集成运算放大器的基本运用
- 格式:pdf
- 大小:51.01 KB
- 文档页数:3
实验三 集成运算放大器的基本应用—— 模拟运算电路一、实验目的1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2. 了解运算放大器在实际应用时应考虑的一些问题。
二、实验仪器1.双踪示波器2.万用表3.交流毫伏表三、实验原理在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。
1)反相比例运算电路电路如图11-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为 i F O U R R U 1-= (11-1)图11-1 反相比例运算电路为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1∥R F 。
2)反相加法电路图11-2 反相加法运算电路电路如图11-2所示,输出电压与输入电压之间的关系为)(2211i F i F O U R R U R R U +-= R 3=R 1∥R 2∥R F (11-2) 3)同相比例运算电路图11-3(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为i F O U R R U )1(1+= R 2=R 1∥R F (11-3) 当R1→∞时,U O =U i ,即得到如图11-3(b )所示的电压跟随器。
图中R 2=R F ,用以减小漂移和起保护作用。
一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。
图11-3 同相比例运算电路4)差动放大电路(减法器)对于图11-4所示的减法运算电路,当R1=R2,R3=RF 时,有如下关系式:)(1120i i U U R RF U -= (11-4)图11-4 减法运算电路 5)积分运算电路反相积分电路如图11-5所示。
在理想化条件下,输出电压U 0等于⎰+-=t C i U dt U RCt U 00)0(1)( (11-5)式中U C (0)是t=0时刻电容C 两端的电压值,即初始值。
图11-5 积分运算电路如果Ui(t)是幅值为E 的阶跃电压,并设UC(0)=0,则⎰-=-=t t RCE Edt RC t U 001)( (11-6) 此时显然RC 的数值越大,达到给定的U0值所需的时间就越长,改变R 或C 的值积分波形也不同。
集成运算放大器的应用有哪些集成运算放大器(Operational Amplifier,简称OP-AMP) 是现代电子技术中常用的一种集成电路,广泛应用于信号放大、积分、微分、比较、滤波、波形变换、逻辑运算等电路中。
本文将介绍一些集成运算放大器的应用。
一、信号放大集成运算放大器广泛应用于信号放大电路中,其直接或变压器耦合输入方式具有低输入电阻、高输入阻抗、低噪声、高增益和宽带等特性。
在应用中,可通过精心设计放大器电路,控制反馈,实现高增益稳定运行。
二、积分电路积分电路是信号处理电路中的基本电路,它能将信号输入与时间积分,输出的是输入信号积分后的值。
集成运算放大器常用于积分电路的设计,其放大电压信号,然后通过电容对信号进行积分。
例如,在三角形波发生器电路中,可通过电容积分得到正弦波信号,而集成运算放大器的内部电路通常包含差分放大器,可将输入信号转化为电压差,用于驱动电容,完成积分计算。
三、微分电路微分电路是在信号处理中广泛应用的一种电路,它能够将信号对时间的微分操作,其输出电压是输入信号微分后的值。
集成运算放大器也常用于微分电路的设计中,可通过对输入信号进行微分计算得到输出信号。
例如,在测量热电偶温度时,可将温度信号输入到集成运算放大器中,通过差分放大器将信号转化为电压差,然后用电阻对信号进行微分计算,输出即为最终温度值。
四、比较电路比较电路是一种将两个信号进行比较然后输出比较结果的电路,它广泛应用于数字电路、自动控制、计算机硬件等领域。
集成运算放大器常用于比较电路中,它的输出能够根据电压的大小关系取两个输入信号中的一个。
例如,电压比较器是一种常见的电路,它采用集成运算放大器作为比较电路的核心元件,用于比较两个不同电压的大小关系,以便输出相应的状态。
五、滤波器滤波器是一种通过对输入信号进行滤波操作,抑制或增强特定频率信号的电路。
集成运算放大器广泛应用于滤波电路的设计中,其内部电路包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等类型。
集成运算放大器的基本应用实验报告集成运算放大器的基本应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种广泛应用于电子电路中的重要器件。
它具有高增益、低失调、宽带宽等特点,可以实现信号放大、滤波、积分、微分等功能。
在本次实验中,我们将通过几个基本应用实验,探索集成运算放大器的工作原理和应用场景。
实验一:非反相放大器非反相放大器是Op-Amp最常见的应用之一。
它通过将输入信号与放大倍数相乘,输出一个放大后的信号。
我们在实验中使用了一个标准的非反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号的幅度和输入信号的幅度相比,增大了放大倍数倍。
而相位方面,输出信号与输入信号的相位保持一致。
这说明非反相放大器能够有效放大输入信号,并且不改变其相位。
实验二:反相放大器反相放大器是Op-Amp另一种常见的应用。
它与非反相放大器相比,输入信号与放大倍数相乘后取反,输出一个反向的放大信号。
我们在实验中使用了一个反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号的幅度与输入信号的幅度相比,同样增大了放大倍数倍。
但是相位方面,输出信号与输入信号相差180度。
这说明反相放大器能够有效放大输入信号,并且改变其相位。
实验三:积分器积分器是Op-Amp的另一个重要应用。
它可以将输入信号进行积分运算,输出一个积分后的信号。
我们在实验中使用了一个积分器电路,将一个方波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号呈现一个斜率逐渐增大的曲线,表明输入信号得到了积分。
这说明积分器能够有效对输入信号进行积分运算,输出一个积分后的信号。
实验四:微分器微分器是Op-Amp的又一个重要应用。
它可以将输入信号进行微分运算,输出一个微分后的信号。
我们在实验中使用了一个微分器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验九集成运算放大器的基本应用——电压比较器学院:________ 班级:________ 完成日期:学号:___ 姓名:___________ 成绩:___________一实验目的1、掌握比较器的电路构成及特点2、学会测试比较器的方法二实验仪器1、双踪示波器;2、数字万用表三实验原理1、图9-1所示为一最简单的电压比较器,UR为参考电压,输入电压Ui加在反相输入端。
图9-1(b)为(a)图比较器的传输特性。
图9-1 电压比较器当Ui<UR时,运放输出高电平,稳压管Dz反向稳压工作。
输出端电位被其箝为在稳压管的稳定电压Uz,即:Uo=Uz。
当Ui>UR时,运放输出低电平,Dz正向导通,输出电压等于稳压管的正向压降UD,即:Uo=-UD。
因此,以UR为界,当输入电压Ui变化时,输出端反映两种状态。
高电位和低电位。
2、常用的幅度比较器有过零比较器、具有滞回特性的过零比较器(又称Schmitt触发器)、双限比较器(又称窗口比较器)等。
图9-2为简单过零比较器图9-2 过零比较器1)图9-3为具有滞回特性的过零比较器。
过零比较器在实际工作时,如果Ui恰好在过零值附近,则由于零点漂移的存在,Uo将不断由一个极限值转换到另一个极限值,这在控制系统中,对执行机构将是很不利的。
为此就需要输出特性具有滞回现象。
如图9-3所示:图9-3 具有滞回特性的过零比较器从输出端引入一个电阻分压支路到同相输入端,若Uo改变状态,U∑点也随着改变点位,使过零点离开原来位置。
当Uo为正(记作UD )DfURRRU22+=∑,则当UD> U∑后,Uo再度回升到UD,于是出现图(b)中所示的滞回特性。
- U∑与U∑的差别称为回差。
改变R2的数值可以改变回差的大小。
2)窗口(双限)比较器图9-4 两个简单比较器组成的窗口比较器简单的比较器仅能鉴别输入电压Ui 比参考电压UR 高或低的情况,窗口比较电路是由两个比较器组成,如图9-4所示,它能指示出Ui 值是否处于+R U 和-R U 之间。
江西省电子信息技师学院实验一:集成运算放大器的基本应用一、实验目的1、学习软件ISIS的使用方法。
2、学习集成运算放大器的基本应用设计。
二、软件使用有关说明1、运行ISIS软件2、界面熟悉3、软件操作:(1)原理图放大和缩小:使用工具栏中的放大、缩小按钮;或采用鼠标滚轮来操作。
(2)删除一个元件或者连线:鼠标右键连续点两次目标。
(3)添加一个元件到原理图:选择DEVICE栏上的“P”按钮,找到元件作在的库,双击目标(object)内的元件名字,则可加入到待选栏里面。
以后选择元件就在待选栏中鼠标左键单击一个元件名,在原理图区中鼠标左键单击则可加一个元件到原理图上。
(4)连线:如果要将两个元件连接起来,按如下操作(5)添加节点:(6)修改元件参数:右键单击一个元件,变成红色后,左键单击即可出现属性框以修改相应属性。
三、实验原理集成运算放大器可以作为一个器件构成各种基本功能的电路。
这些基本电路又可以作为单元电路组成电子应用电路。
1.反相放大器反相放大器是最基本的电路,如下图所示。
其闭环电压增益为:输入电阻R i= R1输出电阻R o≈ 0平衡电阻R p = R1∥R F反馈电阻R F值不能太大,否则会产生较大的噪声及漂移。
取值应远大于信号源V i的内阻。
若R F= R1则为反相器,可作为信号的极性转换电路。
2、同相放大器同相放大器也是最基本的电路.如下图所示。
其闭环电压增益为:输入电阻R i=R IC式中,R IC——运放本身同相端对地的共模输入电阻.一般为108Ω。
输出电阻R o≈ 0平衡电阻R p = R1∥R F同相放大器具有输入阻抗非常高,输出阻抗很低的特点.广泛用于前置放大级。
若R F= 0,R1≈∞ (开路),则为电压跟随器。
与晶体管电压跟随器(射极输出器)相比.集成运放的电压跟随器的输入阻抗更高.几乎不从信号源吸取电流;输出阻抗更小,可视作电压源,是较理想的阻抗变换器(跟随器)。
3.加法器基本的加法器电路如下图所示。
集成运算放大器的基本应用实验报告一、实验目的。
本实验旨在通过对集成运算放大器的基本应用进行实验操作,加深对集成运算放大器的工作原理和基本应用的理解,掌握集成运算放大器的基本特性和应用技巧,提高实验操作能力和动手能力。
二、实验仪器与设备。
1. 集成运算放大器实验箱。
2. 示波器。
3. 直流稳压电源。
4. 电阻、电容等元器件。
5. 万用表。
6. 示波器探头。
三、实验原理。
集成运算放大器(Operational Amplifier,简称Op-Amp)是一种高增益、直流耦合的差动放大器,具有输入阻抗高、输出阻抗低、增益稳定、频率响应宽等特点,广泛应用于模拟电路中。
在本实验中,我们将学习集成运算放大器的基本特性和应用技巧,包括集成运算放大器的基本参数、基本电路和基本应用。
四、实验内容。
1. 集成运算放大器的基本参数测量。
a. 输入失调电压的测量。
c. 增益带宽积的测量。
2. 集成运算放大器的基本电路实验。
a. 非反相放大电路。
b. 反相放大电路。
c. 比较器电路。
d. 电压跟随器电路。
3. 集成运算放大器的基本应用实验。
a. 信号运算电路。
b. 信号滤波电路。
c. 信号调理电路。
五、实验步骤。
1. 连接实验仪器与设备,按照实验要求进行电路连接。
2. 分别测量集成运算放大器的输入失调电压、输入失调电流和增益带宽积。
3. 搭建集成运算放大器的基本电路,观察输出波形并记录实验数据。
4. 进行集成运算放大器的基本应用实验,观察输出波形并记录实验数据。
六、实验数据与分析。
1. 输入失调电压测量数据。
输入失调电压,0.5mV。
平均输入失调电压,0.55mV。
2. 输入失调电流测量数据。
输入失调电流,10nA。
输入失调电流,12nA。
平均输入失调电流,11nA。
3. 增益带宽积测量数据。
增益带宽积,1MHz。
4. 实验数据分析。
通过测量数据的分析,我们可以得出集成运算放大器的输入失调电压较小,输入失调电流也较小,增益带宽积较大,符合集成运算放大器的基本特性。
集成运算放大器的基本运算电路
集成运算放大器是一种常用的电子元件,它可以实现多种基本运算电路,如放大、求和、差分、积分等。
在电子电路设计中,集成运算放大器被广泛应用,可以用于信号放大、滤波、比较、控制等方面。
放大电路是集成运算放大器最常见的应用之一。
放大电路可以将输入信号放大到所需的幅度,以便于后续处理。
在放大电路中,集成运算放大器的输入端连接输入信号,输出端连接负载电阻,通过调节反馈电阻的大小,可以实现不同的放大倍数。
放大电路可以应用于音频放大、信号放大等方面。
求和电路是另一种常见的基本运算电路。
求和电路可以将多个输入信号相加,输出它们的和。
在求和电路中,集成运算放大器的多个输入端连接不同的输入信号,输出端连接负载电阻,通过调节反馈电阻的大小,可以实现不同的加权系数。
求和电路可以应用于信号处理、控制等方面。
差分电路是一种将两个输入信号相减的电路。
在差分电路中,集成运算放大器的两个输入端分别连接两个输入信号,输出端连接负载电阻,通过调节反馈电阻的大小,可以实现不同的差分系数。
差分电路可以应用于信号处理、比较等方面。
积分电路是一种将输入信号进行积分的电路。
在积分电路中,集成
运算放大器的输入端连接输入信号,输出端连接电容,通过调节反馈电阻和电容的大小,可以实现不同的积分系数。
积分电路可以应用于信号处理、滤波等方面。
集成运算放大器的基本运算电路包括放大、求和、差分、积分等,它们在电子电路设计中有着广泛的应用。
在实际应用中,需要根据具体的需求选择不同的基本运算电路,并进行合理的电路设计和调试,以实现所需的功能。
集成运算放大器的基本运用
一.实验目的
1.了解集成运算放大器( A 741)和集成电压比较器(LM393)的使用方法。
2.掌握由集成运放构成比例,加法,积分基本运算电路及其工作原理。
3.掌握文氏电桥正弦振荡电路的高速及频率测量方法。
4.了解迟滞电压比较器的特点及电压传输特性的测试方法。
5.熟悉用双踪示波器的扫描方法及X—Y工作方式测量波形的幅值,相位及电压传输特性。
二.实验仪器和器材
1.直流稳压电源一台
2.交流正弦信号发生器一台
3.双踪示波器一台
4.器件
集成运放 A 741*1
双比较器LM393*1
二极管2CP10*1
稳压管2CW13*2
电容0.01F*1 0.022F*2
电阻1KΩ*2 2KΩ*2 10KΩ*3 15KΩ*2 20KΩ*1
24KΩ*1 51KΩ*2 100KΩ*2 1MΩ*1
电位器 2.2KΩ*1
三.实验内容和步骤
1.比例运算
10,输入端U i接正弦信号源并与示波器
○1按下图比例运算电路接线,测好电源为V
的:”CHI”探头相接,输出端U s与示波器的”CHI”探头相接,全部接好检查无误后,方可通电进行实验。
○2正弦信号源的频率置于1KHZ,输出衰减置200DB档,调节输出微调旋钮在示波器上
显示Uip-p=1V。
○3将示波器的垂直显示方式键置于“交替”(ALT)档,内触发源选在“CH1”位置,此时即可同时观察到Ui与Uo波形,记录Ui与Uo波形的幅值与相关系,并与理论值比较,如
不相符则立即查找原因。
2.加法运算
○1加法运算电路
○2按加法运算电路接线,输入Uo为1KHZ,Ui1p-p=1V,用上述同样的方法,观测并记录加法运算电路输出U与输入Uo的波形。
(幅值和相位)
3.减法运算
○1减法运算电路
○2按电路接线,U为1KHZ,峰-峰值为1V的正弦波,用类似的方法观测Uo与U的波形,并与理论值结论比较。
4.积分电路――正弦波转换弦波
○1积分电路
○2按积分电路接线,输入信号为500HZ,Uip-p=1V用示波器的双踪方式同时观测Uo与U i的对立关系,并与理论结果比较。
4.波形产生与变换
(1)实验电路如图
(2)文氏电桥正弦波振荡电路,安装该电路正确无误后,再接通10V电源。
○1图3-6第一级电路为文氏电桥振荡电路,安装该电路正确无误后,再接通10V电源。
○2用双踪示波器的“CHI”探头观测U的波形,调节电位器R,使U得到最大不失真的正弦波,利用示波器测其振荡频度和幅值(注意该波形的幅值不得小于2V)
(3)图3-6第二级电路为电压比较器电路,安装该电路并将两级连通,用示波器的“CH2”探头观测U的波形,利用双踪显示方式,记录U与U波形的地应关系,测量U的幅值及阈值电压U值
(注意两通道的耦合方式键均应放在“DC”档)。
(4)得利用双踪示波器的X-Y工作方式,测量电压比较器的电压传输特性,注意测量与
X,Y相交的电压值。
多事的东风,又冉冉地来到人间,桃红支不住红艳的酡颜而醉倚在封姨的臂弯里,
柳丝趁着风力,俯了腰肢,搔着行人的头发,成团的柳絮,好像春神足下坠下来
的一朵朵的轻云,结了队儿,模仿着二月间漫天舞出轻清的春雪,飞入了处处帘栊。
细草芊芊的绿茵上,沾濡了清明的酒气,遗下了游人的屐痕车迹。
一切都兴
奋到了极点,大概有些狂乱了吧?在这缤纷繁华目不暇接的春天!。