形内角和公式可得多边形的边数,再计算出对角线的条数.解:设此多边形的边数为x,由题意得:(x﹣2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9﹣3=6,故答案为:6.此题主要考查了多边形的内角和计算公式求多边形的边数,关键是掌握多边形的内角和公式180(n﹣2).17.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=3,则点D到AB的距离是 3 .角平分线的性质.作DE⊥AB于E,根据角平分线的性质得到答案.解:作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,DE⊥AB,∴DE=CD=3,故答案为:3.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18.关于x的方程的解是正数,则a的取值范围是a<﹣1且a≠﹣2 .分式方程的解.先去分母得2x+a=x﹣1,可解得x=﹣a﹣1,由于关于x的方程的解是正数,则x>0并且x﹣1≠0,即﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2.解:去分母得2x+a=x﹣1,解得x=﹣a﹣1,∵关于x的方程的解是正数,∴x>0且x≠1,∴﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2,∴a的取值范围是a<﹣1且a≠﹣2.故答案为:a<﹣1且a≠﹣2.本题考查了分式方程的解:先把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;若整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.19.计算: = .分式的混合运算.计算题.根据分式的减法和除法可以解答本题.解:=== ,故答案为:.本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.20.已知x为正整数,当时x= 3,4,5,8 时,分式的值为负整数.分式的值.由分式的值为负整数,可得2﹣x<0,解得x>2,又因为x为正整数,代入特殊值验证,易得x的值为3,4,5,8.解:由题意得:2﹣x<0,解得x>2,又因为x为正整数,讨论如下:当x=3时, =﹣6,符合题意;当x=4时, =﹣3,符合题意;当x=5时, =﹣2,符合题意;当x=6时, =﹣,不符合题意,舍去;当x=7时, =﹣,不符合题意,舍去;当x=8时, =﹣1,符合题意;当x≥9时,﹣1<<0,不符合题意.故x的值为3,4,5,8.故答案为3、4、5、8.本题综合性较强,既考查了分式的符号,又考查了分类讨论思想,注意在讨论过程中要做到不重不漏.三、计算题(题型注释)21.计算:(1)﹣22+30﹣(﹣)﹣1(2)(﹣2a)3﹣(﹣a)•(3a)2(3)(2a﹣3b)2﹣4a(a﹣2b)(4)(m﹣2n+3)(m+2n﹣3).整式的混合运算.计算题.(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用积的乘方及幂的乘方运算法则计算,合并即可得到结果;(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.解:(1)原式=﹣4+1﹣(﹣2)=﹣4+1+2=﹣1;(2)原式=﹣8a3+9a3=a3;(3)原式=4a2﹣12ab+9b2﹣4a2+8ab=﹣4ab+9b2;(4)原式=m2﹣(2n﹣3)2=m2﹣4n2+12n﹣9.此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.22.解方程:.解分式方程.计算题.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:5(x﹣1)﹣(x+3)=0,去括号得:5x﹣5﹣x﹣3=0,解得:x=2,经检验x=2是分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.先化简,再求值:,其中x=2,y=﹣1.分式的化简求值.首先对分式进行化简,把分式化为最简分式,然后把x、y的值代入即可.解:== •= ,当x=2,y=﹣1时,原式= = .本题主要考查分式的化简、分式的四则混合运算、分式的性质,解题关键在于把分式化为最简分式.四、解答题(题型注释)24.化简求值:(1),其中a=﹣,b=1(2),其中x满足x2﹣2x﹣3=0.分式的化简求值.计算题.(1)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把a与b的值代入计算即可求出值;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.解:(1)原式=1﹣• =1﹣ = = ,当a=﹣,b=1时,原式=4;(2)原式= •(x﹣1)=x2﹣2x﹣1,由x2﹣2x﹣3=0,得到x2﹣2x=3,则原式=3﹣1=2.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,求该种干果的第一次进价是每千克多少元?分式方程的应用.设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元.根据第二次购进干果数量是第一次的2倍还多300千克,列出方程,解方程即可求解.解:设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2× +300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.26.如图,已知∠BAC=∠BCA,∠BAE=∠BCD=90°,BE=BD.求证:∠E=∠D.全等三角形的判定与性质.证明题.先由等角对等边得出AB=CB,再由HL证明Rt△EAB≌Rt△DCB,得出对应角相等即可.证明:在△ABC中,∵∠BAC=∠BCA,∴AB=CB,∵∠BAE=∠BCD=90°,在Rt△EAB和Rt△DCB中,,∴Rt△EAB≌Rt△DCB(HL),∴∠E=∠D.本题考查了等腰三角形的判定、全等三角形的判定与性质;熟练掌握全等三角形的判定与性质,证明三角形全等是解决问题的关键.27.己知:如图,E、F分别是▱ABCD的AD、BC边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.全等三角形的判定;平行四边形的判定.几何综合题.(1)根据平行四边形的性质和全等三角形的判定,在△ABE和△CDF中,很容易确定SAS,即证结论;(2)在已知条件中求证全等三角形,即△ABE≌△CDF,△MBF≌△NDE,得两对边分别对应相等,根据平行四边形的判定,即证.证明:(1)∵▱ABCD中,AB=CD,∠A=∠C,又∵AE=CF,∴△ABE≌△CDF;(2)四边形MFNE平行四边形.由(1)知△ABE≌△CDF,∴BE=DF,∠ABE=∠CDF,又∵ME=BM= BE,NF=DN= DF∴ME=NF=BM=DN,又∵∠ABC=∠CDA,∴∠MBF=∠NDE,又∵AD=BC,AE=CF,∴DE=BF,∴△MBF≌△NDE,∴MF=NE,∴四边形MFNE是平行四边形.此题考查了平行四边形的判定和全等三角形的判定,学会在已知条件中多次证明三角形全等,寻求角边的转化,从而求证结论.2016八年级上册生物基础训练答案北师大版八年级上册数学试卷。
三一文库()/初中二年级〔北师大版八年级上册数学期末试卷及答案2016[1]〕一、选择题(每小题3分,共36分)1.若点A(-3,2)关于原点对称的点是点B,点B关于轴对称的点是点C,则点C的坐标是()A.(3,2) B.(-3,2)C.(3,-2) D.(-2,3)2.(2015#江苏连云港中考)下列运算正确的是( )A.2a+3b=5abB.5a-2a=3aC.#D.3.(2015#福州中考)如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A.A点B.B点C.C点D.D点4.(2016#x疆中考)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是( )A.∠A=∠DB.BC=EFC.∠ACB=∠FD.AC=DF第4题图5.如图,在△中,,平分∠,⊥,⊥,为垂足,则下列四个结论:(1)∠=∠;(2);(3)平分∠;(4)垂直平分.其中正确的有()A.1个B.2个C.3个D.4个6.(2016#湖北宜昌中考)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y, x+y,a+b,,分别对应下列六个字:昌,爱,我,宜,游,美.现将因式分解,结果呈现的密码信息可能是( )A.我爱美B.宜昌游C.爱我宜昌D.美我宜昌7. 已知等腰三角形的两边长,b满足 +(2+3-13)2=0,则此等腰三角形的周长为( )A.7或8B.6或10C.6或7D.7或108.如图所示,直线是的中垂线且交于,其中.甲、乙两人想在上取两点,使得,其作法如下:(甲)作∠、∠的平分线,分别交于则即为所求;(乙)作的中垂线,分别交于,则即为所求.对于甲、乙两人的作法,下列判断正确的是()A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确9.化简的结果是()A.0 B.1 C.-1 D.(+2)210.(2016#陕西中考)下列计算正确的是( )A. B.#C. D.11.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS ⊥AC 于S,则下列三个结论:①AS=AR;②QP∥AR;③△BPR ≌△QPS中()A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确12.(2016#河北中考)在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )A.=-5B.=+5C.=8x-5D.=8x+5二、填空题(每小题3分,共24分)13.多项式分解因式后的一个因式是,则另一个因式是 .14.若分式方程的解为正数,则的取值范围是 .15.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的是(将你认为正确的结论的序号都填上).16.如图所示,AD是△ABC的角平分线,DE⊥AB于点E,DF ⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是 .17.如图所示,已知△ABC和△BDE均为等边三角形,连接AD、CE,若∠BAD=α,则∠BCE= .18.(2015#河北中考)若a=2b≠0,则的值为__________.19.方程的解是x= .20.(2015#南京中考)分解因式(ab)(a4b)+ab的结果是_________.三、解答题(共60分)21.(66分)(2016#吉林中考)解方程:.22.(6分)如图所示,已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.23.(8分)如图所示,△ABC是等腰三角形,D,E分别是腰AB及腰AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证:GD=GE.24.(8分)先将代数式化简,再从-1,1两数中选取一个适当的数作为的值代入求值.25.(8分)如图,在△ABC中,AB=AC,点E,F分别在AB,AC 上,AE=AF,BF与CE相交于点P,求证:PB=PC,并直接写出图中其他相等的线段.26.(8分)(2015#江苏苏州中考)甲、乙两位同学同时为校文化艺术节制作彩旗,已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?27.(8分)(2016#广东中考)某工程队修建一条长1 200 m 的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?28.(8分)(2015#四川南充中考)如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.期末检测题参考答案1.A 解析:点A(-3,2)关于原点对称的点B的坐标是(3,-2),点B关于轴对称的点C的坐标是(3,2),故选A.2.B 解析:∵ 2a和3b不是同类项,∴ 2a和3b不能合并,∴ A项错误;∵ 5a和-2a是同类项,∴ 5a-2a=(5-2)a=3a,∴ B项正确;∵ #,∴ C项错误;∵,∴ D项错误.3.B 解析:分别以点A、点B、点C、点D为坐标原点,建立平面直角坐标系,然后分别观察其余三点所处的位置,只有以点B为坐标原点时,另外三个点中才会出现符合题意的对称点.4. D解析:添加选项A中的条件,可用“ASA”证明△ABC ≌△DEF;添加选项B中的条件,可用“SAS”证明△ABC ≌△DEF;添加选项C中的条件,可用“AAS”证明△ABC≌△DEF;只有添加选项D中的条件,不能证明△ABC≌△DEF.5. C 解析:∵,平分∠,⊥,⊥,∴△是等腰三角形,⊥,,,∴所在直线是△的对称轴,∴(4)错误.(1)∠=∠;(2);(3)平分∠都正确.故选C.6. C 解析:先提公因式,再因式分解=(x+y)(x-y),=(a+b)(a-b),即原式=(x+y)(x-y)(a+b)(a-b),根据结果中不含有因式和,知结果中不含有“游”和“美”两个字,故选C.7. A 解析:由绝对值和平方式的非负性可知,解得分两种情况讨论:①2为底边长时,等腰三角形的三边长分别为2,3,3,2+3>3,满足三角形三边关系,此时三角形的周长为2+3+3=8;②当3为底边长时,等腰三角形的三边长分别为3,2,2,2+2>3,满足三角形三边关系,此时,三角形的周长为3+2+2=7.∴这个等腰三角形的周长为7或8.故选A.8. D 解析:甲错误,乙正确.证明:∵是线段的中垂线,∴△是等腰三角形,即,∠=∠.作的中垂线分别交于,连接CD、CE,如图所示,则∠=∠,∠=∠.。
2015-2016学年度绿塘中学八年级期末测试试卷考试范围:全书;考试时间:100分钟;命题人:萧楠题号一二三四总分得分注意事项:1.答题前填写好自己的姓名、班级等信息评卷人得分一、选择题(每题3分共30分)1.已知M(0,2)关于x轴对称的点为N,则N点坐标是()A.(0,-2) B.(0,0) C.(-2,0) D.(0,4)2.方程组324x yx+=⎧⎨=⎩的解是 ( )A.3xy=⎧⎨=⎩B.12xy=⎧⎨=⎩C.52xy=⎧⎨=-⎩D.21xy=⎧⎨=⎩3.下列各曲线中不能表示y是x的函数的是()A. B. C. D.4.已知:a>0、b<-1,则点(a,b+1)在()A、第一象限B、第二象限C、第三象限D、第四象限5.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图像是()A. B. C. D.6.(2014•永州一模)如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于()时,AB∥CD.A.50°B.40°C.30°D.60°7.如图,把长方形ABCD 沿EF 对折后使两部分重合,若∠AEF=110°,则∠1=( )A .30°B .35°C .40°D .50°8.已知0a <,则化简3a -的结果是( )A .a a --B .a aC .a a -D .a a - 9.(3分)方程组2335x y x y -=⎧⎨+=⎩的解是()A.12x y =-⎧⎨=⎩ B .11x y =⎧⎨=-⎩ C .21x y =⎧⎨=⎩ D . 12x y =⎧⎨=⎩评卷人 得分二、填空题(每题5分 共20分)11.二次根式在实数范围内有意义,则x 的取值范围为 .12.已知点A (a -1,2a -3)在一次函数1y x =+的图象上,则实数a= . 13.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为 .14.若方程3323=-+-n m y x 是关于x 、y 的二元一次方程,则=m ,=n .评卷人 得分三、计算题(每题4分共24分)15.求下列各式中x 的值 (1)03)1(2=-+x (2)20433-=+x16.计算:21227+17.解方程组: 18. 解方程组:19.计算:(﹣)2+2×3.20.计算:9+(π-3)0-|-2|+(13)-1. 评卷人 得分四、解答题(共26分)21.(本题满分4分)如图,利用关于坐标轴对称的点的坐标特点,分别作出△ABC 关于x 轴和y 轴对称的图形。
2015-2016北师大版八年级上数学期末测试题一、选择题(本题共有 10个小题,每小题 3分,共30分)在每小题给出的四个选项中,只 有一项是正确的,把正确的序号填在题后的括号内。
1 •下列实数中是无理数的是()2.在平面直角坐标系中,点 A (1,— 3)在( )(A )第一象限 (B )第二象限(C )第三象限 3. — 8的立方根是( ) (A ) -2( B ) 2( C ) — 2( D ) 24 4. 下列四组数据中,不能 作为直角三角形的三边长是()(A ) 3, 4, 6 ( B ) 7, 24, 25(C ) 6, 8, 105.下列各组数值是二元一次方程 x -3y =4的解的是()X=1 ”x = 2 \ = -1 X = 4(A ), (B) ’ , (C )丿c ( D )y =—1 y =1 ” =—2 y =—16.已知一个多边形的内角各为 720。
,则这个多边形为( )(A )三角形 (B )四边形 (C )五边形 (D )六边形、填空题:(每小题4分,共16分)11. 9的平方根是 ___________12 .如图将等腰梯形 ABCD 的腰AB 平行移动到DE 的位置,如果/ C=60 ° , AB=5,那么CE 的长为 _____________ 。
13 .如果某公司一销售人员的个人月收入与其每月的销售量 成一次函数(如图所示),那么此销售人员的销售量在 4千件 (A) 0.38 (B )- (D)22 7(D )第四象限(D) 9, 12, 15颜色黄色 绿色 白色 紫色 红色 数量(件)12015023075430(A )平均数 (B )中位数&如果(x • y -4)2…』3x - y = 0,那么2x - y 的值为( )(A )— 3(B) 3(C )— 1(D) 19.在平面直角坐标系中, 已知一次函数下列结论正的是( )(A ) k >0, b >0( B ) I10.下列说法正确的是((A )矩形的对角线互相垂直k >0, b <0 ) (B )等腰梯形的对角线相等 (C )有两个角为直角的四边形是矩形 (D )对角线互相垂直的四边形是菱形 7.某商场对上周末某品牌运动服的销售情况进行了统计,如下表所示: 经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识是()(C )众数 (D )平均数与中位数 (C ) k <0, b >0 (D ) k <0,y 二kx • b 的图象大致如图所示,时的月收入是______________ 元。
八年级第一学期期末质量检测数学试题(卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。
检测时间90分钟,满分120分Ⅰ(客观卷)30分一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共9 1.一个多边形的内角和与外角和相等,则这个多边形是A 、四边形B 、五边形C 、六边形D 、八边形2.小华将一张如图所示的矩形纸片沿对角线剪开,他利用所得的两个直角三角形进行图形变换,构成了下列四个图形,这四个图形中不是轴对称图形的是A B C D5.把a a 42-多项式分解因式,结果正确的是A 、)4(-a aB 、)2)(2(-+a aC 、)2)(2(-+a a aD 、4)2(2--a6.已知16)3(22+--x m x 是一个完全平方式,则m 的值是 A 、7-B 、1C 、7-或1D 、7或1-7.如果把分式y x xy+中的x 和y 都扩大2倍,即分式的值A 、扩大4倍B 、扩大2倍C 、不变D 、缩小2倍8.计算222---x xx 的结果是 A 、0B 、1C 、1-D 、x9.分式方程1123-=x x 的解为 A 、1=xB 、2=xC 、3=xD 、4=x10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车去奶奶家比乘坐公交车去奶奶家所需的时间少用了15分钟,现已知小林家距奶奶家8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为A 、x x 5.28158=+ B 、155.288+=x x C 、xx 5.28418=+D 、415.288+=x x Ⅱ(主观卷)90分二、填空题(每小题3分,共18分)13.分解因式=+-224b a 。
14.化简=-+-÷--4122122x x x x x 。
15.分式方程1231+=x x 的解为 。
16.如图,△ABC 的周长是12,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,则△ABC 的面积是 。