2019湖南省娄底市双峰县金家中学度八年级数学第一学月检测试题语文
- 格式:doc
- 大小:230.56 KB
- 文档页数:3
2019学年八年级数学上期第一次月考卷(满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡(卷)上,不得在试卷上直接作答。
2.作答前认真阅读答题卡(卷)上的注意事项。
3.考试结束,由监考人员将试题和答题卡(卷)一并收回。
一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了四个答案,其中只有一个是正确的,请将正确答案填写在答题卡...中对应的位置上. 1.任意画一个三角形,它的三个内角之和为( ) A .180° B .270°C .360°D .720°2.△ABC≌△DEF,且△ABC 的周长为100cm ,A 、B 分别与D 、E 对应,且AB=35cm ,DF=30cm ,则EF 的长为( ) A .35cm B .30cm C .45cm D .55cm3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A .2B .4C .6D .8 4.如图1,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对5.如图2,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( ) A .15° B .25° C .30° D .10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( ) A .5 B .6 C .7D .87.如图3,已知点A 、D 、C 、F 在同一直线上,且AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加的一个条件是( ) A .∠A=∠EDFB .∠B=∠EC .∠BCA=∠FD .BC ∥EF8.具备下列条件的三角形ABC 中,不为直角三角形的是( ) A .∠A+∠B=∠CB .∠A=∠B=∠CC .∠A=90°﹣∠BD .∠A﹣∠B=90°9.如图4,AM 是△ABC 的中线,若△ABM 的面积为4,则△ABC 的面积为( ) A .2 B .4C .6D .8图1图2图3图410.如图5,在△ABC 中,∠ABC=45°,AC=8cm ,F 是高AD 和BE 的交点,则BF 的长是( ) A .4cmB .6cmC .8cmD .9cm11.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为( )A :30°或60°B :60°C :120°D :60°和120° 12、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( )A :1个B :2个C :3个D :4个二、填空题(每小题3分,共24分)13.如图,将一张直角三角形纸片剪去直角后,得到一个四边形,则∠1+∠2=___ ___。
2019年八年级(上)第一次月考数学试卷(解析版)一、精心选一选:本大题共10小题,每小题4分,共40分.每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得4分,答错、不答或答案超过一个的一律得0分. 1.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm2.工人师傅砌门时,常用一根木条固定长方形门框,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角3.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.94.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.2;SAS B.4;ASA C.2;AAS D.4;SAS5.在数学课上,同学们在练习画边AC上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是()A.B.C.D.6.三角形一个外角小于与它相邻的内角,这个三角形()A.是直角三角形 B.是锐角三角形C.是钝角三角形 D.属于哪一类不能确定7.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙8.一个多边形从一个顶点出发共引3条对角线,那么这个多边形对角线的总数为()A.5 B.37 C.8 D.99.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10 B.6 C.4 D.210.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.∠B=∠D=90°B.∠BCA=∠DCA C.∠BAC=∠DAC D.CB=CD二、细心填一填:本大题共6小题,每小题4分,共24分11.已知图中的两个三角形全等,则∠α的度数是.12.一个三角形的两边长为3和6,若第三边取奇数,则此三角形的周长为.13.把一副常用的三角形如图所示拼在一起,那么图中∠ADE是度.。
2019-2020学年度上学期第一阶段测试八年级数学试卷一、慧眼识珠,挑选唯一正确答案,你一定很棒!(每小题3分,共36分) 1.一把直尺和一块三角板ABC (含30°、60°角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D 和点E ,另一边与三角板的两直角边分别交于点F 和点A ,且∠CED=50°,那么∠BFA 的大小为【 】 A .145° B .140°C .135°D .130°2.小聪用直尺和圆规作角平分线,方法如下:①利用三角板上的刻度,在OA 和OB 上分别截取OM 、ON ,使OM=ON ;②分别过M 、N 作OM 、ON 的垂线,交于点P ;③作射线OP ,则OP 为∠AOB 的平分线,小聪用尺规作角平分线时,用到的三角形全等的判定方法是【 】 A .SSS B .SAS C .ASAD .HL3.如图,BD 平分∠ABC,DA ⊥AB 于点A,AD=5,P 为BC 边上一动点,则DP 长的最小值为【 】 A .4 B .5 C .6D .无法确定4.如图,正方形ABCD 的边长为4,将一个足够大的直角三角板的直角顶点放于点A 处,该三角板的两条直角边与CD 交于点F ,与CB 延长线交于点E .四边形AECF 的面积是【 】A .4B .8C .12D .165.已知AD 是△ABC 中线,AB =12,AC =8,则BC 边上的中线AD 的取值范围分别是【 】A .2<AD <10B .4<AD <10C .4<AD <20 D .2<AD <126.如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=64,且BD :CD=9:7, 则点D 到AB 边的距离为【 】 A.18 B.32C.28D.24第2题第1题第4题11题图第12题DCBA 2A 1A第10题7.如图,在平面直角坐标系中,以点O 为圆心,适当的长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P.若点P 的坐标为 (-2a ,3a-4),则a 的值为【 】 A .4 B .0.8C .-4D .-0.88.平面上有△ACD 与△BCE ,其中AD 与BE 相交于P 点,如图.若AC=BC ,AD=BE ,CD=CE ,∠ACE=55°,∠BCD=155°,则∠BPD 的度数为【 】 A .110° B .125°C .130°D .135°9.已知如图,AD ∥BC ,AB ⊥BC ,CD ⊥DE ,CD=ED ,AD=6,BC=8,则△ADE 的面积为【 】 A .6 B .8 C .12 D .无法确定10.如图,在△ABC 中,∠A=128°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的大小是【 】 A. 4°B. 5°C. 6°D. 8°11.如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC =2∠B ,∠B =2∠DAE ,那么∠ACB 为【 】A . 80ºB .72ºC .48ºD .36º12.如图,在不等边△ABC 中,PM ⊥AB 于点M ,PN ⊥AC 于点N ,且PM=PN ,Q 在AC 上,PQ=QA ,MP=3,△AMP 的面积是6,下列结论:① AM <PQ+QN ,②QP ∥AM ,③△BMP ≌△PQC , ④∠QPC +∠MPB=90°,⑤△PQN 的周长是7,其中正确的有【 】个. A.1B.2C.3 D .4二、耐心填一填:你一定行!(每小题3分,共15分) 第9题第6题CD 第8题第16题第19题图13.一个多边形的每一个外角都是36º,则这个多边形的边数是 . 14.如图,点D ,E ,F ,B 在同一条直线上,AB//CD ,AE//CF 且AE=CF,若BD=16,BF=6,则EF= .15. 已知a 、b 、c 是△ABC 的三边,化简|a ﹣b ﹣c|+|c ﹣a-b|+|a+b+c|得 . 16.如图,CA=CB,CD=CE,∠ACB=∠DCE=50°,AD 、BE 交于点H ,连接CH ,则∠CHE= .17.如图,已知长方形ABCD 的边长AB=40cm ,BC=32cm ,点E 在边AB 上,AE=12cm ,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当△BPE 与△时间t 为 s.三、解答题(8+9+10+10+10+10+12)18.(8分)如图,AB =DE ,BF =EC ,∠B =∠E ,求证:AC ∥DF .19.(9分)如图,在△ABC 中,AB=AC ,AC 边上的中线把三角形的周长分为30 cm 和54 cm 的两部分,求三角形各边的长.第17题P20.(10分)如图,AB =AD ,BC =DC ,点E 在AC 上. (1)求证:AC 平分∠BAD ; (2)求证:BE =DE .21.如图,A,B,C 三点共线,D,C,E 三点共线,∠A=∠F,AE=BD.(1)若DE=10,试求DC 的长; (2)若AB=4,试求22.(10分) 如图,在△ABC 和△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE,连接BD 、CE .(1)求证:BD=CE; (2)若延长BD 交CE 于F,求∠AFB 的度数23.(10分)如图,DA=DE,∠ADE=90º,C为DE延长线上一点,AB⊥AC,且AB=AC,延长AD交BE于F. (1)求证:EF=BF. (2)求DFCE的值.24.(12分) 如图,点A、点B分别在y轴、x轴的正半轴上,且OA=OB, 点C 为线段AB上一动点,∠COD=90°,OC=OD,∠ABO=∠DCO=45°,OE⊥AD,垂足为E.(1)若C点坐标为(3,1),请直接写出D点坐标; (2)求∠EOB的度数;(3)若AC=10, BC=6,试求DE的长.。
2019-2020学年八年级数学上学期第一次月考试题一、选择题(1—8每题3分,9—12每题4分,共40分)1.下列图标中,是轴对称图形的是()A.(1)(4)B.(2)(4)C.(2)(3)D.(1)(2)△2.ABC≌△A′B′C′,其中∠A′=50°,∠B′=70°,则∠C的度数为()A.55°B.60°C.70°D.75°3.某同学把一块三角形的玻璃打碎成了3块(如图2),现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去4.和点P(-3,2)关于y轴对称的点是()A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)5.已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E。
其中能使∆ABC≅∆AED的条件有()A.4个B.3个C.2个D.1个(第3题))(第7题)(第5题)6.等腰三角形的一个角为50°,则这个等腰三角形的顶角可能为()A.50°B.65°C.80°D.50°或80°△7.如图,已知∠ABC=∠BAD,添加下列条件还不能判定ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD8.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里(第8题)(第9题)(第11题)(第12题) 9.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点△P,使AOP为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个10.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,1AB于点M,N,再分别以点M,N为圆心,大于2MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=△15,则ABD的面积是()A.15B.30C.45D.6011.如图,在ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结△论中不正确的是()△A.ABC≌△CDE B.CE=AC C.AB⊥CD D.E为BC的中点12.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接B F;②ABD和△ACD的面积相等;③BF∥△C E;④BDF≌△CDE. BF,CE.下列说法:①CE=△其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题4分,共16分)13.已知点A(a,-2)和B(3,2),当满足条件________时,点A和点B关于x轴对称.14.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=____度.(第 14 题)(第 16 题)15、一个汽车车牌在水中的倒影为,则该车的牌照号码是________.△16、如图: ABC 中,DE 是 AC 的垂直平分线,AE=3cm ,△ABD 的周长为 13cm ,则△ABC 的周长为________.三、解答题(共 64 分)17.(8)如图,已知 A(0,4),B(-2,2),C(3,0).(1)作△ABC 关于 x 轴对称的 A △1B 1C 1;(2)写出点 A 1,B 1,C 1 的坐标;(3) A △1B 1C 1 的面积 S A △1B 1C 1=________.(第 17 题)18(10).如图,点 B ,F ,C ,E 在直线 l 上(点 F ,点 C 之间不能直接测量),点 A ,D在 l 异侧,测得 AB =DE ,AC =DF ,BF =EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.19.(△10)如图,已知在 ABC 中,D 为 BC 上的一点,DA 平分∠EDC,且∠E=∠B,DE=DC ,求证:AB =AC.20.(10)如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.(第20题)21.(12)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.22.(14分△)如图,在ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.八年级数学月考答案一、选择题 1.D 2.B 3.C 4.A5.B6.D 7.A 8.D 9.D 10.B 1 1.D 12.D二、填空 13.a =314.135 15.w5236499 16.19cm三、17.解:(1)如图.(第 17 题)(2)A 1(0,-4),B 1(-2,-2),C 1(3,0).(3)718.(1) 证明:∵BF= CE ,∴ BF + F C = F C + C E ,即 BC = E F ,在△ABC 和△DEF 中,⎧⎪AB =DE ,⎨AC =△DF ,∴ ABC ≌△DEF(SSS) (2)结论:AB∥DE,AC ∥DF.理由:∵△ABC≌△DEF,∴ ⎪⎩BC =EF ,∠ABC =∠DEF,∠ACB =∠DFE ,∴AB ∥DE ,AC ∥DF19a. 证 明 : ∵DA 平 分 ∠EDC , ∴∠ADE = ∠ADC. 又 ∵DE = DC , AD = AD ,∴△AED≌△ACD(SAS ).∴∠E=∠C.又∵∠E=∠B,∴∠B=∠C.∴AB=AC.20.解:(1)∵DE 垂直平分 AC ,∴AE=CE ,∴∠ECD=∠A=36°.(2)∵AB=AC ,∠A=36°,∴∠ABC=∠ACB=72°.∵∠BEC=∠A+∠ACE=72°,∴∠B=∠BEC,∴BC=CE =5.⎧⎪AB =AC ,21.(1)证明:在△ABD 和△ACE 中, ⎨∠1=∠2,∴△ A BD ≌△ACE(SAS ),∴ B D =CE⎪⎩AD =AE ,(2) 证 明 : ∵∠1 = ∠2 , ∴ ∠ 1 + ∠DAE = ∠2 + ∠DAE , 即 ∠BAN = ∠CAM , 由 (1) 得 :∴△ACM ≌△ABN(ASA ),∴∠M =∠N△BABD≌ ACE ,∴∠=∠C,在△ACM 和△ABN 中,⎧⎪∠C=∠B,⎨AC =AB ,⎪⎩∠CAM =∠BAN,22.解:(1)BD =CE ,BD ⊥CE.证明:延长 BD 交 CE 于点 M ,易证△ABD≌△ACE(SAS ),∴BD =CE ,∠ A BD =∠ACE,∵∠ BME =∠MBC+∠BCM=∠MBC+∠ACE+∠ ACB =∠ M BC +∠ABD +∠ACB =∠ABC +∠ACB =90°,∴BD ⊥CE (2)仍有 BD =CE ,BD ⊥CE ,理由同(1)。
一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)2019的相反数是()A.﹣2019 B.2019 C.D.﹣2.(3分)下列计算正确的是()A.(﹣2)3=8 B.(a2)3=a6C.a2•a3=a6D.4x2﹣2x=2x3.(3分)顺次连接菱形四边中点得到的四边形是()A.平行四边形B.菱形C.矩形D.正方形4.(3分)一组数据﹣2、1、1、0、2、1.这组数据的众数和中位数分别是()A.﹣2、0 B.1、0 C.1、1 D.2、15.(3分)2018年8月31日,华为正式发布了全新一代自研手机SoC麒麟980,这款号称六项全球第一的芯片,随着华为Mate20系列、荣耀Magic2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗7nm(1nm=10﹣9m)手机芯片.7nm用科学记数法表示为()A.7×10﹣8m B.7×10﹣9m C.0.7×10﹣8m D.7×10﹣10m6.(3分)下列命题是假命题的是()A.到线段两端点距离相等的点在线段的垂直平分线上B.等边三角形既是轴对称图形,又是中心对称图形C.n边形(n≥3)的内角和是180°n﹣360°D.旋转不改变图形的形状和大小7.(3分)如图,⊙O的半径为2,双曲线的解析式分别为y=,则阴影部分的面积是()A.4πB.3πC.2πD.π8.(3分)如图,边长为2的等边△ABC的内切圆的半径为()A.1 B.C.2 D.29.(3分)将y=的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如图,则所得图象的解析式为()A.y=+1 B.y=﹣1 C.y=+1 D.y=﹣110.(3分)如图,直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),则解集为()A.x<﹣2 B.x>3C.x<﹣2或x>3 D.﹣2<x<311.(3分)二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的是()①abc<0②b2﹣4ac<0③2a>b④(a+c)2<b2A.1个B.2个C.3个D.4个12.(3分)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A.﹣2 B.﹣1 C.0 D.1二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)函数的自变量x的取值范围是.14.(3分)如图,随机闭合开关S1,S2,S3中的两个,能让灯泡发光的概率是.14题15题16题15.(3分)如图,AB∥CD,AC∥BD,∠1=28°,则∠2的度数为.16.(3分)如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=.17.(3分)已知方程x2+bx+3=0的一根为+,则方程的另一根为.18.(3分)已知点P(x0,y0)到直线y=kx+b的距离可表示为d=,例如:点(0,1)到直线y=2x+6的距离d==.据此进一步可得两条平行线y=x和y=x﹣4之间的距离为.三、解答题(本大题共2小题,每小题6分,共12分)19.(6分)计算:(﹣1)0﹣()﹣1+|﹣|﹣2sin60°20.(6分)先化简,再求值:÷(﹣).其中a=﹣1,b=+1.四、解答题(本大题共2小题,每小题8分,共16分)21.(8分)湖南省作为全国第三批启动高考综合改革的省市之一,从2018年秋季入学的高中一年级学生开始实施高考综合改革.深化高考综合改革,承载着广大考生的美好期盼,事关千家万户的切身利益,社会关注度高.为了了解我市某小区居民对此政策的关注程度,某数学兴趣小组随机采访了该小区部分居民,根据采访情况制做了如统计图表:关注程度频数频率A.高度关注m0.4B.一般关注100 0.5C.没有关注20 n(1)根据上述统计图表,可得此次采访的人数为,m=,n=.(2)根据以上信息补全图中的条形统计图.(3)请估计在该小区1500名居民中,高度关注新高考政策的约有多少人?22.(8分)如图,某建筑物CD高96米,它的前面有一座小山,其斜坡AB的坡度为i=1:1.为了测量山顶A的高度,在建筑物顶端D处测得山顶A和坡底B的俯角分别为α、β.已知tanα=2,tanβ=4,求山顶A的高度AE(C、B、E在同一水平面上).五、解答题(本大题共2小题,每小题9分,共18分)23.(9分)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱)销售价(元/箱)甲25 35乙35 48求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?24.(9分)如图,点D在以AB为直径的⊙O上,AD平分∠BAC,DC⊥AC,过点B作⊙O的切线交AD的延长线于点E.(1)求证:直线CD是⊙O的切线.(2)求证:CD•BE=AD•DE.六、综合题(本大题共2小题,每小题10分,共20分)25.(10分)如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:△AEH≌△CGF;(2)试判断四边形EFGH的形状,并说明理由.(3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.26.(10分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.参考答案一、选择题ABCCB CCACD AB二、填空题13.x≥3.14..15.28°.16.1.17.﹣.18.2.三、解答题19.解:原式=1﹣2+﹣2×=1﹣2+﹣=﹣1.20.解:÷(﹣)===ab,当a=﹣1,b=+1时,原式=(﹣1)×(+1)=1.四、解答题(本大题共2小题,每小题8分,共16分)21.解:(1)根据上述统计图表,可得此次采访的人数为100÷0.5=200(人),m=200×0.4=80(人),n=1﹣0.4﹣0.5=0.1;故答案为200,80,0.4;(2)补全图中的条形统计图(3)高度关注新高考政策的人数:1500×0.4=600(人),答:高度关注新高考政策的约有600人.22.解:如图,作AF⊥CD于F.设AE=x米.∵斜坡AB的坡度为i=1:1,∴BE=AE=x米.在Rt△BDC中,∵∠C=90°,CD=96米,∠DBC=∠β,∴BC===24(米),∴EC=EB+BC=(x+24)米,∴AF=EC=(x+24)米.在Rt△ADF中,∵∠AFD=90°,∠DAF=∠α,∴DF=AF•tanα=2(x+24)米,∵DF=DC﹣CF=DC﹣AE=(96﹣x)米,∴2(x+24)=96﹣x,解得x=16.故山顶A的高度AE为16米.五、解答题(本大题共2小题,每小题9分,共18分)23.解:(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,依题意,得:,解得:.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(35﹣25)×300+(48﹣35)×200=5600(元).答:该商场售完这500箱矿泉水,可获利5600元.24.证明:(1)连接OD,∵AD平分∠BAC,∴∠CAD=∠BAD,∵OA=OB,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵CD⊥AC,∴CD⊥OD,∴直线CD是⊙O的切线;(2)连接BD,∵BE是⊙O的切线,AB为⊙O的直径,∴∠ABE=∠BDE=90°,∵CD⊥AC,∴∠C=∠BDE=90°,∵∠CAD=∠BAE=∠DBE,∴△ACD∽△BDE,∴=,∴CD•BE=AD•DE.六、综合题(本大题共2小题,每小题10分,共20分)25.证明:(1)∵四边形ABCD是矩形,∴∠A=∠C.∴在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)∵由(1)知,△AEH≌△CGF,则EH=GF,同理证得△EBF≌△GDH,则EF=GH,∴四边形EFGH是平行四边形;(3)四边形EFGH的周长一半等于矩形ABCD一条对角线长度.理由如下:如图,连接AC,BD.∵四边形ABCD是矩形,∴AC=BD.∵E、H分别是边AB,AD的中点,∴EH是△ABD的中位线,∴EH=BD.同理,FG=BD,EF=HG=AC.∴(EH+HG+GF+EF)=(AC+BD)=AC.∴四边形EFGH的周长一半等于矩形ABCD一条对角线长度.26.解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)设直线PD与y轴交于点G,设点P(m,m2﹣2m﹣3),将点P、D的坐标代入一次函数表达式:y=sx+t并解得:直线PD的表达式为:y=mx﹣3﹣2m,则OG=3+2m,S=×OG(x D﹣x P)=(3+2m)(2﹣m)=﹣m2+m+3,△POD∵﹣1<0,故S△POD有最大值,当m=时,其最大值为;(3)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3,AC=,过点A作AH⊥BC与点H,S=×AH×BC=AB×OC,解得:AH=2,△ABC则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=(舍去负值),故点Q(,﹣2)②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q(,);综上,点Q(,﹣2)或(,).(。
2019-2020 年八年级(上)第一次月考数学试卷(word 版分析)一、选择题(每题 3 分,共 24 分)1.以下四个图案,此中轴对称图形有()A.0 个B.1个C.2 个D.3 个2.已知△ ABC≌△ DEF,∠ A=80°,∠ E=50°,则∠F的度数为()A.30° B.50° C.80° D.100°3.在△ ABC 和△ DEF 中,已知AB=DE,∠ A=∠D,若增补以下条件中的随意一条,就能判断△ABC≌△ DEF 的是()①A C=DF ②BC=EF ③∠ B=∠E ④∠ C=∠F.A.①②③B.②③④C.①③④D.①②④4.以下说法中,正确的选项是()A.一个轴对称图形必定只有一条对称轴B.全等三角形必定是对于某直线对称的C.两个图形对于某直线对称,则这两个图形必定分别位于这条直线的双侧D.两个图形对于某直线对称,则这两个图形对应点所连线段必定被这条直线垂直均分5.如图,正方形网格中,已有两个小正方形被涂黑,再将图其他小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有()A.5B. 6C.4D.76.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依照是()A.( SAS)B.( SSS)C.( ASA)D.( AAS)7.如图,已知△ ABC 中,∠ ABC=45°, F 是高 AD和 BE 的交点, CD=4,则线段DF的长度为()A.B.4C.D.8.如图,点B、C、 E 在同一条直线上,△ ABC 与△ CDE都是等边三角形,则以下结论不一定建立的是()A.△ ACE≌△ BCD B .△ BGC≌△ AFC C.△ DCG≌△ ECF D .△ ADB≌△ CEA二、填空题(每题 2 分,共 16 分),它的实质号9.从地面小水洼察看到一辆小汽车的车牌号为是.10.以下图,某同学把一块三角形的玻璃打坏成了三块,此刻要到玻璃店去配一块完整同样的玻璃,那么最省事的方法是带去玻璃店.11.如图,∠ 1=∠2,要使△ ABE≌△ ACE,若以“ SAS”为依照,还缺条件.12.如图,△ ABC≌△ DEF,BE=4,则 AD的长是.13.如图,∠ A=30°,∠ C′=60°,△ ABC 与△ A′B′C′对于直线l 对称,则∠B=.14.把两根钢条A′B、AB′的中点连在一同,能够做成一个丈量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为厘米.15.如图, E 点为△ ABC的边 AC中点, CN∥AB,过 E 点作直线交AB与 M点,交 CN于 N 点,若 MB=6cm, CN=4cm,则 AB=cm.16.如图, AB=12,CA⊥AB 于 A,DB⊥AB 于 B,且 AC=4m,P 点从 B 向 A 运动,每分钟走1m,Q点从 B 向 D 运动,每分钟走2m, P、 Q两点同时出发,运动分钟后△ CAP与△PQB全等.三、解答题(共60 分)17.( 8 分)( 1)作△ ABC对于直线MN对称的△ A′B′C′.(2)假如网格中每个小正方形的边长为1,求△ ABC 的面积.18.( 8 分)如图:点C、 D 在 AB 上,且 AC=BD, AE=FB, DE=FC.求证:( 1)△ ADE≌△ BCF;(2)AE∥BF.19.( 8 分)如图, D 是△ ABC的边 AB上一点, E 是 AC的中点,过点 C作 CF∥AB,交 DE的延伸线于点 F.若 CF=6. BD=2,求 AB的长.20.( 8 分)如图,已知△ ABC中,AB=AC=20cm,∠ABC=∠ACB, BC=16cm,点 D 是 AB的中点.点 P 在线段 BC上以 6 厘米 / 秒的速度由 B 点向 C 点运动,同时点 Q在线段 CA上由 C点向A 点运动,且点 Q的运动速度与点 P的运动速度相等.经过几秒后,△ BPD 与△ CQP全等?请说明原因.21.( 8 分)如图,已知:在△ ABC,△ ADE 中,∠ BAC=∠DAE=90°, AB=AC, AD=AE,点 C,D,E 三点在同一条直线上,连结BD.图中的CE、BD有如何的大小和地点关系?试证明你的结论.22.( 10 分)数学课上,商讨角均分线的作法时,王老师用直尺和圆规作角均分线,方法如下:①如图 1,在 OA和 OB上分别截取OD、 OE,使 OD=OE;②分别以D、 E 为圆心,以大于DE的长为半径作弧,两弧交于点C;③作射线OC,则 OC就是∠ AOB的均分线.OC是角均分线王老师用尺规作角均分线运用了我们第一章学过的知识,你知道吗,请说明的原因.下课小聪找到王老师告诉他,他发现利用直角三角板也能够作角均分线,方法以下:步骤:①利用三角板上的刻度,在OA和 OB上分别截取OM、 ON,使 OM=ON.②分别过M、 N作 OM、 ON的垂线,交于点P.③作射线OP.则 OP为∠ AOB的均分线.小聪的作法正确吗?请说明原因.23.( 10 分)已知:在△ ABC 中, AC=BC,∠ ACB=90°,点D是 AB的中点,点 E 是 AB边上一点.(1)直线 BF 垂直于直线CE于点 F,交 CD于点 G(如图 1),求证: AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延伸线于点M(如图2),找出图中与BE相等的线段,并证明.江苏省镇江市丹阳市里庄初级中学2015-2016 学年八年级(上)第一次月考数学试卷参照答案与试题分析一、选择题(每题 3 分,共 24 分)1.以下四个图案,此中轴对称图形有)(A.0 个B.1个C.2 个D.3 个考点:轴对称图形.剖析:依据轴对称图形的观点求解,看图形是否是对于直线对称.解答:解:依据轴对称图形的观点,从左到右第 3 个图形都是轴对称图形,故是轴对称图形的有 1 个,应选: B.评论:本题主要考察了轴对称图形的性质,利用轴对称图形的判断方法:把某个图象沿某条直线折叠,假如图形的两部分能够重合,那么这个是轴对称图形是解题重点.2.( 3 分)已知△ ABC≌△ DEF,∠ A=80°,∠ E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°考点:全等三角形的性质.剖析:要求∠ F 的大小,利用△ABC≌△ DEF,获得对应角相等,而后在△DEF中依照三角形内角和定理,求出∠ F 的大小.解答:解:∵△ ABC≌△ DEF,∴∠ D=∠ A=80°∴∠ F=180﹣∠ D﹣∠ E=50°应选 B.评论:本题主要考察了全等三角形的对应角相等,并注意运用了三角形的内角和定理,做题时要找准对应关系.3.( 3 分)在△ ABC 和△ DEF 中,已知AB=DE,∠ A=∠D,若增补以下条件中的随意一条,就能判断△ ABC≌△ DEF 的是()①A C=DF ②BC=EF ③∠ B=∠E ④∠ C=∠F.A.①②③B.②③④C.①③④D.①②④考点:全等三角形的判断.剖析:依据已知条件,已知一角和一边,因此要证两三角形全等,能够依据角边角、角角边、边角边判断定理增添条件,再依据选项选用答案.解答:解:如图,∵ AB=DE,∠ A=∠D,∴依据“边角边”可增添AC=DF,依据“角边角”可增添∠B=∠ E,依据“角角边”可增添∠ C=∠ F.因此增补①③④可判断△ABC≌△ DEF.应选 C.评论:本题主要考察三角形全等的判断,依据不一样的判断方法可选择不一样的条件,因此对三角形全等的判断定理要娴熟掌握并概括总结.4.以下说法中,正确的选项是()A.一个轴对称图形必定只有一条对称轴B.全等三角形必定是对于某直线对称的C.两个图形对于某直线对称,则这两个图形必定分别位于这条直线的双侧D.两个图形对于某直线对称,则这两个图形对应点所连线段必定被这条直线垂直均分考点:轴对称的性质.剖析:依据轴对称的性质,对题中条件进行一一剖析,获得正确选项.解答:解: A、一个轴对称图形必定只有一条对称轴,圆有无数条对称轴,此选项错误;B、全等三角形是对于某直线对称的错误,比如图一,故此选项错误;C、两个图形对于某直线对称,则这两个图形必定分别位于这条直线的双侧错误,比如图二:,故此选项错误;D、两个图形对于某直线对称,则这两个图形对应点所连线段必定被这条直线垂直均分,此选项正确.应选: D.评论:本题主要考察了轴对称图形,主要考察学生的理解能力,重点是娴熟掌握轴对称的定义.5.如图,正方形网格中,已有两个小正方形被涂黑,再将图其他小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有()A.5B. 6C.4D.7考点:利用轴对称设计图案.剖析:依据轴对称的观点作答.假如一个图形沿一条直线对折,直线两旁的部分能相互重合,那么这个图形叫做轴对称图形.解答:解:选择一个正方形涂黑,使得 3 个涂黑的正方形构成轴对称图形,选择的地点有以下几种: 1 处, 2 处, 3 处, 4 处, 5 处,选择的地点共有 5 处.应选: A.评论:本题考察了利用轴对称设计图案的知识,重点是掌握好轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.6.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依照是()A.( SAS)B.( SSS)C.( ASA)D.( AAS)考点:作图—基本作图;全等三角形的判断与性质.剖析:我们能够经过其作图的步骤来进行剖析,作图时知足了三条边对应相等,于是我们能够判断是运用SSS,答案可得.解答:解:作图的步骤:①以 O为圆心,随意长为半径画弧,分别交OA、 OB于点 C、 D;②随意作一点 O′,作射线 O′ A′,以 O′为圆心, OC长为半径画弧,交 O′ A′于点 C′;③以 C′为圆心, CD长为半径画弧,交前弧于点 D′;④过点 D′作射线 O′ B′.因此∠ A′ O′ B′就是与∠ AOB相等的角;作图完成.在△ OCD与△ O′C′ D′,,∴△ OCD≌△ O′C′ D′( SSS),∴∠ A′ O′ B′=∠ AOB,明显运用的判断方法是SSS.应选: B.评论:本题考察了全等三角形的判断与性质;由全等获得角相等是用的全等三角形的性质,娴熟掌握三角形全等的性质是正确解答本题的重点.7.如图,已知△ ABC 中,∠ ABC=45°, F 是高 AD和 BE 的交点, CD=4,则线段DF的长度为()A.B.4C.D.考点:全等三角形的判断与性质.剖析:先证明 AD=BD,再证明∠ FBD=∠ DAC,从而利用ASA证明△ BDF≌△ CDA,利用全等三角形对应边相等便可获得答案.解答:解:∵AD⊥ BC, BE⊥AC,∴∠ ADB=∠ AEB=∠ ADC=90°,∴∠ EAF+∠ AFE=90°,∠ FBD+∠ BFD=90°,∵∠ AFE=∠ BFD,∴∠ EAF=∠ FBD,∵∠ ADB=90°,∠ ABC=45°,∴∠ BAD=45° =∠ ABC,∴AD=BD,在△ ADC和△ BDF中,∴△ ADC≌△ BDF,∴D F=CD=4,应选: B.评论:本题主要考察了全等三角形的判断,重点是找出能使三角形全等的条件.8.如图,点B、C、 E 在同一条直线上,△ ABC 与△ CDE都是等边三角形,则以下结论不一定建立的是()A.△ ACE≌△ BCD B .△ BGC≌△ AFC C.△ DCG≌△ ECF D .△ ADB≌△ CEA考点:全等三角形的判断;等边三角形的性质.专题:压轴题.剖析:第一依据角间的地点及大小关系证明∠BCD=∠ ACE,再依据边角边定理,证明△ BCE≌△ ACD;由△ BCE≌△ ACD可获得∠ DBC=∠ CAE,再加上条件 AC=BC,∠ ACB=∠ ACD=60°,可证出△ BGC≌△ AFC,再依据△ BCD≌△ ACE,可得∠ CDB=∠ CEA,再加上条件 CE=CD,∠ ACD=∠D CE=60°,又可证出△ DCG≌△ ECF,利用清除法可获得答案.解答:解:∵△ ABC和△ CDE都是等边三角形,∴BC=AC, CE=CD,∠ BCA=∠ ECD=60°,∴∠ BCA+∠ ACD=∠ ECD+∠ ACD,即∠ BCD=∠ ACE,∴在△ BCD和△ ACE中,∴△ BCD≌△ ACE( SAS),故 A建立,∴∠ DBC=∠ CAE,∵∠ BCA=∠ ECD=60°,∴∠ ACD=60°,在△ BGC和△ AFC中,∴△ BGC≌△ AFC,故 B建立,∵△ BCD≌△ ACE,∴∠ CDB=∠ CEA,在△ DCG和△ ECF中,∴△ DCG≌△ ECF,故 C建立,应选: D.评论:本题主要考察了三角形全等的判断以及等边三角形的性质,解决问题的重点是根据已知条件找到可证三角形全等的条件.二、填空题(每题 2 分,共 16 分)9.从地面小水洼察看到一辆小汽车的车牌号为,它的实质号是GFT2567.考点:镜面对称.剖析:对于倒影,相应的数字应当作是对于倒影下面某条水平的线对称.解答:解:实质车牌号是:GFT2567.故答案为: GFT2567.评论:本题考察了镜面反射的性质;解决本题的重点是获得对称轴,从而获得相应数字.10.以下图,某同学把一块三角形的玻璃打坏成了三块,此刻要到玻璃店去配一块完整同样的玻璃,那么最省事的方法是带③去玻璃店.考点:全等三角形的应用.剖析:本题就是已知三角形损坏部分的边角,获得本来三角形的边角,依据三角形全等的判断方法,即可求解.解答:解:第一块和第二块只保存了原三角形的一个角和部分边,依据这两块中的任一块均不可以配一块与本来完整同样的;第三块不单保存了本来三角形的两个角还保存了一边,则能够依据ASA来配一块同样的玻璃.应带③去.故答案为:③.评论:这是一道考察全等三角形的判断方法的开放性的题,要修业生将所学的知识运用于实质生活中,要仔细察看图形,依据已知选择方法.11.如图,∠ 1=∠2,要使△ ABE≌△ ACE,若以“ SAS”为依照,还缺条件BE=CE .考点:全等三角形的判断.剖析:能够增添条件: BE=CE,从而依据∠ 1=∠ 2 获得∠ BAE=∠ CAE,再加上条件AE=AE可利用 SAS定理证明△ ABE≌△ ACE.解答:解:可增添条件:BE=CE,原因以下:∵∠1=∠ 2,∴∠ BAE=∠ CAE,在△ ABE和△ ACE中,,∴△ ABE≌△ ACE( SAS).故答案为: BE=CE.评论:本题主要考察了三角形全等的判断方法,判断两个三角形全等的一般方法有:SSS、SAS、 ASA、 AAS、 HL.12.如图,△ ABC≌△ DEF,BE=4,则 AD的长是4.考点:全等三角形的性质.剖析:依据全等三角形的性质推出AB=DE,都减去 AE即可得出AD=BE=4.解答:证明:∵△ ABC≌△ DEF,∴A B=DE,∴AB﹣ AE=DE﹣AE,∴A D=BE=4.故答案为 4.评论:本题考察了全等三角形的性质,娴熟掌握全等三角形的性质是解题的重点.13.如图,∠A=30°,∠C′=60°,△ABC 与△ A′B′C′对于直线l 对称,则∠ B= 90°.考点:轴对称的性质;三角形内角和定理.专题:研究型.剖析:先依据轴对称的性质得出△ABC≌△ A′B′ C′,由全等三角形的性质可知∠C=∠C′,再由三角形内角和定理可得出∠ B 的度数.解答:解:∵△ ABC 与△ A′ B′ C′对于直线l 对称,∴△ ABC≌△ A′B′ C′,∴∠ C=∠ C′ =60°,∵∠ A=30°,∴∠ B=180°﹣∠ A﹣∠ C=180°﹣ 30°﹣ 60°=90°.故答案为: 90°.评论:本题考察的是轴对称的性质及三角形内角和定理,熟知以上知识是解答本题的重点.14.把两根钢条A′B、AB′的中点连在一同,能够做成一个丈量工件内槽宽工具(卡钳).如图,若测得 AB=5厘米,则槽为 5 厘米.考点:全等三角形的应用.剖析:第一利用SAS定理判断△ AOB≌△ A′ OB′,而后再依据全等三角形对应边相等可得 A′ B′ =AB=5cm.解答:解:连结 AB,∵把两根钢条 A′ B、 AB′的中点连在一同,∴AO=A′ O, BO=B′ O,在△ ABO和△ A′B′ O中,∴△ AOB≌△ A′OB′( SAS),∴A′ B′ =AB=5cm,故答案为: 5.评论:本题主要考察了全等三角形的应用,重点是掌握全等三角形的判断方法.15.如图, E 点为△ ABC的边 AC中点, CN∥AB,过 E 点作直线交AB与 M点,交 CN于 N 点,若 MB=6cm, CN=4cm,则 AB= 10cm.考点:梯形中位线定理;三角形中位线定理.剖析:先证△ CNE≌△ AME,得出AM=CN,那么便可求AB的长.解答:解:∵ CN∥ AB,∴∠ NCE=∠ MAE,又∵ E 是 AC中点,∴A E=CE,而∠ AEM=∠ CEN,△CHE≌△ MAE,∴AM=CN,∴A B=AM+BM=CN+BM=4+6=10.评论:本题利用了三角形全等的判断和性质.16.如图, AB=12,CA⊥A B 于 A,DB⊥AB 于 B,且 AC=4m,P 点从 B 向 A 运动,每分钟走1m,Q点从 B向D 运动,每分钟走2m, P、 Q两点同时出发,运动4分钟后△ CAP 与△ PQB全等.考点:专题:剖析:直角三角形全等的判断.动点型.设运动 x 分钟后△ CAP与△ PQB全等;则BP=xm, BQ=2xm,则AP=( 12﹣ x) m,分两种状况:①若BP=AC,则 x=4,此时 AP=BQ,△ CAP≌△ PBQ;②若 BP=AP,则 12﹣ x=x,得出 x=6, BQ=12≠AC,即可得出结果.解答:解:∵ CA⊥ AB于 A, DB⊥ AB于 B,∴∠ A=∠ B=90°,设运动 x 分钟后△ CAP与△ PQB全等;则 BP=xm, BQ=2xm,则 AP=( 12﹣x) m,分两种状况:①若 BP=AC,则 x=4,AP=12﹣ 4=8, BQ=8, AP=BQ,∴△ CAP≌△ PBQ;②若 BP=AP,则 12﹣ x=x,解得: x=6, BQ=12≠ AC,此时△ CAP与△ PQB不全等;综上所述:运动 4 分钟后△ CAP与△ PQB全等;故答案为: 4.评论:本题考察了直角三角形全等的判断方法、解方程等知识;本题难度适中,需要进行分类议论.三、解答题(共60 分)17.( 8 分)( 1)作△ ABC对于直线MN对称的△ A′B′C′.(2)假如网格中每个小正方形的边长为1,求△ ABC 的面积.考点:作图 - 轴对称变换;三角形的面积.剖析:(1)找出 A、B、C 三点对于MN的对称点A′、B′、C′,按序连结即可获得△A′B′ C′;(2)利用矩形的面积减去四周剩余的三角形的面积即可.解答:解:( 1)以下图:(2)△ ABC的面积: 2× 4﹣× 2× 1﹣× 4× 1﹣× 2×2=3.评论:本题主要考察了作图﹣﹣轴对称变换,重点是正确找出重点点的对称点,再画出图形.18.( 8 分)如图:点C、 D 在 AB 上,且 AC=BD, AE=FB, DE=FC.求证:( 1)△ ADE≌△ BCF;(2)AE∥BF.考点:全等三角形的判断与性质.专题:证明题.剖析:(1)求出 AD=BC,依据 SSS推出两三角形全等即可;(2)依据全等三角形的性质求出∠A=∠B,依据平行线的平行得出即可.解答:证明:( 1)∵ AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△ ADE和△ BCF中∴△ ADE≌△ BCF( SSS);(2)∵△ ADE≌△ BCF,∴∠ A=∠ B,∴AE∥ BF.评论:本题考察了全等三角形的性质和判断,是解本题的重点,注意:全等三角形的判断定理有:对应边相等,对应角相等.平行线的判断的应用,能求出△ ADE≌△ BCF SAS, ASA, AAS, SSS,全等三角形的19.( 8 分)如图, D 是△ ABC的边 AB上一点, E 是 AC的中点,过点C作 CF∥AB,交 DE的延伸线于点F.若 CF=6. BD=2,求 AB的长.考点:全等三角形的判断与性质.剖析:依据平行线的性质得出∠A=∠ FCE,∠ ADE=∠ F,求出 AE=CE,依据全等三角形的判定得出△ ADE≌△ FCE,依据全等三角形的性质得出AD=CF,即可求出答案.解答:解:∵ CF∥ AB,∴∠ A=∠ FCE,∠ ADE=∠ F,∵E 是 AC的中点,∴A E=CE,在△ ADE和△ FCE中∴△ ADE≌△ FCE( AAS),∴A D=CF,∵C F=6. BD=2,∴A B=BD+AD=BD+CF=2+6=8.评论:本题考察了全等三角形的性质和判断,是解本题的重点,注意:全等三角形的判断定理有:对应边相等,对应角相等.平行线的性质的应用,能求出△ ADE≌△ FCE SAS, ASA, AAS, SSS,全等三角形的20.( 8 分)如图,已知△ ABC 中,AB=AC=20cm,∠ABC=∠ACB, BC=16cm,点 D 是 AB的中点.点P 在线段 BC上以 6 厘米 / 秒的速度由 B 点向 C 点运动,同时点 Q在线段 CA上由 C点向 A 点运动,且点 Q的运动速度与点 P的运动速度相等.经过几秒后,△ BPD 与△ CQP全等?请说明原因.考点:全等三角形的判断.专题:动点型.剖析:求出 BP=CQ, BD=CP,依据 SAS推出两三角形全等即可.解答:解:经过 1 秒后,△ BPD与△ CQP全等,原因是:∵点D是 AB的中点, AB=AC=20cm,∴B D=10cm,依据题意得: BP=CQ=6cm,CP=16cm﹣ 6cm=10cm=BD,在△ BPD和△ CQP中,,∴△ BPD≌△ CQP( SAS).评论:本题考察了全等三角形的性质和判断的应用,全等三角形的判断定理有 SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等.21.( 8 分)如图,已知:在△ ABC,△ ADE 中,∠ BAC=∠DAE=90°, AB=AC, AD=AE,点 C,D,E 三点在同一条直线上,连结BD.图中的CE、BD有如何的大小和地点关系?试证明你的结论.考点:全等三角形的判断与性质.剖析:依据全等三角形的判断得出△BAD≌△ CAE,从而得出∠ ABD=∠ ACE,求出∠ DBC+∠DCB=∠ DBC+∠ ACE+∠ ACB即可得出答案.解答:解: BD=CE, BD⊥ CE;原因:∵∠ BAC=∠ DAE=90°,∴∠ BAC+∠ CAD=∠ DAE+∠ CAD,即∠ BAD=∠ CAE,在△ BAD和△ CAE中,,∴△ BAD≌△ CAE( SAS),∴BD=CE;∵△ BAD≌△ CAE,∴∠ ABD=∠ ACE,∵∠ ABD+∠ DBC=45°,∴∠ ACE+∠ DBC=45°,∴∠ DBC+∠ DCB=∠ DBC+∠ ACE+∠ ACB=90°,则 BD⊥ CE.评论:本题主要考察了全等三角形的判断与性质和三角形内角和定理等知识,依据已知得出△ BAD≌△ CAE是解题重点.22.( 10 分)数学课上,商讨角均分线的作法时,王老师用直尺和圆规作角均分线,方法如下:①如图 1,在 OA和 OB上分别截取OD、 OE,使 OD=OE;②分别以D、 E 为圆心,以大于DE的长为半径作弧,两弧交于点C;③作射线OC,则 OC就是∠ AOB的均分线.王老师用尺规作角均分线运用了我们第一章学过的知识,你知道吗,请说明OC是角均分线的原因.下课小聪找到王老师告诉他,他发现利用直角三角板也能够作角均分线,方法以下:步骤:①利用三角板上的刻度,在OA和 OB上分别截取OM、 ON,使 OM=ON.②分别过M、 N作 OM、 ON的垂线,交于点P.③作射线OP.则 OP为∠ AOB的均分线.小聪的作法正确吗?请说明原因.考点:作图—基本作图;全等三角形的判断.剖析:(1)依据三角形全等的判断方法“SSS”解答;(2)利用判断方法“ HL”证明 Rt△ OMP和 Rt △ ONP全等,依据全等三角形对应边相等解答.解答:解:( 1)连结 EC、 DC,依据作图方法可得: OE=OD,EC=CD,在△ ODC和△ OEC中,,∴△ ODC≌△ OEC( SSS).王老师用到的三角形全等的方法是“SSS”;(2)小聪的作法正确.原因以下:在Rt△ OMP和 Rt△ ONP中,,∴R t △ OMP≌ Rt△ ONP(HL),∴∠MOP=∠NOP,∴O P是∠ AOB的均分线.评论:本题考察了全等三角形的应用,娴熟掌握三角形全等的判断方法并读懂题目信息是解题的重点.23.( 10 分)已知:在△ ABC 中, AC=BC,∠ ACB=90°,点 D是 AB的中点,点 E 是 AB边上一点.(1)直线 BF 垂直于直线CE于点 F,交 CD于点 G(如图 1),求证: AE=CG;CE,垂足为点H,交CD的延伸线于点M(如图 2),找出图中与BE (2)直线 AH垂直于直线相等的线段,并证明.考点:全等三角形的判断与性质;等腰直角三角形.专题:几何综合题;压轴题.剖析:(1)第一依据点 D 是 AB 中点,∠ ACB=90°,可得出∠ ACD=∠ BCD=45°,判断出△AEC≌△ CGB,即可得出AE=CG,(2)依据垂直的定义得出∠ CMA+∠ MCH=90°,∠ BEC+∠ MCH=90°,再依据 AC=BC,∠ ACM=∠C BE=45°,得出△ BCE≌△ CAM,从而证明出 BE=CM.解答:(1)证明:∵点 D 是 AB 中点, AC=BC,∠A CB=90°,∴CD⊥ AB,∠ ACD=∠ BCD=45°,∴∠ CAD=∠ CBD=45°,∴∠ CAE=∠ BCG,又∵ BF⊥ CE,∴∠ CBG+∠ BCF=90°,又∵∠ ACE+∠ BCF=90°,∴∠ ACE=∠ CBG,在△ AEC和△ CGB中,∴△ AEC≌△ CGB( ASA),∴AE=CG,(2)解: BE=CM.证明:∵ CH⊥ HM, CD⊥ ED,∴∠ CMA+∠ MCH=90°,∠ BEC+∠MCH=90°,∴∠ CMA=∠ BEC,又∵∠ ACM=∠ CBE=45°,在△ BCE和△ CAM中,,∴△ BCE≌△ CAM( AAS),∴BE=CM.评论:本题主要考察了全等三角形的判断方法以及全等三角形对应边相等的性质,难度适中.。
八年级数学上学期第一次月考试题(附答案)2019年八年级数学上学期第一次月考试题(附答案)数学是研究数量、结构、变化以及空间模型等概念的一门学科。
查字典数学网小编为大家准备了这篇八年级数学上学期第一次月考试题,接下来我们一起来练习。
2019年八年级数学上学期第一次月考试题(附答案)一、选择题(本大题共6小题,共18分)1.化简:的值为()A.4B.-4C.±4D.162.下列四个数中,是无理数的是()A. B. C.3-8 D.( )23.“ 的平方根是± ”用数学式表示为()A. =±B. =C.± =±D.- =-4.如图,直角三角形三边向形外作了三个正方形,其中数字表示该正方形的面积,那么正方形A的面积是()A.360B.164C.400D.605.已知直角三角形两边的长分别为5、12,则第三边的长为()A.13B.60C.17D.13或6.如图数轴上有O,A,B,C,D五点,根据图中各点所表示的数,判断在数轴上的位置会落在下列哪一线段上()A.OAB.ABC.BCD.CD16.如图所示是一块地,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积.17.如图,在一块用边长为20cm的地砖铺设的广场上,一只飞来的鸽子落在A点处,鸽子吃完小朋友洒在B、C处的鸟食,最少需要走多远?四、解答题(本大题共4小题,共32分)18.已知3a+b﹣1的立方根是3,2a+1的算术平方根是5,求a+b的平方根.19. 如图所示,一根长2.5m的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,此时OB的距离为0.7m,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行. 如果木棍的顶端A沿墙下滑0.4m,那么木棍的底端B向外移动多少距离?20、如图,在一棵树的10m高B处有2只猴子,一只猴子爬到树下走到离树20m处的池塘A处,另一只爬到树顶D后直接跳跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,求这棵树高.21. 在边长为1的网格纸内分别画边长为,,的三角形,并计算其面积.五、解答题(本大题共1小题,共10分)22. a,b,c为三角形ABC的三边,且满足a2+b2+c2-10a-24b-26c +338=0,试判别这个三角形的形状.六、解答题(本大题共1小题,共12分)23.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边长分别为a、b、c,设△ABC的面积为S,周长为 .(1)填表:三边a、b、c a+b-c3、4、5 25、12、13 48、15、17 6(2)如果a+b-c=m,观察上表猜想: = ______ ,(用含有m 的代数式表示);(3)说出(2)中结论成立的理由.答案和解析【答案】1.A2.A3.C4.A5.D6.C7.π-2;-π-48.π-3.149.10.2或411.6× =12.1-13.解:原式=2-8+14.解:设所需要的正方形地板砖的边长为a米,依题意,得100a2=16,即a2=0.16,解得a=0.4.答:所需要的正方形地板砖的边长为0.4米.15.解:(1)在Rt△ABC中,∵AB=3m,BC=4m,∠B=90°,AB2+CB2=AC2∴AC=5cm,在△ACD中,AC=5cm CD=12m,DA=13m,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°;(2)∵S△ABC= ×3×4=6,S△ACD= ×5×12=30,∴S四边形ABCD=6+30=36,费用=36×100=3600(元).16.解:如右图所示,连接AC,∵∠D=90°,∴AC2=AD2+CD2,∴AC=10,又∵AC2+BC2=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴S四边形ABCD=S△ABC-S△ACD= (24×10-6×8)=96.答:这块地的面积是96平方米.17.解:∵每一块地砖的长度为20cm∴A、B所在的长方形长为20×4=80cm,宽为20×3=60cm AB= =100又B、C所在的长方形长为20×12=240cm,宽为20×5=100cm BC= =260,AB+BC=100+260=360cm.18. 解:根据题意得3a+b﹣1=27,2a+1=25,解得a=12,b=﹣8,所以a+b=12﹣8=4,而4的平方根为± =±2,所以a+b的平方根为±2.19.解:在直角△ABC中,已知AB=2.5m,BO=0.7m,则由勾股定理得:AO= =2.4m,∴OC=2m,∵直角三角形CDO中,AB=CD,且CD为斜边,∴由勾股定理得:OD= =1.5m,∴BD=OD-OB=1.5m-0.7m=0.8m;20. 解:由题意知,BC+CA=BD+DA,∵BC=10m,AC=20m∴BD+DA=30m,设BD=x,则AD=30-x,在直角三角形ADC中,(10+x)2+202=(30-x)2,解得x=5,10+x=15.答:这棵树高15m.21.解:如图所示,S△ABC=2×4- ×1×2- ×1×3- ×1×4=8-1- -2= .22. 解:由a2+b2+c2-10a-24b-26c +338=0,得:(a2-10a+25)+(b2-24b+144)+(c2-26c+169)=0,即:(a-5)2+(b-12)2+(c-13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.23. 解:(1)∵Rt△ABC的面积S= ab,周长l=a+b+c,故当a、b、c三边分别为3、4、5时,S= ×3×4=6,l=3+4+5=12,故 = ,同理将其余两组数据代入可得为1, .∴应填:,1,(2)通过观察以上三组数据,可得出 .(3)∵l=a+b+c,m=a+b-c,∴lm=(a+b+c)(a+b-c)=(a+b)2-c2=a2+2ab+b2-c2.∵∠C=90°,∴a2+b2=c2,s= ab,∴lm=4s.即 .(1)Rt△ABC的面积S= ab,周长l=a+b+c,分别将3、4、5,5、12、13,8、15、17三组数据代入两式,可求出的值;(2)通过观察以上三组数据,可得出: = ;(3)根据lm=(a+b+c)(a+b-c),a2+b2=c2,S= ab可得出:lm=4s,即 = .本题主要考查勾股定理在解直角三角形面积和周长中的运用.八年级数学上学期第一次月考试题到这里就结束了,希望同学们的成绩能够更上一层楼。
2019-2020年八年级数学上学期第一次月考试题参考答案1.A2.C3.B4.C5.A6.C7.A8.B9.D 10.D11.1<x<6 12.120° 13.-a+3b-c 14.八 15.416.解:由三角形三边关系得AB-AC<BC<AB+AC 即7<BC<11 ....................(2分)∵BC的长为偶数∴BC=8或BC=10......(6分)∴△ABC的周长为AB+AC+BC=9+2+8=19或AB+AC+BC=9+2+10=21 ......(8分)∴△ABC的周长为19或21......(9分)17.解:∵∠A:∠B:∠C=3:5:7 ∴设∠A=3x,∠B=5x,∠C=7x∵∠A+∠B+∠C=180°∴3x+5x+7x=180°...........(4分)解得 x=12°...........(5分)∴3x=36°,5x=60°,7x=84°.....(6分)即∠A为36°,∠B为60°,∠C为84°....(8分)18.解:∵AD=AB,AD=5cm,∴AB=8cm.......(3分)又∵△ABD的周长是18cm,∴BD=5cm.又∵D是BC的中点,∴BC=2BD=10cm........(6分)又∵△ABC的周长为24cm,∴AC=24-8-10=6cm.........(8分)19.解:设∠1=∠2=x,则∠3=∠4=2x.∵∠BAC=66°,∴∠2+∠4=114°,即x+2x=114°,...(4分)解得x=38°..........(6分)∴∠DAC=∠BAC﹣∠1=28°............(8分)20.解:∵AB∥CD,∴∠C=180°﹣∠B=80°,.........(2分)∵五边形ABCDE内角和为(5﹣2)×180°=540°,....(5分)∴在五边形ABCDE中,∠AED=540°-∠A-∠B-∠C-∠D=540°﹣130°﹣100°﹣80°﹣150°=80°.......(8分)21.解:(1)∵∠A=100°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=30°.....(3分)∵△ABC≌△DEF,AB=6,∴∠F=∠ACB=30°,DE=AB=6 .........(5分)∵EH=2.5∴DH=DE-EH=6﹣2.5=3.5 ...........(8分)(2)∵△ABC≌△DEF,∴∠DEF=∠B=50°∴∠DHC=∠DEF+∠ACB=50°+30°=80°....(10分)22.解:∵点D是BC的中点∴S△ABD=S△ABC ........(2分)又∵点E是AD中点∴S△BED=S△ABD=S△ABC S△CDE=S△ACD=S△ABC∴S△BEC=S△ABD+S△ACD=S△ABC+S△ABC=S△ABC .....(8分)∵点F为CE的中点∴S△BEF=S△BEC=S△ABC=×8=2 即阴影部分的面积为2cm²...(12分)23.解:(1)∵AE平分∠BAC ∴∠EAC=∠BAC ∵∠BAC=180°-∠B-∠C ∵AD⊥BC∴∠DAC+∠C=90°∴∠EAD=∠EAC-∠DAC =∠BAC-(90°-∠C) =(180°-∠B-∠C)-(90°-∠C)=(∠C-∠B)………………(4分)(2)∠EFD=(∠C-∠B)……(5分)理由如下:过点A作AG∥DF ∴∠EFD=∠EAG同(1)可知,∠EAG=(∠C-∠B)∴∠EFD=(∠C-∠B)……(8分)(3)∠EFD=(∠C-∠B)………(9分)理由如下:过点A作AG∥DF交BC于点G∴∠EFD=∠EAG 同(1)可知,∠EAG=(∠C-∠B)即∠EFD=(∠C-∠B)…………(12分)。
2019年湖南省娄底市双峰县中考数学一模试卷一、选择题(本大题共12小题,满分36分,每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.(3分)2019的倒数是(A. 2019B. - 2019C.120192.(3分)下列各式计算正确的是()A. 2+b=2b C.(2疽)3=8a 53.(3分)长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000D •一亮B-拆瑚M 「 6 . 4_ 2L). ci ~ d —ci 米,将6 700 000用科学记数法表示应为( )4.5. A. 6.7 X106 B.(3 分)如图,AB//CD,( )A. 120°B. 6.7X10 6C. 6.7X105点E 在CB 的延长线上,若ZAB£=60°100° C. 60°(3分)如图是某个几何体的展开图,该几何体是(D. 0.67X107D. 20°B.圆锥 C.四棱柱 D.圆柱,则ZECD 的度数为6.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.7. (3分)我市某一周的最高气温统计如下表:最高气温(°C )25262728天数1123则这组数据的中位数与众数分别是()A. 27, 28 B. 27.5, 28 C. 28, 27 D. 26.5, 278. (3分)不等式组J X>1 的解集在数轴上可表示为(l 2x-4<0)A. 0 t _!_1B. 0__2^c. o F D. 0 f9. (3分)下列判断错误的是()A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形10. (3分)如图,从圆。
外一点P 引圆。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==初二语文上学期第一次月考试卷带答案月考是一个月之内学习的知识点进行检查、验收的考试,学生应该要好好重视月考,在进行语文复习的时候,多做一些练习题。
小编为大家力荐了初二语文上学期第一次月考试卷以及参考答案,给大家作为参考,欢迎阅读!初二语文上学期第一次月考试卷第1卷选择题(每题2分,共1 0分)1.下面加点字注音完全正确的一项是( )。
A.阻遏(è) 壬戌(shù) 取缔(dì) 阡(qiān)陌交通B.吊唁(yán) 交卸(xiè) 老妪(yù) 怡(yí)然自乐C.箱箧(qiè) 仄(zè)歪诘(jié)问张皇(huáng)失措D.鞠(jū)躬震悚(sǒng) 差(chā)使穷愁潦(liáo)倒2.下面词语中,有错别字的一项是( )。
A。
瓦砾赃物篆章富丽堂皇B.地窖泻气拂晓月明风青C.粗拙愧怍溃退长途跋涉D.肃穆烦琐噩耗低眉顺眼3.下列句中加点的成语或熟语使用不正确的一项是( )。
A.有个别学生上网成瘾,执迷不悟,浪费了大好年华。
B.全校同学目不暇接地聆听着科学家精彩的学术报告。
C.城市绿化必须因地制宜,突出环境保护与人文景观和谐统一的发展观念。
D.人们常用谚语“三百六十行,行行出状元”劝勉别人不要嫌弃行业不好,任何工作都能创造出超人的业绩。
4.下面各句中,没有语病的一句是( )。
A.具备顽强的毅力,是一个人在事业上能否取得成功的关键。
B.针对目前因特网上存在的不良现象,很多人发出文明办网。
C.为了发挥自己的充分才能,他毅然决定回国,参加中国的太空开发研究。
D.网络作为传媒,必须承担社会教育责任。
5.下面各组语句中,加点词的意思相同的一项是( )。
一、选择题1.直角三角形的面积为 S ,斜边上的中线为 d ,则这个三角形周长为 ( ) A .22d S d ++ B .2d S d -- C .22d S d ++ D .()22d S d ++ 2.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()A .22B .32C .62D .823.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( )A .49B .25C .12D .10 4.一个直角三角形两边长分别是12和 5,则第三边的长是( ) A .13 B .13或15 C .13或119 D .155.下列四组数中不能构成直角三角形的一组是( ) A .1,2,6 B .3,5,4 C .5,12,13D .3,2,13 6.如图,在数轴上点A 所表示的数为a ,则a 的值为( )A .15--B .15-C .5-D .15-+7.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=︒正方形ADOF 的边长是2,4BD =,则CF 的长为( )A .6B .2C .8D .108.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A.4 B.16 C.34D.4或349.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A.B.C.D.10.在四边形ABCD中,AB∥CD,∠A=90°,AB=1,BD⊥BC,BD=BC,CF平分∠BCD交BD、AD于E、F,则EDC的面积为()A.22﹣2 B.32﹣2 C.2﹣2D.2﹣1二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.12.如图,AB=12,AB⊥BC于点B, AB⊥AD于点A,AD=5,BC=10,E是CD的中点,则AE的长是____ ___.13.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是_____.14.如图,在Rt△ABC中,∠ACB=90°,AB=7.5cm,AC=4.5cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒,当△ABP为等腰三角形时,t的取值为_____.15.在Rt△ABC中,直角边的长分别为a,b,斜边长c,且a+b=35,c=5,则ab的值为______.16.如图,在△ABC中,AB AC=10,BC=12,AD是角平分线,P、Q分别是AD、AB边上的动点,则BP+PQ的最小值为_______.17.如图,E为等腰直角△ABC的边AB上的一点,要使AE=3,BE=1,P为AC上的动点,则PB+PE的最小值为____________.18.如图所示,四边形ABCD是长方形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.19.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为1S,2S,3S,若12315S S S++=,则2S的值是__________.20.已知,在△ABC中,BC=3,∠A=22.5°,将△ABC翻折使得点B与点A重合,折痕与边AC交于点P,如果AP=4,那么AC的长为_______三、解答题21.定义:如图1,平面上两条直线AB、CD相交于点O,对于平面内任意一点M,点M到直线AB、CD的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O.(1)“距离坐标”为(1,0)的点有个;(2)如图2,若点M在过点O且与直线AB垂直的直线l上时,点M的“距离坐标”为(p,q),且∠BOD = 150︒,请写出p、q的关系式并证明;(3)如图3,点M的“距离坐标”为3),且∠DOB = 30︒,求OM的长.22.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.24.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =;(2)延长BD 与EF 交于点G .①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.25.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.(1)若∠A =35°,则∠CBD 的度数为________;(2)若AC =8,BC =6,求AD 的长;(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)26.如图,点A 是射线OE :y =x (x ≥0)上的一个动点,过点A 作x 轴的垂线,垂足为B ,过点B 作OA 的平行线交∠AOB 的平分线于点C .(1)若OA =2,求点B 的坐标;(2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若点A 的坐标为(2,2),射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由. ②在(3)①的条件下,在平面内另有三点P 122),P 2(2,2),P 3(2,22),请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)27.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC ,其顶点A ,B ,C 都在格点上,同时构造长方形CDEF ,使它的顶点都在格点上,且它的边EF 经过点A ,ED 经过点B .同学们借助此图求出了△ABC 的面积.(1)在图(1)中,△ABC 的三边长分别是AB = ,BC = ,AC = .△ABC 的面积是 .(2)已知△PMN 中,PM 17,MN =5NP 13图(2)中画出△PMN,并直接写出△RMN的面积.28.如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.(1)求∠EDF= (填度数);(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;(3)①若AB=6,G是AB的中点,求△BFG的面积;②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.29.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).30.如图,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是边AB的高线,动点E从点A 出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).(1)AE=(用含t的代数式表示),∠BCD的大小是度;(2)点E在边AC上运动时,求证:△ADE≌△CDF;(3)点E在边AC上运动时,求∠EDF的度数;(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。
2018-2019湘教版八年级下第1学月考试试卷姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列各组数中,可以构成勾股数的是()A.2.在Rt△ABC中,若AC=,BC=,AB=4,则下列结论中正确的是( )A.∠C=90°B.∠B=90°C.△ABC是锐角三角形D.△ABC是钝角三角形3.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α4.如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6C.6D.125.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,②B.①,④C.③,④D.②,③6.如图,一个2.5米长的梯子,底端D放在距离墙根C点1.5米处,另一头E点靠墙,如果梯子的底部向墙移动0.8米,梯子的另一端向上移动()米.A.0.4 B.0.6 C.0.7 D.0.87.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.248.如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm9.如图,在平行四边形ABCD中,连接对角线AC、BD,图中的全等三角形的对数()A.1对B.2对C.3对D.4对10.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S311.如图,在Rt△ABC中,∠C=90°,BD是角平分线,若CD=m,AB=2n,则△ABD的面积是()A.mn B.5mn C.7mn D.6mn12.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD二、填空题(本大题共6小题,每小题3分,共18分)13.在中,,比大则______.14.如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的平行四边形ADCE中,DE的最小值是.15.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是_______________.16.如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.17.如图,△ABC 中,∠C=90°,CA=CB ,点M 在线段AB 上,∠GMB=21∠A ,BG ⊥MG ,垂足为G ,MG与BC 相交于点H ,若MH=8cm ,则BG= cm.18.在等腰△ABC 中,AD ⊥BC 交直线BC 于点D ,若AD=BC ,则△ABC 的顶角的度数为 . 三 、解答题(本大题共8小题,共66分)19.在△ABC 中,∠C =90°,AB =20,若∠A =60°,求BC ,AC 的长. 20.如图,长7.5m 的梯子靠在墙上,梯子的底部离墙的底端4.5m.(1)求梯子的顶端到地面的距离;(2)由于地面有水,梯子底部向右滑动1.5m ,则梯子顶端向下滑多少米?21.已知:如图,在Rt △ABC 中,∠ACB=90°,∠BAC=30°,以AC 为边作等边△ACD ,并作斜边AB 的垂直平分线EH ,且EB=AB ,联结DE 交AB 于点F ,求证:EF=DF .22.如图,四边形ABCD是平行四边形.(1)用尺规作图作∠ABC的平分线交AD于E(保留作图痕迹,不要求写作法,不要求证明)(2)求证:AB=AE.23.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下两组勾股数:11、、; 13、、;(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别表示为和,请用所学知识说明它们是一组勾股数.24.如图,已知CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE,CD相交于点O,连接AO.求证:(1)当∠1=∠2时,OB=OC;(2)当OB=OC时,∠1=∠2.25.在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路.如:在图1中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在射线ON上截取OB=OA,连结BC,根据三角形全等的判定方法(SAS),容易构造出全等三角形△OBC和△OAC,参考上面的方法,解答下列问题:(1)如图2,在△ABC中,AD是∠BAC的平分线,E,F分别为AB,AC上的点,且∠AED+∠AFD=180°.求证:DE=DF.(2)如图3,在非等边△ABC中,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,且AD,CE 交于点F,求证:AC=AE+CD.26.已知:如图,Rt△ABC中,∠C=90°,AC=6,AB=10.(1)求BC的长;(2)有一动点P从点C开始沿C→B→A方向以1cm/s的速度运动到点A后停止运动,设运动时间为t秒;求:①当t为几秒时,AP平分∠CAB;②当t为几秒时,△ACP是等腰三角形(直接写答案).答案解析一、选择题1.【考点】勾股数【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.解:A.32+42=52,能构成直角三角形,是整数.故选项正确;B.不是正整数.故选项错误;C.不是正整数.故选项错误;D.,不能构成直角三角形.故选项错误.故选A.【点睛】本题主要考查了勾股数,关键是掌握勾股数的定义及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.【考点】勾股定理的逆定理【分析】根据勾股定理的逆定理即可解答.解:∵AC=,BC=,AB=4,∴AC2+BC2=AB2,∴∠C=90°,故选:A.【点睛】此题主要是对勾股定理逆定理的应用,确定谁是直角很关键.3.【考点】多边形内角与外角;三角形内角和定理.【分析】先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.【点评】本题考查了多边形的内角和外角以及三角形的内角和定理,属于基础题.4.【考点】含30度角的直角三角形.【分析】根据30°所对的直角边等于斜边的一半求解.解:∵∠C=90°,∠A=30°,AB=12,∴BC=AB=12×=6,故答选A.【点评】本题考查了含30度角的直角三角形性质,注意:在直角三角形中,如果有一个角是30°,那么它所对的直角边等于斜边的一半.5.【考点】平行四边形的判定.【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.解:∵只有②③两块角的两边互相平行,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.【点评】本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.6.【考点】勾股定理的应用【分析】首先在直角三角形CDE中计算出CE长,再在直角三角形ABC中计算出BC的长,从而可得BE的长度.解:∵DE=2.5米,CD=1.5米,∴CE=(米),∵梯子的底部向墙移动0.8米,∴AD=0.8米,∴AC=1.5-0.8=0.7米,∴BC=米.∴梯子的底部向外滑出BE=2.4-2=0.4(米).故选:A.【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.7.【考点】平行四边形的性质,三角形中位线定理【分析】利用平行四边形的性质,三角形中位线定理即可解决问题;解:∵平行四边形ABCD的周长为36,∴BC+CD=18,∵OD=OB,DE=EC,∴OE+DE=(BC+CD)=9,∵BD=12,∴OD=BD=6,∴△DOE的周长为9+6=15,故选:A.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.8.【考点】平行四边形的性质,线段垂直平分线的性质,三角形周长的计算【分析】先由平行四边形的性质和周长求出AD+DC=10,再根据线段垂直平分线的性质得出AE=CE,即可得出△CDE的周长=AD+DC.解:∵四边形ABCD是平行四边形,∴AB=DC,AD=BC,OA=OC,∵▱ABCD的周长为20cm,∴AD+DC=10cm,又∵OE⊥AC,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=10cm;故选:C.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形周长的计算;熟练掌握平行四边形的性质,运用线段垂直平分线的性质得出AE=CE是解决问题的关键.9.【考点】平行四边形的性质;全等三角形的判定.【分析】平行四边形的性质是:对边相互平行且相等,对角线互相平分.这样不难得出:AD=BC,AB=CD,AO=CO,DO=BO,再利用“对顶角相等”就很容易找到全等的三角形:△ACD≌△CAB(SSS),△ABD≌△CDB(SSS),△AOD≌△COB(SAS),△AOB≌△COD(SAS).解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC;OD=OB,OA=OC;∵在△AOD和△COB中∴△AOD≌△COB(SAS);同理可得出△AOB≌△COD(SAS);∵在△ABD和△DCB中,∴△ABD≌△CDB(SSS);同理可得:△ACD≌△CAB(SSS).共有4对全等三角形.故选D.【点评】考查了平行四边形的性质和全等三角形的判定,三角形全等的条件有时候是直接给的,有时候是根据已知条件推出的,还有时是由已知图形的性质得出的,做题时要全面考虑.10.【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.11.【考点】角平分线的性质【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式即可得到结论.解:如图,过点D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,∴DE=CD=m,∴△ABD的面积=×2n×m=mn,故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.12.【考点】三角形中位线定理;等腰三角形的性质,勾股定理【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C错误;在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D 正确.解:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD,∵AB=AC,∴AB=CD,故D正确,不符合题意.故选C.【点评】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.二、填空题13.【考点】三角形的内角和,直角三角形两锐角互余【分析】根据直角三角形两锐角互余可得,然后解方程组即可.解:,,比大,,得,,.故答案为:.【点睛】本题考查了三角形的内角和,直角三角形两锐角互余的性质,熟记性质并列出关于的两个方程是解题的关键.14.【考点】平行四边形的性质;垂线段最短;三角形中位线定理.【分析】首先证明BC∥AE,当DE⊥BC时,DE最短,只要证明四边形ABDE是矩形即可解决问题.解:∵四边形ADCE是平行四边形,∴BC∥AE,∴当DE⊥BC时,DE最短,此时∵∠B=90°,∴AB⊥BC,∴DE∥AB,∴四边形ABDE是平行四边形,∵∠B=90°,∴四边形ABDE是矩形,∴DE=AB=4,∴DE的最小值为4.故答案为4.【点评】本题考查平行四边形的性质、垂线段最短等知识,解题的关键是找到DE的位置,学会利用垂线段最短解决问题,属于中考常考题型.15.【考点】勾股定理的应用.【分析】由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+52,∵△BCD的周长是30,∴x+2y+5=30则x=13,y=6.∴这个风车的外围周长是:4(x+y)=4×19=76.故答案是:76.【点评】本题考查了勾股定理在直角三角形中的运用,考查了全等三角形对应边相等的性质,本题中正确的计算BD是解题的关键.16.【考点】等边三角形的性质,勾股定理,三角形中位线定理【分析】连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.【点睛】本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.17.【考点】全等三角形的性质与判定、等腰直角三角形的性质【分析】作MD⊥BC于D,延长DE交BG的延长线于E,构建等腰直角三角形△BDM,证明△BED 和△MHD全等,解:如图,作MD⊥BC于D,延长DE交BG的延长线于E,∵△ABC中,∠C=90°,CA=CB,∴∠ABC=∠A=45°,∵∠GMB=∠A,∴∠GMB=∠A=22.5°,∵BG⊥MG,∴∠BGM=90°,∴∠GBM=90°﹣22.5°=67.5°,∴∠GBH=∠EBM﹣∠ABC=22.5°.∵MD∥AC,∴∠BMD=∠A=45°,∴△BDM为等腰直角三角形∴BD=DM,而∠GBH=22.5°,∴GM平分∠BMD,而BG⊥MG,∴BG=EG,即BG=BE,∵∠MHD+∠HMD=∠E+∠HMD=90°,∴∠MHD=∠E,∵∠GBD=90°﹣∠E,∠HMD=90°﹣∠E,∴∠GBD=∠HMD,∴在△BED和△MHD中,,∴△BED≌△MHD(AAS),∴BE=MH,∴BG=MH=4.故答案是:4.【点评】本题考查了全等三角形的性质与判定、等腰直角三角形的性质。
娄底市2019年初中学业水平考试数学试题卷及答案(已编辑)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2019年湖南省娄底市中考数学试卷一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)2019的相反数是()A.﹣2019 B.2019 C.D.﹣2.(3分)下列计算正确的是()A.(﹣2)3=8 B.(a2)3=a6C.a2•a3=a6D.4x2﹣2x=2x3.(3分)顺次连接菱形四边中点得到的四边形是()A.平行四边形B.菱形C.矩形D.正方形4.(3分)一组数据﹣2、1、1、0、2、1.这组数据的众数和中位数分别是()A.﹣2、0 B.1、0 C.1、1 D.2、15.(3分)2018年8月31日,华为正式发布了全新一代自研手机SoC麒麟980,这款号称六项全球第一的芯片,随着华为Mate20系列、荣耀Magic2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗7nm(1nm=10﹣9m)手机芯片.7nm用科学记数法表示为()A.7×10﹣8m B.7×10﹣9m C.0.7×10﹣8m D.7×10﹣10m6.(3分)下列命题是假命题的是()A.到线段两端点距离相等的点在线段的垂直平分线上B.等边三角形既是轴对称图形,又是中心对称图形C.n边形(n≥3)的内角和是180°n﹣360°D.旋转不改变图形的形状和大小7.(3分)如图,⊙O的半径为2,双曲线的解析式分别为y=,则阴影部分的面积是()A.4πB.3πC.2πD.π8.(3分)如图,边长为2的等边△ABC的内切圆的半径为()A.1 B.C.2 D.29.(3分)将y=的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如图,则所得图象的解析式为()A.y=+1 B.y=﹣1 C.y=+1 D.y=﹣110.(3分)如图,直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),则解集为()A.x<﹣2 B.x>3C.x<﹣2或x>3 D.﹣2<x<311.(3分)二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的是()①abc<0②b2﹣4ac<0③2a>b④(a+c)2<b2A.1个B.2个C.3个D.4个12.(3分)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A.﹣2 B.﹣1 C.0 D.1二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)函数的自变量x的取值范围是.14.(3分)如图,随机闭合开关S1,S2,S3中的两个,能让灯泡发光的概率是.14题 15题 16题15.(3分)如图,AB∥CD,AC∥BD,∠1=28°,则∠2的度数为.16.(3分)如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD =.17.(3分)已知方程x2+bx+3=0的一根为+,则方程的另一根为.18.(3分)已知点P(x0,y0)到直线y=kx+b的距离可表示为d=,例如:点(0,1)到直线y=2x+6的距离d==.据此进一步可得两条平行线y=x和y=x﹣4之间的距离为.三、解答题(本大题共2小题,每小题6分,共12分)19.(6分)计算:(﹣1)0﹣()﹣1+|﹣|﹣2sin60°20.(6分)先化简,再求值:÷(﹣).其中a=﹣1,b=+1.四、解答题(本大题共2小题,每小题8分,共16分)21.(8分)湖南省作为全国第三批启动高考综合改革的省市之一,从2018年秋季入学的高中一年级学生开始实施高考综合改革.深化高考综合改革,承载着广大考生的美好期盼,事关千家万户的切身利益,社会关注度高.为了了解我市某小区居民对此政策的关注程度,某数学兴趣小组随机采访了该小区部分居民,根据采访情况制做了如统计图表:关注程度频数频率A.高度关注m0.4B.一般关注100 0.5C.没有关注20 n(1)根据上述统计图表,可得此次采访的人数为,m=,n=.(2)根据以上信息补全图中的条形统计图.(3)请估计在该小区1500名居民中,高度关注新高考政策的约有多少人?22.(8分)如图,某建筑物CD高96米,它的前面有一座小山,其斜坡AB的坡度为i=1:1.为了测量山顶A的高度,在建筑物顶端D处测得山顶A和坡底B的俯角分别为α、β.已知tanα=2,tanβ=4,求山顶A的高度AE(C、B、E在同一水平面上).五、解答题(本大题共2小题,每小题9分,共18分)23.(9分)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱)销售价(元/箱)甲25 35乙35 48求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?24.(9分)如图,点D在以AB为直径的⊙O上,AD平分∠BAC,DC⊥AC,过点B作⊙O的切线交AD的延长线于点E.(1)求证:直线CD是⊙O的切线.(2)求证:CD•BE=AD•DE.六、综合题(本大题共2小题,每小题10分,共20分)25.(10分)如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:△AEH≌△CGF;(2)试判断四边形EFGH的形状,并说明理由.(3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.26.(10分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.参考答案一、选择题ABCCB CCACD AB二、填空题13.x≥3. 14.. 15.28°.16.1. 17.﹣. 18.2.三、解答题19.解:原式=1﹣2+﹣2×=1﹣2+﹣=﹣1.20.解:÷(﹣)===ab,当a=﹣1,b=+1时,原式=(﹣1)×(+1)=1.四、解答题(本大题共2小题,每小题8分,共16分)21.解:(1)根据上述统计图表,可得此次采访的人数为100÷0.5=200(人),m=200×0.4=80(人),n=1﹣0.4﹣0.5=0.1;故答案为200,80,0.4;(2)补全图中的条形统计图(3)高度关注新高考政策的人数:1500×0.4=600(人),答:高度关注新高考政策的约有600人.22.解:如图,作AF⊥CD于F.设AE=x米.∵斜坡AB的坡度为i=1:1,∴BE=AE=x米.在Rt△BDC中,∵∠C=90°,CD=96米,∠DBC=∠β,∴BC===24(米),∴EC=EB+BC=(x+24)米,∴AF=EC=(x+24)米.在Rt△ADF中,∵∠AFD=90°,∠DAF=∠α,∴DF=AF•tanα=2(x+24)米,∵DF=DC﹣CF=DC﹣AE=(96﹣x)米,∴2(x+24)=96﹣x,解得x=16.故山顶A的高度AE为16米.五、解答题(本大题共2小题,每小题9分,共18分)23.解:(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,依题意,得:,解得:.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(35﹣25)×300+(48﹣35)×200=5600(元).答:该商场售完这500箱矿泉水,可获利5600元.24.证明:(1)连接OD,∵AD平分∠BAC,∴∠CAD=∠BAD,∵OA=OB,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵CD⊥AC,∴CD⊥OD,∴直线CD是⊙O的切线;(2)连接BD,∵BE是⊙O的切线,AB为⊙O的直径,∴∠ABE=∠BDE=90°,∵CD⊥AC,∴∠C=∠BDE=90°,∵∠CAD=∠BAE=∠DBE,∴△ACD∽△BDE,∴=,∴CD•BE=AD•DE.六、综合题(本大题共2小题,每小题10分,共20分)25.证明:(1)∵四边形ABCD是矩形,∴∠A=∠C.∴在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)∵由(1)知,△AEH≌△CGF,则EH=GF,同理证得△EBF≌△GDH,则EF=GH,∴四边形EFGH是平行四边形;(3)四边形EFGH的周长一半等于矩形ABCD一条对角线长度.理由如下:如图,连接AC,BD.∵四边形ABCD是矩形,∴AC=BD.∵E、H分别是边AB,AD的中点,∴EH是△ABD的中位线,∴EH=BD.同理,FG=BD,EF=HG=AC.∴(EH+HG+GF+EF)=(AC+BD)=AC.∴四边形EFGH的周长一半等于矩形ABCD一条对角线长度.26.解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)设直线PD与y轴交于点G,设点P(m,m2﹣2m﹣3),将点P、D的坐标代入一次函数表达式:y=sx+t并解得:直线PD的表达式为:y=mx﹣3﹣2m,则OG=3+2m,S=×OG(x D﹣x P)=(3+2m)(2﹣m)=﹣m2+m+3,△POD∵﹣1<0,故S△POD有最大值,当m=时,其最大值为;(3)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3,AC=,过点A作AH⊥BC与点H,S=×AH×BC=AB×OC,解得:AH=2,△ABC则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=(舍去负值),故点Q(,﹣2)②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q(,);综上,点Q(,﹣2)或(,).。
双峰县金家中学2019-2019学年度八年级月考
数学卷
满分:150分 时间:120分钟
一、选择题。
共48分
1、16的平方根与-8的立方根之和是( ).
A.-6
B.2
C.2或-6
D.0 2. 下列说法正确的是 ( ) A .0和1的平方根等于本身 B 、0和1的算术平方根等于本身 C .立方根等于本身的数是0 D 、以上说法都不正确 3、8的立方根是( ).
A.-2
B.2
C.2或-6
D.0 4.一个数的平方根与这个数的立方根之和为0,则这个数是( ). A.-1 B.±1 C.不存在 D.0 5、下列说法正确的是( ) A.2的平方根是2 B.5的算术平方根是5±
C.-2是
2的平方根 D .5±是
5的算术平方根
6、有下列四个说法:①1的算术平方根是1,②81的立方根是±2
1
,③-27没有立方根,④互为相反数的两数的立方根互为相反数,其中正确的是( ).
A .①②
B .①③
C .①④
D .②④
7、下列说法正确的是………… ( )
A 、无限不循环小数是无理数
B 、带根号的数都是无理数
C 、无限小数都是无理数
D 、π是无理数,但3
π是分数,也就是有
理数
8、和数轴上的点是一一对应的数为 ( )
A 、整数
B 、有理数
C 、无理数
D 、实数 9、若a 2n =3,则2a 6n -1的值为 ………… ( )
A 、 17
B 、 35
C 、 53
D 、 1457
10、(mx +8)(2-3x )展开后不含x 的一次项,则m 为……( ) A 、3 B 、32 C 、12 D 、24
11
,则x 是 ( ). A.有理数 B.整数 C.非负数 D.实数 12、下列各计算中,正确的是( )
(A ) 5552b b b =∙ (B ) 1055x x x =+ (C ) 532m m m =∙ (D ) 222b a b a =∙ 13、(x -y )与(y -x )的乘积是( )
(A )22y x - (B )22x y - (C )22y x -- (D )222y xy x -+- 14、)
=()(-)(-计算: 331
2000
1999∙ (A ) 31 (B ) 3 (C ) 31
-
(D )--3
15、下列多项式计算中,利用乘法公式正确的是( ) (A )(x -3y )(x +5y )=x 2+2xy -15y 2 (B )(xy 3)2=xy 6;
(C ) (-2x )3=-2x 3
(D) (-2a 2)• (3ab 2-5ab 3)=-6a 3b 2 -10a 3b 3
16、一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为( )。
(A ) 6cm ;(B )5cm ;(C )8cm ;(D )7cm 。
二.填空题。
每道3分,共42分
1. 25的平方根是 ,
81的算术平方根是 。
2. 125的立方根是 , 64
的立方根是
3. 3是数a 的一个平方根 ,2是数b 的一个立方根数,则a +b= . 2a +b -1的平方根是 ,
4、在实数34,302.0,2020020002.2,0,5,64,7
22
,2,3.0-----∙∙ π
中,有理数有
______;无理数有___________; 5.16
-= (2)2
)13(-±
= .
6
= ,|53||52|-+-=。
7.()()2
5
2a a -⋅-=_____ __, ()324x x -÷= .
8、若x 2=(-7)2,则x = . 若x =3,则x =
9.已知2,3n m a a ==,则2____m n a +=,_____m n a -=
10、 若()()2232x mx n x x ++-+中,不含2x 和3x 项,则m = ,n = 11、若一个正数的两个平方根是21a -和2a -+,则a =______,这个正数为
12、若a+b=8,ab=15,则a 2b +ab 2= ,若a-b=4,ab=7,则3a 2b -3ab 2= 13
2(3)0y -=,则
x+y= ,y x xy -= ;
14、请你观察、思考下列计算过程:
因为121
112=,所以11121=,同样,因为123211112=,所以11112321=,
则
=1234321 ,由此猜想
76543211
2
3
4567898=_________________.
三.计算题.共24分
1. 2a 8 • (3ab )3
2. 42x 2 • x 3 ÷7x 4
3. 6x 2y • (-3x );
4.
25xy •(-x 3y 4+5
4
x 2y 6)
5 (a +3b )(a -3b );
6 .)32)(32()2(2y x y x y x -+-+
四.解答题。
共36分
1:卫星绕地球表面做圆周运动的速度约为7.9×103米/秒,则卫星运行8×103秒所走的路程约是多少?(4分)
2、先化简,再求值:2(x +1)(x -1)-x (2x -1),其中x =-2
(4分)
3、解方程:()()(2)1532x x x x -+=+- (4分)
4、已知21a -的平方根是±3,31a b +-的算术平方根是4,求2a b +的平方根。
(4分)
5.已知3+-y x 与1-+y x 互为相反数,求(x-y )的值。
(4分) 6.3
32-a +337a
-=0,求a+3的平方根 (5分)
7.已知2231642,2793m n n m -+=⨯=⨯,求()2008n m -的值 (5分) 8.问题:你能比较两个数2007
2006和
2006
2007的大小吗?
(6分)
为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,比较1n n +与()1n n +的大小(n 为正整数),从分析1,2,3n n n ===的情
形入手,通过归纳,发现规律,猜想出结论。
(1) 比较各组数的大小①21
1____2; ②
32
2____3;
③433____4; ④544____5
(2) 由(1)猜想出1n n +与()1n n +的大小关系是_________; ()3 由(2)可知:20072006_______
20062007 五.附加题:4分,(计入总分,满150分为止)
请认真分析下面一组等式的特征:
1×3=22 – 1 ; 3×5=42 – 1;
5×7=62 – 1 ; 7×9=82 – 1;
………………
这一组等式有什么规律?将你猜想到的规律用一个只含字母n 的式子表示出来?______________。