2018-2019学年高二化学教案:专题4《分子空间结构与物质性质》(第2课时)(苏教版选修3)
- 格式:doc
- 大小:164.50 KB
- 文档页数:5
煌敦市安放阳光实验学校专题4 分子空间结构与物质性质第二单元配合物是如何形成的课前预习问题导入CH4中的C原子和NH3中的N原子同样是发生sp3杂化,为什么两者的分子空间构型不同?答:在形成氨分子时,氮原子中的原子轨道也发生了sp3杂化,生成四个sp3杂化轨道,但所生成的四个sp3杂化轨道中,只有三个轨道各含有一个未成对电子,可分别与一个氢原子的1s电子形成一个σ键,另一个sp3杂化轨道中已有两个电子,属于孤对电子,不能再与氢原子形成σ键了。
所以,一个氮原子只能与三个氢原子结合,形成氨分子。
因为氮原子的原子轨道发生的是sp3杂化,所以四个sp3杂化轨道在空间的分布与正四面体相似。
又因四个sp3杂化轨道中的一个轨道已有一对电子,只有另外三个轨道中的未成对电子可以与氢原子的1s电子配对成键,所以形成的氨分子的立体构型与sp3杂化轨道的空间分布不同,氨分子的构型为三角锥形。
由于氨分子中存在着未成键的孤对电子,它对成键电子对的排斥作用较强,所以使三个N—H键的空间分布发生一点变化。
知识预览1.配位键(1)用电子式表示NH+4的形成过程__________。
(2)配位键:共用电子对由一个原子单方向提供而跟另一个原子共用的共价键叫配位键。
配位键可用A→B形式表示,A是提供孤对电子的原子,叫做电子对给予体,B是接受电子的原子叫接受体。
(3)形成配位键的条件形成配位键的条件是有能够提供__________的原子,且另一原子具有能够接受__________的空轨道。
常用的表示符号为__________。
2.配位化合物(1)写出向CuSO4溶液中滴加氨水,得到深蓝色溶液整个过程的反离子方程式。
____________________________________________________________________ __;____________________________________________________________________ __。
分子的空间结构第2课时◆教学目标1. 能运用价层电子对互斥模型预测简单分子的空间结构,发展学生的模型认知能力。
◆教学重难点1.应用价层电子对互斥模型预测简单分子或离子的空间结构。
2.中心原子上的孤电子对数的计算。
◆教学过程一、新课导入上节课我们学习了价层电子对互斥理论的基本要点,根据上节课所学内容,完成下列表格。
二、讲授新课【问题提出】给定一个分子的化学式,如何根据VSEPR模型预测其分子结构?其中要遵循怎样的步骤?【思维启迪】应用VSEPR模型的关键是确定分子中的中心原子上的价层电子对数。
这也是该理论抓住的影响分子结构的核心矛盾。
通过上节课对CH4、NH3的案例分析,我们可知,价层电子对数= σ键电子对数+ 中心原子上的孤对电子对数【提问】(1)σ键电子对数如何确定?【讲解】σ键电子对数可由化学式确定。
例如H2O中的中心原子为O,O有2个σ键电子对(O-H);NH3中的中心原子为N,N有3个σ键电子对(N-H);SO3中的中心原子为S,有3个σ键电子对(S-O);SO42−中的中心原子为S,有4个σ键电子对(S-O)。
【提问】(2)通过上面的例子,你发现了化学式与σ键电子对数有何联系?你能从共价键的角度理解并说明为何呈现这样的定量关系么?【讲解】通过上面的例子,我们可以归纳出:由n个原子组成的分子或离子,它中心原子的σ键电子对数为n-1。
因为分子或离子中的原子是通过共价键彼此连接在一起的,两个原子间有且仅有1个σ键,n个原子彼此连接在一起需要n-1个σ键。
中心原子就是“连接中心”,它周围有n-1个σ键电子对。
注:该讨论未将环状分子纳入,环状分子不作要求。
【提问】(3)中心原子上的孤电子对数如何确定?【讲解】中心原子上孤电子对数化学式中看不到,须计算得出,计算公式为孤电子对数= (a-xb)/2其中a为中心原子的价电子数(对于主族元素等于原子的最外层电子数);x为与中心原子结合的原子数;b为与中心原子结合的原子最多能接受的电子数(氢为1;其他原子为“8减去该原子的价电子数”,如氧族的O、S、Se等均为2,卤族元素均为1)【提问】(4)以S和P为例,说明如何根据主族元素在周期表中的位置确定它的价电子数。
分子结构与物质的性质第2课时◆教学目标1. 认识分子间存在相互作用,知道范德华力是常见的分子间作用力;能说明范德华力对物质熔沸点等性质的影响,形成“结构决定性质”的基本观念。
2. 知道氢键使常见的分子间作用力;能说明氢键对物质熔点、沸点等性质的影响,能举例说明氢键对于生命的重大意义。
◆教学重难点分子间作用力、氢键及其对物质性质的影响。
◆教学过程一、新课导入为什么气体在降温加压时会液化?液体在降温时会凝固?从微观过程来看,气体在液化、液体在凝固的过程中,分子间的平均距离在逐渐减小。
固体、液体在宏观上能够彼此凝聚在一起,说明分子间存在着相互作用力。
液化、凝固的过程中,随着分子间距离减少,分子间这种普遍的作用力逐渐增强;同理,在熔化、汽化的过程中,随着分子间距离增大,分子间这种普遍的作用力逐渐减弱。
二、讲授新课二、分子间的作用力1. 范德华力及其对物质性质的影响范德华是最早研究分子间普遍存在作用力的科学家,因而把这类分子间作用力称为范德华力。
范德华力很弱,比化学键的键能小1~2个数量级。
其强度一般是2~20 kJ/mol。
【提问】(1)下表列举了某些分子间的范德华力,结合分子结构的特点和数据,可以得出怎样的结论?【讲解】1.HCl、HBr、HI三者分子结构结构相似,均为直线形。
HCl、HBr、HI的相对分子质量逐渐增大,范德华力逐渐增大。
2.Ar的相对分子质量大于CO和HCl,但CO、HCl分子间的范德华更大,因为CO和HCl是极性分子。
分子的极性越大,范德华力越大。
【提问】(2)下表列举了卤素单质的熔点和沸点,怎样解释卤素单质从F2~I2的熔点和沸点越来越高?【讲解】相对分子质量从F2~I2逐渐增大,且它们均为非极性分子,因此卤素单质分子间的范德华力从F2~I2逐渐增大。
熔化或沸腾过程中分子距离增大,分子间的范德华力被破坏。
范德华力越强,破坏所需的条件就更为剧烈,所需外界提供的能量就越多。
因此微观上分子间的范德华力越强,宏观上物质表现为在更高的温度下才发生熔化和沸腾,物质拥有更高的熔点、沸点。
教学过程一、课堂导入分子晶体在物质状态发生变化时,没有破坏化学键,而是破坏了另外的一种作用力,我们把这种作用力称为分子间作用力,并且分子间作用力也影响着物质的性质。
二、复习预习请同学们回答以下问题:离子键、配位键和金属键的概念,形成条件,特征三、知识讲解考点1:分子间作用力1.概念:分子间存在的一类弱的相互作用力。
2.分类考点2:范德华力及其对物质性质的影响1.概念及实质:范德华力是分子之间普遍存在的一种相互作用力,其实质是分子之间的电性作用。
2.特征(1)范德华力的作用能比化学键的键能小得多。
(2)范德华力无方向性,无饱和性。
3.影响因素(1)组成和结构相似的物质,相对分子质量越大,分子间的范德华力越大。
(2)分子的极性越大,分子间的范德华力越大。
4.化学键与范德华力的比较(1)离子化合物中只存在化学键,不存在范德华力。
(2)范德华力只存在于由共价键形成的多数共价化合物和绝大多数非金属单质分子之间及稀有气体分子之间。
但像二氧化硅、金刚石等由共价键形成的物质的微粒之间不存在范德华力。
6.范德华力对物质性质的影响(1)对物质熔点、沸点的影响:一般来说,组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔点、沸点通常越高。
如熔点、沸点:I2>Br2>Cl2>F2,Rn>Xe>Kr>Ar>Ne>He。
(2)对物质溶解性的影响:如在273 K、101 kPa时,氧气在水中的溶解度比氮气在水中的溶解度大,就是因为O2与水分子之间的作用力比N2与水分子之间的作用力大所导致的。
(3)相似相溶原理:极性分子易溶于极性溶剂中(如HCl易溶于水中),非极性分子易溶于非极性溶剂中(如I2易溶于CCl4中,S易溶于CS2中)。
考点3:氢键1.概念:当氢原子与电负性大的原子X以共价键结合时,氢原子与另一个电负性大的原子Y之间的静电相互作用和一定程度的轨道重叠作用。
第二讲分子结构与性质[20xx备考·最新考纲]1.了解共价键的形成、极性、主要类型(σ键和π键),了解配位键的含义。
能用键长、键能、键角等说明简单分子的某些性质。
2.了解杂化轨道理论及简单的杂化轨道类型(sp、sp2、sp3),能用价层电子对互斥理论或者杂化轨道理论推测常见的简单分子或离子的空间结构。
3.了解化学键和分子间作用力的区别。
4.了解氢键的存在对物质性质的影响,能列举含氢键的物质。
[回归教材、落实根底]共价键(1)本质在原子之间形成共用电子对(电子云的重叠)。
(2)特征具有饱和性和方向性。
(3)分类分类依据类型形成共价键的原子轨道重叠方式σ键电子云“头碰头〞重叠π键电子云“肩并肩〞重叠形成共价键的电子对是否偏移极性键共用电子对发生偏移非极性键共用电子对不发生偏移原子间共用电子对的数目单键原子间有一对共用电子对双键原子间有两对共用电子对三键原子间有三对共用电子对[特别提醒](1)只有两原子的电负性相差不大时,才能形成共用电子对,形成共价键,当两原子的电负性相差很大(大于1.7)时,不会形成共用电子对,而形成离子键。
(2)同种元素原子间形成的共价键为非极性键,不同种元素原子间形成的共价键为极性键。
键参数(1)概念(2)键参数对分子性质的影响键能越大,键长越短,分子越稳定。
等电子原理原子总数相同,价电子总数相同的分子具有相似的化学结构,它们的许多性质相似,如CO和N2。
价层电子对互斥理论(1)理论要点①价层电子对在空间上彼此相距越远时,排斥力越小,体系的能量越低。
②孤电子对的排斥力较大,孤电子对越多,排斥力越强,键角越小。
(2)价层电子对互斥理论与分子立体构型价层电子对数成键数孤电子对数价层电子对立体构型分子立体构型实例2 2 0 直线形直线形CO23 3 0三角形平面三角形BF3 2 1 V形SO24 4 0四面体形正四面体形CH4 3 1 三角锥形NH3 2 2 V形H2O[说明]的立体构型,不包括孤电子对。
《配合物的形成》教学设计、教材分析:本节教材位于专题4《分子空间结构与物质性质》的第二单元,既是第一单元的沿续,也是对分子空间结构的补充。
由于配合物的形成,多数相当于在已知的简单化合物中插入“第三者”一一新的化学成分,构成了复杂的结构,而且游离于价键规律之外,又不涉及价电子,学生往往难以把握。
本节教材从实验事实出发,让学生从感性认识入门,经过实验过程的逻辑分析,引领学生参与教学活动,再抽象概括,阐述配合物的结构特点,对相关基本概念作了常识性介绍。
二、教学目标:1、知识与技能:(1)掌握配合物的的概念,配位体、配位数、内界外界等相关知识;(2)知道简单配合物的基本组成和形成条件;(3)认识配合物在生产生活和科学研究方面的广泛应用。
2、过程与方法:逐步养成自主学习化学的习惯,运用实验进行活动与探究,锻炼实验和设计实验的能力;3、情感态度与价值观:(1)培养学生的辨证唯物主义思想与思维方法;(2)通过配合物的广泛应用在各领域的学习,激发学生树立学好知识为祖国做贡献的人生观。
三、教学重点:配合物的概念和组成四、教学难点:配合物的组成和形成条件五、教学方法:实验探究、启发、讨论、实验探究法六、教学流程设计:1. 完成表格2. 往[Co(NH3)4Cl2]CI 和[Co(NH 3)4Cl2]NO3溶液中分别加入AgNO3溶液,一个有沉淀产生,另一个没有沉淀产生,能产生沉淀的是,没有沉淀产生的是。
【问题解决】3. 现有两种配合物晶体[Co(NH 3)6]CI 3和[CO(NH 3)5CI]CI 2, 一种为橙黄色,另一种为紫红色。
请设计实验方案将这两种配合物区别开来。
【练一练】某物质的实验式PtCl4 2NH3,其水溶液不导电,加入AgNO3也不产生沉淀,以强碱处理并没有NH3放出,试推测其化学式。
指出其中心原子,配位体及配位数。
学生首先写出这两种配合物的电离方程式:[Co(NH 3)6]CI 3=[Co(NH 3)6]3++3 CI-[Co(NH 3)5CI]CI 2=[Co(NH 3)5CI]2++2 CI-然后比较两者得出结论:要区别这两种配合物应从水溶液中CI-的量来考虑。
4.2 协作物是如何形成的生活链接1.血红蛋白中的配位键在血液中氧气的输送是由血红蛋白来完成的。
载氧前,血红蛋白中Fe2+与卟啉中的四个氮原子和蛋白质链上咪唑环的氮原子通过配位链相连,此时,Fe2+的半径大,不能嵌入卟啉环平面,而位于其上方约0.08 nm处。
载氧后,氧分子通过配位键与Fe2+连接,使Fe2+半径缩小而滑入卟啉环中。
由于一氧化碳也能通过配位键与血红蛋白中的Fe2+结合,并且结合力量比氧气与Fe2+的结合力量强得多,从而导致血红蛋白失去载氧力量,所以一氧化碳能导致人体因缺氧而中毒。
2.药物中的协作物美国化学家罗森伯格等人于1969年发觉了第一种具有抗癌活性的金属协作物——顺铂(顺式二氯二氨合铂),它是一种有效的广谱抗癌药物,它对人体的泌尿系统、生殖系统的恶性肿瘤以及甲状腺癌、食道癌等均有显著的治疗效果,但它对肾脏产生的明显损害以及动物试验表明的致畸作用使它难以推广。
20世纪80年月消灭的其次代铂类抗癌药物,如碳铂等已用于临床。
疏导引导学问点1:人类对协作物结构的生疏1.协作物的定义协作物是由可以给出孤对电子的离子或分子(称为配体)和接受孤对电子的原子或离子(统称中心原子)以配位键结合所形成的化合物。
当将过量的氨水加到硫酸铜溶液中,溶液渐渐变为深蓝色,用酒精处理后,还可以得到深蓝色的晶体,经分析证明为[Cu(NH3)4]SO4。
CuSO4+4NH3====[Cu(NH3)4]SO4将纯的[Cu(NH3)4]SO4溶于水中,除了水合的-24SO离子和深蓝色的[Cu(NH3)4]2+离子外,几乎检查不出Cu2+和NH3分子的存在。
[Cu(NH3)4]2+的结构示意图争辩表明,在[Cu(NH3)4]2+中,Cu2+位于[Cu(NH3)4]2+的中心,4个NH3分子位于Cu2+的四周。
2.协作物的组成配位化合物[Zn(NH3)4]SO4中,Zn2+空的4s轨道和4p轨道杂化得到4个sp3杂化轨道,NH3分子中N原子有一孤电子对,在形成此协作物时,N原子上的孤电子对进入Zn2+空的sp3杂化轨道形成4个配位键。
分子结构与性质教案一、教学目标1. 理解分子结构的概念和组成。
2. 掌握分子结构对物质性质的影响。
3. 能够运用分子结构与性质的关系解释和预测化学现象。
二、教学重点1. 分子结构的概念和组成。
2. 分子结构对物质性质的影响。
三、教学难点1. 运用分子结构与性质的关系解释和预测化学现象。
四、教学过程1. 导入(5分钟)引导学生回顾原子结构的知识,提问:物质的性质是由什么决定的?引出本节课的主题:分子结构与性质。
2. 讲解分子结构的概念和组成(15分钟)解释分子的概念:由两个或更多原子通过共价键连接而成的粒子。
介绍分子的组成:分子由原子组成,原子之间通过共价键连接。
3. 分子结构对物质性质的影响(20分钟)3.1 极性分子与非极性分子讲解极性分子和非极性分子的定义和特点。
解释极性分子的性质:极性分子具有极性键和极性分子间力,溶解性好,熔点和沸点较高。
解释非极性分子的性质:非极性分子没有极性键和分子间力,溶解性差,熔点和沸点较低。
3.2 分子大小和分子量讲解分子大小和分子量对物质性质的影响。
解释分子大小的性质:分子较大的物质通常具有较高的熔点和沸点,较小的分子通常具有较低的熔点和沸点。
解释分子量的性质:分子量较大的物质通常具有较高的密度和较低的蒸发速率。
3.3 分子形状和分子极性讲解分子形状和分子极性对物质性质的影响。
解释分子形状的性质:分子形状对物质的化学性质和物理性质有很大影响,如分子的立体构型决定了分子的反应性。
解释分子极性的性质:极性分子具有极性键和极性分子间力,而非极性分子没有极性键和分子间力。
4. 运用分子结构与性质解释和预测化学现象(20分钟)4.1 溶解性解释溶解性的概念和影响因素,如极性分子溶解于极性溶剂,非极性分子溶解于非极性溶剂。
4.2 熔点和沸点解释熔点和沸点的概念和影响因素,如分子大小、分子量和分子间力的强弱。
4.3 导电性解释导电性的概念和影响因素,如分子是否带电和分子间距离的远近。
教学时间第二十周7月16日本模块第27课时教学课题专题专题4分子空间结构与物质性质单元第二单元配合物是如休形成的节题第一课时配合物的结构和性质教学目标知识与技能(1)了解人类对配合物结构认识的历史(2)知道简单配合物的基本组成和形成条件(3)了解配合物的结构与性质及其应用过程与方法通过配位键作为配离子化学构型,构筑配合物结构平台的方法逐渐深入地理解配合物的结构与性质之间的关系情感态度与价值观通过学生认识配合物在生产生活和科学研究方面的广泛应用体会配位化学在现代科学中的重要地位,从而激发学生进一步深入地研究化学。
教学重点配合物结构和性质,配合物形成条件和过程实验解释教学难点配合物结构和性质,配合物形成条件和过程实验解释教学方法探究讲练结合教学准备教学过程教师主导活动学生主体活动1、配离子的空间结构配位数杂化类型空间构型实例2 sp 直线型[Ag(NH3)2]+4sp3、d3s 四面体ZnCl42-、[Cu(NH3)4]2+sp2d、dsp2平面四边形PtCl42-、[Ni(CN)4]2-6 d2sp3、sp3d2八面体[AlF6]3-、[Fe(SCN)6]3-2、配合物异构几何异构(顺式反式)立体异构配合物异构光学异构构造异构(电离、水合、键合、配位、聚合等)P71讨论后口答观察理解教师主导活动学生主体活动练习一、选择题1.下列属于配合物的是()A.NH3·H2OB.Na2CO3.10H2OC.CuSO4. 5H2OD.Co(NH3)6Cl32.要证明某溶液中不含Fe3+而可能含有Fe2+,进行如下实验操作时,最佳顺序为()①加入足量氯水②加入足量酸性高锰酸钾溶液③加入少量NH4SCN溶液A.①③B.③②C.③①D.①②③3.向下列配合物的水溶液中加入AgNO3溶液,不能生成白色沉淀的是()A、[Co(NH3)4Cl2]ClB、[Co(NH3)3Cl3]C、[Co(NH3)6]Cl3D、[Co(NH3)5Cl]Cl24.已知[Co(NH3)6]3+呈正八面体结构:各NH3分子间距相等,Co3+位于正八面的中心。
教学过程一、课堂导入
在宏观世界中,花朵、蝴蝶、冰晶等诸多物质展现出规则与和谐的美。
科学巨匠爱因斯坦曾感叹:“在宇宙的秩序与和谐面前,人类不能不在内心里发出由衷的赞叹,激起无限的好奇。
”实际上,宏观的秩序与和谐源于微观的规则与对称。
通常,不同的分子具有不同的空间构型。
例如,甲烷分子呈正四面体形、氨分子呈三角锥形、苯环呈正六边形。
那么,这些分子为什么具有不同的空间构型呢?
二、复习预习
请同学们回答以下问题:
(1)共价键概念,分类,特征
(2)键参数的概念,意义,以及常见分子构型
三、知识讲解
考点1:甲烷分子的空间构型
1.轨道杂化和杂化轨道
2.甲烷中碳原子的杂化类型
3.杂化轨道的类型
4.杂化轨道的特点
(1)形成分子时,通常存在激发、杂化和轨道重叠等过程。
(2)原子轨道的杂化只有在形成分子的过程中才会发生,孤立的原子是不可能发生杂化的。
(3)杂化前后轨道数目不变。
(4)杂化后轨道伸展方向、形状发生改变。
(5)只有能量相近的轨道才能杂化(n s、n p)。
5.分子空间构型的确定
(1)对于AB m型分子、中心原子的杂化轨道数可以这样计算。
杂化轨道数n=中心原子价电子数+配位原子提供的价电子数
2。
其中配位原子中,卤素原子、氢原子提供1个价电子,硫原子、氧原子不提供价电子,即提供价电子数为0。
例如:
(2)离子的杂化轨道计算:
n=1
2(中心原子的价电子数+配位原子的成键电子数±电荷数)。
考点2:苯分子的空间构型与大π键1.苯的空间构型。
《分子结构与物质的性质》教学设计一、教学目标1、知识与技能目标(1)学生能够了解共价键的本质和特征,理解共价键的类型(σ键和π键)。
(2)掌握分子的立体构型,能够运用价层电子对互斥理论和杂化轨道理论解释分子的立体结构。
(3)理解分子的极性和分子间作用力对物质性质的影响。
2、过程与方法目标(1)通过模型构建、小组讨论等活动,培养学生的空间想象能力和合作学习能力。
(2)通过对实际问题的分析,提高学生运用所学知识解决问题的能力。
3、情感态度与价值观目标(1)激发学生对化学学科的兴趣,培养学生严谨的科学态度。
(2)让学生认识到化学与生活的密切联系,增强学生对化学知识的应用意识。
二、教学重难点1、教学重点(1)共价键的类型和特征。
(2)价层电子对互斥理论和杂化轨道理论。
(3)分子的极性和分子间作用力。
2、教学难点(1)杂化轨道理论的理解和应用。
(2)分子间作用力对物质性质的影响。
三、教学方法讲授法、讨论法、实验法、模型演示法四、教学过程1、导入新课通过展示一些常见物质的图片,如氧气、水、二氧化碳等,引导学生思考这些物质的性质差异与分子结构之间的关系,从而引出本节课的主题——分子结构与物质的性质。
2、知识讲解(1)共价键①讲解共价键的本质,即原子间通过共用电子对形成的化学键。
②以氢气分子的形成过程为例,说明共价键的形成条件。
③介绍共价键的特征,包括饱和性和方向性。
④重点讲解共价键的类型,即σ键和π键。
通过模型演示和动画展示,让学生直观地理解σ键和π键的形成方式和特点。
(2)分子的立体构型①介绍价层电子对互斥理论,引导学生通过计算价层电子对数来预测分子的立体构型。
②以甲烷、氨气、水分子为例,详细讲解如何运用价层电子对互斥理论确定分子的空间结构。
③讲解杂化轨道理论,解释原子轨道在形成分子时发生杂化的原因和杂化轨道的类型(如 sp、sp2、sp3 杂化)。
④通过实例分析,让学生掌握如何运用杂化轨道理论解释分子的立体构型。
第2课时分子的空间结构与分子性质发展目标体系构建1。
知道分子可以分为极性分子和非极性分子,知道分子极性与分子中键的极性、分子的空间结构密切相关。
2。
结合实例初步认识分子的手性对其性质的影响。
一、分子中的原子排布与对称性1.对称分子(1)概念依据对称轴的旋转或借助对称面的反映能够复原的分子。
(2)性质具有对称性。
(3)与分子性质的关系分子的许多性质如极性、旋光性等都与分子的对称性有关。
2.手性分子(1)手性一些分子本身和它们在镜中的像,就如同人的左手和右手,相似但不能重叠。
(2)手性分子具有手性的分子叫做手性分子。
一个手性分子和它的镜像分子构成一对对映异构体。
(3)不对称碳原子对于仅通过单键连接其他原子的碳原子,当所连接的四个原子或基团均不相同时,这个碳原子称为不对称碳原子。
(4)应用①手性分子缩合制蛋白质和核酸。
②分析药物有效成分异构体的生物活性和毒副作用.③药物的不对称合成。
微点拨:手性分子是一类对称性比较低的分子,如它们不具有对称面。
互为对映异构体的两种手性分子具有相反的旋光性。
二、分子中的电荷分布与极性1.分子极性的实验探究2。
极性分子和非极性分子微点拨:“相似相溶"原理是指极性分子易溶于极性溶剂,非极性分子易溶于非极性溶剂。
3.分子极性的判断1.判断正误(正确的打“√”,错误的打“×”)(1)CH4分子是面对称。
(2)NH3和H2O分子是面对称。
(3)由极性键构成的分子都是极性分子. (×) (4)含有不对称碳原子的分子都是极性分子。
2.下列化合物中含3个不对称碳原子的是()C[A项中含有1个不对称碳原子,B项中含有2个不对称碳原子,D项中含有1个不对称碳原子。
]3.请写出表中分子的空间结构,判断其中哪些属于极性分子,哪些属于非极性分子。
[解析]由于O2、CO2、BF3、CCl4空间结构对称,所以它们均为非极性分子;HF、H2O、NH3的空间结构不对称,所以它们均为极性分子。
篇一:分子结构与性质教案第二章分子结构与性质第一节共价键【学习目标】1、了解共价键的形成过程。
2、知道共价键的主要类型δ键和π键。
3、能用键参数――键能、键长、键角说明简单分子的某些性质4、知道等电子原理,结合实例说明“等电子原理的应用”【学习重点】1、δ键和π键的特征和性质2、用键能、键长、键角等说明简单分子的某些性质。
【学习难点】1、δ键和π键的特征;2、键角【学习过程】一、复习引入:1.nacl、hcl的形成过程2.离子键:阴阳离子间的相互作用。
3.共价键:原子间通过共用电子对形成的相互作用。
4.使离子相结合或原子相结合的作用力通称为化学键。
二、共价键1、定义:原子间通过共用电子对形成的相互作用。
2、练习:用电子式表示h2、hcl、cl2的形成过程h2hcl cl2思考:为什么h2、cl2 是双原子分子,而稀有气体是单原子分子?3、形成共价键的条件:两原子都有单电子讨论(第一组回答):按共价键的共用电子对理论,是否有h3、h2cl、cl3的分子存在?4、共价键的特性:饱和性对于主族元素而言,内层电子一般都成对,单电子在最外层。
如:h 1s1 、cl 1s22s22p63s23p5h、cl最外层各缺一个电子,于是两原子各拿一电子形成一对共用电子对共用,由于cl 吸引电子对能力稍强,电子对偏向cl(并非完全占有),cl略带部分负电荷,h略带部分正电荷。
讨论(第二组回答):共用电子对中h、cl的两单电子自旋方向是相同还是相反?设问:前面学习了电子云和轨道理论,对于hcl中h、cl原子形成共价键时,电子云如何重叠?例:h2的形成1s1 相互靠拢 1s1电子云相互重叠形成h2分子的共价键(h-h)由此可见,共价键可看成是电子云重叠的结果。
电子云重叠程度越大,则形成的共价键越牢固。
h2里的共价键称为δ键。
形成δ键的电子称为δ电子。
5、共价键的种类(1)δ键:(以“头碰头”重叠形式)a、特征:以形成化学键的两原子核的连线为轴作旋转操作,共价键电子云的图形不变,这种特征称为轴对称。
专题4 分子空间结构与物质性质第二单元配合物的形成和应用第2课时配合物的性质与应用一、教学目标:1.从微观角度理解配合物的形成对物质性质的影响。
2.了解配合物在生活、生产和科学实验中的应用。
二、教学重点:配合物的形成对物质性质的影响。
教学难点:配合物的形成对物质性质的影响。
三、教学过程复习导入:1.下列微粒中同时有离子键和配位键的是()A.NH4Cl B.NaOH C.H3O+D.MgO2. H3O+是H2O和H+结合而成的微粒,其化学键属于()A.配位键B.离子键C.氢键D.范德华力【答案】A A[知识回顾]1.配位键2.杂化和杂化轨道类型生:思考回答一、配合物的形成对性质的影响师讲解:生:阅读思考1.颜色的改变当简单离子形成配离子时其性质往往有很大的差异。
颜色发生变化就是一种常见的现象,据此可以判断配离子是否生成。
如Fe3+与SCN-在溶液中可生成配位数为1~6的铁的硫氰酸根配离子(血红色),反应的离子方程式为Fe3++nSCN-===[Fe(SCN)n](3-n)+。
2.溶解度的改变一些难溶于水的金属氯化物、溴化物、碘化物、氰化物可以依次溶解于过量的Cl-、Br-、I -、CN-和氨中,形成可溶性的配合物。
(1)如难溶的AgCl可溶于过量的浓盐酸和氨水中,形成配合物,反应的离子方程式分别为AgCl+HCl(浓)===[AgCl2]-+H+;AgCl+2NH3·H2O===[Ag(NH3)2]++Cl-+2H2O。
(2)Cu(OH)2沉淀易溶于氨水中,反应的离子方程式为Cu(OH)2+4NH3·H2O===[Cu(NH3)4]2++2OH-+4H2O。
3.溶液的酸碱性强弱的改变氢氟酸是一种弱酸,若通入BF3或SiF4气体,由于生成了HBF4、H2SiF6而使溶液成为强酸溶液。
配位体与中心原子配合后,可以使其酸性或碱性增强,如Cu(OH)2+4NH3·H2O===[Cu(NH3)4]2++2OH-+4H2O碱性增强。
[课后练习]
一、选择题
1.下列说法中不正确的是()
A.共价化合物中不可能含有离子键
B.有共价键的化合物,不一定是共价化合物
C.离子化合物中可能存在共价键
D.原子以极性键结合的分子,肯定是极性分子
2.下列四种分子中,只含极性键而没有非极性键的是()
A.CH4
B.CH3CH3
C.CH2=CH2
D.CH≡CH
3.下列分子中,属于含有极性键的非极性分子的一组是()
A.CH4、CCl4、CO2
B.C2H4、C2H2、C6H6
C.Cl2、H2、N2
D.NH3、H2O、SO2
4.下列现象不能用“相似相溶”规律解释的是()
A.氯化氢易溶于水B.氯气易溶于NaOH溶液
C.碘易溶于CCl4 D.碘难溶于水
5.下列物质易溶于苯的是()A.NH3 B.HF C.I2D.Br2
6.下列分子中,属于含有极性键的非极性分子的一组是()
A.CH4、CCl4、CO2
B.C2H4、C2H2、C6H6
C.Cl2、H2、N2
D.NH3、H2O、SO2 7.瑞典皇家科学院2001年10月10日宣布,2001年诺贝尔化学奖授予“手性碳原子的催化氢化、氧化反应”研究领域作出贡献的美、日三位科学家。
下列分子中含有“手性碳原子”的是()
A.CBr2F2B.CH3CH2OH C.CH3CH2CH3D.CH3CH(OH)COOH
8.下列有机物分子中带“*”碳原子就是手性碳原子。
该有机物分别发生下列反应,生成的有机物分子中含有手性碳原子的是()A.与乙酸发生酯化反应 B.与NaOH水溶液反应
C.与银氨溶液作用只发生银镜反应
D.催化剂作用下与H2反应
9.已知氯化铝易溶于苯和乙醚,其熔点为190℃,则下列结论错误的是()
A.氯化铝是电解质
B.固体氯化铝是分子晶体
C.可用电解熔融氯化铝的办法制取金属铝
D.氯化铝为非极性分子
10.根据“相似相溶”的规律,下列溶剂可以用来从溴水中萃取溴的是()
(1)酒精(2) CCl4(3)液氨(4)苯(5)直馏汽油
A.(1)(2)(4)(5)
B.(2)(4)(5)
C.(1)(3)(5)
D.(1)(3)(4)
11.根据“相似相溶”规律,你认为下列物质在水中溶解度较大的是()
A .乙烯
B .二氧化碳 C.二氧化硫 D.氢气
二、填空题
12.我们可把共价键按分为极性键和非极性键,而共价键产生极性的根本原因是,故此有人这样判断键的极性:凡是同种元素原子间形成的共价键属极性键,凡是异种元素原子间形成的共价键属非极性键。
另外,对于键的极性与分子的极性的关系可作如下总结:在双原子分子中,如果化学键有极性则分子;如果化学键无极性,通常分子。
在多原子分子中,如果所有化学键都无极性,则分子是;如果化学键是极性键,且重合,则分子是非极性分子;否则为极性分子。
13. 有关手性分子的知识要点如下:
(1)手性分子的特点是:。
(2)手性异构体具有不同的性质,一种手性分子有药物性,它的手性异构体可能就有反作用。
生命科学上的药物合成所采用的方法是:。
(3)有机分子是手性分子应满足的一般条件是:。
如:。
12.(1)具有完全相同的组成和原子排列。
结构互为镜像,在三维空间里不能重叠。
(2)手性催化剂催化。
(3)含有的碳原子是否连有4个不同的原子或原子团。
14.请指出表中分子的空间构型,判断其中哪些属于极性分子,哪些属于非极性分子,并与同学讨论你的判断方法。
三、简答
15.现有A、B、C三种物质,A为气态氢化物,分子式为RH3,含R为82.4%,B是另一气态氢化物,A+B→C,C与碱液共热放出A。
C的水溶液加入稀HNO3酸化后,滴入AgNO3溶液产生不溶性的白色沉淀,回答下列问题:
⑴写出A的名称和电子式,并指出它是否是极性分子?其稳定性比PH3、H2O如何?
⑵写出B的名称和电子式,并指出它是否是极性分子?其稳定性比HF、H2S、HBr如何?其水溶液的酸性比HF、HBr、H2S如何?
⑶写出C的名称和电子式,具体指明C物质中各部分的化学键。
⑷写出上述有关的化学方程式或离子方程式。
一、选择题
1.D 2.A 3.AB 4.B 5.CD 6.AB 7.D 8.C 9.C 10.B 11. C
二、填空题
12.电子对在两原子核间是否偏移、电子对发生生偏移、有极性、无极性、正负电荷中心
13.(1)具有完全相同的组成和原子排列。
结构互为镜像,在三维空间里不能重叠。
(2)手性催化剂催化。
(3)含有的碳原子是否连有4个不同的原子或原子团。
14.
15.(1)氨气、、极性分子、PH3<NH3<H2O
(2)氯化氢、、极性分子、稳定性:HCl<HF HCl>HBr HCl>H2S
(3)氯化铵、、极性键、配位键、离子键
(4)NH3+HCl=NH4Cl NH4++OH-=NH3+H20 Cl-+Ag+=AgCl。