2020版高考理科数学(人教版)一轮复习课件:第四章 第三节 三角函数的图象与性质
- 格式:pdf
- 大小:6.53 MB
- 文档页数:52
4.6正弦定理、余弦定理及其应用1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式①a=2R sin A,b=____________,c=____________;②sin A=a2R,sin B=,sin C=;③a∶b∶c=______________________.2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=,b2=,c2=.若令C=90°,则c2=,即为勾股定理.(2)余弦定理的推论:cos A=,cos B=,cos C=.若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=_____________________;sin2C=________________.注意式中隐含条件A+B+C=π.3.解三角形的类型(1)已知三角形的任意两个角与一边,用____________定理,只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有________________________.如在△ABC中,已知a,b和A时,解的情况如表:(3)已知三边,用____________定理有解时,只有一解.(4)已知两边及夹角,用____________定理,必有一解.4.三角形中的常用公式及变式(1)三角形面积公式S△=______________=______________=______________=______________=______________.其中R,r分别为三角形外接圆、内切圆半径.(2)A+B+C=π,则A=__________,A2=__________,从而sin A=____________,cos A=____________,tan A=____________;sinA2=__________,cosA2=__________,tanA2=__________.tan A+tan B+tan C=____________.(3)若三角形三边a,b,c成等差数列,则2b=____________⇔2sin B=____________⇔2sinB2=cosA-C2⇔2cosA+C2=cosA-C2⇔tanA2tanC2=13.(4)在△ABC中,a=b cos C+ccos B,b=____________,c=____________.(此定理称作“射影定理”,亦称第一余弦定理)自查自纠:1.(1)asin A=bsin B=csin C=2R(2)①2R sin B2R sin C②b2Rc2R③sin A∶sin B∶sin C2.(1)b 2+c 2-2b ccos A c 2+a 2-2c a cos B a 2+b 2-2ab cos C a 2+b 2(2)b 2+c 2-a 22b c c 2+a 2-b 22c a a 2+b 2-c 22ab > <(3)互化 sin 2C +sin 2A -2sin C sin A cos B sin 2A +sin 2B -2sin A sin B cos C3.(1)正弦(2)正弦 一解、两解或无解 ①一解②两解 ③一解 ④一解 (3)余弦 (4)余弦 4.(1)12ab sin C 12b csin A 12a csin B ab c 4R12(a +b +c)r (2)π-(B +C ) π2-B +C2 sin(B +C )-cos(B +C ) -tan(B +C ) cos B +C 2 sin B +C21tanB +C 2tan A tan B tan C (3)a +c sin A +sin C (4)a cos C +ccos A a cos B +b cos A(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB = ( ) A .4 2 B.30 C.29 D .2 5解:因为cos C =2cos 2C 2-1=2×⎝⎛⎭⎫552-1=-35,所以AB 2=BC 2+AC 2-2BC ·AC ·cos C =1+25-2×1×5×⎝⎛⎭⎫-35=32,所以AB =4 2.故选A . (2017·山东)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是 ( ) A .a =2b B .b =2aC .A =2BD .B =2A 解:sin(A +C )+2sin B cos C =2sin A cos C +cos A sin C ,所以2sin B cos C =sin A cos C ⇒2sin B = sin A ⇒2b =a .故选A.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C = ( )A.π12B.π6C.π4D.π3 解:由题意sin(A +C )+sin A (sin C -cos C )=0, 得sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,即sin C (sin A +cos A )=2sin C sin ⎝⎛⎭⎫A +π4=0, 所以A =3π4.由正弦定理a sin A =c sin C ,得2sin 3π4=2sin C,即sin C =12,得C =π6.故选B.(2018·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若a =7,b =2,A =60°,则sin B =________,c =________.解:由正弦定理得a b =sin A sin B ,所以sin B =27×sin π3=217, 由余弦定理得a 2=b 2+c 2-2b ccos A ,所以7= 4+c 2-2c ,所以c =3(负值舍去).故填217;3. (2018·全国卷Ⅰ) △ABC 的内角A ,B ,C的对边分别为a ,b ,c ,已知b sin C +csin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为________. 解:根据题意,结合正弦定理可得sin B sin C +sin C sin B =4sin A sin B sin C ,即sin A =12,结合余弦定理可得b 2+c 2-a 2=2b ccos A =8, 所以A 为锐角,且cos A =32,从而求得b c =833,所以△ABC 的面积为S =12b csin A =12×833×12=233.故填233.类型一 正弦定理的应用(2018·北京)在△ABC 中,a =7,b =8,cos B =-17. (1)求A ;(2)求AC 边上的高.解:(1)在△ABC 中,因为cos B =-17,所以B ∈⎝⎛⎭⎫π2,π,所以sin B =1-cos 2B =437.由正弦定理a sin A =b sin B 得,7sin A =8437,所以sin A =32.因为B ∈⎝⎛⎭⎫π2,π,所以A ∈⎝⎛⎭⎫0,π2,所以A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +sin B cos A =32×⎝⎛⎭⎫-17+12×437=3314. 如图所示,在△ABC 中,h =BC ·sin C =7×3314=332,所以AC 边上的高为332.点 拨:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.由正弦定理求角,注意利用条件判断角的范围,即确定是一解还是两解.(1)(2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.解:在△ABC 中由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365,由正弦定理得b =a sin B sin A =2113.故填2113.(2)(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若2b cos B =a cos C +ccos A ,则B =________.解:由正弦定理可得2sin B cos B =sin A cos C +sin C cos A =sin(A +C )=sin B ⇒cos B =12⇒B =π3.故填π3. 类型二 余弦定理的应用(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C = ( ) A.π2 B.π3 C.π4 D.π6 解:由题可知S △ABC =12ab sin C =a 2+b 2-c 24,所以a 2+b 2-c 2=2ab sin C ,由余弦定理a 2+b 2-c 2=2ab cos C ,所以sin C =cos C ,因为C ∈(0,π),所以C =π4.故选C .点 拨:正、余弦定理是应用极为广泛的两个定理,根据三角形内角A +B +C =π的隐含条件,结合诱导公式及正、余弦定理,将三角形的边和角有机地联系起来,从而使三角函数与几何产生联系,为求与三角形有关的量(如面积、外接圆与内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法、化边法、面积法、运用初等几何法等.注意体会其中蕴涵的函数与方程思想、化归与转化思想及分类与整合思想.(2017·山东)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知b =3,AB →·AC →=-6,S △ABC=3,求A 和a .解:因为AB →·AC →=-6,所以b ccos A =-6. 又S △ABC =3,所以b csin A =6,因此tan A =-1. 又0<A <π,所以A =3π4.又b =3,所以c =2 2.由余弦定理a 2=b 2+c 2-2b ccos A , 得a 2=9+8-2×3×22×⎝⎛⎭⎫-22=29,所以a=29.类型三 正、余弦定理的综合应用(2018·北京)若△ABC 的面积为34(a 2+c 2-b 2),且C 为钝角,则B =________;c a 的取值范围是________.解:因为S △ABC =34(a 2+c 2-b 2)=12a csin B , 所以a 2+c 2-b 22ac =sin B 3,即cos B =sin B 3,所以sin B cos B =3,即tan B =3,所以B =π3,则c a =sin Csin A =sin ⎝⎛⎭⎫2π3-A sin A =32cos A -⎝⎛⎭⎫-12sin A sin A =32·1tan A +12, 因为C 为钝角,B =π3,所以0<A <π6,所以tan A ∈⎝⎛⎭⎫0,33,1tan A ∈(3,+∞). 故c a ∈(2,+∞).故填π3;(2,+∞).点 拨:①化边的关系为角的关系,和角或差角公式的正向或反向运用,以及多次联用是解决三角形问题的常用技巧;②将边的问题转化为三角函数的问题,或由边的关系结合基本不等式是解决最值(范围)问题的基本方法.(2016·山东)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )= tan A cos B +tan Bcos A . (1)证明:a +b =2c ; (2)求cos C 的最小值.解:(1)证明:由题意知2⎝⎛⎭⎫sin A cos A +sin B cos B =sin Acos A cos B +sin Bcos A cos B,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B ,因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C ,从而sin A +sin B =2sin C ,由正弦定理得a +b =2c.(2)由(1)知c =a +b 2,所以cos C =a 2+b 2-c 22ab=a 2+b 2-⎝⎛⎭⎫a +b 222ab =38⎝⎛⎭⎫a b +b a -14≥12,当且仅当a =b 时等号成立,故cos C的最小值为12.类型四 判断三角形的形状(2018·长春调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b cos C -2ccos B =a ,且B =2C ,则△ABC 的形状是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等边三角形 解:因为2b cos C -2ccos B =a ,所以2sin B cos C-2sin C cos B =sin A =sin(B +C ),即sin B cos C =3cos B sin C ,所以tan B =3tan C ,又B =2C ,所以2tan C 1-tan 2C=3tan C ,得tan C =33,C =π6,B =2C =π3,A =π2,故△ABC 为直角三角形.故选B.点 拨:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式,一般用到正弦定理;出现边的二次式,一般用到余弦定理.用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意适时缩小角的范围,如本例中由B =2C 知C 是锐角.(2016·济南一中检测)在△ABC 中,内角A ,B ,C 对边的边长分别为a ,b ,c ,A 为锐角,lg b +lg 1c=lgsin A =-lg 2,则△ABC 为( )A .锐角三角形B .等边三角形C .钝角三角形D .等腰直角三角形解:由lg b +lg 1c =lg b c =-lg 2=lg 22,得b c =22,即c =2b .由lgsin A =-lg 2,得sin A =22, 又A 为锐角,所以cos A =22. 由余弦定理:a 2=b 2+c 2-2b ccos A 得a =b , 故B =A =45°,因此C =90°.故选D .类型五 解三角形应用举例如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m .解:设此山高h(m ),则BC =3h ,在△ABC 中,∠BAC =30°,∠CBA =105°,∠BCA =45°,AB =600(m ). 在△ABC 中,根据正弦定理得BC sin A =ABsin C ,即3h sin30°=600sin45°,解得h =1006(m ).故填100 6. 点 拨: ①解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也常用到解三角形的方法.②不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为可解的三角形.(2017·郑州二模)如图,一栋建筑物AB 的高为(30-103)米,在该建筑物的正东方向有一个通信塔CD ,在它们之间的点M (B ,M ,D 三点共线)处测得楼顶A ,塔顶C 的仰角分别是15°和 60°,在楼顶A 处测得塔顶C 的仰角是30°,则通信塔CD的高为________米.解:在Rt △ABM 中,AM =ABsin15°=30-103sin15°=30-1036-24=20 6.如右图过点A 作AN ⊥CD 于点N ,在Rt △ACN 中,因为∠CAN =30°,所以∠ACN =60°.又在Rt△CMD 中,∠CMD =60°,所以∠MCD =30°,所以∠ACM =30°,在△AMC 中,∠AMC =105°,所以AC sin105°=AM sin ∠ACM =206sin30°,所以AC =60+203,所以CN =30+103,所以CD =DN +CN =AB +CN =30-103+30+103=60.故填60.1.已知两边及其中一边的对角解三角形时,要谨防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角的关系(注意应用A +B +C =π这个结论)或边的关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式一般不要约掉,而要移项提取公因式,否则有可能漏掉一种形状. 3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A =sin(B +C ),cos A =-cos(B +C ),sin A2=cos B +C 2,sin2A =-sin2(B +C ),cos2A =cos2(B +C )等. 4.应用正、余弦定理解斜三角形应用题的一般步骤第一步,分析:理解题意,分清已知与未知,画出示意图;第二步,建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;第三步,求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;第四步,检验:检验上述所求得的解是否符合实际,从而得出实际问题的解.1.(2016·郑州一测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B =asin A ,则 cos B = ( )A .-12 B.12 C .-32 D.32解:因为b 3cos B =asin A ,所以由正弦定理得sin B 3cos B =sin A sin A ,所以tan B =3,又0<B <π,所以 B =π3,所以cos B =12.故选B.2.(2016·天津)在△ABC 中,若AB =13, BC =3,∠C =120°,则AC = ( )A .1B .2C .3D .4 解:由余弦定理得13=9+AC 2+3AC ⇒AC =1.故选A .3.(北京通州2017届期末)在△ABC 中,a =2,B =π3,△ABC 的面积等于32,则b 等于 ( )A.32B .1 C. 3 D .2 解:由△ABC 面积公式可得S =12a csin B =32,12×2c ×32=32,c =1,由余弦定理得b 2=a 2+c 2-2a ccos B =22+12-2×2×1×cos π3=3,b = 3.故选C.4.(2018·东北三校联考)若两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°方向上,灯塔B 在观察站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( ) A .a km B.2a km C .2a km D.3a km解:依题意知∠ACB =180°-20°-40°= 120°,在△ABC 中,由余弦定理知AB =a 2+a 2-2a 2cos120°=3a (km),即灯塔A 与灯塔B 的距离为3a km.故选D.5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知△ABC 的面积为315,b -c =2, cos A =-14,则a 的值为 ( )A .2B .4C .6D .8解:由cos A =-14得sin A =154,所以△ABC 的面积为12b csin A =12b c ×154=315,解得b c =24,又b -c =2,所以a 2=b 2+c 2-2b ccos A =(b -c)2+2b c -2b ccos A =22+2×24-2×24×⎝⎛⎭⎫-14=64,得a =8.故选D . 6.(2017·黑龙江、吉林八校期末)已知△ABC三边a ,b ,c 上的高分别为12,22,1,则cos A 等于( ) A.32 B .-22 C .-24 D .-34 解:设△ABC 的面积为S ⇒a =4S ,b =22S ,c =2S ⇒cos A =(22)2+22-422×22×2=-24.故选C .7.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知b cos C +ccos B =2b ,则ab =________.解法一:由正弦定理sin B cos C +sin C cos B =2sin B ,即sin(B +C )=sin A =2sin B ,有a b =sin Asin B =2.解法二:由余弦定理得b ·a 2+b 2-c 22ab+c·a 2+c 2-b 22a c =2b ,化简得a =2b ,因此,a b =2. 解法三:由三角形射影定理,知b cos C +ccos B=a ,所以a =2b ,所以ab=2.故填2.8.(2017·浙江节选)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________.解:取BC 中点E ,由题意,AE ⊥BC . △ABE 中,cos ∠ABC =BE AB =14,所以cos ∠DBC =-14,sin ∠DBC =1-116=154, 所以S △BCD =12×BD ×BC ×sin ∠DBC =152.故填152. 9.(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.已知sin(A +C )=8sin 2B2.(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b . 解:(1)由题设A +B +C =π,得sin B =8sin 2B2,故sin B =4(1-cos B ). ①将①两边平方,整理得17cos 2B -32cos B +15=0,解得cos B =1(舍去),cos B =1517. (2)由cos B =1517,得sin B =817,故S △ABC =12a csin B =417a c. 又S △ABC =2,则a c =172.由余弦定理及a +c =6得b 2=a 2+c 2-2a ccos B =(a +c)2-2a c(1+cos B ) =36-2×172×⎝⎛⎭⎫1+1517=4. 所以b =2.10.(2016·浙江)在△ABC 中,内角A ,B ,C所对的边分别为a ,b ,c.已知b +c =2a cos B . (1)证明:A =2B ; (2)若△ABC 的面积S =a 24,求角A 的大小.解:(1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以A =2B .(2)由S =a 24得12ab sin C =a 24,故有sin B sin C =12sin2B =sin B cos B ,因为sin B ≠0,所以sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.11.(2018·安徽合肥模拟)如图,在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin 2A +sin 2C -sin 2B =3sin A ·sin C .(1)求角B ;(2)若点D 在线段BC 上,满足DA =DC ,且a =11,cos(∠BAC -∠C )=55,求CD 的长. 解:(1)在△ABC 中,由已知及正弦定理可得,a 2+c 2-b 2=3a c , 所以由余弦定理得cos B =32. 因为B ∈(0,π),所以B =π6.(2)由题易知∠BAD =∠BAC -∠C ,又cos(∠BAC -∠C )=55,所以sin(∠BAC -∠C )=sin∠BAD =255,设AD =x ,则CD =x ,BD =11-x , 在△ABD 中,由正弦定理得BD sin ∠BAD =ADsin B,即11-x 255=x12,解得x =45-5,所以CD =45-5.(2018·河南六市联考)如图,在一条海防警戒线上的点A ,B ,C 处各有一个水声检测点,B ,C 到A 的距离分别为20千米和50千米,某时刻B 收到来自静止目标P 的一个声波信号,8秒后A,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求出x 的值;(2)求P 到海防警戒线AC 的距离. 解:(1)依题意,有P A =PC =x , PB =x -1.5×8=x -12. 在△P AB 中,AB =20,cos ∠P AB =P A 2+AB 2-PB 22P A ·AB=x 2+202-(x -12)22x ·20=3x +325x. 同理,在△P AC 中,AC =50,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x .因为cos ∠P AB =cos ∠P AC ,所以3x +325x =25x ,解得x =31.(2)作PD ⊥AC 于D ,在△ADP 中,PD =312-252=421.故静止目标P 到海防警戒线AC 的距离为421千米.。
2020届高考数学一轮复习讲义第四章《三角函数、解三角形第一节任意角和弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:3.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin αx 叫做α的余弦,记作cos αyx 叫做α的正切,记作tan α各象限符号一+++二+--三--+四-+-三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT 为正切线[小题体验]1.若θ是第二象限角,且满足sin θ2<0,则θ2的终边在第________象限.答案:三2.若角α的终边过点sin5π6,tan α=________.答案:-33.α为第一象限角,则sin α+cos α________1.(填“>”“<”“=”)答案:>1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=πrad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.4.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=yx ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=yx.[小题纠偏]1.-1000°是第________象限角,α=3是第________象限角,72°=________rad.答案:一二2π52.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是____________.答案:(cos θ,sin θ)考点一角的集合表示及象限角的判定(基础送分型考点——自主练透)[题组练透]1.下列命题中,真命题是()A .第一象限角是锐角B .直角不是任何象限角C .第二象限角比第一象限角大D .三角形的内角一定是第一或第二象限角解析:选B390°是第一象限角,但不是锐角,A 错;135°是第二象限角,390°>135°,C 错;直角不是任何象限角,D 错,B 对.2.若α=k π-π4(k ∈Z ),则α在()A .第一象限或第三象限B .第一象限或第二象限C .第二象限或第四象限D .第三象限或第四象限解析:选C当k =2m +1(m ∈Z )时,α=2m π+3π4,所以α在第二象限;当k =2m (m ∈Z )时,α=2m π-π4,所以α在第四象限.故选C.3.设集合M |x =k 2·180°+45°,k N |x =k 4·180°+45°,k 那么M ________N .(填“=”“⊆”“⊇”)解析:法一:由于M |x =k2·180°+45°,k ∈={…,-45°,45°,135°,225°,…},N |x =k4·180°+45°,k ∈={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N .法二:由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .答案:⊆4.终边在直线y =3x 上的角的集合为__________________.解析:在坐标系中画出直线y =3x ,可以发现它与x 轴正半轴的夹角是π3,终边在直线y =3x |α=k π+π3,k ∈.答案|α=k π+π3,k 5.(2018·嘉兴七校联考)设角α是第三象限角,且满足|sinα2|=-sin α2,则α2是第________象限角.解析:因为角α是第三象限角,所以2k π+π<α<2k π+3π2(k ∈Z ),所以k π+π2<α2<k π+3π4(k ∈Z ),所以α2是第二或第四象限角.又因为|sin α2|=-sin α2,所以sin α2<0,所以α2是第四象限角.答案:四[谨记通法]1.终边在某直线上角的求法4步骤(1)数形结合,在平面直角坐标系中画出该直线;(2)按逆时针方向写出[0,2π)内的角;(3)再由终边相同角的表示方法写出满足条件角的集合;(4)求并集化简集合.2.确定kα,αk (k ∈N *)的终边位置3步骤(1)用终边相同角的形式表示出角α的范围;(2)再写出kα或αk的范围;(3)然后根据k 的可能取值讨论确定kα或αk 的终边所在位置.考点二扇形的弧长及面积公式(基础送分型考点——自主练透)[题组练透]1.若一扇形的圆心角为72°,半径为20cm ,则扇形的面积为()A .40πcm 2B .80πcm 2C .40cm 2D .80cm 2解析:选B∵72°=2π5,∴S 扇形=12|α|r 2=12×2π5×202=80π(cm 2).2.若扇形的圆心角是α=120°,弦长AB =12cm ,则弧长l 等于()A.433πcm B.833πcm C.43cm D .83cm解析:选B设扇形的半径为r cm ,如图.由sin 60°=6r ,得r =43cm ,∴l =|α|·r =2π3×43=833πcm.3.(2019·瑞安模拟)设扇形的周长为8,面积为4,则扇形的圆心角的弧度数为________.解析:+l =8,=4.=2,4,所以扇形的圆心角的弧度数为|α|=l r =42=2.答案:24.若扇形的圆心角α=60°,半径R =10cm ,求扇形的弧长l 及扇形的弧所在的弧形的面积.解:∵α=60°=π3,R =10cm ,∴l =Rα=10×π3=10π3cm.设弧形的面积为S ,则S =12R 2α-12R 2sin π3=12×102×π3-12×102×32=2.[谨记通法]弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.考点三三角函数的定义(题点多变型考点——多角探明)[锁定考向]任意角的三角函数(正弦、余弦、正切)的定义属于理解内容.在高考中多以选择题、填空题的形式出现.常见的命题角度有:(1)三角函数定义的应用;(2)三角函数值的符号判定.[题点全练]角度一:三角函数定义的应用1.已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.解析:∵角α的终边经过点P (-x ,-6),且cos α=-513,∴cos α=-xx 2+36=-513,即x =52或x =-52(舍去),∴-52,-sin α=-1213,∴tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23.答案:-232.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=________.解析:设P (t,2t )(t ≠0)为角θ终边上任意一点,则cos θ=t 5|t |.当t >0时,cos θ=55;当t <0时,cos θ=-55.因此cos 2θ=2cos 2θ-1=25-1=-35.答案:-35角度二:三角函数值的符号判定3.(2019·湖州六校联考)已知sin 2θ<0,且|cos θ|=-cos θ,则点P (tan θ,sin θ)在()A .第一象限B .第二象限C .第三象限D .第四象限解析:选B由|cos θ|=-cos θ可知cos θ<0,由sin 2θ=2sin θcos θ<0可知sinθ>0,所以tan θ<0.所以点P (tan θ,sin θ)在第二象限.4.已知点P (sin θcos θ,2cos θ)位于第三象限,则角θ是第________象限角.解析:因为点P (sin θcos θ,2cos θ)位于第三象限,所以sin θ·cos θ<0,2cos θ<0θ>0,θ<0,所以θ为第二象限角.答案:二[通法在握]定义法求三角函数的3种情况(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.[演练冲关]1.已知角α的终边经过点(3,-4),则sin α+1cos α=()A .-15B.3715C.3720D.1315解析:选D ∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315.2.如图,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α的值为()A.45B .-45C.35D .-35解析:选D因为点A 的纵坐标y A =45,且点A 在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.一抓基础,多练小题做到眼疾手快1.已知点P (tan α,sin α)在第三象限,则角α的终边在()A .第一象限B .第二象限C .第三象限D .第四象限解析:选D因为点P α<0,α<0,所以α的终边在第四象限,故选D.2.(2018·舟山五校联考)若tan α<0,则()A .sin α<0B .cos α>0C .sin αcos α<0D .2cos 2α-1<0解析:选C因为tan α<0,所以α是第二或第四象限角,所以sin α,cos α的符号不确定,故排除A 、B ;当α是第二象限角时,sin α,cos α符号相反,所以sin αcos α<0;当α是第四象限角时,sin α,cos α符号相反,所以sin αcos α<0,故选C.3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0<α<π)的弧度数为()A .π3B .π2C .3D .2解析:选C 设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =αr ,所以α= 3.4.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3).答案:(-1,3)5.(2019·丽水模拟)已知角α的终边经过点(2,-2),则sin α=________,sin αcos α=________.解析:因为角α的终边经过点(2,-2),所以sin α=-22,cos α=22,sin αcos α=-12.答案:-22-12二保高考,全练题型做到高考达标1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是()A .π3B .π6C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角.故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16,即为-16×2π=-π3.2.(2019·台州模拟)已知点P (sin(-30°),cos(-30°))在角θ的终边上,且θ∈[-2π,0),则角θ的大小为()A .-π3B .2π3C .-2π3D .-4π3解析:选D 因为P (sin(-30°),cos(-30°)),所以-12,θ是第二象限角,又θ∈[-2π,0),所以θ=-4π3.3.已知角α终边上一点P 的坐标是(2sin 2,-2cos 2),则sin α等于()A .sin 2B .-sin 2C .cos 2D .-cos 2解析:选D因为r =(2sin 2)2+(-2cos 2)2=2,由任意三角函数的定义,得sin α=yr=-cos 2.4.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为()A .1B .-1C .3D .-3解析:选B由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.5.点A (sin 2018°,cos 2018°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:选C由2018°=360°×5+(180°+38°)可知,2018°角的终边在第三象限,所以sin2018°<0,cos2018°<0,即点A位于第三象限.6.已知角α的终边经过点(3a-9,a+2),且cosα≤0,sinα>0,则实数a的取值范围是________.解析:∵cosα≤0,sinα>0,∴角α的终边落在第二象限或y轴的正半轴上.a-9≤0,+2>0,∴-2<a≤3.答案:(-2,3]7.已知α是第二象限的角,则180°-α是第________象限的角.解析:由α是第二象限的角可得90°+k·360°<α<180°+k·360°(k∈Z),则180°-(180°+k·360°)<180°-α<180°-(90°+k·360°)(k∈Z),即-k·360°<180°-α<90°-k·360°(k∈Z),所以180°-α是第一象限的角.答案:一8.(2017·北京高考)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sinα=13,则sinβ=________.解析:当角α的终边在第一象限时,取角α终边上一点P1(22,1),其关于y轴的对称点(-22,1)在角β的终边上,此时sinβ=13;当角α的终边在第二象限时,取角α终边上一点P2(-22,1),其关于y轴的对称点(22,1)在角β的终边上,此时sinβ=13.综上可得sinβ=13.答案:139.已知角θ的终边上有一点(a,a),a∈R且a≠0,则sinθ的值是________.解析:由已知得r=a2+a2=2|a|,sinθ=ar=a2|a|=>0,a<0.所以sinθ的值是22或-22.答案:22或-2210.已知扇形AOB的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α,(1)+l =8,=3,=3,2=1,6,∴α=l r =23或α=l r =6.(2)法一:∵2r +l =8,∴S 扇=12lr =14l ·2r=14×=4,当且仅当2r =l ,即α=lr =2时,扇形面积取得最大值4.∴圆心角α=2,弦长AB =2sin 1×2=4sin 1.法二:∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=lr =2时,扇形面积取得最大值4.∴弦长AB =2sin 1×2=4sin 1.11.角α终边上的点P 与A (a,2a )关于x 轴对称(a >0),角β终边上的点Q 与A 关于直线y =x 对称,求sin αcos α+sin βcos β+tan αtan β的值.解:由题意得,点P 的坐标为(a ,-2a ),点Q 的坐标为(2a ,a ).所以sin α=-2a a 2+(-2a )2=-25,cos α=a a 2+(-2a )2=15,tan α=-2aa=-2,sin β=a (2a )2+a 2=15,cos β=2a (2a )2+a 2=25,tan β=a 2a =12,故sin αcos α+sin βcos β+tan αtan β=-25×15+15×25+(-2)×12=-1.三上台阶,自主选做志在冲刺名校(2019·衢州模拟)已知角α的终边经过点P(x,-2)(x≠0),且cosα=36x.(1)求x的值;(2)求sinα+1tanα的值.解:(1)因为角α的终边经过点P(x,-2),且cosα=36 x,所以有xx2+2=36x.因为x≠0,所以x2+2=12,解得x=±10.(2)若x=10,则P(10,-2),所以sinα=-212=-66,tanα=-210=-55,所以sinα+1tanα=-66- 5.若x=-10,则P(-10,-2),所以sinα=-212=-66,tanα=210=55,所以sinα+1tanα=-66+ 5.第二节同角三角函数的基本关系与诱导公式_1.同角三角函数的基本关系式(1)平方关系:sin2α+cos2α=1;(2)商数关系:tanα=sinαcosα.2.诱导公式组序一二三四五六角2k π+α(k ∈Z )π+α-απ-απ2-απ2+α正弦sin α-sin α-sin αsin αcos αcos_α余弦cos α-cos αcos α-cos_αsin α-sin α正切tan αtan α-tan α-tan_α口诀函数名不变符号看象限函数名改变符号看象限记忆规律奇变偶不变,符号看象限[小题体验]1.已知=35,αsin(π+α)=______.答案:-452.若tan θ=12,则2cos α-3sin α3cos α+4sin α的值为________.答案:1103.化简sin(-1071°)sin 99°+sin(-171°)sin(-261°)的结果为________.解析:原式=(-sin 1071°)sin 99°+sin 171°sin 261°=-sin(3×360°-9°)sin(90°+9°)+sin(180°-9°)·sin(270°-9°)=sin 9°cos 9°-sin 9°cos 9°=0.答案:01.利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.2.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.3.注意求值与化简后的结果一般要尽可能有理化、整式化.[小题纠偏]1.已知α是第二象限角,sin α=513,则cos α=________.答案:-12132.________,________.答案:(1)22(2)3考点一三角函数的诱导公式(基础送分型考点——自主练透)[题组练透]1.(2018·宁波模拟)sin 210°cos 120°的值为()A .14B .-34C .-32D .34解析:选Asin 210°cos 120°=-sin 30°(-cos 60°)=12×12=14.2.(2019·嵊州模拟)已知sin(π+α)=-12,则cos ()A .12B .-12C .32D .-32解析:选B因为sin(π+α)=-12=-sin α,所以sin α=-12.3.已知=33,则________.解析:-π6+=tan π=-=-33.答案:-334.(易错题)设f (α)αf解:∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α,∴=114π=1tan π6= 3.5.已知π<α<2π,cos(α-7π)=-35,求sin(3π+α)·tan 解:∵cos(α-7π)=cos(7π-α)=cos(π-α)=-cos α=-35,∴cos α=35.∴sin(3π+α=sin(π+α)·-sin α=sin αsin α·cos αsin α=cos α=35.[谨记通法]1.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角就好了.”2.利用诱导公式化简三角函数的要求(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.考点二同角三角函数的基本关系(重点保分型考点——师生共研)[典例引领]1.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值为()A .-15B .-25C .15D .25解析:选D 依题意得:tan α+33-tan α=5,∴tan α=2.∴sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.2.已知sin θ=m -3m +5,cos θ=4-2mm +5(m ≠0),则tan(k π+θ)(k ∈Z)的值为________.解析:因为sin θ=m -3m +5,cos θ=4-2mm +5,所以sin 2θ+cos 2θ=1,解得m =8,所以sin θ=513,cos θ=-1213,所以tan θ=sin θcos θ=-512.所以tan(k π+θ)(k ∈Z )=tan θ=-512.答案:-5123.已知sin θ+cos θ=43,θsin θ-cos θ的值为________.解析:因为(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θ·cos θ=1+2sin θcos θ=169,所以2sin θcos θ=79,则(sin θ-cos θ)2=sin 2θ+cos 2θ-2sin θcos θ=1-2sin θcosθ=29.又因为θsin θ<cos θ,即sin θ-cos θ<0,所以sin θ-cos θ=-23.答案:-23[由题悟法]同角三角函数基本关系式的应用技巧技巧解读适合题型切弦互化主要利用公式tan θ=sin θcos θ化成正弦、余弦,或者利用公式sin θcos θ=tan θ化成正切表达式中含有sin θ,cos θ与tan θ“1”的变换1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tanπ4=(sin θ±cos θ)2∓2sin θcos θ表达式中需要利用“1”转化和积转换利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化表达式中含有sin θ±cos θ或sin θcos θ[即时应用]1.若sin α=-513,且α为第四象限角,则tan α的值等于()A .125B .-125C .512D .-512解析:选D法一:因为α为第四象限的角,故cos α=1-sin 2α==1213,所以tan α=sin αcos α=-5131213=-512.法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=yx=-512.故选D.2.(2019·缙云模拟)设sin α+sin β=13,则sin α-cos 2β的最大值为()A .-35B .-23C .-1112D .49解析:选D因为sin α+sin β=13,所以sin α=13-sin β.因为-1≤sin α≤1,所以-23≤sin β≤1.所以sin α-cos 2β=13-sin β-1+sin 2ββ-1112,当sin β=-23时,sin α-cos 2β有最大值49.3.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为()A .-32B .32C .-34D .34解析:选B∵5π4<α<3π2,∴cos α<0,sin α<0且|cos α|<|sin α|,∴cos α-sin α>0,又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32.4.已知sin(π-α)-cos(π+α)α<sin α-cos α=________.解析:由sin(π-α)-cos(π+α)=23,得sin α+cos α=23,①将①两边平方得1+2sin αcos α=29,故2sin αcos α=-79.∴(sin α-cos α)2=1-2sin αcos α=1=169.又∵π2<α<π,∴sin α>0,cos α<0.∴sin α-cos α=43.答案:43一抓基础,多练小题做到眼疾手快1.(2018·嘉兴七校联考)已知=32,且|α|<π2,则tan α=()A .-33B .33C .-3D .3解析:选C 因为sin α=32,所以sin α=-32.因为|α|<π2,所以α=-π3,所以tan α==-3.2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于()A .-π6B .-π3C .π6D .π3解析:选D ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.3.(2019·嘉兴模拟)已知sin α,cos α是方程3x 2-2x +a =0的两个根,则实数a 的值为()A .56B .-56C .43D .34解析:选B由题可得,sin α+cos α=23,sin αcos α=a3.所以sin 2α+cos 2α=(sin α+cos α)2-2sin αcos α=49-2a 3=1,解得a =-56.4.1-2sin (π+2)cos (π+2)=()A .sin 2-cos 2B .cos 2-sin 2C .±(sin 2-cos 2)D .sin 2+cos 2解析:选A1-2sin (π+2)cos (π+2)=1-2sin 2·cos 2=sin 22-2sin 2·cos 2+cos 22=|sin 2-cos 2|.又∵π2<2<π,∴sin 2>0,cos 2<0.∴|sin 2-cos 2|=sin 2-cos 2.5.如果sin(π+A )=12,那么cos ________.解析:∵sin(π+A )=12,∴-sin A =12.∴sin A =12.答案:12二保高考,全练题型做到高考达标1.已知tan(α-π)=34,且α()A .45B .-45C .35D .-35解析:选B因为tan(α-π)=34,所以tan α=34.又因为α所以α为第三象限的角,cos α=-45.2.已知f (x )=a sin(πx +α)+b cos(πx +β)+4,若f (2018)=5,则f (2019)的值是()A .2B .3C .4D .5解析:选B∵f (2018)=5,∴a sin(2018π+α)+b cos(2018π+β)+4=5,即a sin α+b cos β=1.∴f (2019)=a sin(2019π+α)+b cos(2019π+β)+4=-a sin α-b cos β+4=-1+4=3.3.(2018·宁波五校联考)已知倾斜角为α的直线l 与直线x +2y -3=0垂直,则cos (1009π-2α)的值为()A .-35B .35C .2D .-12解析:选B由题意可得tan α=2,所以cos (1009π-2α)=-cos 2α=-cos 2α-sin 2αsin 2α+cos 2α=-1-tan 2αtan 2α+1=35.4.当θ为第二象限角,且=13时,1-sin θcos θ2-sin θ2的值是()A .1B .-1C .±1D .0解析:选B ∵=13,∴cos θ2=13,∴θ2在第一象限,且cos θ2<sin θ2,∴1-sin θcos θ2-sin θ2=cos θ2-sinθ21.5.若sin α是5x 2-7x -6=0的根,则(π+α)()A .35B .53C .45D .54解析:选B由5x 2-7x -6=0,得x =-35或x =2.则sin α=-35.故原式=cos α(-cos α)·tan 2αsin α·(-sin α)·(-sin α)=1-sin α=53.6.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为()A .1+5B .1-5C .1±5D .-1-5解析:选B由题意知sin θ+cos θ=-m 2,sin θcos θ=m 4.∵(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.7.已知a (|a |≤1),则sin ________.解析:由题意知,cos π=-a .sin π2+a ,所以0.答案:08.(2019·义乌模拟)已知tan(π-α)=-2,则1sin 2α-2cos 2α=________.解析:因为tan(π-α)=-tan α=-2,所以tan α=2.所以1sin 2α-2cos 2α=sin 2α+cos 2αsin 2α-2cos 2α=tan 2α+1tan 2α-2=4+14-2=52.答案:529.(2018·嘉兴七校联考)已知cos(75°+α)=513,α是第三象限角.求sin(195°-α)+cos(α-15°)的值.解:因为cos(75°+α)=513,且α是第三象限角,所以75°+α是第四象限角,所以sin(75°+α)=-1-cos 2(75°+α)=-1213.所以sin(195°-α)+cos(α-15°)=sin(α-15°)+cos(α-15°)=sin [(α+75°)-90°]+cos [(α+75°)-90°]=-cos(α+75°)+sin(α+75°)=-513-1213=-1713.10.已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)(θ-π)-解:∵sin(3π+θ)=-sin θ=13,∴sin θ=-13.∴原式=-cos θcos θ(-cos θ-1)+cos θcos θ·(-cos θ)+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=21=18.三上台阶,自主选做志在冲刺名校1.sin 21°+sin 22°+…+sin 290°=________.解析:sin 21°+sin 22°+…+sin 290°=sin 21°+sin 22°+…+sin 244°+sin 245°+cos 244°+cos 243°+…+cos 21°+sin 290°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 244°+cos 244°)+sin 245°+sin 290°=44+12+1=912.答案:9122.已知f (x )=cos 2(n π+x )·sin 2(n π-x )cos 2[(2n +1)π-x ](n ∈Z).(1)化简f (x )的表达式;(2)求f 解:(1)当n 为偶数,即n =2k (k ∈Z )时,f (x )=cos 2(2k π+x )·sin 2(2k π-x )cos 2[(2×2k +1)π-x ]=cos 2x ·sin 2(-x )cos 2(π-x )=cos 2x ·(-sin x )2(-cos x )2=sin 2x ;当n 为奇数,即n =2k +1(k ∈Z )时,f (x )=cos 2[(2k +1)π+x ]·sin 2[(2k +1)π-x ]cos 2{[2×(2k +1)+1]π-x }=cos 2[2k π+(π+x )]·sin 2[2k π+(π-x )]cos 2[2×(2k +1)π+(π-x )]=cos 2(π+x )·sin 2(π-x )cos 2(π-x )=(-cos x )2sin 2x (-cos x )2=sin 2x ,综上得f (x )=sin 2x .(2)由(1)得=sin 2π2018+sin 21008π2018=sin 2π2018+sin=sin 2π2018+cos 2π2018=1.第三节三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0)(π,0)(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),(π,-1),(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z).[小题体验]1.①y =cos 2x;②y =sin 2x;③y =tan 2x;④y =|sin x |四个函数中,最小正周期为π的奇函数是________.答案:②2.(教材习题改编)函数y =-2的定义域为________________.|x ≠k π+π3,k1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时的情况.3.三角函数存在多个单调区间时易错用“∪”联结.[小题纠偏]1.函数y =4sin(-x ),x ∈[-π,π]的单调性是()A .在[-π,0]上是增函数,在[0,π]上是减函数B .在-π2,π2上是增函数,在-π,-π2和π2,π上是减函数C .在[0,π]上是增函数,在[-π,0]上是减函数D .在π2,π和-π,-π2上是增函数,在-π2,π2上是减函数答案:D2.函数f (x )=sin x 在区间0,π2上的最小值为________.解析:由已知x ∈0,π2,得2x -π4∈-π4,3π4,所以x ∈-22,1,故函数f (x )=sin x 在区间0,π4上的最小值为-22.答案:-2 2考点一三角函数的定义域(基础送分型考点——自主练透)[题组练透] 1.函数y=log21sin x-1的定义域为________.解析:21sin x-1≥0,x>0,所以有0<sin x≤12,解得2kπ<x≤2kπ+π6或2kπ+5π6≤x<2kπ+π,k∈Z,|2kπ<x≤2kπ+π6或2kπ+5π6≤x<2kπ+π,k∈.|2kπ<x≤2kπ+π6或2kπ+5π6≤x<2kπ+π,k2.函数y=lg(sin2x)+9-x2的定义域为______________.解析:2x>0,-x2≥0,π<x<kπ+π2,k∈Z,3≤x≤3.∴-3≤x<-π2或0<x<π2.∴函数y=lg(sin2x)+9-x2的定义域为-3答案:-3[谨记通法]三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数图象来求解.考点二三角函数的值域或最值(重点保分型考点——师生共研)[典例引领]1.函数y=≤x≤9)的最大值与最小值之和为()A.2-3B.0C.-1D.-1-3解析:选A∵0≤x≤9,∴-π3≤π6x-π3≤7π6,∴∈-32,1.∴y ∈[-3,2],∴y max +y min =2-3.2.(2018·浙北联考)函数f (x )=2cos 2x +5sin x -4的最小值为________,最大值为________.解析:f (x )=2cos 2x +5sin x -4=-2sin 2x +5sin x -2=-x +98.因为-1≤sin x ≤1,所以当sin x =-1时,f (x )有最小值-9;当sin x =1时,f (x )有最大值1.答案:-913.函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________________.解析:设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,即sin x cos x =1-t 22,且-1≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-1时,y min =-1.∴函数的值域为[-1,1].答案:[-1,1]4.(2019·平阳模拟)已知函数f (x )=2a x a +b (a <0)的定义域为0,π2,值域为[-5,1],则a+b =________.解析:因为x ∈0,π2,所以2x +π6∈π6,7π6,所以x ∈-12,1.因为a <0,所以f (x )∈[3a +b ,b ].因为函数的值域为[-5,1],所以3a +b =-5,b =1,所以a =-2,所以a +b =-1.答案:-1[由题悟法]三角函数最值或值域的3种求法(1)直接法:直接利用sin x 和cos x 的值域求解.(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把sin x 、cos x 、sin x cos x 或sin x ±cos x 换成t ,转化为二次函数.[即时应用]求函数y =cos 2x +sin x|解:令t =sin x ,∵|x |≤π4,∴t ∈-22,22.∴y =-t 2+t +1+54,∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x |的最大值为54,最小值为1-22.考点三三角函数的性质(题点多变型考点——多角探明)[锁定考向]三角函数的性质主要包括单调性、奇偶性、周期性、对称性,而三角函数的对称性多与奇偶性、周期性结合.常见的命题角度有:(1)三角函数的周期性;(2)三角函数的对称性;(3)三角函数的单调性.[题点全练]角度一:三角函数的周期性1.(2019·湖州期末)函数y =5sin -π3x()A .6B .-6C .2π3D .23解析:选A函数的最小正周期为T =2π|-π3|=6.2.(2017·天津高考)设函数f (x )=2sin(ωx +φ),x ∈R,其中ω>0,|φ|<π.若2,0,且f (x )的最小正周期大于2π,则()A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A∵2,0,∴11π8-5π8=T4(2m +1),m ∈N ,∴T =3π2m +1,m ∈N ,∵f (x )的最小正周期大于2π,∴T =3π,∴ω=2π3π=23,∴f (x )=+由×5π8+2,得φ=2k π+π12,k ∈Z .又|φ|<π,∴取k =0,得φ=π12.角度二:三角函数的对称性3.(2018·嘉兴期末)函数f (x )=sin x ()A .x =π12B .x =5π12C .x =π3D .x =π6解析:选A由题可得,令2x +π3=k π+π2,k ∈Z ,得x =k π2+π12,k ∈Z .所以当k =0时,函数f (x )的图象的一条对称轴方程为x =π12.4.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.解析:由题意,得y =cos(3x +φ)是奇函数,故φ=k π+π2(k ∈Z ).答案:k π+π2(k ∈Z )角度三:三角函数的单调性5.(2019·浦江模拟)已知函数f (x )=2sin +φ>0,|φ|π,且是偶函数,则()A .f (x )B .f (x )C .f (x )D .f (x )解析:选A 因为函数f (x )的最小正周期为π,所以ω=2.因为函数f (x )是偶函数,且|φ|<π2,所以φ=π4.所以f (x )=2sinx =2cos 2x ,所以函数f (x )[通法在握]1.函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.2.求三角函数单调区间的2种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.[演练冲关]1.(2019·舟山模拟)若函数f (x )=sin(φ-x )是奇函数,则φ的值可能是()A .π6B .π3C .π2D .π解析:选D因为函数f (x )是奇函数,所以φ=k π(k ∈Z ).对比选项可知,φ的值可能是π.故选D.2.若函数f (x )=sin ωx (ω>0)相邻两对称轴之间的距离为2,则ω=________.解析:f (x )=sin ωx =12sin ωx +32cos ωx +sin ωx =32sin ωx +32cos ωx =3sin 又因为f (x )相邻两条对称轴之间的距离为2,所以T =4,所以2πω=4,即ω=π2.答案:π23.函数y =|tan x |-π2,_______.解析:如图,观察图象可知,y =|tan x |-π2,减区间为-π2,0和π.-π2,0和π一抓基础,多练小题做到眼疾手快1.下列函数中,周期为π的奇函数为()A .y =sin x cos xB .y =sin 2xC .y =tan 2xD .y =sin 2x +cos 2x解析:选A y =sin 2x 为偶函数;y =tan 2x 的周期为π2;y =sin 2x +cos 2x 为非奇非偶函数,B 、C 、D都不正确,选A.2.函数y =sin x =2处取得最大值,则正数ω的最小值为()A.π2B.π3C.π4D.π6解析:选D 由题意得,2ω+π6=π2+2k π(k ∈Z ),解得ω=π6+k π(k ∈Z ),∵ω>0,∴当k =0时,ωmin=π6,故选D.3.函数y =cos x -32的定义域为()A.-π6,π6B.k π-π6,k π+π6(k ∈Z )C.2k π-π6,2k π+π6(k ∈Z )D .R 解析:选C∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z .4.(2018·浙江六校联考)函数y =3sin x +3cos x ∈0________.解析:化简可得y =23sin 由2k π-π2≤x +π6≤2k π+π2(k ∈Z ),得-2π3+2k π≤x ≤π3+2k π(k ∈Z ),又x ∈0,π2,∴函数的单调递增区间是0,π3.答案:0,π35.函数f (x )=sin x 在0,π2上的值域是________.解析:∵x ∈0,π2,∴2x +π3∈π3,4π3,∴当2x +π3=π2,即x =π12时,f (x )max =1.当2x +π3=4π3,即x=π2时,f (x )min =-32,∴f (x )∈-32,1.答案:-32,1二保高考,全练题型做到高考达标1.(2019·诸暨模拟)若函数f (x )=sin ωx (ω>0)在区间0,π3上单调递增,在区间π3,π2上单调递减,则ω=()A .3B .2C .32D .23解析:选C 因为函数f (x )在区间0,π3上单调递增,在区间π3,π2上单调递减,所以f (x )max =sinωπ3=1.又因为2πω≥2×π2,所以0<ω≤2,所以ωπ3=π2,解得ω=32.2.关于函数y =x ()A .是奇函数BD .最小正周期为π解析:选C函数y =tanx A 错;函数y =tan x 增,B 错;最小正周期为π2,D 错;由2x -π3=k π2,k ∈Z ,得x =k π4+π6,k ∈Z .当k =0时,x =π6,所以它的3.函数f (x )=2sin(ωx +φ)(ω>0)对任意x 都有f ()A .2或0B .-2或2C .0D .-2或0解析:选B因为函数f (x )=2sin(ωx +φ)对任意x 都有x=π6对称,因为在对称轴处对应的函数值为最大值或最小值,所以选B.4.已知函数f (x )=2sin(ωx +φ),x ∈R,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则()A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数解析:选A∵f (x )的最小正周期为6π,∴ω=13.∵当x =π2时,f (x )有最大值,∴13×π2+φ=π2+2k π(k ∈Z ),φ=π3+2k π(k ∈Z ),∵-π<φ≤π,∴φ=π3.∴f (x )=令-π2+2k π≤x 3+π3≤π2+2k π,k ∈Z ,得-5π2+6k π≤x ≤π2+6k π,k ∈Z ,故f (x )的单调增区间为-5π2+6k π,π2+6k π,k ∈Z ,令k =0,得x ∈-5π2,π2,∵[-2π,0]⊆-5π2,π2,故A 正确.5.已知ω>0,函数f (x )=sinω的取值范围是()A .12,54B .12,34C ,12D .(0,2]解析:选A由π2<x <π得π2ω+π4<ωx +π4<πω+π4,+π4,πω⊆π2,3π2,+π4≥π2,+π4≤3π2,∴12≤ω≤54,故选A.6.若函数f (x )=2tanT 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk <2,即k <π<2k .又k ∈N ,所以k =2或k =3.答案:2或37.已知函数f (x )=x ∈-π3,a ,若f (x )的值域是-12,1,则实数a 的取值范围是________.解析:∵x ∈-π3,a ,∴x +π6∈-π6,a +π6,∵当x +π6∈-π6,π2时,f (x )的值域为-12,1,∴结合函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π.答案:π3,π8.若函数f (x )=ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈0,π2,则x 0=________.解析:由题意得T 2=π2,T =π,ω=2.又2x 0+π6=k π(k ∈Z ),x 0=k π2-π12k ∈Z ),而x 0∈0,π2,所以x 0=5π12.答案:5π129.已知函数f (x )=sin(ωx +φ<φπ.(1)求当f (x )为偶函数时φ的值;(2)若f (x )f (x )的单调递增区间.解:∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,φ=π2+k π,k ∈Z ,∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )×π6+=32,即=32.又∵0<φ<2π3,∴π3<π3+φ<π.∴π3+φ=2π3,φ=π3.∴f (x )=x 令2k π-π2≤2x +π32k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z .∴f (x )的单调递增区间为k π-5π12,k π+π12,k ∈Z .10.已知函数f (x )=2sinx (1)求函数f (x )图象的对称轴方程;(2)求函数f (x )的单调递增区间;(3)当x ∈π4,3π4时,求函数f (x )的最大值和最小值.解:(1)令2x +π4=k π+π2,k ∈Z ,得x =k π2+π8,k ∈Z .所以函数f (x )图象的对称轴方程是x =k π2+π8,k ∈Z .(2)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .故函数f (x )的单调递增区间为k π-3π8,k π+π8,k ∈Z .(3)当x ∈π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤x ≤22,所以-2≤f (x )≤1,所以当x ∈π4,3π4时,函数f (x )的最大值为1,最小值为-2.三上台阶,自主选做志在冲刺名校1.若存在实数a ,使函数y =sin 2x +a cos x +58a -32在闭区间0,π2上取到最大值1,则实数a 等于()A .1B .52C .32D .2解析:选Cy x -12a +a 24+58a -12.当0≤x ≤π2时,0≤cos x ≤1,令t =cos x ,则0≤t ≤1,所以y -12a +a 24+58a -12,0≤t ≤1.①当0≤a 2≤1,即0≤a ≤2时,则当t =a 2cos x =a 2时,y max =a 24+58a -12=1,解得a =32或a =-4(舍去),故a =32;②当a2<0,即a <0时,则当t =0,即cos x =0时,y max =58a -12=1,解得a =125,由于a <0,故这种情况不存在满足条件的a 值;③当a2>1,即a >2时,则当t =1,即cos x =1时,y max =a +58a -32=1,解得a =2013.由于2013<2,故这种情况下不存在满足条件的a 值.综上知,存在a =32符合题意.故选C.2.设函数f (x )=sin(ωx +φ>0,|φ|①它的最小正周期为π;②它的图象关于直线x =π12成轴对称图形;④在区间-π6,以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题________(用序号表示即可).解析:若①②成立,则ω=2ππ=2.令2×π12+φ=k π+π2,k ∈Z ,且|φ|<π2,故k =0,则φ=π3.此时f (x )=x 当x =π3时,x sin π=0,所以f (x )f (x )在-5π12,π12上是增函数,则f (x )在-π6,⇒③④.用类似的分析可求得①③⇒②④.。