数学必修5等差数列练习题
- 格式:docx
- 大小:157.25 KB
- 文档页数:3
第1课时等差数列的前n项和课后篇巩固探究A组1.设S n是等差数列{a n}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.63解析:S7==49.答案:C2.设S n是等差数列{a n}的前n项和,S5=10,则a3的值为()A. B.1 C.2 D.3解析:∵S5==5a3,∴a3=S5=×10=2.答案:C3.已知数列{a n}的通项公式为a n=2n-37,则S n取最小值时n的值为()A.17B.18C.19D.20解析:由≤n≤.∵n∈N+,∴n=18.∴S18最小,此时n=18.答案:B4.等差数列{a n}的前n项和为S n(n=1,2,3,…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则下列选项中为定值的是()A.S17B.S18C.S15D.S14解析:由a5+a8+a11=3a8是定值,可知a8是定值,所以S15==15a8是定值.答案:C5.若两个等差数列{a n},{b n}的前n项和分别为A n与B n,且满足(n∈N+),则的值是()A. B. C. D.解析:因为,所以.答案:C6.已知{a n}是等差数列,S n为其前n项和,n∈N+.若a3=16,S20=20,则S10的值为.解析:设等差数列{a n}的首项为a1,公差为d.∵a3=a1+2d=16,S20=20a1+d=20,∴解得d=-2,a1=20,∴S10=10a1+d=200-90=110.答案:1107.在等差数列{a n}中,前n项和为S n,若a9=3a5,则=.解析:S17=17a9,S9=9a5,于是×3=.答案:8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差等于.解析:设公差为d,则有5d=S偶-S奇=30-15=15,于是d=3.答案:39.若等差数列{a n}的公差d<0,且a2·a4=12,a2+a4=8.(1)求数列{a n}的首项a1和公差d;(2)求数列{a n}的前10项和S10的值.解(1)由题意知(a1+d)(a1+3d)=12,(a1+d)+(a1+3d)=8,且d<0,解得a1=8,d=-2.(2)S10=10×a1+d=-10.10.导学号33194010已知数列{a n}是首项为23,公差为整数的等差数列,且前6项均为正,从第7项开始变为负.求:(1)此等差数列的公差d;(2)设前n项和为S n,求S n的最大值;(3)当S n是正数时,求n的最大值.解(1)∵数列{a n}首项为23,前6项均为正,从第7项开始变为负,∴a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,解得-<d<-,又d∈Z,∴d=-4.(2)∵d<0,∴{a n}是递减数列.又a6>0,a7<0,∴当n=6时,S n取得最大值,即S6=6×23+×(-4)=78.(3)S n=23n+×(-4)>0,整理得n(25-2n)>0,∴0<n<,又n∈N+,∴n的最大值为12.B组1.设数列{a n}为等差数列,公差d=-2,S n为其前n项和,若S10=S11,则a1=()A.18B.20C.22D.24解析:因为S11-S10=a11=0,a11=a1+10d=a1+10×(-2)=0,所以a1=20.答案:B2.(2017全国1高考)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8解析:设首项为a1,公差为d,则a4+a5=a1+3d+a1+4d=24,S6=6a1+d=48,联立可得①×3-②,得(21-15)d=24,即6d=24,所以d=4.答案:C3.等差数列{a n}的前n项和记为S n,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15解析:∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13==13a7为常数.答案:C4.导学号33194011若等差数列{a n}的通项公式是a n=1-2n,其前n项和为S n,则数列的前11项和为() A.-45 B.-50 C.-55 D.-66解析:∵S n=,∴=-n,∴的前11项和为-(1+2+3+…+11)=-66.故选D.答案:D5.已知等差数列{a n}前9项的和等于前4项的和.若a1=1,a k+a4=0,则k=.解析:设等差数列{a n}的公差为d,则a n=1+(n-1)d,∵S4=S9,∴a5+a6+a7+a8+a9=0.∴a7=0,∴1+6d=0,d=-.又a4=1+3×,a k=1+(k-1)d,由a k+a4=0,得+1+(k-1)d=0,将d=-代入,可得k=10.答案:106.已知数列{a n}为等差数列,其前n项和为S n,且1+<0.若S n存在最大值,则满足S n>0的n的最大值为.解析:因为S n有最大值,所以数列{a n}单调递减,又<-1,所以a10>0,a11<0,且a10+a11<0.所以S19=19×=19a10>0,S20=20×=10(a10+a11)<0,故满足S n>0的n的最大值为19.答案:197.导学号33194012在等差数列{a n}中,a1=-60,a17=-12,求数列{|a n|}的前n项和.解数列{a n}的公差d==3,∴a n=a1+(n-1)d=-60+(n-1)×3=3n-63.由a n<0得3n-63<0,解得n<21.∴数列{a n}的前20项是负数,第20项以后的项都为非负数.设S n,S n'分别表示数列{a n}和{|a n|}的前n项和,当n≤20时,S n'=-S n=-=-n2+n;当n>20时,S n'=-S20+(S n-S20)=S n-2S20=-60n+×3-2×n2-n+1260.∴数列{|a n|}的前n项和S n'=8.导学号33194013设等差数列{a n}的前n项和为S n,且a5+a13=34,S3=9.(1)求数列{a n}的通项公式及前n项和公式;(2)设数列{b n}的通项公式为b n=,问:是否存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.解(1)设等差数列{a n}的公差为d,因为a5+a13=34,S3=9,所以整理得解得所以a n=1+(n-1)×2=2n-1,S n=n×1+×2=n2.(2)由(1)知b n=,所以b1=,b2=,b m=.若b1,b2,b m(m≥3,m∈N)成等差数列,则2b2=b1+b m,所以,即6(1+t)(2m-1+t)=(3+t)(2m-1+t)+(2m-1)(1+t)(3+t),整理得(m-3)t2-(m+1)t=0,因为t是正整数,所以(m-3)t-(m+1)=0,m=3时显然不成立,所以t==1+.又因为m≥3,m∈N,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列.。
高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。
试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。
一、选择题1.{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2 011,则序号n 等于( ) A .668 B .669 C .670D .671解析:∵a n =a 1+(n -1)·d , ∴2 011=1+(n -1)×3,n =671. 答案:D2.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( ) A .a n =2n -2(n ∈N *) B .a n =2n +4(n ∈N *) C .a n =-2n +12(n ∈N *) D .a n =-2n +10(n ∈N *) 解析:由⎩⎪⎨⎪⎧a2·a4=12,a2+a4=8,d<0,⇒⎩⎪⎨⎪⎧ a2=6,a4=2,⇒⎩⎪⎨⎪⎧a1=8,d =-2,所以a n =a 1+(n -1)d =8+(n -1)(-2). 即a n =-2n +10. 答案:D3.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a 、b 的关系是( ) A .a =-bB .a =3bC .a =-b 或a =3bD .a =b =0解析:由等差中项的定义知:x =a +b 2,x 2=a2-b22, ∴a2-b22=(a +b 2)2,即a 2-2ab -3b 2=0. 故a =-b 或a =3b . 答案:C4.在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值是( ) A .52 B .51 C .50D .49解析:∵2a n +1=2a n +1, ∴2(a n +1-a n )=1.即a n +1-a n =12.∴{a n }是以12为公差的等差数列.a 101=a 1+(101-1)×d =2+50=52. 答案:A二、填空题5.等差数列1,-3,-7,-11,…的通项公式是________,它的第20项是________. 解析:数列中a 2=-3,a 1=1,∴d =a 2-a 1=-4. 通项公式为a n =a 1+(n -1)×d =1+(n -1)×(-4) =-4n +5, a 20=-80+5=-75. 答案:a n =-4n +5 -756.已知等差数列{a n }中,a 4=8,a 8=4,则其通项公式a n =________. 解析:∵由a 4=8,a 8=4,得⎩⎪⎨⎪⎧a1+3d =8,a1+7d =4. ∴d =-1,a 1=8-3d =11. ∴a n =a 1+(n -1)d =11-(n -1)=12-n . 答案:12-n7.等差数列{a n }中,首项为33,公差为整数,若前7项均为正数,第7项以后各项都为负数,则数列的通项公式为____________.解析:由题意,得⎩⎪⎨⎪⎧ a7=a1+6d >0,a8=a1+7d <0,即⎩⎪⎨⎪⎧33+6d >0,33+7d <0,得:-336<d <-337,又∵d ∈Z ,∴d =-5.∴a n =33+(n -1)×(-5)=38-5n . 答案:a n =38-5n (n ∈N *) 8.下表给出一个“等差矩阵”:其中每行、每列都是等差数列,a ij 表示位于第i 行第j 列的数,那么a 45=________. 解析:该等差数列第一行是首项为4,公差为3的等差数列:a 1j =4+3(j -1). 第二行是首项为7,公差为5的等差数列:a 2j =7+5(j -1).……第i 行是首项为4+3(i -1),公差为2i +1的等差数列. 因此,a ij =4+3(i -1)+(2i +1)(j -1) =2ij +i +j .故a 45=49. 答案:49 三、解答题9.已知递减等差数列{a n }的前三项和为18,前三项的乘积为66.求数列的通项公式,并判断-34是该数列的项吗?解:法一:设等差数列{a n }的前三项分别为a 1,a 2,a 3.依题意得⎩⎪⎨⎪⎧a1+a2+a3=18,a1·a2·a3=66,∴错误!解得⎩⎪⎨⎪⎧ a1=11,d =-5.或⎩⎪⎨⎪⎧a1=1,d =5.∵数列{a n }是递减等差数列,∴d <0. 故取a 1=11,d =-5,∴a n =11+(n -1)·(-5)=-5n +16 即等差数列{a n }的通项公式为a n =-5n +16. 令a n =-34,即-5n +16=-34,得n =10. ∴-34是数列{a n }的项,且为第10项. 法二:设等差数列{a n }的前三项依次为: a -d ,a ,a +d , 则错误!解得错误!又∵{a n }是递减等差数列,即d <0. ∴取a =6,d =-5.∴{a n }的首项a 1=11,公差d =-5. ∴通项公式a n =11+(n -1)·(-5), 即a n =-5n +16. 令a n =-34,解得n =10.即-34是数列{a n }的项,且为第10项.10.数列{a n }满足a 1=1,a n +1=(n 2+n -λ)a n (n =1,2,…),λ是常数. (1)当a 2=-1时,求λ及a 3的值;(2)是否存在实数λ使数列{a n }为等差数列?若存在,求出λ及数列{a n }的通项公式;若不存在,请说明理由.解:(1)由于a n +1=(n 2+n -λ)a n (n =1,2,…), 且a 1=1.所以当a 2=-1时,得-1=2-λ,故λ=3.从而a3=(22+2-3)×(-1)=-3.(2)数列{a n}不可能为等差数列,证明如下:由a1=1,a n+1=(n2+n-λ)a n,得a2=2-λ,a3=(6-λ)(2-λ),a4=(12-λ)(6-λ)(2-λ).若存在λ,使{a n}为等差数列,则a3-a2=a2-a1,即(5-λ)(2-λ)=1-λ,解得λ=3.于是a2-a1=1-λ=-2,a4-a3=(11-λ)(6-λ)(2-λ)=-24.这与{a n}为等差数列矛盾.所以,不存在λ使{a n}是等差数列.。
温馨提示:此套题为Word 版,请按住Ct 门,滑动鼠标滚轴,调节合 适的观看比例虫案解析附后。
关可Word 文档返闫原板块。
课时提升作业(八)等差数列(25分钟60分)一、选择题(每小题5分,共25分)l.x+1与yT 的等差中项为10,则x+y 等于()【解析】选C.因为x+1与y-1的等差中项为10, 所以(x+l ) + (y-l )=2X10, 所以 x+y 二20.2. (2015 -长沙高一检测)已知等差数列{爲}满足创二0, a 6+a 8=-10,则 &2016二( ) A. 2014B. 2015C.-2014D. -2015【解析】选C.设等差数列{&]的公差为d,则由已知条件可得 即裁j 解得&==-£所以数列心的通项公式为 Qn 二-n+2 ,故 32016~—2014. 【补偿训练】(2015 •吉安高二检测)在等差数列{a 」中,若a 2=-5,&6二81+6,则 810 等于( )【解析】选A.由题意,得25分钟基础练>A. 0B. 10C. 20D.不确定 A. 19B. 18C.-19D.-18严+ d = —5, 严=7 & + 5d = a 】+ 3d + 6, Id = 3,所以 a n =3n-11,所以 a w =19.3. (2015 -大连高二检测)在数列{务}中,屮2, 2亦一2箱1,则咖的 值为()【解析】选A •因为2a n+-2a n =l, 所以 a n+i-a n =^,所以数列{aj 是首项为2,公差为g 的等差数列, 所以 a ⑹二2+(101T ) X ;二52.4. (2015 •东营高二检测)首项为-24的等羌数列,从第10项起开始【误区警示】解决本题时容易忽视前9项是小于等于零的条件而选A.5•在等差数列-5, -3*, -2, W ,…中,每相邻两项之间插入一个数,使之组成一个新的等差数列,则新数列的通项公式为()A. d>|3B. d<3 C ・?Wd 〈338D.E 〈dW33【解析】选 D ・设公差为d, a n =-24+(n-l)d.由题知I®9可得U1Q > E为正数,则公差d 的取值范围为()得|〈dW3・A. 52B. 51C. 50D. 49—24 + 8d 吒(X —24 + 9d > 0,B. a n=-5-| (n~l)【解题指南】解答本题的关键是确定新等差数列的公差,实际上新数列的公差为原数列公差的一半.【解析】选A.首项为-5,公差为主上」,z 4“宀_匚、(八3_3 23所以a n——5+ (n—1) • —n—•4 4 4二、填空题(每小题5分,共15分)6. (2015 -五指山高二检测)已知等差数列&}的前三项为a-1, a+1,2a+3,则此数列的通项公式为___________ ・【解析】因为a-1, a+1, 2a+3成等差数列,所以2 (a+1) -a_1 +2a+3,解得a-0.等差数列{a」的前三项为-1,1, 3,其首项为T,公差为2,所以a n——1+ (n-1) X 2—2n—3.答案:a…=2n-37•若xHy,两个数列:x, a,, a2, a3, y 和x, b】,b2, b3, b4, y 都是等差数列,则—的值为________________________ ・【解析】设两个等差数列的公差分别为d], d2,【补偿训练】在-1和8之间插入两个数3, b(a<b),使这四个数成等即求学,由已知得答案订差数歹!b贝I」a二____ , b二________ .【解析】d二字空二3,所以a二-1+3=2, b二2+3二5・答案:2 58•在数列{&」中,ai=3,对于任意大于1的正整数n,点(《乔、® 在直线x-y- V3=0上,则a,= __________________ ・【解析】由题意,得V^-vaT7=V3(n^2),又aF3,所以数列{、:'瓦'}是以\总为首项,w逗为公差的等差数列,所以、瓦"二\'3+ (n-1) X <3= v^n,所以a“二3nl答案:3n2三、解答题(每小题10分,共20分)9.在等差数列{a」中,ai+a5=8, a4=7.(1)求数列的第10项.⑵问112是数列{&}的第几项?⑶数列{a n}从第几项开始大于30?⑷在80到110之间有多少项?【解析】设{a」公差为d,则{;::;壮笄'解得占二厂(1)a10=a1+9d=-2+27=25.(2)a n=_2+ (n_1) X 3-3n_5,由112=3n-5,解得n二39.所以门2是数列{aj的第39项.2(3)令3n-5>30 解得n>11-,所以从第12项开始大于30.(4)由80<3n-5<110,解得1 128-<n<38-,3 3’所以n的取值为29, 30,…,38,共10项.10.一位同学喜欢观察小动物的活动规律,他观察到随着气温的升高, 一种昆虫在相等的时间内发出的碉啾声次数也在逐渐增加•下表是他记录的数据,34上方及40下方的数据变得模糊不清了•但是该同学记得气温每升高rc他观察一次,而且观察到的数据成等差数列•请你为他补好这两个数据.【解析】设昆虫阴啾声次数组成等差数列{a」,则3i~4, 35~20,温度为34°C时,勺二a〔+6d・又因为d仝厂屯-兰二4,所以a7=4+6 X 4二28.4 4若an二40,则4+(n-1) X4=40.所以n=10,所以温度为37°C.【补偿训练】某公司经销一种数码产品,第1年获利200万元,从第2年起由于市场竞争等方面的原因,利润每年比上一年减少20万元, 按照这一规律如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?【解析】由题意可知,设第1年获利为a1?第n年获利为a n,则a n-a n_F-20 (n^2,n£N*),每年获利构成等差数列{a」,且首项3^200, 公差d二-20,所以a n-ai+ (n~1) d =200+ (n-1) X (-20)二-20n+220.若a n<0,则该公司经销这一产品将亏损,由a=-20n+220<0,解得n>11, 即从第12年起,该公司经销这一产品将亏损.⑳分钟提升练'(20分钟40分)一、选择题(每小题5分,共10分)1. (2015 •常德高二检测)已知等差数列{a n}的公差dHO,且a:产2a,则◎的值为()A.-B.-6 5【解题指南】由题意可得d和內的关系,可得通项公式,代入要求的式子化简.【解析】选C.因为等差数列{a」的公差dfO,且a3=2ai,所以a3=ai+2d=2ai,所以aF2d,所以a n=2d+ (n-1)d= (n+1)d,所以比+电_加+理屯+鮎3d4?d 42. (2015 -鹰潭高二检测)如图,按英文字母表A, B, C, D, E, F, G,II,…的顺序有规律排列而成的鱼状图案中,字母“0”出现的个数为VCCC9A. 27B. 29C. 31D. 33【解析】选B.由题意可得字母A有1个,B有3个,C有5个,D有7个…,它们构成以1为首项,2为公差的等差数列,所以通项公式为a n-1+2 (n_l) =2n_l,因为字母“0”在第15个,所以字母“0”出现的个数315=2X15-1=29.二、填空题(每小题5分,共10分)3•数列{a」是等差数列,&1与出的等差中项为1, a?与%的等慕中项为2,则公差d二 __________ .【解析】由题意得81+^2二2, a2+a3=4,所以(a2+a3)-(a〔+a2)二4-2二2,所以a3-ai=2,即2d=2,所以d=1・答案:1【补偿训练】若m和2n的等差中项为4, 2m和n的等差中项为5, 则m与n的等差中项是 _______________ ・【解析】因为m和2n的等差中项为4,所以m+2n=8.因为2m和n的等差中项为5,两式相加,得3m+3n=18,即m+n二6,故m 与n 的等差中项为巴竺二E 二3.答案:34. (2015 •遵义高一检测)已知在数列{a n }中,ai=-l, a n+i • a n =a n+i-a n , 则数列通项a n =【解析】由题意可知a n *0, nWN ;所以由 a n+i • a n =3n +i —3n,1 1 两边同除以a n+1 - a n ,整理得 =-1,a n^i a n 所以数列{十]是首项为T,公差为T的等差数列,11所以一+ (n-1) X (T)二一n,所以 a n =—• a n n 答案:-丄 n【延伸探究】将木题条件改为屮1, a 24, 结果又如何?2 a 】出a n a 】*2 i 1 【解析】由已知 --- —h --- 可得 1_ 1! _________ 1 an 十』&n+i i i 公差为 ---- =2-1=1的等差数列, 1 1所以一=1 + (n-1) X 1=n,故 a n —. a n n【拓展延伸】构造辅助数列巧求数列通项公式 观察递推公式的特征,构造恰当的辅助数列使之转化为等差数列问题. 常用方法有: 平方法、开平方法、倒数法等•例如, 数列{a 」中,ai-1, a n +i — ,求 3n .a (t+2此题可取倒数,构造辅助数列{彩}来求解1是首项为一=1 ,315. 已知数列{a 」满足:ai=10, a 2=5, a n -a n .2=2 (neN*).求数列{a 」的通 项公式.【解析】因为 3i —10, 32—5, a n —a n +2~2 (n £ N ),所以数列{a 」的奇数项、偶数项均是以-2为公差的等差数列. 当 n 为奇数时,a“二ai+(—T* — 1) X (-2) =11-n, 当 n 为偶数时,a=a 2+(^- 1)X (-2)=7-n,■ 一 4 F ・为奇数* 7 - n. n 为偶数. 6. (2015 •临沂高二检测)已知数列{a,J 中, Z 数列{捕满足亦話(心)•(1)求证:数列{bn }是等差数列. 11又 bF^-=-ai-1 所以数列{bj 是以三为首项,以1为公差的等差数列.7 1⑵由⑴知,b n =n--,则a=1+—2如2 =1+韵,设函数f (x )h+乔7, 所以an 二3 1&i 二二,為二| (n 2 2, n ⑵求数列{缶}中的最大值和最小值,并说明理由.【解析】(1)因为务=2 ------ (n^2, nEN*), b n =— a n-i 1 -|i所以当 n $2 时,b n -b n -i= ----- --------1 _ a n.-i 1_d—+ S)内为减函数.易知f (x)在区间当n二4时,令取得最大值3.【补偿训练】数列{a」满足a n+1=3a…+n(nGN*),问是否存在适当的使其是等差数列?【解题指南】假设存在,利用等差数列的定义求解确定.【解析】假设存在这样的4满足题目条件.a n+2=3a n+i+n+1 (n G N*).所以a n+2_an+i=2a n+i+n+1,由已知a n+i=3a n+n (n G N*)可得3n+i—3n—2a n+n,所以2a n+i+n+1-2a n+n,所以a n+1-a=4,满足等差数列的定义,故假设是正确的•即存在适当—的內的值使数列{a」为公差为冷的等差数列.由已知条件a”i二3an+n,令n二1,所以a2=3ai+1,即ai~=3ai+1,解得。
苏教版必修5高中数学2.2.1《等差数列的概念及通项公式》练习题2.2.1 等差数列的概念及通项公式1.如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列叫做等差数列.这个常数叫做等差数列的公差.2.如果数列{an}是公差为d的等差数列,则a2=a1+d;a3=a2+d=a1+2d. 3.等差数列的通项公式为an=a1+(n-1)d.4.等差数列{an}中,an=a1+(n-1)d=a2+(n-2)d=a3+(n-3)d,因此等差数列的通项公式又可以推广到an=am+(n-m)d(n>m).5.由an=am+(n-m)d,得d=连线的斜率.6.如果在a与b之间插入一个数A,使a,A,b成等差数列,那么A可以用a,b表示为A=an-am,则d就是坐标平面内两点A(n,an),B(m,am)n-ma+b2,A称为a,b 的等差中项.7.如果数列{an}的通项公式an=a・n+b,则该数列是公差为a的等差数列. 8.等差数列的性质.若{an}是等差数列,公差为d,则:(1)an,an-1,…,a2,a1亦构成等差数列,公差为-d; (2)ak,ak+m,ak+2m,…(m∈N)也构成等差数列,公差为md;(3)λa1+μ,λa2+μ,…,λan+μ,…(λ,μ是常数)也构成等差数列,公差为λd; (4)an=am+(n-m)d(m,n∈N)是等差数列通项公式的推广,它揭示了等差数列中任意两项之间的关系,还可变形为d=***an-am; n-m(5)若m,n,k,l∈N,且m+n=k+l,则am+an=ak+al,即序号之和相等,则它们项的和相等,例如:a1+an=a2+an-1=… ?基础巩固一、选择题1.等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为(B)A.1 B.2 C.3 D.4a1+a5解析:由等差中项的性质知a3==5,又a4=7,∴公差d=a4-a3=7-5=2.22.在-1和8之间插入两个数a,b,使这四个数成等差数列,则(A)A.a=2,b=5 B.a=-2,b=5 C.a=2,b=-5 D.a=-2,b=-5解析:考查项数与d之间关系.3.首项为-20的等差数列,从第10项起开始为正数,则公差d的取值范围是(C)A.d> B.d≤ C.<d≤ D.≤d<?a10>0,??-20+9d>0,20?5即?即<d≤.2??a9≤0,??-20+8d≤0,92209522095220952解析:由题意知?4.已知a,b,c成等差数列,则二次函数y=ax+2bx+c的图象与x轴的交点的个数为(D)A.1个 B.0个 C.2个 D.1个或2个解析:∵Δ=(2b)-4ac=(a+c)-4ac,∴Δ=(a-c)≥0.∴A与x轴的交点至少有1个.故选D.5.(2021・重庆卷)在等差数列{an}中,a1=2,a3+a5=10,则a7=(B)222A.5 B.8 C.10 D.14解析:设出等差数列的公差求解或利用等差数列的性质求解.方法一设等差数列的公差为d,则a3+a5=2a1+6d=4+6d=10,所以d=1,a7=a1+6d=2+6=8.方法二由等差数列的性质可得a1+a7=a3+a5=10,又a1=2,所以a7=8. 二、填空题6.在等差数列{an}中,a3+a7=37,则a2+a4+a6+a8=________.解析:根据等差数列的性质,a2+a8=a4+a6=a3+a7=37. ∴原式=37+37=74. 答案:747.(2021・广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.解析:由a3+a8=10得a1+2d+a1+7d=10,即2a1+9d=10, 3a5+a7=3(a1+4d)+a1+6d=4a1+18d=2(2a1+9d)=20.答案:208.在等差数列{an}中,a3=50,a5=30,则a7=________.解析:2a5=a3+a7,∴a7=2a5-a3=2×30-50=10. 答案:10 三、解答题9.在等差数列{an}中,已知a1+a6=12,a4=7. (1)求a9;(2)求此数列在101与1 000之间共有多少项.解析:(1)设首项为a1,公差为d,则2a1+5d=12, a1+3d=7,解得a1=1,d=2,∴a9=a4+5d=7+5×2=17.(2)由(1)知,an=2n-1,由101<an<1 000知 101<2n-1<1 000, 1 001∴51<n<. 2∴共有项数为500-51=449.111110.已知数列{an}中,a1=,=+,求an.2an+1an3111?1?111n+5解析:由=+知??是首项为2,公差为的等差数列,∴=2+(n-1)×=. an+1an3?an?3an33∴an=3*(n∈N). n+5?能力升级一、选择题11.数列{an}的首项为3,{bn}为等差数列,且bn=an+1-an(n∈N),若b3=-2,b10=12,则a8=(B)A.0 B.3 C.8 D.11解析:由b3=-2和b10=12得b1=-6,d=2,∴bn=2n-8,即an+1-an=2n-8,由叠加法得(a2-a1)+(a3-a2)+(a4-a3)+…+(a8-a7)=-6-4-2+0+2+4+6=0.∴a8=a1=3.12.等差数列{an}中,前三项依次为:151,,,则a101等于(D) x+16xx*12A.50 B.13 332C.24 D.83解析:由11511+=2×解得x=2,故知等差数列{an}的首项为,公差d=,故a101x+1x6x31211262=a1+100d=+100×==8. 3123313.已知数列-1,a1,a2,-4与数列1,b1,b2,b3,-5各自成等差数列,则等于(B)11A. B. 4211C.- D.-24解析:设数列-1,a1,a2,-4的公差是d,则a2-a1=d==-2,故知-4-(-1)-5+1=-1,b2=4-12a2-a1b2a2-a11=. b22二、填空题14.设数列{an},{bn}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=________. 21-714解析:∵{an},{bn}都是等差数列,∴{an+bn}也是等差数列,其公差为==7.22∴a5+b5=7+(5-1)×7=35. 答案:3515.已知递增的等差数列{an}满足a1=1,a3=a2-4,则an=________.解析:利用等差数列的通项公式求解.设等差数列公差为d,则由a3=a2-4,得1+2d=(1+d)-4,∴d=4.∴d=±2.由于该数列为递增数列,∴d=2.∴an=1+(n-1)×2=2n-1(n∈N).答案:2n-1(n∈N) 三、解答题16.等差数列{an}中,a1+a4+a7=15,a2a4a6=45,求数列{an}的通项公式.解析:由题设条件可得*2222??a1+a1+3d+a1+6d=15,? ?(a1+d)(a1+3d)(a1+5d)=45,???a1=-1,??d=2??a1=11,??d=-2.解得?或?*∴数列{an}的通项公式为an=2n-3或an=13-2n,n∈N. 17.已知111222,,是等差数列,求证:a,b,c是等差数列. b+cc+aa+b112+=, b+ca+bc +a证明:由已知条件,得∴2b+a+c2=. (b+c)(a+b)c+a∴(2b+a+c)(a+c)=2(b+c)(a+b).∴a+c=2b,即a,b,c是等差数列.222222感谢您的阅读,祝您生活愉快。
人教A版高中数学必修五第二章2.2等差数列的性质同步检测题一、选择题1.在等差数列{a n}中,若a2=4,a4=2,则a6=()A.-1B.0C.1 D.62.已知等差数列{a n},则使数列{b n}一定为等差数列的是() A.b n=-a n B.b n=a2nC.b n=a n D.b n=1 a n3.在等差数列{a n}中,若a2=1,a6=-1,则a4=() A.-1 B.1C.0 D.-1 24.等差数列{a n}的公差d<0,且a2·a4=12,a2+a4=8,则数列{a n}的通项公式是()A.a n=2n-2(n∈N*) B.a n=2n+4(n∈N*)C.a n=-2n+12(n∈N*) D.a n=-2n+10(n∈N*)5.如果数列{a n}是等差数列,则下列式子一定成立的有()A.a1+a8<a4+a5B.a1+a8=a4+a5C.a1+a8>a4+a5D.a1a8=a4a56.已知数列{a n}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为() A. 3 B.±3C.-33D.- 37.等差数列{a n}中,a5+a6=4,则log2(2a1·2a2·…·2a10)=() A.10 B.20C.40 D.2+log25二、填空题8.等差数列{a n}中,a15=33,a25=66,则a35=________.9.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=________.10.在等差数列{a n }中,若a 5=a ,a 10=b ,则a 15=________.11.数列{a n }满足递推关系a n =3a n -1+3n -1(n ∈N *,n ≥2),a 1=5,则使得数列 ⎭⎬⎫⎩⎨⎧+n n m a 3为等差数列的实数m 的值为________. 12.若m ≠n ,两个等差数列m ,a 1,a 2,n 与m ,b 1,b 2,b 3,n 的公差分别为d 1和d 2,则d 1d 2的值为________. 三、解答题13.梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级宽度依次成等差数列,计算中间各级的宽度.14.若三个数a -4,a +2,26-2a 适当排列后构成递增等差数列,求a 的值和相应的数列.15.两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?16.已知数列{a n}的通项公式为a n=pn2+qn(常数p,q∈R).(1)当p和q满足什么条件时,数列{a n}是等差数列?(2)求证:对任意的实数p和q,数列{a n+1-a n}都是等差数列.人教A 版高中数学必修五第二章2.2等差数列的性质同步检测题解析一、选择题1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6解析:由等差数列的性质得a 6=2a 4-a 2=2×2-4=0,选B.答案:B2.已知等差数列{a n },则使数列{b n }一定为等差数列的是( )A .b n =-a nB .b n =a 2nC .b n =a nD .b n =1a n解析:∵数列{a n }是等差数列,∴a n +1-a n =d (常数).对于A ,b n +1-b n =a n -a n +1=-d ,正确;对于B 不一定正确,如a n =n ,则b n=a 2n =n 2,显然不是等差数列;对于C 和D ,a n 及1a n不一定有意义,故选A. 答案:A3.在等差数列{a n }中,若a 2=1,a 6=-1,则a 4=( )A .-1B .1C .0D .-12解析:∵2a 4=a 2+a 6=1-1=0,∴a 4=0.答案:C4.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( )A .a n =2n -2(n ∈N *)B .a n =2n +4(n ∈N *)C .a n =-2n +12(n ∈N *)D .a n =-2n +10(n ∈N *)解析:由⎪⎩⎪⎨⎧<=+=∙,,,08124242d a a a a ⇒⎩⎨⎧==,,2642a a ⇒⎩⎨⎧-==,,281d a ∴a n =a 1+(n -1)d =8+(n -1)·(-2)=-2n +10.5.如果数列{a n }是等差数列,则下列式子一定成立的有( )A .a 1+a 8<a 4+a 5B .a 1+a 8=a 4+a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 5解析:由等差数列的性质有a 1+a 8=a 4+a 5,故选B.答案:B6.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为() A . 3 B .±3C .-33 D .- 3解析:由等差数列的性质得a 1+a 7+a 13=3a 7=4π,∴a 7=4π3.∴tan(a 2+a 12)=tan(2a 7)=tan 8π3=tan 2π3=- 3.答案:D7.等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A .10B .20C .40D .2+log 25解析:由等差数列的性质知a 1+a 2+…+a 10=5(a 5+a 6)=5×4=20,从而log 2(2a 1·2a 2·…·2a 10)=log 2220=20.答案:B二、填空题8.等差数列{a n }中,a 15=33,a 25=66,则a 35=________.解析:由a 25是a 15与a 35的等差中项知2a 25=a 15+a 35,∴a 35=2a 25-a 15=2×66-33=99.答案:999.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________.解析:由等差数列的性质可知,a 2+a 8=a 4+a 6=a 3+a 7,∴a 2+a 4+a 6+a 8=37×2=74.10.在等差数列{a n }中,若a 5=a ,a 10=b ,则a 15=________.解析:设数列{a n }的公差为d .法一:由题意知⎩⎨⎧=+==+=,,b d a a a d a a 9411015 解得⎪⎪⎩⎪⎪⎨⎧-=-=,,55491a b d b a a∴a 15=a 1+14d =9a -4b 5+14×b -a 5=2b -a .法二:d =a 10-a 510-5=b -a 5, ∴a 15=a 10+5d =b +5×b -a 5=2b -a .法三:∵a 5,a 10,a 15成等差数列,∴a 5+a 15=2a 10.∴a 15=2a 10-a 5=2b -a .答案:2b -a11.数列{a n }满足递推关系a n =3a n -1+3n -1(n ∈N *,n ≥2),a 1=5,则使得数列⎭⎬⎫⎩⎨⎧+n n m a 3为等差数列的实数m 的值为________. 解析:由题设知a n +m 3n -a n -1+m 3n -1=3a n -1+3n -1+m 3n -a n -1+m 3n -1 =3n -1-2m 3n=1-1+2m 3n 为常数, 则1+2m =0,故m =-12.答案:-1212.若m ≠n ,两个等差数列m ,a 1,a 2,n 与m ,b 1,b 2,b 3,n 的公差分别为d 1和d 2,则d 1d 2的值为________. 解析:n -m =3d 1,d 1=13(n -m ).又n -m =4d 2,d 2=14(n -m ).∴d 1d 2=13·(n -m )14·(n -m )=43. 答案:43三、解答题13.梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级宽度依次成等差数列,计算中间各级的宽度.解析:由题意可设最低一级宽度为a 1,梯子的宽度依次成等差数列,设为{a n },依题意a 12=33,由a 12=a 1+(12-1)d ⇒33=110+11d ,∴d =-7,∴a n =110+(n -1)×(-7),∴a 2=103,a 3=96,a 4=89,a 5=82,a 6=75,a 7=68,a 8=61,a 9=54,a 10=47,a 11=40,故梯子中间各级的宽度依次为103,96,89,82,75,68,61,54,47,40.14.若三个数a -4,a +2,26-2a 适当排列后构成递增等差数列,求a 的值和相应的数列.解析:显然a -4<a +2,(1)若a -4,a +2,26-2a 成等差数列,则(a -4)+(26-2a )=2(a +2),∴a =6,相应的等差数列为:2,8,14.(2)若a -4,26-2a ,a +2成等差数列,则(a -4)+(a +2)=2(26-2a ),∴a =9,相应的等差数列为:5,8,11.(3)若26-2a ,a -4,a +2成等差数列,则(26-2a )+(a +2)=2(a -4),∴a =12,相应的等差数列为:2,8,14.15.两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?解析:设两个数列分别为{a n }与{b k }.则a 1=5,d 1=8-5=3,通项公式a n =5+(n -1)·3=3n +2;b 1=3,d 2=7-3=4,通项公式b k =3+(k -1)·4=4k -1.设数列{a n }的第n 项与{b k }的第k 项相同, 即a n =b k ,也就是3n +2=4k -1,∴n =43k -1,而n ∈N *,k ∈N *,∴k 必须为3的倍数,设k =3r (r ∈N *),得n =4r -1.由条件知⎩⎨⎧≤-≤≤≤,,10014110031r r 解得12≤r ≤1014.又r ∈N *,∴1≤r ≤25(r ∈N *).∴共有25个共同的项.16.已知数列{a n }的通项公式为a n =pn 2+qn (常数p ,q ∈R).(1)当p 和q 满足什么条件时,数列{a n }是等差数列?(2)求证:对任意的实数p 和q ,数列{a n +1-a n }都是等差数列. 解析:(1)设数列{a n }是等差数列,则a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q , 若2pn +p +q 是一个与n 无关的常数,则2p =0,即p =0,q ∈R.∴当p =0,q ∈R 时,数列{a n }是等差数列.(2)证明:∵a n +1-a n =2pn +p +q ,∴a n +2-a n +1=2p (n +1)+p +q ,∴(a n +2-a n +1)-(a n +1-a n )=[2p (n +1)+p +q ]-(2pn +p +q )=2p (常数). ∴对任意的实数p 和q ,数列{a n +1-a n }都是等差数列.。
2020年高中数学 人教A 版 必修5 课后作业本《等差数列的前n 项和公式》一、选择题1.等差数列{a n }中,d=2,a n =11,S n =35,则a 1等于( )A .5或7B .3或5C .7或-1D .3或-12.已知等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 为( )A .7B .6C .3D .23.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10等于( )A .138B .135C .95D .234.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7等于( )A .12B .13C .14D .155.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( )A .9B .8C .7D .66.S n 是等差数列{a n }的前n 项和,a 3+a 6+a 12为一个常数,则下列也是常数的是( )A .S 17 B .S 15 C .S 13 D .S 77.设等差数列{a n }的前n 项和为S n ,S m-1=-2,S m =0,S m +1=3,则m=( )A .3B .4C .5D .6二、填空题8.已知数列{a n }中,a 1=1,a n =a n-1+(n≥2),则数列{a n }的前9项和等于________.129.等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n=________.10.等差数列{a n }中,a 2+a 7+a 12=24,则S 13=________.11.设S n 是等差数列{a n }的前n 项和,若=,则等于________.a5a359S9S512.设等差数列{a n}的前n项和为S n,已知前6项和为36,最后6项和为180,S n=324(n>6),则数列的项数n=________,a9+a10=________.三、解答题13.在等差数列{a n}中:(1)已知a5+a10=58,a4+a9=50,求S10;(2)已知S7=42,S n=510,a n-3=45,求n.14.在等差数列{a n}中,a10=18,前5项的和S5=-15,(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和的最小值,并指出何时取得最小值.15.等差数列{a n }的前n 项和S n =-n 2+n ,求数列{|a n |}的前n 项和T n .32205216.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列的前n 项{Sn n}和,求T n .答案解析1.答案为:D ;解析:由题意,得Error!即Error!解得Error!或Error!2.答案为:C ;解析:由S 2=4,S 4=20,得2a 1+d=4,4a 1+6d=20,解得d=3.3.答案为:C ;解析:由a 2+a 4=4,a 3+a 5=10,可知d=3,a 1=-4.∴S 10=-40+×3=95.10×924.答案为:B ;解析:由S 5=5a 3=25,∴a 3=5.∴d=a 3-a 2=5-3=2.∴a 7=a 2+5d=3+10=13.5.答案为:B ;解析:当n=1时,a 1=S 1=-8;当n≥2时,a n =S n -S n-1=(n 2-9n)-[(n-1) 2-9(n-1)]=2n-10.综上可得数列{a n }的通项公式a n =2n-10.所以a k =2k-10.令5<2k-10<8,解得k=8.6.答案为:C ;解析:∵a 3+a 6+a 12为常数,∴a 2+a 7+a 12=3a 7为常数,∴a 7为常数.又S 13=13a 7,∴S 13为常数.7.答案为:C ;解析:a m =S m -S m-1=2,a m +1=S m +1-S m =3,∴d=a m +1-a m =1,由S m ==0,知a 1=-a m =-2,a m =-2+(m-1)=2,解得m=5. a1+am m 28.答案为:27;解析:∵n≥2时,a n =a n-1+,且a 1=1,所以数列{a n }是以1为首项,12以为公差的等差数列,所以S 9=9×1+×=9+18=27.129×82129.答案为:17;解析:Error!,∴d=10,a 1=-80.∴S n =-80n +×10=0,n n -1 2∴-80n +5n(n-1)=0,n=17.10.答案为:104;解析:因为a 1+a 13=a 2+a 12=2a 7,又a 2+a 7+a 12=24,所以a 7=8.所以S 13==13×8=104.13 a1+a13 211.答案为:1;解析:由等差数列的性质,===,∴==×=1.a5a32a52a3a1+a9a1+a559S9S592 a1+a9 52a1+a5 955912.答案为:18,36;解析:由题意,可知a 1+a 2+…+a 6=36 ①,a n +a n-1+a n-2+…+a n-5=180 ②,由①+②,得(a 1+a n )+(a 2+a n-1)+…+(a 6+a n-5)=6(a 1+a n )=216,∴a 1+a n =36.又S n ==324,∴18n=324,∴n=18,∴a 1+a 18=36,∴a 9+a 10=a 1+a 18=36.n a1+an 213.解:(1)由已知条件得Error!解得Error!∴S 10=10a 1+d=10×3+×4=210.10× 10-1 210×92(2)S 7==7a 4=42,7 a1+a7 2∴a 4=6.∴S n ====510.n a1+an 2n a4+an -3 2n 6+45 2∴n=20.14.解:(1)设{a n }的首项,公差分别为a 1,d.则Error!解得a 1=-9,d=3,∴a n =3n-12.(2)S n ==(3n 2-21n)=2-,n a1+an 21232(n -72)1478∴当n=3或4时,前n 项的和取得最小值为-18.15.解:a 1=S 1=101,当n≥2时,a n =S n -S n-1=-n 2+n-Error!Error!=-3n +104,a 1=S 1=101也适合上式,322052所以a n =-3n +104,令a n =0,n=34,故n≥35时,a n <0,n≤34时,a n >0,23所以对数列{|a n |},n≤34时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =-n 2+n ,322052当n≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n |=a 1+a 2+…+a 34-a 35-…-a n=2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n )=2S 34-S n =n 2-n +3 502,322052所以T n =Error!16.解:设等差数列{a n }的公差为d ,则S n =na 1+n(n-1)d ,12∵S 7=7,S 15=75,∴Error!即Error!解得Error!∴=a 1+(n-1)d=-2+(n-1),Sn n 1212∵-=,Sn +1n +1Sn n 12∴数列是等差数列,其首项为-2,公差为,{Sn n }12∴T n =n×(-2)+×=n 2-n.n· n -1 2121494。
等差数列练习第一篇:等差数列练习等差数列练习一、选择题1.在等差数列{an}中,a1=21,a7=18,则公差d=()A.12B.13C.-12D.-132.在等差数列{an}中,a2=5,a6=17,则a14=()A.45B.41C.39D.373.已知数列{an}对任意的正整数n,点Pn(n,an)都在直线y=2x+1上,则数列{an}为()A.公差为2的等差数列B.公差为1的等差数列C.公差为-2的等差数列D.非等差数列4.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2B.3C.6D.96.数列{an}是首项为2,公差为3的等差数列,数列{bn}是首项为-2,公差为4的等差数列.若an=bn,则n的值为() A.4B.5C.6D.7二、填空题7.已知等差数列{an},an=4n-3,则首项a1为__________,公差d为__________.8.在等差数列{an}中,a3=7,a5=a2+6,则a6=__________.9.已知数列{an}满足a2n+1=a2n+4,且a1=1,an>0,则an=________.三、解答题10.在等差数列{an}中,已知a5=10,a12=31,求它的通项公式.12.已知(1,1),(3,5)是等差数列{an}图象上的两点.(1)求这个数列的通项公式;(3)判断这个数列的单调性.第二篇:等差数列重点题型练习等差数列重点题型练习(1)一、选择题1.在等差数列{an}中,若a3+a4+a5+a6+a7=250,则a2+a8的值等于()A.50B.100C.150D.2002.在数列{a2n}中,a1=1,an+1=an-1(n≥1),则a1+a2+a3+a4+a5等于()A.-1B.1C.0D.23.若数列{an}的前n项和Sn=n2-2n+3,则此数列的前3项依次为()A.-1,1,3B.2,1,3C.6,1,3D.2,3,64.等差数列{an}中,a4+a7+a10=57,a4+a5+…+a14=275,ak=61,则k等于()A.18B.19C.20D.21 5.设Sn是等差数列{an}的前n项和,若S7=35,则a4=()A.8B.7C.6D.56.已知{a*n}是递增数列,且对任意n∈N都有a2n=n+λn恒成立,则实数λ的取值范围是()A.(-7,+∞)B.(0,+∞)C.(-2,+∞)D.(-3,+∞)7.设数列{an}、{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,那么由an+bn所组成的数列的第37项为()A.0B.37C.100D.-378.数列{a2112n}中,a1=1,a2=3,且n≥2时,有a+=,则()n-1an+1anA.a23)nB.a2n-122n=(n=(3)C.an=n+2D.an=n+19.在等差数列{an}中,若a3+a4+a5+a6+a7=250,则a2+a8的值等于()A.50B.100C.150D.20010.设{a是公差为d=-1n}2的等差数列,如果a1+a4+a7…+a58=50,那么a3+a6+a9+…+a60=()A.30B.40C.60D.7011.一个数列的前n项之和为Sn=3n2+2n,那么它的第n(n≥2)项为()A.3n2B.3n2+3nC.6n+1D.6n-112.设数列{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是()A.1B.2C.4D.6二、填空题13.等差数列{an}中,a3+a7+2a15=40,则S19=___________14.有两个等差数列{a若a1+a2+⋅⋅⋅+n}、{bn},an=3n-1a2n+3,则13b1+b2+⋅⋅⋅+bnb=1315.在等差数列{a公差为1n}中,2,且a1+a3+a5+…+a99=60,则a2+a4+a6+…+a100=_________16.在等差数列{an}中,若a1+3a8+a15=120,则2a9-a10=________17.设Sn为等差数列{an}的前n项和,S4=14,S10-S7=30,则S9= 18.等差数列{an}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项的和等于19.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=三、计算题20.求数列11⨯2,12⨯3,13⨯41n(n+1)....前n项的和.作者QQ:1168903721.求数列an=3n(n+2)的前n项和.22.已知等差数列{an}中,a1+a4+a7=15,a2a4a6=45,求其通项an.23.已知等差数列{an}前n项和Sn=-n(n-2),求{an}通项公式24.已知数列{an}中,a1=0,a2=2,且an+1+an-1=2(an+1)(n≥2)(1)求证:{an+1-an}是等差数列;(2)求{an}通项公式25.已知等差数列{an}前3项和为6,前8项和为-4(1)求数列{an}的前n项和Sn;(2)求数列{Snn}的前n项和Tn26.已知数列{an}的首项为a1=3,通项an与前n项和sn之间满足2an=sn·sn-1(n≥2).(1)求证:⎧⎨1⎫(2)求数列{a⎩S⎬是等差数列,并求公差;n}的通项公式。
2020年高中数学 人教A 版 必修5 同步作业本《等差数列的性质》一、选择题1.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,那么由a n +b n 所组成的数列的第37项值为( )A .0B .37C .100D .-372.如果数列{a n }是等差数列,则下列式子一定成立的有( )A .a 1+a 8<a 4+a 5B .a 1+a 8=a 4+a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 53.由公差d≠0的等差数列a 1,a 2,…,a n 组成一个新的数列a 1+a 3,a 2+a 4,a 3+a 5,…下列说法正确的是( )A .新数列不是等差数列B .新数列是公差为d 的等差数列C .新数列是公差为2d 的等差数列D .新数列是公差为3d 的等差数列4.在数列{a n }中,a 3=2,a 7=1,如果数列是等差数列,那么a 11等于( ){1an +1}A. B. C. D .11312235.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )A .-2B .-3C .-4D .-56.若方程(x 2-2x +m)(x 2-2x +n)=0的四个根组成一个首项为的等差数列,则|m-n|=( )14A .1 B. C. D.341238二、填空题7.在等差数列{a n }中,a 3,a 10是方程x 2-3x-5=0的根,则a 5+a 8=________.8.数列{a n }满足递推关系a n =3a n-1+3n -1(n∈N *,n ≥2),a 1=5,则使得数列为等差数列{an +m 3n }的实数m 的值为________.9.已知数列{a n }满足a 1=1,若点在直线x-y +1=0上,则a n =___________.(an n ,an +1n +1)10.若数列{a n }为等差数列,a p =q ,a q =p(p≠q),则a p +q =______________.三、解答题11.在等差数列{a n }中,若a 1+a 2+…+a 5=30,a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.12.已知无穷等差数列{a n },首项a 1=3,公差d=-5,依次取出项的序号被4除余3的项组成数列{b n }.(1)求b 1和b 2;(2)求数列{b n }的通项公式;(3)数列{b n }中的第110项是数列{a n }中的第几项?13.在数列{a n }中,a 1=1,3a n a n-1+a n -a n-1=0(n≥2,n ∈N *).(1)求证:数列是等差数列;{1an}(2)求数列{a n }的通项公式.答案解析1.答案为:C ;解析:设c n =a n +b n ,则c 1=a 1+b 1=25+75=100,c 2=a 2+b 2=100,故d=c 2-c 1=0,故c n =100(n∈N *),从而c 37=100.2.答案为:B ;解析:由等差数列的性质有a 1+a 8=a 4+a 5.3.答案为:C ;解析:因为(a n +1+a n +3)-(a n +a n +2)=(a n +1+a n )+(a n +3-a n +2)=2d ,所以数列a 1+a 3,a 2+a 4,a 3+a 5,…是公差为2d 的等差数列.4.答案为:B ;解析:依题意得+=2·,所以=-=,所以a 11=.1a3+11a11+11a7+11a11+121+112+123125.答案为:C ;解析:设该数列的公差为d ,则由题设条件知:a 6=a 1+5d>0,a 7=a 1+6d<0.又因为a 1=23,所以即-<d<-,又因为d 是整数,所以d=-4.{d >-235,d <-236,)2352366.答案为:C ;解析:设方程的四个根a 1,a 2,a 3,a 4依次成等差数列,则a 1+a 4=a 2+a 3=2,再设此等差数列的公差为d ,则2a 1+3d=2,因为a 1=,所以d=,所以a 2=+=,a 3=+1=,a 4=+=,14121412341454143274所以|m-n|=|a 1a 4-a 2a 3|==.|14×74-34×54|127.答案为:3;解析:由已知得a 3+a 10=3.又数列{a n }为等差数列,所以a 5+a 8=a 3+a 10=3.8.答案为:- ;12解析:a 1=5,a 2=3×5+32-1=23,a 3=3×23+33-1=95,依题意得,,成等差数列,所以2·=+,所以m=-.5+m 323+m 3295+m 3323+m 325+m 395+m 33129.答案为:n 2解析:由题设可得-+1=0,即-=1,所以数列是以1为公差的等差数an n an +1n +1an +1n +1an n {an n}列,且首项为1,故通项公式=n ,所以a n =n 2.an n 10.答案为:0;解析:法一:因为a p =a q +(p-q)d ,所以q=p +(p-q)d ,即q-p=(p-q)d ,因为p≠q,所以d=-1.所以a p +q =a p +(p +q-p)d=q +q×(-1)=0.法二:因为数列{a n }为等差数列,所以点(n ,a n )在一条直线上.不妨设p <q ,记点A(p ,q),B(q ,p),则直线AB 的斜率k==-1,如图所示,由图知OC=p +q ,即点C 的坐标为(p +q ,0)故a p +q =0.p -q q -p11.解:法一:因为1+11=6+6,2+12=7+7,…,5+15=10+10,所以a 1+a 11=2a 6,a 2+a 12=2a 7,…,a 5+a 15=2a 10.所以(a 1+a 2+…+a 5)+(a 11+a 12+…+a 15)=2(a 6+a 7+…+a 10).所以a 11+a 12+…+a 15=2(a 6+a 7+…+a 10)-(a 1+a 2+…+a 5)=2×80-30=130.法二:因为数列{a n }是等差数列,所以a 1+a 2+…+a 5,a 6+a 7+…+a 10,a 11+a 12+…+a 15也成等差数列,即30,80,a 11+a 12+…+a 15成等差数列.所以30+(a 11+a 12+…+a 15)=2×80,所以a 11+a 12+…+a 15=130.12.解:(1)由题意,等差数列{a n }的通项公式为a n =3+(n-1)(-5)=8-5n ,设数列{b n }的第n 项是数列{a n }的第m 项,则需满足m=4n-1,n ∈N *,所以b 1=a 3=8-5×3=-7,b 2=a 7=8-5×7=-27.(2)由(1)知b n +1-b n =a 4(n +1)-1-a 4n-1=4d=-20,所以新数列{b n }也为等差数列,且首项为b 1=-7,公差为d′=-20,所以b n =b 1+(n-1)d′=-7+(n-1)×(-20)=13-20n.(3)因为m=4n-1,n ∈N *,所以当n=110时,m=4×110-1=439,所以数列{b n }中的第110项是数列{a n }中的第439项.13. (1)证明:由3a n a n-1+a n -a n-1=0,得-=3(n≥2).1an 1an -1又因为a 1=1,所以数列是以1为首项,3为公差的等差数列.{1an}(2)解:由(1)可得=1+3(n-1)=3n-2,所以a n =.1an 13n -2又当n=1时,a 1=1,符合上式,所以数列{a n }的通项公式是a n =.13n -2。
必修5 数列2.等差数列{}n a 中,()46810129111120,3a a a a a a a ++++=-则的值为A .14B .15C .16D .173.等差数列{}n a 中,12910S S a =>,,则前 项的和最大.解:0912129=-=S S S S , 10111211111030,00a a a a a a ∴++=∴=∴=>,,又4.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为 .解:∵ ,,,,,1001102030102010S S S S S S S ---成等差数列,公差为D 其首项为10010=S ,6.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,.①求出公差d 的范围;②指出1221S S S ,,, 中哪一个值最大,并说明理由. 解:①)(6)(610312112a aa a S +=+=36(27)0a d =+>②12671377666()013000S a a S a a a S =+>=<∴<>∴, 最大。
1. 已知等差数列{}n a 中,12497116a a a a ,则,===+等于( ) A .15 B .30 C .31 D .64794121215a a a a a +=+∴= A2. 设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== .543. 已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则 . 4. 等差数列{}n a 的前n 项和记为n S ,已知50302010==a a ,. ①求通项n a ;②若n S =242,求n . 解:d n a a n )1(1-+=111020193012305021019502n a d a a a a n a d d +==⎧⎧==∴∴=+⎨⎨+==⎩⎩,解方程组5.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇? ②如果甲乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇?故第一次相遇是在开始运动后7分钟. 故第二次相遇是在开始运动后15分钟 10.已知数列{}n a 中,,31=a 前n 和1)1)(1(21-++=n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式; ③设数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立? 若存在,求M 的最小值,若不存在,试说明理由.12122(1)(1)()2n n n n n n n a n a a a a a ++++∴+=++∴=+ ∴数列{}n a 为等差数列.②1)1(311-+==+n n a n na a ,{}212121522n a a a a a ∴=-=∴-=即等差数列的公差为1(1)3(1)221n a a n d n n ∴=+-=+-⋅=+121n +++,要使得T n n 都成立,三、等比数列 知识要点1. 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,记为()0q q ≠,.2. 递推关系与通项公式mn m n n n n n q a a q a a qa a --+⋅=⋅==推广:通项公式:递推关系:111 3. 等比中项:若三个数c b a ,,成等比数列,则称b 为a 与c 的等比中项,且ac b ac b =±=2,注:是成等比数列的必要而不充分条件. 4. 前n 项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a q q a q na S n n n5. 等比数列的基本性质,),,,(*∈N q p n m 其中①q p n m a a a a q p n m ⋅=⋅+=+,则若,反之不成立! ②)(2*+--∈⋅==N n a a a a a qm n m n n mn mn , ③{}n a 为等比数列,则下标成等差数列的对应项成等比数列.④若项数为()*2n n N ∈,则S q S =偶奇.⑤nn m n m S S q S +=+⋅.⑥ ,,,时,n n n n n S S S S S q 2321---≠仍成等比数列. 6. 等比数列与等比数列的转化 ①{}n a 是等差数列⇔{})10(≠>c c cna ,是等比数列;②{}n a 是正项等比数列⇔{})10(log ≠>c c a n c ,是等差数列;③{}n a 既是等差数列又是等比数列⇔{}n a 是各项不为零的常数列. 7. 等比数列的判定法 ①定义法:⇒=+(常数)q a a nn 1{}n a 为等比数列; ②中项法:⇒≠⋅=++)0(221n n n n a a a a {}n a 为等比数列;③通项公式法:⇒⋅=为常数)q k q k a nn ,({}n a 为等比数列; ④前n 项和法:⇒-=为常数)(q k q k S nn ,)1({}n a 为等比数列. 性质运用1.103107422222)(++++++=n n f 设()()()n N f n *∈,则等于1342222(81)(81)(81)(81)7777n n n n A B C D +++----....D2.已知数列{}n a 是等比数列,且===m m m S S S 323010,则, .3.⑴在等比数列{}n a 中,143613233+>==+n n a a a a a a ,,. ①求n a ,②若n n n T a a a T 求,lg lg lg 21+++= .⑵在等比数列{}n a 中,若015=a ,则有等式n n a a a a a a -+++=+++292121)29(*∈<N n n ,成立,类比上述性质,相应的在等比数列{}n b 中,若119=b ,则有等式成立.解:⑴①由等比数列的性质可知:16341616163233321a a a a a a a a a a ⋅=⋅=+=>==又,解得,②由等比数列的性质可知,{}n a lg 是等差数列,因为⑵由题设可知,如果0=m a 在等差数列中有n m n a a a a a a --+++=+++122121)12(*∈-<N n m n ,成立,我们知道,如果q p n m a a a a q p n m +=++=+,则若,而对于等比数列{}n b ,则有q p n m a a a a q p n m ⋅=⋅+=+,则若所以可以得出结论,若n m n m b b b b b b b --==1221211 ,则有)12(*∈-<N n m n ,成立,在本题中 n n b b b b b b -=372121 则有)37(*∈<N n n ,1.{a n }是等比数列,下面四个命题中真命题的个数为 ( ) ①{a n 2}也是等比数列;②{ca n }(c ≠0)也是等比数列;③{na 1}也是等比数列;④{ln a n }也是等比数列. A .4 B .3C .2D .12.等比数列{a n }中,已知a 9 =-2,则此数列前17项之积为 ( ) A .216 B .-216 C .217 D .-2173.等比数列{a n }中,a 3=7,前3项之和S 3=21, 则公比q 的值为 ( )A .1B .-21 C .1或-1 D .-1或214.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )A .4B .23 C .916 D .25.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为 ( )A .x 2-6x +25=0B .x 2+12x +25=0C .x 2+6x -25=0D .x 2-12x +25=06.某工厂去年总产a ,计划今后5年内每一年比上一年增长10%,这5年的最后一年该厂的总产值是 ( )A .1.1 4 aB .1.1 5 aC .1.1 6 aD .(1+1.1 5)a7.等比数列{a n }中,a 9+a 10=a (a ≠0),a 19+a 20=b ,则a 99+a 100等于 ( ) A .89abB .(ab )9C .910abD .(ab )108.已知各项为正的等比数列的前5项之和为3,前15项之和为39,则该数列的前10项之和为( )A .32B .313C .12D .159.某厂2001年12月份产值计划为当年1月份产值的n 倍,则该厂2001年度产值的月平均增长率为 ( ) A .11n B .11n C .112-n D .111-n10.已知等比数列{}n a 中,公比2q =,且30123302a a a a ⋅⋅⋅⋅=,那么36930a a a a ⋅⋅⋅⋅等于 ( )A .102 B .202 C .162 D .15211.等比数列的前n 项和S n =k ·3n +1,则k 的值为 ( )A .全体实数B .-1C .1D .312.某地每年消耗木材约20万3m ,每3m 价240元,为了减少木材消耗,决定按%t 征收木材税,这样每年的木材消耗量减少t 25万3m ,为了既减少木材消耗又保证税金收入每年不少于90万元,则t 的范围是 ( )A .[1,3]B .[2,4]C .[3,5]D .[4,6]一、选择题: BDCAD BACDB BC13.在等比数列{a n }中,已知a 1=23,a 4=12,则q =_____ ____,a n =____ ____.14.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q =___ ___.15.在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比为整数,求a 10= .16.数列{n a }中,31=a 且n a a n n (21=+是正整数),则数列的通项公式=n a .二、填空题:13.2, 3·2n -2. 14.251+.15.512 .16.123-n . 17.已知数列满足a 1=1,a n +1=2a n +1 (n ∈N *).(1)求证数列{a n +1}是等比数列;(2)求{a n }的通项公式. (1)证明由a n +1=2a n +1得a n +1+1=2(a n +1)又a n +1≠0 ∴111+++n n a a =2即{a n +1}为等比数列.(2)解析: 由(1)知a n +1=(a 1+1)q n-1即a n =(a 1+1)q n -1-1=2·2n -1-1=2n -118.在等比数列{a n }中,已知对n ∈N *,a 1+a 2+…+a n =2n -1,求a 12+a 22+…+a n 2.解析: 由a 1+a 2+…+a n =2n -1 ① n ∈N *,知a 1=1且a 1+a 2+…+a n -1=2n -1-1 ②由①-②得a n =2n -1,n ≥2 又a 1=1,∴a n =2n -1,n ∈N *212221)2()2(-+=n n nn a a =4 即{a n 2}为公比为4的等比数列 ∴a 12+a 22+…+a n 2=)14(3141)41(21-=--nn a 19.在等比数列{a n }中,已知S n =48,S 2n =60,求S 3n .解析一: ∵S 2n ≠2S n ,∴q ≠1 根据已知条件121(1)481(1)601n na q qa q q ⎧-=⎪-⎪⎨-=⎪⎪-⎩①②②÷①得:1+q n =45即q n =41 ③ ③代入①得q a -11=64 ④解析二:∵{a n}为等比数列∴(S2n-S n)2=S n(S3n-S2n)20.求和:S n=1+3x+5x2+7x3+…+(2n-1)x n-1 (x≠0).解析:当x=1时,S n=1+3+5+…+(2n-1)=n2当x≠1时,∵S n=1+3x+5x2+7x3+…+(2n-1)x n-1,①等式两边同乘以x得:xS n=x+3x2+5x3+7x4+…+(2n-1)x n.②21.在等比数列{a n}中,a1+a n=66,a2·a n-1=128,且前n项和S n=126,求n及公比q.解析:∵a1a n=a2a n-1=128,又a1+a n=66,∴a1、a n是方程x2-66x+128=0的两根,解方程得x1=2,x2=64,∴a1=2,a n=64或a1=64,a n=2,显然q≠1.22.某城市1990年底人口为50万,人均住房面积为16 m2,如果该市每年人口平均增长率为1%,每年平均新增住房面积为30万m2,求2000年底该市人均住房的面积数.(已知1.015≈1.05,精确到0.01 m2)解析:依题意,每年年底的人口数组成一个等比数列{a n}:a1=50,q=1+1%=1.01,n=11 则a11=50×1.0110=50×(1.015)2≈55.125(万),又每年年底的住房面积数组成一个等差数列{b n}:b1=16×50=800,d=30,n=11∴b11=800+10×30=1100(万米2)因此2000年底人均住房面积为:1100÷55.125≈19.95(m2)。
高中同步测试卷(五)单元检测 数列的概念及表示方法和等差数列(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是( )A .1 B.12 C.34 D.582.在数列-1,0,19,18,…,n -2n2,…中,0.08是它的( )A .第100项B .第12项C .第10项D .第8项3.已知等差数列{a n }中各项都不相等,a 1=2,且a 4+a 8=a 23,则d =( ) A .0 B.12 C .2 D .0或124.已知等差数列{a n }的前n 项和为S n ,若2a 6=a 8+6,则S 7=( )A .49B .42C .35D .285.在等差数列{a n }中,若a 1,a 2017为方程x 2-10x +16=0的两根,则a 2+a 1 009+a 2 016=( )A .10B .15C .20D .406.把70个面包分五份给5个人,使每人所得的面包个数成等差数列,且使较大的三份之和的16是较小的两份之和,则最小的一份面包的个数为( )A .2B .8C .14D .207.由1,3,5,…,2n -1,…构成数列{a n },数列{b n }满足b 1=2,当n ≥2时,b n =ab n -1,则b 6的值是( )A .9B .17C .33D .658.已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 是( )A .18B .19C .20D .219.设函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3(x ≤7),a x -6(x >7),数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是( )A.⎝⎛⎭⎫94,3B.⎣⎡⎭⎫94,3 C .(1,3) D .(2,3) 10.已知数列{a n }的通项公式是a n =n 2+kn +2,若对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是( )A .(0,+∞)B .(-1,+∞)C .(-2,+∞)D .(-3,+∞)11.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.10110012.已知数列{a n }满足a 1=1,且对任意的m ,n ∈N *都有a m +n =-a n +a m +m ,则1a 1+1a 2+1a 3+…+1a 2 017=( ) A .2 017 B.12 017 C .-2 017 D .-12 017二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.在数列1,1,2,3,5,8,x ,21,34,55中,x =________.14.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=________. 15.已知等差数列的前三项依次是m ,6m ,m +10,则这个等差数列的第10项是________. 16.等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)数列{a n }满足a 1=1,a n +1+2a n a n +1-a n =0. (1)写出数列的前5项;(2)由(1)写出数列{a n }的一个通项公式;(3)实数199是否为这个数列中的一项?若是,应为第几项?18.(本小题满分12分)已知数列{a n }是等差数列,c n =a 2n -a 2n +1(n ∈N *).(1)判断数列{c n }是否为等差数列,并说明理由;(2)如果a 1+a 3+…+a 25=130,a 2+a 4+…+a 26=117,试求数列{a n }的公差d 及通项公式.19.(本小题满分12分)已知数列{a n }满足a 1=2,a n +1=2a na n +2. (1)数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由;(2)求数列{a n }的通项公式;(3)若数列{b n }的前n 项和S n =8a 2n-n +1,求数列{b n }的通项公式.20.(本小题满分12分)设等差数列的前n 项和为S n .已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由.21.(本小题满分12分)已知数列{a n }中,a 1=1,a 2=2,以后各项由a n =a n -1+a n -2(n ≥3)给出.(1)写出此数列的前5项;(2)通过公式b n =a na n +1构造一个新的数列{b n },写出数列{b n }的前4项.22.(本小题满分12分)已知数列{a n }满足a 1=a ,a n +1=1+1a n,我们知道当a 取不同的值时,得到不同的数列,如当a =1时,得到无穷数列:1,2,32,53,…;当a =-12时,得到有穷数列:-12,-1,0.(1)当a 为何值时,a 4=0?(2)设数列{b n }满足b 1=-1,b n +1=1b n -1,求证:a 取数列{b n }中的任一个数,都可以得到一个有穷数列{a n }.参考答案与解析1.【解析】选B.因为a 1=1,a n +1=12a n +12n ,所以a 2=12a 1+12=1,a 3=12a 2+14=34,a 4=12a 3+18=12. 2.【解析】选C.因为a n =n -2n 2,令n -2n 2=0.08,解得n =10或n =52(舍去).3.【解析】选B.由已知得a 1+3d +a 1+7d =(a 1+2d )2,即2a 1+10d =a 21+4a 1d +4d 2.又a 1=2,所以4d 2-2d =0,所以2d (2d -1)=0,所以d =0或d =12.又因为{a n }中各项都不相等,所以d =12.4.【解析】选B.因为数列{a n }是等差数列, 所以2a 6=a 4+a 8=a 8+6,所以a 4=6,所以S 7=7(a 1+a 7)2=7×2a 42=7×a 4=7×6=42.5. 【解析】选B.由题意知a 1+a 2 017=a 2+a 2 016=2a 1 009=10,解得a 1 009=5,所以a 2+a 1 009+a 2 016=3a 1 009=15,故选B.6.【解析】选A.设等差数列为{a n },首项为a 1,公差为d >0,则有⎩⎨⎧16(a 3+a 4+a 5)=a 1+a 2,5a 1+5×42×d =70,解得⎩⎪⎨⎪⎧a 1=2,d =6.7.【解析】选C.因为a n =2n -1,b 1=2,b n =ab n -1=2b n -1-1,所以b 2=2b 1-1=3,b 3=2b 2-1=5,b 4=2b 3-1=9,b 5=2b 4-1=17,b 6=2b 5-1=33.8.【解析】选C.由a 1+a 3+a 5=105,a 2+a 4+a 6=99,两式相减得3d =-6,即d =-2.又a 1+a 3+a 5=105,所以a 1=39,所以S n =39n -n (n -1)=-(n -20)2+400,所以当n =20时,S n 有最大值400,故选C.9.【解析】选D.因为数列{a n }是递增数列, 又a n =f (n )(n ∈N *),所以⎩⎪⎨⎪⎧3-a >0,a >1,f (8)>f (7)⇒2<a <3.10.【解析】选D.由a n +1>a n , 得(n +1)2+k (n +1)+2>n 2+kn +2, 所以k >-(2n +1).因为当n =1时,-(2n +1)取得最大值-3, 只要k >-3,则都有a n +1>a n .11. 【解析】选A.由a 5=5,S 5=15,得a 1=1,d =1,所以a n =1+(n -1)=n ,所以1a n a n +1=1n (n +1)=1n -1n +1, 1a 1a 2+…+1a 100a 101=1-12+12-13+…+1100-1101=1-1101=100101. 12.【解析】选A.令m =1,得a n +1=-a n +a 1+1,即a n +1=-a n +1+1,于是a n +1=2-a n ,因此a 2=2-a 1=1,a 3=2-a 2=1,a 4=2-a 3=1,…,即a n =1,所以1a 1+1a 2+1a 3+…+1a 2 017=2 017,故选A. 13.【解析】因为数列从第三项开始每一项都等于它前面两项的和. 所以x =5+8=13. 【答案】1314. 【解析】由a 1=0,a n +1=a n -33a n +1(n ∈N *)知:a 2=a 1-33a 1+1=-3,a 3=a 2-33a 2+1=3,a 4=a 3-33a 3+1=0,…,每3项一循环,故a 20=a 6×3+2=a 2=- 3. 【答案】- 315.【解析】由已知得12m =2m +10,所以m =1, 故a 1=1,a 2=6,a 3=11, 所以d =5,所以a n =a 1+(n -1)d =1+5(n -1)=5n -4, 所以a 10=5×10-4=46. 【答案】4616.【解析】log 2(2 a 1·2 a 2·…·2 a 10)=log 22a 1+a 2+…+a 10=a 1+a 2+…+a 10=10(a 1+a 10)2=10×(a 5+a 6)2=10×42=20.【答案】2017. 【解】(1)由已知可得a 1=1,a 2=13,a 3=15,a 4=17,a 5=19.(2)由(1)可得数列的每一项的分子均为1,分母分别为1,3,5,7,9,…,所以它的一个通项公式为a n =12n -1.(3)令199=12n -1, 解得n =50,故199是这个数列的第50项.18.【解】(1)设数列{a n }的公差为d ,则c n +1-c n =(a 2n +1-a 2n +2)-(a 2n -a 2n +1) =2a 2n +1-(a n +1-d )2-(a n +1+d )2=-2d 2,所以数列{c n }是以-2d 2为公差的等差数列.(2)因为a 1+a 3+…+a 25=130,a 2+a 4+…+a 26=117, 两式相减得13d =-13,所以d =-1, 因为a 1+a 3+…+a 25=130,所以13a 13=130, 所以a 13=10=a 1+12d =a 1-12, 所以a 1=22,所以a n =22+(n -1)×(-1)=23-n .19.【解】(1)数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:因为a 1=2,a n +1=2a n a n +2,所以1a n +1=a n +22a n =12+1a n ,所以1a n +1-1a n =12,即⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=12,公差为d =12的等差数列.(2)由(1)知1a n =1a 1+(n -1)d =12+n -12=n2,所以数列{a n }的通项公式为a n =2n .(3)因为a n =2n,所以S n =8a 2n -n +1=8⎝⎛⎭⎫n 22-n +1=2n 2-n +1.当n =1时,b 1=S 1=2×12-1+1=2;当n ≥2时,b n =S n -S n -1=2n 2-n +1-[2(n -1)2-(n -1)+1]=4n -3,所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧2,n =14n -3,n ≥2.20.【解】(1)依题意⎩⎨⎧S12=12a 1+12×112d >0,S13=13a 1+13×122d <0,即⎩⎪⎨⎪⎧2a 1+11d >0,①a 1+6d <0.② 由a 3=12,得a 1+2d =12.③把③分别代入①②,得⎩⎪⎨⎪⎧24+7d >0,3+d <0,解得-247<d <-3,即公差d 的取值范围是⎝⎛⎭⎫-247,-3. (2)法一:由d <0可知{a n }是递减数列, 因此若在1≤n ≤12中,使a n >0且a n +1<0,则S n 最大. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0, 可得a 6>-a 7>0,a 7<0,故在S 1,S 2,…,S 12中S 6的值最大. 法二:S n =na 1+n (n -1)2d=n (12-2d )+n (n -1)2d=d 2⎣⎡⎦⎤n -12⎝⎛⎭⎫5-24d 2- d 2⎣⎡⎦⎤12⎝⎛⎭⎫5-24d 2,因为d <0, 所以⎣⎡⎦⎤n -12⎝⎛⎭⎫5-24d 2最小时,S n 最大. 因为-247<d <-3,6<12⎝⎛⎭⎫5-24d <132, 所以当n =6时,⎣⎡⎦⎤n -12⎝⎛⎭⎫5-24d 2最小,S 6最大. 21.【解】(1)因为a n =a n -1+a n -2(n ≥3), 且a 1=1,a 2=2, 所以a 3=a 2+a 1=3, a 4=a 3+a 2=3+2=5, a 5=a 4+a 3=5+3=8. 故数列{a n }的前5项依次为a 1=1,a 2=2,a 3=3,a 4=5,a 5=8.(2)因为b n =a na n +1,且a 1=1,a 2=2,a 3=3,a 4=5,a 5=8,所以b 1=a 1a 2=12,b 2=a 2a 3=23,b 3=a 3a 4=35,b 4=a 4a 5=58.故b 1=12,b 2=23,b 3=35,b 4=58.22.【解】(1)法一:因为a 1=a ,a n +1=1+1a n,所以a 2=1+1a 1=1+1a =a +1a ,a 3=1+1a 2=2a +1a +1,a 4=1+1a 3=3a +22a +1.故当a =-23时,a 4=0.法二:因为a 4=0,所以1+1a 3=0,得a 3=-1.因为a 3=1+1a 2,所以a 2=-12.因为a 2=1+1a ,所以a =-23.故当a =-23时,a 4=0.(2)证明:因为b 1=-1,b n +1=1b n -1, 所以b n =1b n +1+1.a 取数列{b n }中的任一个数,不妨设a =b n . 因为a 1=a =b n ,所以a 2=1+1a 1=1+1b n =b n -1,所以a 3=1+1a 2=1+1b n -1=b n -2,…,所以a n =1+1a n -1=1+1b 2=b 1=-1.所以a n +1=0.故a 取数列{b n }中的任一个数,都可以得到一个有穷数列{a n }.。
一、选择题1.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N *-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .172.设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若11n n S n T n -=+.则55a b =( ) A .23B .45C .32D .543.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .64.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞5.设数列{}n a 满足12a =,26a =,且()*2122n n n a a a n N ++-+=∈,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122018232019a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=( )A .2018B .2019C .2020D .20216.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .87.已知等差数列{}n a 的前n 和为n S ,若1239a a a ++=,636S =,则12(a = ) A .23B .24C .25D .268.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( )A .11n + B .1n n + C .1n n- D .11n n -+ 9.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .410.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .202211.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .912.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-二、填空题13.设S n 是数列{}n a 的前n 项和,且*1111,20,3n n n a a S S n N ++=+=∈,则1223910S S S S S S ++⋅⋅⋅⋅⋅+=___________.14.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记*1,n n n P AP n N θ+∠=∈.若32arctan 9θ=,则点A 的坐标为________.15.设数列{}n a 的前n 项和为n S ,若1sin 12n n a n π+⎛⎫=+ ⎪⎝⎭,则2018S =______. 16.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 17.已知数列{}n a 的前n 项和是n S ,若111,n n a a a n +=+=,则1916S S -的值为________. 18.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数). 从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______. 19.等差数列{}n a 的前n 项和为n S ,且4873a a a +-=_________. 20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________. 三、解答题21.设数列{}n a 满足()121*4n n a n N a +=-∈-,其中11a =. (1)证明:112n a ⎧⎫-⎨⎬-⎩⎭是等比数列; (2)令32n n n a b a -=-,设数列(){}21-⋅n n b 的前n 项和为n S ,求使2021n S <成立的最大自然数n 的值.22.设数列{}n a ,{}n b 是公比不相等的两个等比数列,数列{}n c 满足*,n n n c a b n =+∈N .(1)若2,3nnn n a b ==,是否存在常数k ,使得数列{}1n n c kc +-为等比数列?若存在,求k 的值;若不存在,说明理由;(2)证明:{}n c 不是等比数列.23.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .24.已知递增等比数列{}n a 满足:12a =,416a = . (1)求数列{}n a 的通项公式;(2)若数列{}n b 为等差数列,且满足221b a =-,3358b a =,求数列{}n b 的通项公式及前10项的和;25.设数列{}n a 的前n 项和为n S ,______.从①数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列;②22n n S a =-;③122n n S +=-.这三个条件中任选一个,补充在下面问题中,并作答.(1)求数列{}n a 的通项公式; (2)若21log nn na b a +=,求数列{}n b 的前n 项和n T .26.已知数列{}n a 的前n 项和为21n S n n =++.(1)求这个数列的通项公式; (2)设()11n n n b n a a *+=∈N ,证明:对n *∀∈N ,数列{}n b 的前n 项和524n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.2.B解析:B 【分析】本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.3.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.4.D解析:D【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.5.B解析:B 【分析】由2122n n n a a a ++-+=,可得()2112n n n n a a a a +++---=,214a a -=.利用等差数列的通项公式、累加求和方法、取整函数即可得出. 【详解】2122n n n a a a ++-+=,()2112n n n n a a a a +++∴---=,214a a -=.{}1n n a a +∴-是等差数列,首项为4,公差为2. 142(1)22n n a a n n +∴-=+-=+.2n ∴≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋯⋯+-+(1)22(1)..2222(1)2n n n n n n +=+-+⋯+⨯+=⨯=+. 2(1)1n n n a n++∴=.∴当2n ≥时,2(1)11⎡⎤++⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦n n n a n . 222122018232019220172019a a a ⎡⎤⎡⎤⎡⎤∴+++=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 故选:B . 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法、取整函数,考查了推理能力与计算能力,属于中档题.6.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案. 【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1) 即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列. 所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nnS n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.7.A解析:A 【解析】等差数列{}n a 的前n 和为n S ,1239a a a ++=,636S =,11339656362a d a d +=⎧⎪∴⎨⨯+=⎪⎩,解得1a 1,d 2,12111223a =+⨯=,故选A.8.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k =; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.9.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.10.D解析:D 【分析】根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.11.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论. 【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=, 由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=.故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.12.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.二、填空题13.【分析】由代入化简求得再结合求和方法计算可得结果【详解】因为所以所以所以又所以数列是以为首项为公差的等差数列所以所以所以所以故答案为:【点晴】由代入化简求得数列是等差数列是解题的关键解析:17【分析】由11n n n a S S ++=-代入化简求得n S ,再结合求和方法计算可得结果. 【详解】因为1120n n n a S S +++= 所以1120n n n n S S S S ++-+= 所以112n n n n S S S S ++-= 所以1112n nS S +-=又11113S a == 所以数列1n S ⎧⎫⎨⎬⎩⎭是以3为首项,2为公差的等差数列, 所以()131221nn n S =+-⨯=+ 所以121n S n =+ 所以111111212322123n n S S n n n n +⎛⎫=⋅=- ⎪++++⎝⎭所以12239101111111111123557192123217S S S S S S ⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭ 故答案为:17【点晴】由11n n n a S S ++=-代入化简求得数列1n S ⎧⎫⎨⎬⎩⎭是等差数列是解题的关键. 14.或【分析】设点的坐标利用两角差正切公式求列式解得结果【详解】设因为所以或故答案为:或【点睛】本题考查两角差正切公式等比数列考查综合分析求解能力属中档题解析:(0,2)或(0,16) 【分析】设点A 的坐标,利用两角差正切公式求3tan θ,列式解得结果. 【详解】设(0,),0A a a >,因为233443343,124,128P AP AP OAP O x x θ=-=⨯==⨯=∠∠=∠所以238442284t 21an 39a a a a a a aθ-===∴=++⋅或16 故答案为:(0,2)或(0,16)【点睛】本题考查两角差正切公式、等比数列,考查综合分析求解能力,属中档题.15.【分析】分别计算出进而得出再由可得出的值【详解】由题意可得故答案为:【点睛】本题考查数列求和找出数列的规律是解答的关键考查计算能力属于中等题 解析:1008【分析】分别计算出43k a -、42k a -、41k a -、()4k a k N *∈,进而得出43424146k k k k a a a a ---+++=,再由201845042=⨯+可得出2018S 的值.【详解】由题意可得()434243sin 112k k a k π--⎛⎫=-+= ⎪⎝⎭,()424142sin 1342k k a k k π--⎛⎫=-+=- ⎪⎝⎭,()()4141sin 211k a k k π-=-+=,4414sin 1412k k a k k π+⎛⎫=+=+ ⎪⎝⎭,()()43424141341416k k k k a a a a k k ---∴+++=+-+++=,201845042=⨯+,201820172018450534505265046504S a a a a ⨯-⨯-∴=⨯++=⨯++()30241345051008=++-⨯=.故答案为:1008. 【点睛】本题考查数列求和,找出数列的规律是解答的关键,考查计算能力,属于中等题.16.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.17.27【分析】由得相减后得数列的奇数项与偶数项分别成等差数列由此可得通项从而求得结论【详解】∵∴相减得又所以数列的奇数项与偶数项分别成等差数列公差为1故答案为:27【点睛】易错点睛:本题考查等差数列的解析:27 【分析】由1n n a a n ++=得121n n a a n +++=+相减后得数列的奇数项与偶数项分别成等差数列,由此可得通项,从而求得结论. 【详解】∵1n n a a n ++=,∴121n n a a n +++=+,相减得21n na a +-=,又1121,1a a a =+=,20a =,211a a -=-,所以数列{}n a 的奇数项与偶数项分别成等差数列,公差为1,21n a n -=,21n a n =-,1916171819981027S S a a a -=++=++=.故答案为:27. 【点睛】易错点睛:本题考查等差数列的通项公式,解题时由已知等式中n 改写为1n +,两相减后得21n n a a +-=,这里再计算21a a -,如果2211()22n na a a a +--==,则可说明{}n a 是等差数列,象本题只能说明奇数项与偶数项分别成等差数列.不能混淆,误以为{}n a 是等差数列.这是易错的地方.18.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.19.【分析】首先设出等差数列的首项和公差根据其通项公式得到再根据其求和公式得到从而得到结果【详解】设等差数列的首项为公差为则有因为所以故答案为:【点睛】思路点睛:该题考查的是有关等差数列的问题解题思路如 解析:13313S 【分析】首先设出等差数列的首项和公差,根据其通项公式,得到487733a a a a +-=,再根据其求和公式,得到13713S a =,从而得到结果. 【详解】设等差数列的首项为1a ,公差为d ,则有48711117333(7)(6)318=3a a a a d a d a d a d a +-=+++-+=+, 因为11313713()132a a S a +==,所以487133313a a a S +-=, 故答案为:13313S . 【点睛】思路点睛:该题考查的是有关等差数列的问题,解题思路如下:(1)首先设出等差数列的首项和公差;(2)利用等差数列的通项公式,得到项之间的关系,整理得出487733a a a a +-=; (3)利用等差数列的求和公式,求得13713S a =; (4)比较式子,求得结果.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)证明见解析;(2)最大自然数6n =. 【分析】(1)根据题中条件,可得1112n a +--的表达式,根据等比数列的定义,即可得证;(2)由(1)可得1122n n a -=-,则可得2n n b =,根据错位相减求和法,可求得n S 的表达式,根据n S 的单调性,代入数值,分析即可得答案. 【详解】解:(1)∵()1621*44n n n n a a n N a a +-=-=∈--, ∴()()1116323346312311122162262822224n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a +++----⎛⎫----+--======- ⎪-----+----⎝⎭--即11122112n n a a +--=--, ∴112n a ⎧⎫-⎨⎬-⎩⎭是首项为113132212a a --==--,公比为2的等比数列. (2)由(1)知,1122n n a -=-, 即321112222n n n n n n n a a b a a a ---==-==---, ∴()()21212-⋅=-⋅nn n b n ,()123123252212n n S n =⋅+⋅+⋅++-⋅,① ()23412123252212n n S n +=⋅+⋅+⋅++-⋅,②①减②得()()()112311421222222122221212n nn n n S n n +++--=⋅++++--⋅=+⋅--⋅-()13226n n +=-⋅-.∴()12326n n S n +=-⋅+.∴()()()21112122322210++++-=-⋅--⋅=+>n n n n n S S n n n ,∴n S .单调递增.∵7692611582021S =⨯+=<,87112628222021S =⨯+=>.故使2021n S <成立的最大自然数6n =. 【点睛】解题的关键是根据所给形式,进行配凑和整理,根据等比数列定义,即可得证,求和常用的方法有:①公式法,②倒序相加法,③裂项相消法,④错位相减法等,需熟练掌握. 22.(1)存在,2k =或3k =;(2)证明见解析. 【分析】(1)若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23nnn c =+代入上式,整理得1(2)(3)2306n n k k --⋅⋅=化简即可得出答案;(2)证{}n c 不是等比数列只需证2213c c c ≠⋅,验证其不成立即可.【详解】解:(1)由题意知,若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N , 将23nnn c =+代入上式,得()()()211221111232323232323n n n n n n n n n n n n k k k ++++++--⎡⎤⎡⎤⎡⎤+-+=+-+⋅+-+⎣⎦⎣⎦⎣⎦, 即21111(2)2(3)3(2)2(3)3(2)2(3)3n n n n n n k k k k k k ++--⎡⎤⎡⎤⎡⎤-+-=-+-⋅-+-⎣⎦⎣⎦⎣⎦,整理得1(2)(3)2306n nk k --⋅⋅=,解得2k =或3k =.(2)设数列{}n a ,{}n b 的公比分别为,,p q p q ≠且,0p q ≠,11,0a b ≠, 则1111n n n c a pb q --=+,为证{}n c 不是等比数列,只需证2213c c c ≠⋅, 事实上()22222221111112c a p b q a p a b pq b q =+=++,()()()222222221311111111c c a b a p b q a p a b p q b q ⋅=+⋅+=+++,由于p q ≠,故222p q pq +>,又11,0a b ≠,从而2213c c c ≠⋅,所以{}n c 不是等比数列. 【点睛】方法点睛:等差、等比数列的证明经常利用定义法和等比中项法,通项公式法和前n 项和公式法经常在选择题、填空题中用来判断数列是否为等差、等比数列不能用来证明.23.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n n a an n+=+,得到{}n b 为等比数列,(2)由(1)得到{}n a 的通项公式,用错位相减法求得n S 【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅,12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.24.(1)2nn a =;(2)21n b n =-,数列{}n b 前10项的和10100S =.【分析】(1)利用等比数列的通项公式,结合已知12a =,416a =,可以求出公比,这样就可以求出数列{}n a 的通项公式;(2)由数列{}n a 的通项公式,可以求出21a -和 358a 的值,这样也就求出2b 和 3b 的值,这样可以求出等差数列{}n b 的公差,进而可以求出通项公式,利用前n 项和公式求出数列{}n b 前10项的和.【详解】(1)设等比数列的公比为q ,由已知12a =,34121616q a a q =⇒⋅=⇒=,所以112n n n a q a -=⋅=,即数列{}n a 的通项公式为2n n a =;(2)由(1)知2nn a =,所以2221213b a =-=-=,333552588b a ==⨯=, 设等差数列{}n b 的公差为d ,则322d b b -==,12121n d b b n b =-=∴=-, 设数列{}n b 前10项的和为10S ,则11010910910101210022S d b ⨯⨯=+⋅=⨯+⨯=, 所以数列{}n b 的通项公式21n b n =-,数列{}n b 前10项的和10100S =. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.25.(1)条件性选择见解析,2n n a =;(2)332n nn T +=-. 【分析】(1)选①:由题意可得32442a a a =+-,再利用等比数列的公比为2可求1a ,进而可求数列{}n a 的通项公式;选②:22n n S a =-,令1n =可求1a ,当2n ≥时,可得1122n n S a --=-,与已知条件两式相减可求得()122n n a a n -=≥,进而可求数列{}n a 的通项公式;选③:122n n S +=-,当1n =时,112S a ==,当2n ≥时,122n n S -=-,与已知条件两式相减可求得2nn a =,检验12a =也满足,进而可求数列{}n a 的通项公式;(2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===,利用乘公比错位相减即可求和. 【详解】(1)选①:因为2a ,3a ,44a -成等差数列, 所以32442a a a =+-,又因为数列{}n a 的公比为2,所以2311122242a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =, 所以1222n n n a -=⨯=.选②:因为22n n S a =-,当1n =时,1122S a =-,解得12a =. 当2n ≥时,1122n n S a --=-,所以()()111222222n n n n n n n a S S a a a a ---=-=---=-. 即()122n n a a n -=≥.所以数列{}n a 是首项为2,公比为2的等比数列. 故1222n n n a -=⨯=.选③:因为122n n S +=-,所以当1n =时,112S a ==,当2n ≥时,122nn S -=-,所以()()1122222n n nn n n a S S +-=-=---=,当1n =时,1122a ==依然成立.所以2nn a =. (2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===, 所以2323412222n n n T +=++++, ① 231123122222n n n n n T ++=++++, ② ①-②得23111111122222n n n n T ++⎛⎫=++++- ⎪⎝⎭ 212111111111111121222211111222221122n n n n n n n n n -+++++⎛⎫-- ⎪+++⎝⎭=+-=+-=+---- 13322n n ++=-. 所以332n nn T +=-. 所以数列{}n b 的前n 项和332n n n T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 26.(1)*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩;(2)证明见解析. 【分析】(1)利用*1,(1),(2,)n n nn S n a S S n n N -=⎧=⎨-≥∈⎩求解即可;(2)利用n a 求n b ,当1n =时,1151224b =≤显然成立,当2n ≥时,利用列项相消法求和判断即可. 【详解】解:(1)当1n =时,111113a S ==++=;当2n ≥时,1n n n a S S -=-22(1)[(1)(1)1]n n n n =++--+-+2n =,所以*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩; (2)由(1)易知*1,(1)121(2,),4(1)n n b n n N n n ⎧⎪=⎪=⎨≥∈⎪+⎪⎩ 当1n =时,1151224b =≤显然成立. 当2n ≥时,1111()4(1)41n b n n n n ==-++, 123n n T b b b b =+++ 11111111[()()()]12423341n n =+-+-++-+ 1111()12421n =+-+ 515244(1)24n =-<+; 故结论成立.【点睛】关键点睛:本题考查数列求通项公式,利用数列求和证明不等式.利用列项相消法求和是解决本题的关键.。
课时作业(九)1.已知等差数列{a n}的通项公式a n=3-2n,则它的公差为()A.2 B.3C.-2 D.-3答案 C解析可得a n+1-a n=-2或a2-a1=(3-4)-(3-2)=-2.2.已知数列{a n}满足a1=2,a n+1-a n+1=0,则数列的通项a n等于() A.n2+1 B.n+1C.1-n D.3-n答案 D3.等差数列-3,-1,1,…,的第1 000项为()A.1 990 B.1 995C.2 010 D.2 015答案 B4.等差数列1,-1,-3,-5,…,-89,它的项数为()A.92 B.47C.46 D.45答案 C5.等差数列20,17,14,11,…中第一个负数项是()A.第7项B.第8项C.第9项D.第10项答案 B6.{a n}是首项a1=1,公差d=3的等差数列,若a n=2 011,则n等于()A.671 B.670C .669D .668答案 A7.lg(3-2)与lg(3+2)的等差中项为( ) A .0B .lg 3-23+2C .lg(5-26)D .1答案 A解析 等差中项为lg (3-2)+lg (3+2)2 =lg[(3-2)(3+2)]2=lg12=0. 8.一个首项为23,公差为整数的等差数列,第7项开始的负数,则它的公差是( )A .-2B .-3C .-4D .-6答案 C9.若a ≠b ,两个等差数列a ,x 1,x 2,b 与a ,y 1,y 2,y 3,b 的公差分别为d 1,d 2,则d 1d 2=( )A.32B.23C.43D.34答案 C解析 ∵d 1=b -a 4-1,d 2=b -a 5-1,∴d 1d 2=43.10.首项为-24的等差数列,从第10项起为正数,则公差d 的取值范围是( )A .d >83B .d <3 C.83≤d <3 D.83<d ≤3答案 D解析 从第10项起为正数,则a 10>0且,a 9≤0,由⎩⎨⎧-24+9d >0,-24+8d ≤0,可得83<d ≤3.11.等差数列2,5,8,…,107共有________项.答案 3612.{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =________. 答案 -12解析 法一 由于a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1,则a 1=1,又由于a 3=a 1+2d =1+2d =0,解得d =-12.法二 a 7=a 3+4d =4d ,a 4=a 3+d =d ,代入条件即可得d . 13.首项为18,公差为3的等差数列从第________项开始大于100. 答案 2914.已知一个等差数列的第8,第9,第10项分别为b -1,b +1,2b +3,则通项公式an =________.答案 2n -17解析 由(b -1)+(2b +3)=2(b +1),可得b =0. ∴a 8=-1,a 9=1,a 10=3.∴d =2,a 1=-15,∴an =2n -17.15.已知f (n +1)=f (n )-14(n ∈N*),且f (2)=2,则f (101)=____________. 答案 -914解析 ∵{f (n )}为等差数列,公差为-14, ∴f (1)=f (2)-(-14)=2+14=94.∴f (101)=f (1)+100·d =94+100×(-14)=-914. 16.已知等差数列5,2,-1,…. (1)求数列的第20项; (2)问-112是它的第几项? (3)数列从第几项开始小于-20? (4)在-20到-40之间有多少项?答案 (1)-52 (2)第40项 (3)从第10项开始 (4)6项17.有一个阶梯教室,共有座位25排,第一排离教室地面高度为17 cm ,前16排前后两排高度差8 cm ,从17排起,前后两排高度差是10 cm(含16,17排之间高度差).求最后一排离教室地面的高度.解析 设从第一排起,各排的高度组成数列{a n },则a 1=17,∴a 16=a 1+15d 1=17+15×8=137.∴a 25=a 16+10·d 2=137+10×10=237(cm). ►重点班·选作题18.一个等差数列{a n }中,a 1=1,末项a n =100(n ≥3),若公差为正整数,则项n 的取值有________种可能.答案 519.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,求n 的值. 答案 501.(2011·重庆)在等差数列{a n }中,a 2=2,a 3=4,则a 10等于( ) A .12 B .14 C .16 D .18答案 D解析 设{a n }的公差为d ,∵a 2=2,a 3=4,∴d =a 3-a 2=2. ∴a 10=a 2+(10-2)d =2+8×2=18.2.已知数列{an }为等差数列,且a 5=11,a 8=5,求an . 解析 设公差为d ,则由a 5=11,a 8=5,得⎩⎨⎧a 1+4d =11,a 1+7d =5,解得⎩⎨⎧a 1=19,d =-2.∴an =19+(n -1)(-2),即an =-2n +21.3.甲虫是行动较快的昆虫之一,下表记录了某种类型的甲虫的爬行速度:时间t (s)123... ? (60)距离s (cm) 9.8 19.6 29.4 … 49 … ?(1)关系吗?(2)利用建立的模型计算,甲虫1 min 能爬多远?它爬行49 cm 需要多长时间?解析 (1)由题目表中数据可知,该数列从第2项起,每一项与前一项的差都是常数9.8,所以是一个等差数列模型.因为a 1=9.8,d =9.8,所以甲虫的爬行距离s 与时间t 的关系是s =9.8t .(2)当t =1(min)=60(s)时, s =9.8t =9.8×60=558(cm). s =49(cm)时,t =s 9.8=494.8=5 (s).。
黄冈经典例题高考题(附答案,解析)等差数列例 1、在等差数列{a n}中:1、若a1-a4-a8-a12+a15=2,则a3+a13=___________.2、若a6=5,a3+a8=5,则a10=___________.3、若a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9=___________.例 2、已知数列{a n}的通项,试问该数列{a n}有没有最大项?若有,求最大项和最大项的项数,若没有,说明理由.例 3、将正奇数1,3,5,7,……排成五列,(如下图表),按图表的格式排下去,2003所在的那列,从左边数起是第几列?第几行?1 3 5 715 13 11 917 19 21 2331 29 27 25…………例 4、设f(x)=log2x-log x4(0<x<1).又知数列{a n}的通项an满足.(1)求数列{a n}的通项公式;(2)判断该数列{a n}的单调性.1.(2009年安徽卷)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.-1B.1C.3D.72.(2009年湖北卷)古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图(1)中的1,3,6,10,……,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,……这样的数为正方形数,下列数中既是三角形数又是正方形数的是()A.289 B.1024 C.1225 D.13783.(江西卷)在数列{a n}中,,则a n=( )A.2+lnnB.2+(n-1)lnnC.2+nlnnD.1+n+lnn等差数列前N项和、等比数列例 1 、在等差数列 {a n}中,(1)已知a15=33,a45=153,求a61;(2)已知S8=48,S12=168,求S4;(3)已知a1-a4-a8-a12+a15=2,求S15;(4)已知S7=42,S n=510,a n-3=45,求n.例 2 、已知数列 {a n}的前n项和,求数列{|a n|}的前n项和S n′.例 3 、设数列 {a n}的首项a1=1,前n项之和S n满足关系式:3tS n-(2t+3)S n-1=3t(t>0,n=2,3,4…)(1)求证:数列{a n}为等比数列;(2)设数列{a n}的公比为f(t),作数列{b n},使(n=2,3,4,…),求b n.(3)求和:b1b2-b2b3+b3b4-…+(-1)n+1b n b n+1.例 4、一个水池有若干出水量相同的水龙头,如果所有水龙头同时放水,那么 24分钟可注满水池,如果开始时,全部放开,以后每隔相等的时间关闭一个水龙头,到最后一个水龙头关闭时,恰好注满水池,而且最后一个水龙头放水的时间恰好是第一个水龙头放水时间的5倍,问最后关闭的这个水龙头放水多少时间?例 5 、在 XOY平面上有一个点列P1(a1,b1),P2(a2,b2),…,P n(a n,b n),…,对每个自然数n,点P n位于函数y=2000(0<a<10)的图象上,且点P n,点(n,0)与点(n+1,0)构成一个以P n为顶点的等腰三角形. (1)求点P n的纵坐标b n的表达式;(2)若对每个自然数n,以b n,b n+1,b n+2为边长能构成一个三角形,求a的取值范围;(3)设B n=b1·b2·…·b n(n∈N*).若a取(2)中确定的范围内的最小整数,求数列{B n}的最大项的项数.1.(2009年宁夏、海南卷)等差数列{a n}的前n项和为S n,已知,,则m=()A.38B.20C.10D.92.(2009年全国1卷)设等差数列{a n}的前n项和为S n,若S9=72,则=_________.3.(2009年福建卷)等比数列中,已知.(1)求数列的通项公式;(2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和.等比数列前N项和、数列的应用例 1 、 {a n} 为等差数列(d≠0) , {a n} 中的部分项组成的数列恰为等比数列,且 k1=1 ,k2=5 , k3=17 ,求 k1+k2+k3+……+k n的值 .例 2、已知数列 {a n} 满足条件: a1=1 , a2=r(r ﹥ 0) 且 {a n·a n+1} 是公比为 q(q ﹥ 0) 的等比数列,设 b n=a2n a2n(n=1,2, …… ).-1+(1)求出使不等式 a n a n+1+a n+1a n+2> a n+2 a n+3 (n ∈ N*) 成立的 q 的取值范围;(2)求 b n;(3)设,求数列的最大项和最小项的值 .例 3 、某职工年初向银行贷款 2万元用于购房,银行为了推行住房制度改革,贷款优惠的年利率为10%,按复利计算,若这笔贷款要求分10年等额还清,每年一次,并且从贷款后次年年初开始归还,问每年应还多少元?(精确到1元)例 4、在一次人才招聘会上,有 A、B两家公司分别开出它们的工资标准:A公司允诺第一年月工资为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资为2000元,以后每年月工资比上一年的月工资的基础上递增5%.设某人年初被A、B两家公司同时录取,试问:(1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元?(精确到1元)并说明理由.1.(2009年全国2卷)设等比数列{a n}的前n项和为S n,若,则=___________.2.(2009年北京卷)若数列满足:,则___________;前8项的和___________.(用数字作答)3.(2009年辽宁卷)等比数列{a n}的前n 项和为S n,已知,,成等差数列.(1)求{a n}的公比q;(2)若a1-a3=3,求S n.答案&解析等差数列例一分析:利用等差数列任两项之间的关系:am =an+(m-n)d以及“距首末两端等距离两项的和相等”的性质可简化解答过程.解:,故 5=10-d,∴ d=5.故 a10=a6+4d=5+4×5=25.例二分析:考察数列{an}在哪一范围是递增数列,在哪些范围是递减数列,即可找到最大项.解:由有n≤9.而 an >0,∴当n≤9时,有an+1≥an.即 a1<a2<…<a9=a10>a11>a12>…∴数列{an}中存在最大项,最大项的项数为9或10,最大项为.点评:最大项与最大项的项数是不同概念,一个是项,一个是项号.例三分析:考虑到每行占有四个数,利用周期性进行处理,每一个周期占两行用 8个数,只须确定2003是第几个正奇数,问题就得到解决.解:设2003是第n个正奇数.则 2003=1+(n-1)·2.∴ n=1002.而 1002=8×125+2.∴ 2003在第251行第3列.例四分析:的方程,解方程并注意f(x)的定义域0<x<1即可得通项公式.依据条件列出关于an解:(1)又∵ f(x)定义域为0<x<1,(2)}为递增数列.则数列{an1. 答案:B2.答案:C解析:=n2,由此可排除D(1378不是平方数),将A、B、C选项根据图形的规律可知第n个三角形数为,第n个正方形数为bn代入到三角形数表达式中检验可知,符合题意的是C选项,故选C.3.答案:A等差数列前N项和、等比数列例1 解析:(1) a45 -a15=30d=153 -33 得 d=4 , a61=a45+16d=217.(2)方法 1 S4, S8-S4, S12-S8成等差数列,则 S4+(168 -48) =2(48 -S4)解得 S4= -8方法 2 成等差数列,则,∴ d=2.故.则 S4= -8.(3)∵(4) S7=7a4=42 ∴ a4=6∴ n=20例二解析:∴ an=63 -3n≥0 有 n ≤ 21 误解一=误解二例三解析:(1)∵ n≥2 时∴ {an} 为等比数列 .(2)∵则 {bn } 为等差数列,而 b1=1.∴(3)∵. ∴当 n 为偶数时,当 n 为奇数时例四解析:设有 n 个水龙头,每个水龙头放水时间依次为 x1, x2, x3,…, xn,则数列 {xn} 为等差数列且每个水龙头 1 分钟放水池水,故最后关闭的水龙头放水时间为 40 分钟 .例五解析:(1)∵.(2)∵ 0<a<10 ,则 0<.要使 bn , bn+1, bn+2为边能构成三角形,(3)故{B n} 中最大项的项数为n=20.1.答案:C解析:}是等差数列,所以,由,得:2-=0,所以=2,又,因为{an即=38,即(2m-1)×2=38,解得m=10,故选C.2.答案:24解析:}是等差数列,由,得,∵{an.3.解析:(1)设的公比为,由已知得,解得..(2)由(1)得,,则,.设的公差为,则有,解得.从而.所以数列的前项和.等比数列前N项和、数列的应用例一解答:设公比为 q ,例二解答:(1)由题意得 rq n-1+rq n> rq n+1.由题设 r ﹥ 0,q ﹥ 0 ,故上式 q2-q-1﹤0 ,(2)因为,所以,b1=1+r≠0 ,所以 {bn} 是首项为 1+r ,公比为 q 的等比数列,从而 bn=(1+r)q n-1.(3)由(2)知 bn=(1+r)q n-1,从上式可知当 n-20.2 > 0 ,即 n ≥ 21(n ∈ N) 时, cn随 n 的增大而减小,故①当 n-20.2<0 ,即 n ≤ 20(n ∈ N) 时, cn也随着 n 的增大而减小,故②综合①、②两式知对任意的自然数 n 有 c20≤ cn≤ c21故 {cn } 的最大项 c21=2.25 ,最小项 c20=-4.例三解一:我们把这类问题一般化,即贷款年利率为 a ,贷款额为 M ,每年等额归还 x 元,第 n 年还清,各年应付款及利息分别如下:第 n 次付款 x 元,这次欠款全还清 .第 n-1 次付款 x 元后,过一年贷款全部还清,因此所付款连利息之和为 x(1+a) 元;第 n-2 次付款 x 元后,过二年贷款全部还清,因此所付款连利息之和为 x(1+a)2元;……第一次付款 x 元后,一直到最后一次贷款全部还清,所付款连利息之和为 x(1+a)n-1元.将 a=0.1 , M=20000 , n=10 代入上式得故每年年初应还 3255 元.解二:设每年应还 x 元,第 n 次归还 x 元之后还剩欠款为 an元;则 a0=20000 , a1=20000(1+10%)-x ,an+1=an(1+10%)-x ,∴ an+1-10x=1.1(an-10x) ,故数列 { an-10x} 为等比数列.∴ an -10x= (a-10x)×1.1n,依题意有 a10=10x+(20000-10x) ×1.110=0 ..故每年平均应还 3255 元.例四解答:(1)此人在 A 、 B 公司第 n 年的月工资数分别为:an=1500+230 × (n-1)(n ∈ N*) ,bn=2000(1+5%)n-1(n ∈ N*) .(2)若该人在 A 公司连续工作 10 年,则他的工资收入总量为:12(a1+a2+…+a10)=304200 (元);若该人在 B 公司连续工作 10 年,则他的工资收入总量为:12(b1+b2+…+b10) ≈ 301869 (元).因此在 A 公司收入的总量高些,因此该人应该选择 A 公司 .(3)问题等价于求 Cn =an-bn=1270+230n-2000×1.05n-1(n ∈ N*) 的最大值 .当 n ≥ 2 时, Cn -Cn-1=230-100×1.05n-2,当 Cn -Cn-1> 0 ,即 230-100×1.05n-2> 0 时, 1.05n-2<2.3 ,得 n<19.1,因此,当 2 ≤ n ≤ 19 时, Cn-1<Cn;于是当 n ≥ 20 时, Cn≤ Cn-1.∴ C19=a19-b19≈ 827 (元) .即在 A 公司工作比在 B 公司工作的月工资收入最多可以多827 元.1.答案:3解析:设等比数列的公比为q.当q=1时,.当q≠1时,由.2. 答案:16;255解析:依题知数列{a}是首项为1,且公比为2的等比数列,n.3. 解析:(1)依题意有.由于,故.又,从而.(2)由已知可得.故.从而.。
课时作业(五)1.若等差数列{a n }的前3项和S 3=9且a 1=1,则a 2等于( ) A .3 B .4 C .5 D .6答案 A解析 设公差为d ,S 3=3a 1+3×22d =3+3×22d =9,解得d =2,则a 2=a 1+d =3.2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( ) A .1 B.53 C .2 D .3答案 C解析 由⎩⎪⎨⎪⎧3(a 1+4)2=6,a 1+2d =4,解得d =2. 3.已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于( ) A .30 B .45 C .90 D .186答案 C解析 ∵a 2=6,a 5=15, ∴d =a 5-a 25-2=15-63=3.∴a n =a 2+(n -2)d =3n. ∴b n =a 2n =6n.∴{b n }的前5项和为5(b 1+b 5)2=5(6+30)2=90.4.(2015·聊城七校联考)在等差数列{a n }中,a 1+a 4=10,a 2-a 3n 为( ) A .8+n -n 2B .9n -n 2C .5n -n 2D.9n -n 22答案 B解析 ∵a 2-a 3=2,∴公差d =a 3-a 2=-2. 又a 1+a 4=a 1+(a 1+3d)=2a 1-6=10, ∴a 1=8,∴S n =-n 2+9n.5.等差数列{a n }中,a 9=3,那么它的前17项的和S 17=( ) A .51 B .34 C .102 D .不能确定答案 A解析 S 17=17a 9=17×3=51.6.已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A .64 B .100 C .110 D .120答案 C解析 由a 1+a 2=4,a 7+a 8=28,得d =2.所以S 10=10(a 1+a 10)2=10(a 1+a 2+8d )2=10×(4+8×2)2=100,故选B.7.已知等差数列的公差为-57,其中某连续7项的和为0,则这7项中的第1项是( )A .137B .217C .267D .347答案 B解析 记某连续7项为a 1,a 2,a 3,a 4,a 5,a 6,a 7;则 a 1+a 2+a 3+a 4+a 5+a 6+a 7=7a 4=0,∴a 4=0. ∴a 1=a 4-3d =0-3·(-57)=157.8.等差数列{a n }中,前n 项和S n =an 2+(a -1)·n+(a +2),则a n 等于( )A .-4n +1B .2an -1C .-2an +1D .-4n -1答案 D解析 ∵{a n }为等差数列,且S n =an 2+(a -1)·n+(a +2),∴a +2=0,a =-2,∴S n =-2n 2-3n. ∴a n =-4n -1.9.{a n }是等差数列,首项a 1>0,a 2 003+a 2 0042 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4 005B .4 006C .4 007D .4 008答案 B解析 ∵S n =n (a 1+a n )2,∴S 4 006=4 006(a 1+a 4 006)2=2 003(a 2 003+a 2 004)>0.又S 4 007=4 007(a 1+a 4 007)2=4 007·a 2 004<0.∴选B.10.等差数列{a n }的前n 项和为S n .已知a m -1+a m +1-a m 2=0,S 2m -1=38,则m =( ) A .38 B .20 C .10 D .9答案 C解析 由条件得2a m =a m -1+a m +1=a m 2,从而有a m2m -1=a 1+a 2m -12×(2m -1)=38且2a m =a 1+a 2m-1,得(2m -1)a m =m ≠0,则有2m -1=19,m =10.11.等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 8=________. 答案 48解析 设公差为d ,由题意得⎩⎪⎨⎪⎧a 1+d =1,a 1+2d =3,解得a 1=-1,d 8=8a 1+8×72d =8×(-1)+8×72×2=48.12.等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________. 答案 13解析 设等差数列{a n }的首项为a 1,公差为d ,则由6S 5-5S 3=5,得6(a 1+3d)=2,所以a 4=13.13.在等差数列{a n }中,若公差d =1,S 2n =100,则a 12-a 22+a 32-a 42+…+a 2n -12-a 2n 2=________. 答案 -100解析 原式=(a 1+a 2)(a 1-a 2)+(a 3+a 4)(a 3-a 4)+…+(a 2n -1+a 2n )(a 2n -1-a 2n ) =(a 1+a 2+a 3+…+a 2n -1+a 2n )·(-1) =-S 2n =-100.14.已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n 和a n ;(2)a 1=1,a n =-512,S n =-1 022,求公差d. 解析 (1)因为S n =n·32+n (n -1)2·(-12)=-15,整理,得n 2-7n -60=0. 解得n =12或n =-5(舍去). 所以a 12=32+(12-1)×(-12)=-4.(2)由S n =n (a 1+a n )2=n (1-512)2=-1 022,n =a 1+(n -1)d ,即-512=1+(4-1)d ,解得d =-171.15.设等差数列的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由.解析 (1)依题意⎩⎪⎨⎪⎧S12=12a 1+12×112d>0,S13=13a 1+13×122d<0,即⎩⎪⎨⎪⎧2a 1+11d>0, ①a 1+6d<0. ② 由a 3=12,得a 1+2d =12.③将③分别代入①②,得⎩⎪⎨⎪⎧24+7d>0,3+d<0,解得-247<d<-3.(2)S 6的值最大,理由如下:由d<0可知数列{a n }是递减数列,因此若在1≤n≤12中,使a n >0且a n +1<0,则S n 最大. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0,可得a 6>0,a 7<0,故在S 1,S 2,…,S 12中S 6的值最大. 16.设等差数列{a n }的首项a 1及公差d 都为整数,前n 项和为S n . (1)若a 11=0,S 14=98,求数列{a n }的通项公式;(2)若a 1≥6,a 11>0,S 14≤77,求所有可能的数列{a n }的通项公式. 解析 (1)由S 14=98,得2a 1+13d =14. 又a 11=a 1+10d =0,故解得d =-2,a 1=20.因此,{a n }的通项公式是a n =22-2n(n∈N *). (2)由⎩⎪⎨⎪⎧S 14≤77,a 11>0,a 1≥6,得⎩⎪⎨⎪⎧2a 1+13d≤11,a 1+10d>0,a 1≥6, 即⎩⎪⎨⎪⎧2a 1+13d≤11, ①-2a 1-20d<0, ②-2a 1≤-12. ③由①+②,得-7d<11,即d>-117.由①+③,得13d≤-1,即d≤-113.于是-117<d ≤-113.又d∈Z,故d =-1. ④将④代入①②得10<a 1≤12. 又a 1∈Z ,故a 1=11或a 1=12.所以,所有可能的数列{a n }的通项公式是a n =12-n 和a n =13-n(n∈N *).。
高中数学必修5期末复习 等差数列一、选择题: 1.三个数,,a b c 既是等差数列,又是等比数列,则,,a b c 间的关系为( )A. b a c b -=-B. 2b ac = C. a b c == D. 0a b c ==≠2.下列关于星星的图案构成一个数列,该数列的一个通项公式是 ( )A .a n =n 2-n +1 B.a n =n(n -1)2 C.a n =n(n +1)2 D.a n =n(n +2)23.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)= ( )A .8B .-8C .±8D .98 4.如果,,1)()1(*∈+=+N n n f n f 且,2)1(=f 则=)100(f102.101.100.99.D C B A5.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .276.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 ( )A .5B .4C .3D .2 7.已知等差数列{n a }满足,0101321=++++a a a a 则有57.0.0.0.5199310021011==+<+>+a D a a C a a B a a A8.设{a n }是由正数组成的等比数列,且a 5a 6=81,log 3a 1+ log 3a 2+…+ log 3a 10的值是( )A .20B .10C .5D .2或4二、填空题:9.数列{a n }中,a 1=1,且a 1·a 2·……·a n =n 2 (n ≧2 ), 则a n = . 10.等差数列的前4项和为40,最后4项的和为80,所有各项的和为720,则这个数列 一共有 项. 11.等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,若231n n A nB n =+,则n na b = 。
数学必修5等差数列练习题
一、选择题:(每题5分,共40分)
1.记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )
A 、2
B 、3
C 、6
D 、7
2.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( )
A .64
B .100
C .110
D .120
3.若等差数列的前5项和,且,则( )
A .12
B .13
C .14
D .15
4.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =(
) A .138 B .135 C .95 D .23
5.已知数列{}n a 对任意的*
p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于(
)A .165- B .33- C .30- D .21-
6.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于( )
(A )40 (B )42 (C )43 (D )45
7.等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )
A.130
B.170
C.210
D.260
8.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是(
)
A.5
B.4
C. 3
D.2
二、填空题:(每题5分,共20分)
1.已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = ___________
2.设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=.
3.在△ABC 中,若三内角成等差数列,则最大内角与最小内角之和为_____.
4.在数列}{n a 中,31=a
0,(2,)n n N =≥∈,则n a =
三、解答题(每题10分,共40分)
1.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,求 S 6
S 12的值。
2.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390, 求这个数列的项数n 。
3.已知公差大于零的等差数列}{n a 的前n 项和为n S ,且满足.66,21661==S a a
求数列}{n a 的通项公式n a .
4.数列{}n a 的前n 项和223n S n n =-+2,求数列{}n a 的通项公式。
{}n a 525S =23a =7a =
5.S n 为数列{a n }的前n 项和.已知a n >0,,
(Ⅰ)求{a n }的通项公式:
(Ⅱ)设11n n n b a a +=,求数列{}
n b 的前n 项和。
数学必修5等比数列练习题
一.选择题:
1.下列各组数能组成等比数列的是() A.111,,369
B.lg3,lg9,lg 27
C.6,8,10
D.3,- 2.12+与12-,两数的等比中项是()
A .1
B .1-
C .1±
D .2
1 3.等比数列{}n a 中,32a =,864a =,那么它的公比q =()
A.4
B.2
D.12
4.已知{}n a 是等比数列,n a >0,又知243546225a a a a a a ++=,那么35a a +=()
A.5
B.10
C.15
D.20
5.等比数列{}n a 中,11a =,1q q ≠公比为且,若12345m a a a a a a =,则m 为()
A.9
B.10
C.11
D.12
6.若{}n a 是等差数列,公差0d ≠,236,,a a a 成等比数列,则公比为()
A.1
B.2
C. 3
D. 4
7.两等差数列{a n }、{b n }的前n 项和的比
'5327n n S n S n +=+,则55a b 的值是() A .2817 B .4825 C .5327 D .2315
8.{a n }是等差数列,10110,0S S ><,则使0n a <的最小的n 值是()
A .5
B .6
C .7
D .8
二.填空题:
9.等比数列中,首项为98,末项为13,公比为23
,则项数n 等于. 10.在等比数列中,n a >0,且212n n n a a a ++=+,则该数列的公比q 等于.
11.在等比数列{}n a 中,n a >0,()n N +∈且3698a a a =,则
22242628210log log log log log a a a a a ++++=.
2a 243n n n a S +=+
12.若{}n a 是等比数列,下列数列中是等比数列的所有代号为是.
①{}2n a ②{}2n a ③1n a ⎧⎫⎨⎬⎩⎭④{}lg n a 三.解答题
13.等比数列{}n a 中,已知12324a a +=,3436a a +=,求56a a +.
14.已知四个数,前三个数成等比数列,和为19,后三个数成等差数列,和为12,求此四个数.
15.已知等比数列{a n }中,a 2=2, a 5=128 .
(1)求通项a n ;
(2)若b n =log 2a n , 数列{b n }的前n 项和为S n ,且S n =360,求n 的值。