Ch2-2 求导法则
- 格式:pdf
- 大小:474.63 KB
- 文档页数:7
求导法则与求导公式求导法则是用来求导数的基本方法和公式,它是微积分的基础,被广泛应用于数学、物理等领域。
在求导过程中,有一些基本的法则和公式可以帮助我们简化计算。
一、基本求导法则1.常数法则:如果f(x)=C,其中C为常数,则f'(x)=0。
2. 变量法则:如果f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。
3.常数倍法则:如果f(x)=Cg(x),其中g(x)可导且C为常数,则f'(x)=Cg'(x)。
4.加减法则:如果f(x)=g(x)±h(x),其中g(x)和h(x)可导,则f'(x)=g'(x)±h'(x)。
5.乘法法则:如果f(x)=g(x)h(x),其中g(x)和h(x)可导,则f'(x)=g'(x)h(x)+g(x)h'(x)。
6.除法法则:如果f(x)=g(x)/h(x),其中g(x)和h(x)可导且h(x)不等于0,则f'(x)=(g'(x)h(x)-g(x)h'(x))/h(x)^27.复合函数法则:如果f(x)=g(h(x)),其中g和h都是可导函数,则f'(x)=g'(h(x))*h'(x)。
8.反函数法则:如果f和g是互为反函数,则f'(x)=1/g'(f(x))。
二、常用的求导公式1. 幂函数求导:(x^n)' = nx^(n-1)。
2.指数函数求导:(e^x)'=e^x。
3. 对数函数求导:(lnx)' = 1/x。
4. 三角函数求导:(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec^2x。
5. 反三角函数求导:(arcsinx)' = 1/√(1-x^2),(arccosx)' = -1/√(1-x^2),(arctanx)' = 1/(1+x^2)。
高中数学导函数公式(建议收藏)
2018-12-03
基本初等函数求导公式
打开UC浏览器查看更多精彩图片
函数的和、差、积、商的求导法则
打开UC浏览器查看更多精彩图片
反函数求导法则
打开UC浏览器查看更多精彩图片
复合函数求导法则
打开UC浏览器查看更多精彩图片
双曲函数与反双曲函数的导数.
双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.
可以推出下表列出的公式
打开UC浏览器查看更多精彩图片
打开UC浏览器查看更多精彩图片
打开UC浏览器查看更多精彩图片
打开UC浏览器查看更多精彩图片
打开UC浏览器查看更多精彩图片
打开UC浏览器查看更多精彩图片
以上就是整理过的导数函数公式,如有下载需求请留言我会第一时间回复大家。
本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。
请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。
如发现有害或侵权内容,请点击一键举报。
转藏分享
献花(0)
来自: >
0条评论
请遵守用户
热点新闻
类似文章
•
•
•
•
•
•
•
•
•
•
•[转]
[转]
[转]
[转]
[转]
喜欢该文的人也喜欢热门阅读
最新原创。
求导法则及基本求导公式
1. 求导法则:
- 常数法则:导数为0。
- 加法法则:导数等于各项的导数之和。
- 常数倍法则:导数等于常数倍的导数。
- 乘法法则:导数等于第一个函数乘以第二个函数的导数,再加上第一个函数的导数乘以第二个函数。
- 除法法则:导数等于分子的导数乘以分母减去分母的导数乘以分子,再除以分母的平方。
- 复合函数求导法则:导数等于外层函数对内层函数求导,再乘以内层函数对自变量求导。
- 指数函数求导法则:对于以常数e为底的指数函数,导数等于指数函数的常数倍。
- 对数函数求导法则:对于以常数e为底的对数函数,导数等于函数的倒数。
2. 基本求导公式:
- 常数函数:导数为0。
- 幂函数:对于函数y=x^n,当n≠0时,导数为y'=nx^(n-1)。
- 指数函数:对于函数y=a^x(其中a>0,a≠1),导数为
y'=a^xlog(a)。
- 对数函数:对于函数y=log_ax(其中a>0,a≠1),导数为y'=(1/x)log_ae。
- 三角函数:对于函数y=sin(x),导数为y'=cos(x);对于函数y=cos(x),导数为y'=-sin(x);对于函数y=tan(x),导数为
y'=sec^2(x)。
其中sec^2(x)是sec(x)的平方。
- 反三角函数:对于函数y=arcsin(x),导数为y'=1/√(1-x^2);对于函数y=arccos(x),导数为y'=-1/√(1-x^2);对于函数
y=arctan(x),导数为y'=1/(1+x^2)。