第二章管流力学基础
- 格式:ppt
- 大小:1.05 MB
- 文档页数:28
第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。
这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。
2.1计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。
20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。
数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。
从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。
数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。
数值计算方法最近发展很快,其重要性与日俱增。
自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。
最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。
航空技术的发展强烈推动了流体力学的迅速发展。
流体运动的规律由一组控制方程描述。
计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。
但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。
计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。
计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler或Navier-Stokes方程)以发现各种流动现象规律的学科。
第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。
其单位是牛顿,N。
单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。
其单位是N/kg。
2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。
3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。
4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。
其单位为N/(㎡·s),以符号Pa·s表示。
运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。
国际单位制单位㎡/s。
动力黏度μ与运动黏度ν的关系:μ=ν·ρ。
5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。
毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。
6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。
(P12,还需看看书,了解什么是以上三种模型!)。
第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。
2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。
两水头中的压强P必须采用相对压强表示。
b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。
3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。
第二章 流体运动学只研究流体运动, 不涉及力、质量等与动力学有关的物理量。
§2.1 流体运动的描述 两种研究方法:(1)拉格朗日(Lagrange)法: 以流场中质点或质点系为研究对象, 从而进一步研究整个流体。
理论力学中使用的质点系力学方法,难测量,不适用于实用理论研究。
(2)欧拉(Euler)法: 将流过空间的流体物理参数赋予各空间点(构成流场),以空间各点为研究对象,研究其物理参数随时间t ,位置(x ,y ,z )的变化规律。
易实验研究,流体力学的主要研究方法。
两种研究方法得到的结论形式不同,但结论的物理相同。
可通过一定公式转换。
1. 拉格朗日法有关结论质点: r=r (t ) dt d rV = dtd dt d V r a ==22x=x (t ) dt dxu = 22dtx d a x =y=y (t ) dtdyv = 22dt y d a y =p=p (t ) T=T (t ) .. .. .. .. .. .. .. .. 质点系:x=x (t,a,b,c ) p=p (t,a,b,c ) T=T (t,a,b,c ) .. .. .. .. .. .. .. ..(a, b, c)是质点系各质点在t =t 0时刻的坐标。
(a, b, c)不同值表不同质点2. 欧拉法物理量应是时间t 和空间点坐标x, y,z 的函数u =u(x, y, z, t) p =p(x, y, z, t) T =T(x, y, z, t) 3. 流体质点的随体导数!!流体质点的随体导数:流体质点物理参数对于时间的变化率。
简称为质点导数。
例:质点速度的随体导数(加速度)dt d V 质点分速度的随体导数dtdu质点压力的随体导数dtdp质点温度的随体导数dt dT.. .. .. .. .. .. 质点导数是拉格朗日法范畴的概念。
流体质点随体导数式---随体导数的欧拉表达式dt d V =z wy v x u t t∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V V V V V V Vdt du =z u w y u v x u u t u u tu∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂Vdt dT =z T w y T v x T u t T T tT∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V普遍形式: dt dF =z F w y F v x F u t F F tF∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂VF t )(∇⋅+∂∂=V证其一: dt d V =V V V∇⋅+∂∂t 由 dt d V=tt ∆-→∆V V 'lim 0因 V=V (x ,y , z,t )V ’=V (x+Δx ,y+Δy ,z+Δz,t+Δt )所以 V ’=V++∆∂∂x x V +∆∂∂y y V z z∆∂∂V t t ∆∂∂+V 代入上式得dt d V==∆∆∂∂+∂∂∆+∂∂∆+∂∂∆→∆tt z z y x xt tV V y V V lim 0V V V z V y V x V t V ∇⋅+∂∂=∂∂+∂∂+∂∂+∂∂=tw v u 可见, 在欧拉法中质点速度的随体导数(即加速度)由两部分组成。
第一章 流体及其主要物理性质1-1.轻柴油在温度15ºC 时相对密度为0.83,求它的密度和重度。
解:4ºC 时所以,33/8134980083.083.0/830100083.083.0m N m kg =⨯===⨯==水水γγρρ1-2.甘油在温度0ºC 时密度为1.26g/cm3,求以国际单位表示的密度和重度。
333/123488.91260/1260/26.1m N g m kg cm g =⨯==⇒==ργρ1-3.水的体积弹性系数为1.96×109N/m 2,问压强改变多少时,它的体积相对压缩1%?M P aPa E E VVVV p p 6.191096.101.07=⨯==∆=∆=∆β1-4. 容积4m 3的水,温度不变,当压强增加105N/m 2时容积减少1000cm 3,求该水的体积压缩系数βp 和体积弹性系数E 。
解:1956105.2104101000---⨯=⨯--=∆∆-=Pa p V V p βPa E p89104105.211⨯=⨯==-β1-5.用200L 汽油桶装相对密度为0.70的汽油,罐装时液面上压强为1个大气压,封闭后由于温度变化升高了20ºC ,此时汽油的蒸气压为0.18大气压。
若汽油的膨胀系数为0.0006ºC -1,弹性系数为14000kg/cm 2。
试计算由于压力及温度变化所增减的体积?问灌桶时每桶最多不超过多少公斤为宜?解:E =E ’·g =14000×9.8×104PaΔp =0.18atdp p V dT T V dV ∂∂+∂∂=00V T V T V V T T ββ=∂∂⇒∂∂= 00V p V p V V p pββ-=∂∂⇒∂∂-=所以,dpV dT V dp p VdT T V dV p T 00ββ-=∂∂+∂∂=从初始状态积分到最终状态得:L L L V p p EV T T V V dpV dT V dV T p pp T T T VV 4.21057.24.2200108.914000108.918.020*******.0)(1)(34400000000≈⨯-=⨯⨯⨯⨯⨯-⨯⨯=---=--=-⎰⎰⎰βββ即()kgV V M 32.13810004.220010007.0=-⨯⨯=∆-=ρ另解:设灌桶时每桶最多不超过V 升,则200=++p t dV dV VV dt V dV t t 2000061.0⨯=⋅⋅=βV dp V dV p p 18.0140001⨯-=⋅⋅-=β(1大气压=1Kg/cm 2)V =197.6升 dV t =2.41升 dV p =2.52×10-3升G =0.1976×700=138Kg =1352.4N 1-6.石油相对密度0.9,粘度28cP ,求运动粘度为多少m 2/s?()c S tSt s m 3131.0/101.310009.01028253==⨯=⨯⨯==--ρμν1-7.相对密度0.89的石油,温度20ºC 时的运动粘度为40cSt ,求动力粘度为多少?解:89.0==水ρρd ν=40cSt =0.4St =0.4×10-4m 2/sμ=νρ=0.4×10-4×890=3.56×10-2 Pa·s1-8. 图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1,油的动力粘度μ=1.147Pa·s,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:233/10147.11011147.1m N dy du ⨯=⨯⨯==-μτ1-9.如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=?解:A =πdL , μ=0.65P =0.065 Pa·s , Δu =0.5m/s , Δy=(D-d)/2()N dy du AF 55.821096.11125.010141096.1114.3065.0222=⨯-⨯⨯⨯⨯⨯⨯==---μi. 流体静力学2-1. 如图所示的U 形管中装有水银与水,试求:(1)A 、C 两点的绝对压力及表压各为多少? (2)A 、B 两点的高度差为多少?解:① p A 表=γh水=0.3mH 2O =0.03at =0.3×9800Pa =2940Pap A绝=p a + p A 表=(10+0.3)mH 2O =1.03at =10.3×9800Pa=100940Pap C 表=γhgh hg + p A 表=0.1×13.6m H 2O+0.3mH 2O =1.66mH 2O =0.166at=1.66×9800Pa =16268Pap C绝=p a + p C表=(10+1.66)mH 2O =11.66 mH 2O =1.166at =11.66×9800Pa =114268Pa② 30c mH 2O =13.6h cmH 2O ⇒h =30/13.6cm=2.2cm题2-2 题2-32-2.水银压力计装置如图。
第二章 流体力学基础2.1 如右图所示的装置中,液体在水平管道中流动,截面B 与大气相通。
试求盆中液体能够被吸上时h 的表达式(设s A ,s B 分别为水平管道A 、B 出的界面积,Q 为秒流量,C 与大气相通,P c =P 0) 根据水平管道中的伯努利方程以及连续性原理222121B B A A v P v P ρρ+=+Q v s v s B B A A ==,0P P B =可以求得截面A 处液体的压强)11(212220AB A S S Q P P -+=ρ 当gh P P A ρ-≤0即)1(212122BS AS Q g h -≤时,盆中的液体能够被吸上来。
2.2变截面水平管宽部分面积S 1=0.08cm 2,窄部分的面积S 2=0.04cm 2,两部分的压强降落时25Pa ,求管中宽部流体的流动的速度。
已知液体的密度为1059.5Kg/m -3解:应用连续性原理和水平流管的伯努利方程sm v m Kg Pa P P v S v S v P v P /125.0/5.1059 25212113212211222211=⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫==-=+=+-ρρρ 2.3如右图所示,水管的横截面积在粗处为40cm 2,细处为10cm 2,水的流量为133103--⨯s m 求:(1)水在粗处和细处的流速。
(2)两处的压强差。
(3)U 型管中水银的高度差。
解:1代表粗处,2代表细处 根据连续性原理:2211v S v S Q ==得s m S Q v /75.011==,s m S Q v /0.322== 应用水平管道中的伯努利方程知 Pa v v P 422021212122=-=∆ρρ 水银柱的高度差cm g P h 1.38.9106.1342203=⨯⨯=∆=∆汞ρ 2.4半径为0.02m 的水管以0.01m 3s -1的流量输送水,水温为20℃。
问(1)水的平均流速是多少?(2)流动是层流还是湍流?(3)要确定管中流体的最大速度,这些数据是否足够? 解:平均流速s m SQv /96.7==该体系的雷诺数26001017.35>⨯==ηρvdR 为湍流 )(92.1502.014.3201.02284)(4)2(122max 2max 42max 22-⋅=⨯⨯==⇒=⇒∆=∆=⇒-∆=S m R Q v R Q v R l P Q RlP v r R l P v πππηηη 2.5由于飞机机翼的关系,在机翼上面的气流速度大于下面的速度,在机翼上下面间形成压强差,因而产生使机翼上升的力。