2014高考物理二轮复习第6讲随堂演练
- 格式:doc
- 大小:57.00 KB
- 文档页数:3
2014高考物理二轮复习能力提升演练10 电磁感应中常考的3个问题 基础巩固 1.如图10-15甲所示,固定在水平桌面上的光滑金属框架cdeg处于方向竖直向下的匀强磁场中,金属杆ab与金属框架接触良好.在两根导轨的端点d、e之间连接一电阻,其他部分电阻忽略不计.现用一水平向右的外力F作用在金属杆ab上,使金属杆由静止开始向右在框架上滑动,运动中杆始终垂直于框架.图乙为一段时间内金属杆中的电流随时间t的变化关系图象,则下列选项中可以表示外力F随时间t变化关系的图象是( ). 图10-15 图10-16 2.如图10-16所示,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属圆环中穿过.现将环从位置I释放,环经过磁铁到达位置.设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则( ). A.T1>mg,T2>mg B.T1<mg,T2mg,T2<mg D.T1mg 3.如图10-17所示,水平虚线MN的上方有一垂直纸面向里的匀强磁场,矩形导线框abcd从MN下方某处以v0的速度竖直上抛,向上运动高度H后垂直进入匀强磁场,此过程中导线框的ab边始终与边界MN平行.不计空气阻力,在导线框从抛出到速度减为零的过程中,以下四个图象中可能正确反映导线框的速度与时间的关系的是( ). 4.处于竖直向上匀强磁场中的两根电阻不计的平行金属导轨,下端连一电阻R,导轨与水平面之间的夹角为θ,一电阻可忽略的金属棒ab,开始时固定在两导轨上某位置,棒与导轨垂直.如图10-18所示,现释放金属棒让其由静止开始沿轨道平面下滑.就导轨光滑和粗糙两种情况比较,当两次下滑的位移相同时,则有( ). A.重力势能的减少量相同 B.机械能的变化量相同 C.磁通量的变化率相同 D.产生的焦耳热相同5.如图10-19所示,匀强磁场区域为一个等腰直角三角形,其直角边长为L,磁场方向垂直纸面向外,磁感应强度大小为B,一边长为L、总电阻为R的正方形导线框abcd,从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域.取沿a→b→c→d→a的感应电流方向为正,则下图表示线框中电流i随bc边的位置坐标x变化的图象正确的是( ). 6.如图10-20所示,宽度为d的有界匀强磁场竖直向下穿过光滑的水平桌面,一质量为m的椭圆形导体框平放在桌面上,椭圆的长轴平行磁场边界,短轴小于d.现给导体框一个初速度v0(v0垂直磁场边界),已知导体框全部在磁场中的速度为v,导体框全部出磁场后的速度为v1;导体框进入磁场过程中产生的焦耳热为Q1,导体框离开磁场过程中产生的焦耳热为Q2.下列说法正确的是( ). A.导体框离开磁场过程中,感应电流的方向为顺时针方向 B.导体框进出磁场都是做匀变速直线运动 C.Q1>Q2 D.Q1+Q2=m(v-v) 7.如图10-21所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为( ). A. B. C. D. 能力提升 8.如图10-22所示,在与水平方向成θ=30°角的平面内放置两条平行、光滑且足够长的金属轨道,其电阻可忽略不计.空间存在着匀强磁场,磁感应强度B=0.20 T,方向垂直轨道平面向上.导体棒ab、cd垂直于轨道放置,且与金属轨道接触良好构成闭合回路,每根导体棒的质量m=2.0×10-2kg、电阻r=5.0×10-2Ω,金属轨道宽度l=0.50 m.现对导体棒ab施加平行于轨道向上的拉力,使之沿轨道匀速向上运动.在导体棒ab运动过程中,导体棒cd始终能静止在轨道上.g取10 m/s2,求: (1)导体棒cd受到的安培力大小; (2)导体棒ab运动的速度大小; (3)拉力对导体棒ab做功的功率. 9.如图10-23所示,两根足够长的光滑直金属导轨MN、PQ平行固定在倾角θ=37°的绝缘斜面上,两导轨间距L=1 m,导轨的电阻可忽略.M、P两点间接有阻值为R的电阻.一根质量m=1 kg、电阻r=0.2 Ω的均匀直金属杆ab放在两导轨上,与导轨垂直且接触良好.整套装置处于磁感应强度B=0.5 T的匀强磁场中,磁场方向垂直斜面向下.自图示位置起,杆ab受到大小为F=0.5v+2(式中v为杆ab运动的速度,力F的单位为N)、方向平行于导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R的电流随时间均匀增大.g取10 m/s2,sin 37°=0.6. (1)试判断金属杆ab在匀强磁场中做何种运动,并请写出推理过程; (2)求电阻R的阻值; (3)求金属杆ab自静止开始下滑通过位移x=1 m所需的时间t. 10.如图10-24所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd,线框质量为m,电阻为R,边长为L.有一方向垂直水平面向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L,左、右边界与ab边平行.线框在水平向右的拉力作用下垂直于边界线穿过磁场区. 图10-24 (1)若线框以速度v匀速穿过磁场区,求线框在离开磁场时a、b两点间的电势差. (2)若线框从静止开始以恒定的加速度a运动,经过t1时间ab边开始进入磁场,求cd边将要进入磁场时刻回路的电功率. (3)若线框以初速度v0进入磁场,且拉力的功率恒为P0.经过时间T,cd边进入磁场,此过程中回路产生的电热为Q.后来ab边刚穿出磁场时,线框速度也为v0,求线框穿过磁场所用的时间t. 训练10 电磁感应中常考的3个问题 1.B [金属杆由静止开始向右在框架上滑动,金属杆切割磁感线产生感应电动势E=BLv,在回路内产生感应电流,I==.由题图乙金属杆中的电流随时间t均匀增大可知金属杆做初速度为零的匀加速运动,I=.由安培力公式可知金属杆所受安培力F安=BIL,根据牛顿第二定律F-F安=ma,可得外力F=ma+F安=ma+BIL=ma+,所以正确选项是B.] 2.A [金属圆环从位置到位置过程中,由楞次定律知,金属圆环在磁铁上端时受安培力向上,在磁铁下端时受安培力也向上,则金属圆环对磁铁的作用力始终向下,对磁铁受力分析可知T1>mg,T2>mg,A项正确.] 3.C [矩形导线框abcd从某处以v0的速度竖直上抛,未进入匀强磁场前做加速度为g的匀减速直线运动,选项A、B错误;矩形导线框进入匀强磁场后做加速度逐渐减小的减速直线运动直到速度减为零,选项D错误,C正确.] 4.A [本题考查金属棒在磁场中的运动及能量转化问题.当两次下滑的位移相同时,知重力势能的减少量相同,则选项A正确;两次运动的加速度不同,所用时间不同,速度不同,产生的感应电动势不同,磁通量的变化率也不同,动能不同,机械能的变化量不同,则产生的焦耳热也不同,故选项B、C、D均错误.] 5.C [在0~L过程中无电磁感应现象.在L~2L的过程中,线圈bc边切割磁感线的有效长度L在线性增加,感应电动势e=BLv及感应电流i=也在线性增加,在2L点达最大值.且由右手定则得电流方向沿a→b→c→d→a,为正,故选项D错误.同理,在2L~3L的过程中,感应电流为负向的线性增加,故选项A、B均错误、选项C正确.] 6.ACD [本题考查楞次定律及功能关系.导体框离开磁场过程中,穿过导体框的磁通量逐渐减小,根据楞次定律或右手定则可知感应电流为顺时针方向,选项A正确;导体框进出磁场的过程中,均克服安培力做功,其速度减小,感应电流也减小,导体框做变减速运动,选项B错误;导体框进入磁场过程中的平均速度大于离开磁场过程的平均速度,由F=及Q=Fl可知Q1>Q2,选项C正确;根据功能关系可得:Q1+Q2=m(v-v),选项D正确.] 7.C [当线框绕过圆心O的转动轴以角速度ω匀速转动时,由于面积的变化产生感应电动势,从而产生感应电流.设半圆的半径为r,导线框的电阻为R,即I1=====.当线圈不动,磁感应强度变化时,I2====,因I1=I2,可得=,C选项正确.] 8.解析 (1)导体棒cd静止时受力平衡,设所受安培力为F安,则F安=mgsin θ 解得F安=0.10 N. (2)设导体棒ab的速度为v时,产生的感应电动势为E,通过导体棒cd的感应电流为I,则E=Blv;I=;F安=BIl 联立上述三式解得v= 代入数据得v=1.0 m/s. (3)导体棒ab受力平衡,则F=F安+mgsin θ 解得F=0.20 N 拉力做功的功率P=Fv 解得P=0.20 W. 答案 (1)0.1 N (2)1.0 m/s (3)0.20 W 9.解析 (1)金属杆做匀加速运动(或金属杆做初速度为零的匀加速运动). 通过R的电流I==,因通过R的电流I随时间均匀增大,即杆的速度v随时间均匀增大,杆的加速度为恒量,故金属杆做匀加速运动. (2)对回路,根据闭合电路欧姆定律I= 对杆,根据牛顿第二定律有:F+mgsin θ-BIL=ma 将F=0.5v+2代入得:2+mgsin θ+v=ma,因a为恒量与v无关,所以a==8 m/s2 0.5-=0,得R=0.3 Ω. (3)由x=at2得,所需时间t= =0.5 s. 答案 (1)匀加速运动 (2)0.3 Ω (3)0.5 s 10.解析 (1)线框在离开磁场时,cd边产生的感应电动势E=BLv 回路中的电流I= 则a、b两点间的电势差U=IRab=BLv. (2)t1时刻线框速度v1=at1 设cd边将要进入磁场时刻速度为v2,则v-v=2aL 此时回路中电动势E2=BLv2 回路的电功率P= 解得P= (3)设cd边进入磁场时的速度为v,线框从cd边进入到ab边离开磁场的时间为Δt,则 P0T=+Q P0Δt=mv-mv2 解得Δt=-T 线框离开磁场时间还是T,所以线框穿过磁场总时间t=2T+Δt=+T. 答案 (1)BLv (2) (3)+T 高考学习网: 高考学习网: 图10- 图10- 图10- 图10- 图10-1 图10-1 图10-17 图10-16。
物理试题 二、选择题(本题包括7小题,共42分。
每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分) 14.一批伟大的科学家在电磁理论的建立过程中做出了卓越的贡献。
关于其中一些科学家和他们的贡献,下列说法正确的是( ) A.安培发现了电流的磁效应B.奥斯特提出了分子电流假说 C.法拉第发现了电磁感应现象D.库仑发现了点电荷间相互作用的规律 15.如图,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮。
质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行。
两滑块由静止释放后,沿斜面做匀加速运动。
若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( ) A.两滑块组成系统的机械能守恒 B.重力对M做的功等于M动能的增加 C.轻绳对m做的功等于m机械能的增加 D.两滑块组成系统的机械能损失等于M克服摩擦力做的功 16.如图所示,空间中的M、N处存在两个被固定的、等量同种正点电荷,在它们的连线上有A、B、C三点,已知MA=CN=NB,MAφC,故C选项正确;由对称性可知,A、B为等势点,故D选项错误. 17、AC 18、BC【解析】由题意知,中轨道卫星的轨道半径小于同步卫星的轨道半径(42400 km),所以,其线速度大于同步卫星的线速度,选项B正确;中轨道卫星的周期T1=6 h,其经过地面某点的正上方的一天后,仍在该点,选项C正确;选项D中,中轨道卫星需经过t=(+nT1),T1=6 h,n=0,1,2,3,…,同步卫星需经过t′=(+nT2).T2=24 h,n=0,1,2,3,…二者再次在同一直线上,显然t′≠t,选项D错误. 19、CD 20、B【解析】由图乙可知磁感应强度的大小随时间呈线性变化,即(k是一个常数),又圆环的面积S不变,由可知圆环中产生的感应电动势不变,则回路中的感应电流大小不变,故 ab边受到的安培力不变,排除选项C、D;0-时间内,由楞次定律可判断出流过ab边的电流方向为由b至a,结合左手定则可判断出ab边受到的安培力的方向向左,为负值,排除选项A错误。
2014高考物理二轮复习能力提升演练15 动量守恒定律、原子结构和原子核中常考的3个问题 1.一个静止的钚核Pu自发衰变成一个铀核U和另一个原子核X,并释放出一定的能量.其核衰变方程为:Pu→U+X. (1)方程中的“X”核符号为________; (2)钚核的质量为239.052 2 u,铀核的质量为235.043 9 u,X核的质量为4.002 6 u,已知1 u相当于931 MeV,则该衰变过程放出的能量是________MeV; (3)假设钚核衰变释放的能量全部转变为铀核和X核的动能,则X核与轴核的动能之比是________. 2.(1)图15-13中甲、乙两幅图是氢原子的能级图,图中箭头表示出核外电子在两能级间跃迁的方向,________(填“甲”或“乙”)图中电子在跃迁时吸收光子;在光电效应实验中,有两个学生分别用蓝光和不同强度的黄光来研究光电流与电压的关系,得出的图象分别如丙、丁两幅图象所示、能正确表示光电流与电压关系的是________(填“丙”或“丁”)图. 图15-13 (2)以下说法中正确的是( ). A.光电效应揭示了光的粒子性,而康普顿效应揭示了光的波动性 B.原子核的质量等于组成它的核子的质量之和 C.β衰变所释放的电子是原子核内的中子转变为质子时所产生的 D.高速运动的质子、中子和电子都具有波动性 (3)两个质量相等的物体,向同一方向运动,速度分别为v1=3 m/s,v2=2 m/s,它们发生对心碰撞后,速度分别为v1′和 v2′. 若v1′=2 m/s,则v2′=________m/s. 在各种可能碰撞中,v1′的最大值为________m/s. 3.(1)下列说法中正确的是( ). A.用不可见光照射金属一定比用可见光照射同种金属产生的光电子的初动能大 B.α粒子散射实验中极少数α粒子发生了较大偏转是卢瑟福猜想原子核式结构模型的主要依据 C.核反应方程:Be+He→C+X中的X为质子 D.C的半衰期为5 730年,若测得一古生物遗骸中的C含量只有活体中的,则此遗骸距今约有21 480年 (2)一炮弹质量为m,以一定的倾角斜向上发射,到达最高点时速度为v,炮弹在最高点爆炸成两块,其中一块沿原轨道返回,质量为.求爆炸后系统增加的机械能. 4. (1)甲、乙两种金属发生光电效应时,光电子的最大初动能与入射光频率间的函数关系分别如图15-14中的、所示.下列判断正确的是________. A.与不一定平行 B.乙金属的极限频率大 C.图象纵轴截距由入射光强度决定 D.、的斜率是定值,与入射光和金属材料均无关系 图15-15 (2)如图15-15所示,一轻质弹簧两端连接着物体A和物体B,放在光滑的水平面上,水平速度为v0的子弹射中物体A并嵌在其中,已知物体B的质量为mB,物体A的质量是物体B的质量的,子弹的质量是物体B的质量的,求弹簧被压缩到最短时的弹性势能. 5.(1)下列说法中正确的是________. A.一群氢原子处在n=4的能级,由较高能级跃迁到较低能级时,辐射的光谱线条数为4条 B.原子核的衰变是原子核在其他粒子的轰击下而发生的 C.β衰变所释放的电子是原子核内的中子转化成质子和电子所产生的 D.放射性元素的半衰期随温度和压强的变化而变化 (2)质量为m的物体A,以一定的速度v沿光滑的水平面运动,跟迎面而来速度大小为v的物体B相碰撞,碰后两个物体结合在一起沿碰前A的方向运动,且它们的共同速度大小为v.求B物体的质量和碰撞过程中损失的机械能. 6.(1)下列说法正确的是( ). A.最近发生事故的福岛核电站利用的是轻核聚变的原理发电的 B.用不可见光照射金属一定比用可见光照射同种金属产生的光电子的初动能要大 C.波粒二象性中的波动性是大量光子和高速运动的微观粒子的行为,这种波动性与机械波在本质上是不同的 D.欲使处于基态的氢原子电离,可以用动能为13.7 eV的电子去碰撞 图15-16 (2)如图15-16所示 ,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为μ.最初木板静止,A、B两木块同时以方向水平向右的初速度v0和2v0在木板上滑动,木板足够长,A、B始终未滑离木板.求:木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移. 7.(1)太阳内部有多种热核反应,其中的一个反应方程是:H+H→He+X.若已知H的质量为m1;H的质量为m2,He的质量为m3,X的质量为m4,则下列说法中正确的是( ). A.X是中子 B.H和H在常温下就能够发生聚变 C.这个反应释放的核能为ΔE=(m1+m2-m3-m4)c2 D.我国大亚湾核电站就是利用轻核的聚变释放的能量来发电的 图15-17 (2)如图15-17所示,质量为mB=2 kg的平板车B上表面水平,开始时静止在光滑水平面上,在平板车左端静止着一块质量为mA=2 kg的物体A,一颗质量为m0=0.01 kg的子弹以v0=600 m/s的水平初速度瞬间射穿A后,速度变为v=100 m/s,已知A,B之间的动摩擦因数不为零,且A和B最终达到相对静止.求: 物体A的最大速度vA的大小; 平板车B的最大速度vB的大小. 8.(1)下列说法正确的是________. A.卢瑟福通过α粒子散射实验建立了原子核式结构模型 B.根据玻尔理论可知,当氢原子从n=4的状态跃迁到n=2的状态时,发射出光子 C.β衰变中产生的β射线实际上是原子的核外电子挣脱原子核的束缚而形成的 D.原子核的半衰期由核内部自身因素决定,与原子所处的化学状态和外部条件无关 (2)能源是社会发展的基础,发展核能是解决能源问题的途径之一.下列释放核能的反应方程,表述正确的有( ). A.H+H→He+n是核聚变反应 B.H+H→He+n是β衰变 C.U+n→Ba+Kr+3n是核裂变反应 D.U+n→Xe+Sr+2n是α衰变 (3)如图15-18所示,滑块A、B静止在水平气垫导轨上,两滑块间紧压一轻弹簧,滑块用细线连接,细线烧断后,轻弹簧掉落,两个滑块向相反方向运动.现拍得一组频闪照片.已知滑块A的质量为100 g,求:滑块B的质量. 图15-18 训练15 动量守恒定律、原子结构和原 子核中常考的3个问题 1.解析 (1)根据质量数、电荷数守恒,得X核的质量数为239-235=4,核电核数为94-92=2,故“X”核为氦核,符号为He. (2)钚核衰变过程中的质量亏损Δm=239.052 2 u-235.043 9 u-4.002 6 u=0.005 7 u,根据爱因斯坦质能方程,得出衰变过程中放出的能量E=0.005 7×931 MeV≈5.31 MeV. (3)钚核衰变成铀核和X核,根据动量守恒定律,两者动量大小相等,根据Ek=mv2=,得X核和铀核的动能之比=≈58.7. 答案 (1)He (2)5.31 (3)58.7 2.(1)乙 丁 (2)CD (3)①3 2.5 3.解析 (2)爆炸后一块弹片沿原轨道返回,则该弹片速度大小为v,方向与原方向相反,设另一块爆炸后瞬时速度大小为v1,则爆炸过程中动量守恒,有mv=-v+v1,解得v1=3v. 爆炸过程中重力势能没有改变,爆炸前系统总动能Ek=mv2,爆炸后系统总动能Ek′=×v2+×(3v)2=2.5mv2,系统增加的机械能ΔE=2mv2. 答案 (1)B (2)2mv2 4.解析 (1)由爱因斯坦光电效应方程可知Ek=hν-W0,可知最大初动能与入射光频率间的函数关系斜率h是定值,与入射光和金属材料均无关系,因此图线平行,选项A错误,D正确;由图象横轴截距可知乙金属的极限频率大,选项B正确;图象纵轴截距数值等于-W0,是由金属决定的,选项C错误;因此答案选BD. (2)子弹射入物体A的过程中,由动量守恒定律得:v0=v1,从子弹射入物体A到弹簧压缩到最短,由动量守恒定律得:v1=v2, 由机械能守恒定律得: v=v+Ep 由以上各式联立解得Ep=mBv. 答案 (1)BD (2)mBv 5.解析 (1)一群氢原子处在n=4的能级,由较高能级跃迁到较低能级时,辐射的光谱线条数为3+2+1=6条,选项A错误;原子核的衰变是自发的,不是原子核在其他粒子的轰击下而发生的,选项B错误;β衰变所释放的电子是原子核内的中子转化成质子和电子所产生的,选项C正确;放射性元素的半衰期不随温度和压强的变化而变化,选项D错误. (2)由动量守恒定律得:mv-mB×v=(m+mB)×v, 解得mB=,由能量守恒定律可得,碰撞过程中损失的机械能,ΔE=mv2+mB2-(m+mB)2=mv2. 答案 (1)C (2) mv2 6.解析 (1)目前的核电站都是利用的重核裂变发电的,因为受控热核反应目前还没有开始利用,选项A错误;不可见光还包括红外线,因此用不可见光照射金属不一定比用可见光照射同种金属产生的光电子的初动能大,B错误;波粒二象性中的波动性是大量光子和高速运动的微观粒子的行为,这种波动性与机械波在本质上是不同的,选项C正确;基态的氢原子的能量是-13.6 eV,因此欲使处于基态的氢原子电离,可以用动能为13.7 eV的电子去碰撞,D正确. (2)木块A先做匀减速直线运动,后做匀加速直线运动;木块B一直做匀减速直线运动;木板C做两段加速度不同的匀加速直线运动,直到A、B、C三者的速度相等为止,设三者速度相等时的速度为v1.对A、B、C三者组成的系统,由动量守恒定律得:mv0+2mv0=(m+m+3m)v1 对木块B运用动能定理,有:-μmgs=mv-m(2v0)2 解得:s=. 答案 (1)CD (2) 7.解析 (1)由核反应方程知A正确;聚变发生的条件是高温;B错误;由质能方程知C正确;大亚湾核电站是利用重核裂变发电的,D错误. (2)子弹穿过物体A的过程中,对子弹和物体A, 由动量守恒定律得:m0v0=m0v+mAvA 解得:vA=2.5 m/s 对物体A和平板车B,由动量守恒定律得: mAvA=(mA+mB)vB 解得:vB=1.25 m/s. 答案 (1)AC (2)2.5 m/s 1.25 m/s 8.解析 (1)β衰变是放射性原子核放射电子(β粒子)而转变为另一种核的过程,β射线来源于原子核而不是核外电子.所以C错,A、B、D正确. (2)β衰变时释放出电子,α衰变时释放出氦原子核,可知选项B、D错误;选项A中一个氚核和一个氘核结合成一个氦核并释放出一个中子是典型的核聚变反应;选项C中一个U 235原子核吸收一个中子,生成一个Ba原子核和一个Kr原子核并释放出三个中子.A、C正确. (3)由动量守恒定律有:mAvA-mBvB=0 其中:vA=,vB=, 由题图可知sA=1.5sB 代入数据可得滑块B的质量mB=150 g 答案 (1)ABD (2)AC (3)150 g 高考学习网: 高考学习网: 图15-14。
1.关于晶体和非晶体,下列说法中正确的是()A.具有各向同性的物体一定没有明显的熔点B.晶体熔化时,温度不变,则内能也不变C.通常的金属材料在各个方向上的物理性质都相同,所以这些金属都是非晶体D.晶体和非晶体在适当条件下可相互转化解析:多晶体显示各向同性,但具有确定的熔点,A错;晶体熔化时,其温度虽然不变,但其体积和内部结构可能发生变化,则内能就可能发生变化,故B 错;金属材料虽然显示各向同性,并不意味着一定是非晶体,可能是多晶体,故C错;D对.答案:D2.下列关于液体表面现象的说法中正确的是()A.把缝衣针小心地放在水面上,针可以把水面压弯而不沉没,是因为针的重力小,又受到液体的浮力的缘故B.在处于失重状态的宇宙飞船中,一大滴水银会成球状,是因为液体内分子间有相互吸引力C.玻璃管裂口放在火上烧熔,它的尖端就变圆,是因为熔化的玻璃在表面张力的作用下,表面要收缩到最小的缘故D.飘浮在热菜汤表面上的油滴,从上面观察是圆形的,是因为油滴液体呈各向同性的缘故解析:A项的缝衣针不沉没是受表面张力的作用;B项水银会成球状是因为表面张力;D也是表面张力的作用.答案:C3.对于一定质量的理想气体,以下说法中正确的是()A.气体作等容变化时,气体的压强和温度成正比B.气体作等容变化时,温度升高1°C,增加的压强是原来压强的1/273 C.气体作等容变化时,气体压强的变化量与温度的变化量成正比D.由查理定律可知,等容变化中,气体温度从t1升高到t2时,气体压强由p1增加到p2,且p2=p1[1+(t2-t1)/273]解析:对于一定质量的理想气体,其在等容变化时,有ΔpΔT=p1T1=p2T2=C(常数),又ΔT=Δt,故可判断只有C项正确.答案:C4.(2012年高考山东理综)如图所示,粗细均匀、导热良好、装有适量水银的U型管竖直放置,右端与大气相通,左端封闭气柱长l1=20 cm(可视为理想气体),两管中水银面等高.现将右端与一低压舱(未画出)接通,稳定后右管水银面高出左管水银面h=10 cm.(环境温度不变,大气压强p0=75 cmHg)(1)求稳定后低压舱内的压强(用“cmHg”作单位).(2)此过程中左管内的气体对外界________(填“做正功”“做负功”或“不做功”),气体将________(填“吸热”或“放热”).解析:(1)设U型管横截面积为S,右端与大气相通时左管中封闭气体压强为p1,右端与一低压舱接通后左管中封闭气体压强为p2,气柱长度为l2,稳定后低压舱内的压强为p.左管中封闭气体发生等温变化,根据玻意耳定律得p1V1=p2V2①p1=p0②p2=p+p h③V1=l1S④V2=l2S⑤由几何关系得h=2(l2-l1)⑥联立①②③④⑤⑥式,代入数据得p=50 cmHg⑦(2)左管中气体体积变大,对外界做正功,外界对气体做负功;管内气体温度不变,内能不变,由热力学第一定律ΔU=Q+W,得Q为正值,表示气体要吸热.答案:(1)50 cmHg(2)做正功吸热(时间:45分钟,满分:100分)[命题报告·教师用书独具]一、选择题(本题共10小题,每小题7分,共70分,每小题至少有一个选项正确,把正确选项前的字母填在题后的括号内)1.下列说法中正确的是()A.黄金可以切割加工成任意形状,所以是非晶体B.同一种物质只能形成一种晶体C.单晶体的所有物理性质都是各向异性的D.玻璃没有确定的熔点,也没有规则的几何形状解析:所有的金属都是晶体,因而黄金也是晶体,只是因为多晶体内部小晶粒的排列杂乱无章,才使黄金没有规则的几何形状,故A错误;同一种物质可以形成多种晶体,如碳可以形成金钢石和石墨两种晶体,故B错误;单晶体的物理性质各向异性是指某些物理性质各向异性,有些物理性质各向同性,故C 错误;玻璃是非晶体,因而没有确定的熔点和规则的几何形状,D正确.答案:D2.液体的饱和汽压随温度的升高而增大()A.其规律遵循查理定律B.是因为饱和汽的质量随温度的升高而增大C.是因为饱和汽的体积随温度的升高而增大D.是因为饱和汽密度和蒸汽分子的平均速率都随温度的升高而增大解析:当温度升高时,蒸汽分子的平均动能增大,导致饱和汽压增大;同时,液体中平均动能大的分子数增多,从液面飞出的分子数将增多,在体积不变时,将使饱和汽的密度增大,也会导致饱和汽压增大,故选D.答案:D3.下列说法中正确的是()A.一定质量的理想气体在体积不变的情况下,压强p与摄氏温度t成正比B.液体的表面张力是由于液体表面层分子间表现为相互吸引所致C.控制液面上方饱和汽的体积不变,升高温度,则达到动态平衡后该饱和汽的质量增大,密度增大,压强不变D.温度可以改变某些液晶的光学性质解析:一定质量的理想气体在体积不变的情况下,压强p与热力学温度T 成正比,A选项错误;饱和汽的压强随温度升高而增大,C选项错误.答案:BD4.有关气体压强,下列说法正确的是()A.气体分子的平均速率增大,则气体的压强一定增大B.气体分子的密集程度增大,则气体的压强一定增大C.气体分子的平均动能增大,则气体的压强一定增大D.气体分子的平均动能增大,气体的压强有可能减小解析:气体的压强与两个因素有关,一是气体分子的平均动能,二是气体分子的密集程度,或者说,一是温度,二是体积.密集程度或平均动能增大,都只强调问题的一方面,也就是说,平均动能增大的同时,气体的体积可能也增大,使得分子密集程度减小,所以压强可能增大,也可能减小.同理,当分子的密集程度增大时,分子平均动能也可能减小,压强的变化不能确定.综上所述正确答案应为D.答案:D5.(2011年高考全国卷)对于一定量的理想气体,下列说法正确的是() A.若气体的压强和体积都不变,其内能也一定不变B.若气体的内能不变,其状态也一定不变C.若气体的温度随时间不断升高,其压强也一定不断增大D.气体温度每升高1 K所吸收的热量与气体经历的过程有关E.当气体温度升高时,气体的内能一定增大解析:一定质量的理想气体,pVT=常量,p、V不变,则T不变,分子平均动能不变,又理想气体分子势能为零,故气体内能不变,A项正确;理想气体内能不变,则温度T不变,由pVT=常量知,p及V可以变化,故状态可以变化,B 错误;等压变化过程,温度升高、体积增大,故C错误;由热力学第一定律ΔU =Q+W知,温度升高1 K,内能增量ΔU一定,而外界对气体做的功W与经历的过程有关,因此吸收的热量与气体经历的过程也有关,D项正确;温度升高,平均动能增大,分子势能不变,内能一定增大,E项正确.答案:ADE6.(2012年高考广东卷)景颇族的祖先发明的点火器如图所示,用牛角做套筒,木制推杆前端粘着艾绒.猛推推杆,艾绒即可点燃.对筒内封闭的气体,在此压缩过程中()A.气体温度升高,压强不变B.气体温度升高,压强变大C.气体对外界做正功,气体内能增加D.外界对气体做正功,气体内能减少解析:压缩气体时,外界对气体做功,内能增加,温度升高,体积变小,压强增大,所以只有B正确.答案:B7.如图是氧气分子在0 °C和100 °C下的速率分布图线,由图可知()A.随着温度升高,氧气分子的平均速率变小B.随着温度升高,每一个氧气分子的速率都增大C.随着温度升高,氧气分子中速率小的分子所占比例增大D.同一温度下,氧气分子速率分布呈现“中间多,两头少”的规律解析:根据图线可以看出,随着温度升高,氧气分子中速率大的分子所占比例增大,同一温度下,氧气分子速率分布呈现“中间多、两头少”的规律,选项A、B、C错,D对.答案:D8.(2013年济南模拟)如图所示,一定质量的理想气体从状态A变化到状态B,再由状态B变化到状态C,最后变化到状态A的过程中,下列说法正确的是()A .从状态A 变化到状态B 的过程中,气体膨胀对外做功,放出热量B .从状态B 变化到状态C 的过程中,气体体积不变,压强减小,放出热量C .从状态C 变化到状态A 的过程中,气体压强不变,体积减小,放出热量D .若状态A 的温度为300 K ,则状态B 的温度为600 K解析:气体从状态A 变化到状态B 的过程中,气体体积增大,膨胀对外做功,压强升高,根据pV T =C 可知,其温度升高,根据热力学第一定律可知,气体要吸热,选项A 错误;从状态B 变化到状态C 的过程中,气体体积不变,W =0,压强减小,则温度降低,由ΔU =Q +W 可知气体放热,选项B 正确;从状态C 变化到状态A 的过程中,气体体积减小,W >0,压强不变,则温度降低,由ΔU=W +Q 可知气体放热,选项C 正确;由pV T =C 可求出状态B 的温度为1 200 K ,选项D 错误.答案:BC9.(2013年湖南十校联考)如图,固定的导热汽缸内用活塞密封一定质量的理想气体,气缸置于温度不变的环境中.现用力使活塞缓慢地向上移动,密闭气体的状态发生了变化.下列图象中p 、V 和U 分别表示该气体的压强、体积和内能,E -k 表示该气体分子的平均动能,n 表示单位体积内气体的分子数,a 、d 为双曲线,b 、c 为直线.能正确反映上述过程的是( )解析:汽缸置于温度不变的环境中说明气体做等温变化,其p -V 图象是双曲线,A 正确;理想气体的内能由分子平均动能决定,温度不变,气体的内能不变,B 正确,C 错误;单位体积内气体的分子数与体积的乘积为容器内分子总数,容器内分子总数不变,D 正确.答案:ABD二、非选择题(本题共3小题,共30分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)10.(10分)如图所示,上端开口的圆柱形汽缸竖直放置,截面积为5×10-3m 2,一定质量的气体被质量为2.0 kg 的光滑活塞封闭在汽缸内,其压强为________ Pa(大气压强取1.01×105 Pa ,g 取10 m/s 2).若从初温27 °C 开始加热气体,使活塞离汽缸底部的高度由0.50 m 缓慢地变为0.51 m .则此时气体的温度为________°C.解析:p 1=F S =mg S =2×105×10-3Pa =0.04×105 Pa ,所以p =p 1+p 0=0.04×105 Pa +1.01×105 Pa =1.05×105 Pa ,由盖—吕萨克定律得V 1T 1=V 2T 2,即0.50 S 273+27=0.51 S 273+t,所以t =33 °C.答案:1.05×105 3311.(10分)一活塞将一定质量的理想气体封闭在汽缸内,初始时气体体积为3.0×10-3m 3.用DIS 实验系统测得此时气体的温度和压强分别为300 K 和1.0×105 Pa.推动活塞压缩气体,稳定后测得气体的温度和压强分别为320 K 和1.6×105 Pa.(1)求此时气体的体积;(2)保持温度不变,缓慢改变作用在活塞上的力,使气体压强变为0.8×104Pa ,求此时气体的体积.解析:(1)从气体状态Ⅰ到状态Ⅱ的变化符合理想气体状态方程,由p 1V 1T 1=p 2V 2T 2解得V 2=p 1T 2p 2T 1V 1=1.0×105×320×3.0×10-31.6×105×300m 3 =2.0×10-3m 3(2)由气体状态Ⅱ到状态Ⅲ为等温变化过程,有p 2V 2=p 3V 3解得V 3=p 2V 2p 3=1.6×105×2.0×10-38.0×104m 3 =4.0×10-3 m 3答案:(1)2.0×10-3 m 3 (2)4.0×10-3 m 312.(10分)如图所示,A 、B 两个汽缸中装有体积均为10 L 、压强均为1 atm(标准大气压)、温度均为27 °C 的空气,中间用细管连接,细管容积不计.细管中有一绝热活塞,现将B 汽缸中的气体升温到127 °C ,若要使细管中的活塞仍停在原位置.(不计摩擦,A 汽缸中的气体温度保持不变,A 汽缸截面积为500 cm 2)(1)求A 中活塞应向右移动的距离.(2)A 中气体是吸热还是放热,为什么?解析:(1)对B :由P B T B=P B ′T B ′得 P B ′=T B ′T BP B =400300P B =43P B 对A :由P A V A =P A ′V A ′ 得V A ′=P A V A P A ′且:P A =P B ,P A ′=P B ′ 解得V A ′=34V A所以Δl=14V AS=5 cm.(2)放热,在向右推活塞过程中,A中气体温度不变,气体内能不变;体积减小,外界对气体做功,由热力学第一定律ΔU=Q+W可知气体应放热.答案:(1)5 cm见解析。
1.(2011年高考北京卷)介质中有一列简谐机械波传播,对于其中某个振动质点()A.它的振动速度等于波的传播速度B.它的振动方向一定垂直于波的传播方向C.它在一个周期内走过的路程等于一个波长D.它的振动频率等于波源的振动频率解析:机械波在传播过程中,振动质点并不随波迁移,只是在各自的平衡位置附近做简谐运动,质点振动速度与波的传播速度是两个不同概念,选项A、C 错误.机械波可能是横波,也可能是纵波,故振动质点的振动方向不一定垂直于波的传播方向,选项B错误.振动质点的振动是由波源的振动引起的受迫振动,故质点的振动频率等于波源的振动频率,选项D正确.答案:D2.(2012年高考浙江卷)用手握住较长软绳的一端连续上下抖动,形成一列简谐横波.某一时刻的波形如图所示,绳上a、b两质点均处于波峰位置.下列说法正确的是()A.a、b两点之间的距离为半个波长B.a、b两点振动开始时刻相差半个周期C.b点完成全振动次数比a点多一次D.b点完成全振动次数比a点少一次解析:相邻的两个波峰之间的距离为一个波长,A错误.波在一个周期内向前传播的距离为一个波长,a点比b点早振动一个周期,完成全振动的次数也比b点多一次,故B、C错误,D正确.答案:D3.(2012年高考福建理综)一列简谐横波沿x轴传播,t=0时刻的波形如图甲所示,此时质点P正沿y轴负方向运动,其振动图象如图乙所示,则该波的传播方向和波速分别是()A.沿x轴负方向,60 m/sB.沿x轴正方向,60 m/sC.沿x轴负方向,30 m/sD.沿x轴正方向,30 m/s解析:因t=0时质点P向下振动,而由波形图甲可以看出与质点P相邻的右侧质点位于质点P下方,故质点P的振动是由其右侧质点引起的,波沿x轴负方向传播,B、D皆错误.由图甲可得该波波长λ=24 m,由图乙可得周期T=60 m/s,A正确,C错误.=0.4 s,故波速v=λT答案:A4.某时刻的波形图如图所示,波沿x轴正方向传播,质点p的坐标x=0.32 m.从此时刻开始计时,(1)若每间隔最小时间0.4 s重复出现波形图,求波速.(2)若p点经0.4 s第一次达到正向最大位移,求波速.(3)若p点经0.4 s到达平衡位置,求波速.解析:(1)依题意,周期T=0.4 s,波速v=λT=0.80.4m/s=2 m/s.(2)波向右传播Δx=0.32 m-0.2 m=0.12 m时,p点恰好第一次达到正向最大位移.波速v=ΔxΔt =0.120.4m/s=0.3 m/s.(3)波向右传播Δx=0.32 m时,p点第一次到达平衡位置,由周期性可知波传播的可能距离Δx=0.32+λ2n(n=0,1,2,3,…)波速v=ΔxΔt =0.32+0.82n0.4m/s=(0.8+n) m/s(n=0,1,2,3,…).答案:(1)2 m/s(2)0.3 m/s(3)(0.8+n) m/s(n=0,1,2,3,…)(时间:45分钟,满分:100分)[命题报告·教师用书独具]项正确,把正确选项前的字母填在题后的括号内)1.(2013年北京西城检测)下列关于简谐运动和简谐机械波的说法正确的是()A.弹簧振子的周期与振幅有关B.横波在介质中的传播速度由波源决定C.在波传播方向上的某个质点的振动速度就是波的传播速度D.单位时间内经过介质中一点的完全波的个数就是这列简谐波的频率解析:弹簧振子的周期由振子质量和弹簧的劲度系数决定,与振幅无关,A 项错误;波的传播速度由介质决定,与波源无关,B项错误;质点的振动速度与波速无关,C项错误;波传播时介质中一点每完成一次全振动,则向前传播一个完整的波形,D项正确.答案:D2.(2013年潍坊调研)假如一辆汽车在静止时喇叭发出声音的频率是300 Hz,在汽车向你驶来又擦身而过的过程中,下列说法正确的是()A.当汽车向你驶来时,听到喇叭声音的频率大于300 HzB.当汽车向你驶来时,听到喇叭声音的频率小于300 HzC.当汽车和你擦身而过后,听到喇叭声音的频率大于300 HzD.当汽车和你擦身而过后,听到喇叭声音的频率小于300 Hz解析:由多普勒效应可知,声源与观察者相对靠近过程中,观察者接收到的频率增大;相对观察者远离过程中,观察者接收到的频率减小.答案:AD3.如图所示为观察水面波衍射的实验装置,AC和BD是两块挡板,AB是一个孔,O是波源,图中已画出波源所在区域波的传播情况,每两条相邻波纹(图中曲线)之间距离表示一个波长,则对波经过孔后的传播情况,下列描述不正确的是()A.此时能明显地观察到波的衍射现象B.挡板前后波纹间距离相等C.如果将孔AB扩大,有可能观察不到明显的衍射现象D.如果孔的大小不变,波源频率增大,能更明显地观察到衍射现象解析:从图可以看出,孔AB尺寸与波长相差不大,衍射现象的明显程度与波长及障碍物线度相对比较有关:当两者较接近时,衍射现象明显,否则不明显,知,v不变,f增大,只能使λ减小,故选项D错;故选项A、C正确;由λ=vf既然衍射是指“波绕过障碍物而传播的现象”,那么经过孔后的波长自然不变,故选项B是正确的.答案:D4.如图所示,S1、S2是振动情况完全相同的两个机械波波源,振幅为A,a、b、c三点分别位于S1、S2连线的中垂线上,且ab=bc.某时刻a是两列波的波峰相遇点,c是两列波的波谷相遇点,则()A.a处质点的位移始终为2AB.c处质点的位移始终为-2AC.b处质点的振幅为2AD.c处质点的振幅为2A解析:因为a、b、c三点均在S1、S2中垂线上,则各点到S1、S2的距离相等,则S1与S2到各点的波程差为零,S1与S2振动情况相同,在a、b、c各点振动加强,振动加强并不是位移不变,而是振幅为2A,则C、D正确,A、B错误.答案:CD5.(2013年泉州质检)沿x轴正方向传播的一列简谐横波在某时刻的波形图如图所示,其波速为200 m/s,下列说法中正确的是()A.图示时刻质点b的速度方向沿y轴正方向B.图示时刻质点a的加速度为零C.若此波遇到另一简谐波并发生稳定干涉现象,则该波所遇到的波的频率为50 HzD.若该波发生明显的衍射现象,该波所遇到的障碍物或孔的尺寸一定比4 m 大得多解析:因波向x轴正方向传播,故图示时刻质点b向y轴负方向振动,A错;图示时刻质点a的加速度最大,B错;因该波的频率f=vλ=2004Hz=50 Hz,故C对;因该波的波长为4 m,故D错.答案:C6.(2012年高考安徽理综)一列简谐波沿x轴正方向传播,在t=0时波形如右图所示,已知波速为10 m/s.则t=0.1 s时正确的波形应是下图中的()解析:由题图知,波长λ=4.0 m,得周期T=λv=0.4 s;由波的传播方向与质点振动方向的关系可判断,经过t=0.1 s=T4,x=0处的质点振动到平衡位置,且振动方向向下,x=1.0 m处的质点振动到位移正向最大处,所以C项正确.答案:C7.(2012年高考天津理综)沿x轴正向传播的一列简谐横波在t=0时刻的波形如图所示,M为介质中的一个质点,该波的传播速度为40 m/s,则t=140s时()A.质点M对平衡位置的位移一定为负值B.质点M的速度方向与对平衡位置的位移方向相同C.质点M的加速度方向与速度方向一定相同D.质点M的加速度方向与对平衡位置的位移方向相反解析:由波形图及传播方向可知,t=0时质点M的振动方向向上,由T=λv=440s=110s知t=140s=T4,质点M经过T4后处在从正向最大位移回到平衡位置的过程中,所以对平衡位置的位移方向为正,速度方向为负,加速度方向为负,所以A、B错误,C、D正确.答案:CD8.如图所示,实线是沿x轴传播的一列简谐横波在t=0时刻的波形图,虚线是这列波在t=0.05 s时刻的波形图.已知该波的波速是80 cm/s,则下列说法中正确的是()A .这列波有可能沿x 轴正方向传播B .这列波的波长是10 cmC .t =0.05 s 时刻x =6 cm 处的质点正在向下运动D .这列波的周期一定是0.15 s解析:由波的图象可看出,这列波的波长λ=12 cm ,选项B 错误;根据v =λT ,可求出这列波的周期为T =λv =1280 s =0.15 s ,选项D 正确;根据x =v t =80×0.05 cm =4 cm 可判断,波应沿x 轴负方向传播,根据波的“微平移”法可判断t =0.05 s 时刻x =6 cm 处的质点正在向上运动,选项A 、C 错误.答案:D9.一列简谐横波沿直线传播,已知介质中a 、b 两质点平衡位置间的距离为2 m ,a 、b 两质点的振动情况如图所示,则下列说法中错误的是( )A .波长可能为85 mB .波长一定小于83 mC .波速可能为247 m/sD .波速可能大于23 m/s解析:波的传播具有双向性,若波从a 向b 传播,由题图可知,质点b 比a落后34T ,因此波长满足2 m =(n +34)λ,即λ=2×44n +3m(n =0,1,2,…);波速v =λT =2×44(4n +3)m/s(n =0,1,2,…).若波由b 向a 传播,则波长满足2 m =(n +14)λ,即λ=2×44n +1 m(n =0,1,2,…);波速v =λT =2×44(4n +1) m/s(n =0,1,2,…);综上所述可知错误的只有B.答案:B10.在O 点有一波源,t =0时刻开始向上振动,形成向右传播的一列横波.t 1=4 s 时,距离O 点为3 m 的A 点第一次达到波峰;t 2=7 s 时,距离O 点为4 m 的B 点第一次达到波谷.则以下说法正确的是( )A .该横波的波长为2 mB .该横波的周期为4 sC .该横波的波速为1 m/sD .距离O 点为5 m 的质点第一次开始向上振动的时刻为6 s 末解析:由题意可知,A 点从开始振动到第一次到达波峰的时间为T 4,故波传到A 点的时间为t 1-T 4=4 s -T 4,由波的传播公式x =v t 得3 m =v ×(4 s -T 4);同理,B 点从开始振动到第一次到达波谷的时间为3T 4,故波传到B 点的时间为t 2-3T 4=7 s -3T 4,由波的传播公式x =v t 得4 m =v ×(7 s -3T 4);联立解得:T =4 s ,v =1 m/s ,故选项B 、C 正确;波长λ=v T =1 m/s ×4 s =4 m ,距离O 点为5 m的质点第一次向上振动的时刻为5 m 1 m/s =5 s ,选项A 、D 错误.答案:BC二、非选择题(本题共2小题,共30分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)11.(15分)(2012年高考山东理综)一列简谐横波沿x 轴正方向传播,t =0时刻的波形如图所示,介质中质点P 、Q 分别位于x =2 m ,x =4 m 处.从t =0时刻开始计时,当t=15 s时质点Q刚好第4次到达波峰.(1)求波速.(2)写出质点P做简谐运动的表达式(不要求推导过程).解析:(1)设简谐横波的波速为v,波长为λ,周期为T,由图象知,λ=4 m.由题意知t=3T+34Tv=λT联立以上两式,代入数据得v=1 m/s(2)质点P做简谐运动的表达式为y=0.2sin (0.5πt) m答案:(1)1 m/s(2)y=0.2sin (0.5πt) m12.(15分)一列简谐波沿x轴方向传播,已知x轴上x1=0和x2=1 m两处质点的振动图线分别如图甲、乙所示,求此波的传播速度.解析:由所给出的振动图象可知周期T=4×10-3s.由题图可知,t=0时刻,x1=0的质点P(其振动图象即为图甲)在正最大位移处,x2=1 m的质点Q(其振动图象即为图乙)在平衡位置向y轴负方向运动,所以当简谐波沿x轴正向传播时,PQ间距离为(n+34)λ1,当波沿x轴负方向传播时,PQ 间距离为(n +14)λ2,其中n =0,1,2… 因为(n +34)λ1=1 m ,所以λ1=43+4n m 因为(n +14)λ2=1 m ,所以λ2=41+4nm 波沿x 轴正向传播时的波速v 1=λ1T =1033+4nm/s(n =0,1,2…) 波沿x 轴负向传播时的波速v 2=λ2T =1031+4nm/s(n =0,1,2…) 答案:波沿x 轴正向传播时v 1=1033+4nm/s(n =0,1,2…) 波沿x 轴负向传播时v 2=1031+4nm/s(n =0,1,2…)。
【优化方案】2014物理二轮课时演练知能提升:振动与波动 光(含2013试题,含详解)1.做简谐运动的物体,当它每次经过同一位置时,可能不同的物理量是( )A .位移B .速度C .加速度D .回复力解析:选B.做简谐运动的物体,经过同一位置时,位移、回复力和加速度是确定不变的,而速度的方向可能不同,故A 、C 、D 错误,B 正确.2.(2013·高考江苏卷)如图所示的装置,弹簧振子的固有频率是4Hz.现匀速转动把手,给弹簧振子以周期性的驱动力,测得弹簧振子振动达到稳定时的频率为1 Hz ,则把手转动的频率为( )A .1 HzB .3 HzC .4 HzD .5 Hz解析:选A.根据受迫振动的频率等于驱动力的频率,选项A 正确.3.(2013·高考福建卷)如图,t =0时刻,波源在坐标原点从平衡位置沿y 轴正向开始振动,振动周期为0.4 s ,在同一均匀介质中形成沿x 轴正、负两方向传播的简谐横波.下图中能够正确表示t =0.6 s 时波形的图是( )解析:选C.根据波动与振动的关系分析波的图象.根据波的传播的周期性,t =0.6 s时的波形是波源振动112个周期形成的,此时波源在坐标原点从平衡位置向y 轴负方向振动,由波的传播方向与质点的振动方向的关系知选项C 正确.4.(2013·杭州四中统测)在坐标原点处有一质点O 做简谐振动,它形成沿x 轴传播的简谐横波,波长为16 m ,在其右侧相距4 m 处的质点P 的振动图象如图所示,选用与P 质点相同的计时起点,那么t =5 s 时的波形图象是下图中的( )解析:选C.首先波是从原点向两边传播的,所以一定是关于y 轴对称,故选项B 错误;由振动图象可知,t =5 s 时,质点P 正经过平衡位置向上运动.t =5 s 时,选项A 中的质点P 处于波峰位置,选项D 中的质点P 经过平衡位置向下运动,故选项A 、D 错误.5.(2013·北京海淀模拟)如图,一束白光沿半径方向从A 点射入半圆形玻璃砖,在O 点发生反射和折射,折射光照在光屏上,a 、b 为折射光的上下边界,c 为反射光.若入射点由A 向B 缓慢移动,并保持白光沿半径方向入射到O 点,可以观察到各色光在光屏上陆续消失.在光带未完全消失之前,下列说法正确的有( )A .c 光逐渐变暗B .ab 光带逐渐变亮C .a 光与b 光相比,a 光先消失D .单色光a 通过玻璃砖所需的时间小于单色光b 通过玻璃砖所需的时间解析:选D.由题图知单色光a 的折射率小于单色光b 的折射率,又由n =c v知,单色光a 在玻璃中的速度比b 大,故通过玻璃砖所需的时间小于单色光b 通过玻璃砖所需的时间,D 正确.入射点从A 向B 缓慢移动时,越来越多的光发生全反射,故c 光逐渐变亮,ab 光带逐渐变暗,b 光是先消失的,即A 、B 、C 均错误.6.某同学设计了一个测定激光波长的实验装置,如图甲所示,激光器发出的一束直径很小的红色激光进入一个一端装双缝、另一端装有感光片的遮光筒,感光片的位置上出现一排等距的亮点,图乙中的黑点代表亮点的中心位置.(1)通过量出相邻光点的距离可算出激光的波长.据资料介绍:若双缝的缝间距离为a ,双缝到感光片的距离为L ,感光片相邻两光点间的距离为b ,则光的波长λ=ab L .该同学测得L =1.000 0 m ,双缝间距a =0.220 mm ,用带十分度游标的卡尺测感光片上的点间距离时,尺与点的中心位置如图乙所示.图乙中第1个光点到第4个光点的距离是________mm.实验中激光的波长λ=________m .(保留两位有效数字)(2)如果实验时将红激光换成蓝激光,屏上相邻两光点间的距离将________.解析:(1)由乙图可知第1个光点到第4个光点间的距离b ′=8.6 mm ,b =b ′3=2.9 mm 由b =L aλ得:λ=a L ·b =0.220×10-31.000 0×2.9×10-3 m ≈6.4×10-7 m. (2)如果实验时将红激光换成蓝激光,λ变小了,由b =L λa 可得,屏上相邻两光点的间距将变小.答案:(1)8.6 6.4×10-7(2)变小7.(2013·高考重庆卷)(1)一列简谐横波沿直线传播,某时刻该列波上正好经过平衡位置的两质点相距6 m ,且这两质点之间的波峰只有一个,则该简谐波可能的波长为________.A .4 m 、6 m 和8 mB .6 m 、8 m 和12 mC .4 m 、6 m 和12 mD .4 m 、8 m 和12 m(2)利用半圆柱形玻璃,可减小激光光束的发散程度.在如图所示的光路中,A 为激光的出射点,O 为半圆柱形玻璃横截面的圆心,AO 过半圆顶点.若某条从A 点发出的与AO 成α角的光线,以入射角i 入射到半圆弧上,出射光线平行于AO ,求此玻璃的折射率.解析:(1)根据题意,两质点之间的波峰只有一个,可能情况有:①12λ=6 m ,λ=12 m②λ=6 m③32λ=6 m ,λ=4 m ,故选项C 正确. (2)如图所示,由几何关系知折射角r =i -α,由折射定律得n =sin i sin (i -α). 答案:(1)C (2)sin i sin (i -α)8.(2013·高考山东卷) (1)如图甲所示,在某一均匀介质中,A 、B是振动情况完全相同的两个波源,其简谐运动表达式均为x =0.1sin(20πt ) m ,介质中P 点与A 、B 两波源间的距离分别为4 m 和5 m ,两波源形成的简谐横波分别沿AP 、BP 方向传播,波速都是10 m/s.①求简谐横波的波长.②P 点的振动________(填“加强”或“减弱”). (2)如图乙所示,ABCD 是一直角梯形棱镜的横截面,位于截面所在平面内的一束光线由O 点垂直AD 边射入,已知棱镜的折射率n =2,AB =BC =8 cm ,OA =2 cm ,∠OAB =60°.①求光线第一次射出棱镜时,出射光线的方向.②第一次的出射点距C ________cm.解析:(1)①设此简谐横波的波速为v ,波长为λ,周期为T ,由题意知T =0.1 s由波速公式v =λT代入数据得λ=1 m.②加强.(2)①设发生全反射的临界角为C ,由折射定律得sin C =1n代入数据得C =45°光路图如图所示,由几何关系可知光线在AB 边和BC 边的入射角均为60°,均发生全反射.设光线在CD 边的入射角为α,折射角为β,由几何关系得α=30°,小于临界角,光线第一次射出棱镜是在CD 边,由折射定律得n =sin βsin α代入数据得β=45°. ②433cm. 答案:(1)①1 m ②加强(2)①光线与CD 成45°角 ②4339.(2013·黄山二模)(1)只含有a 、b 两种单色光的复色光由某种介质射向真空,光路如图所示,则下列说法正确的是________.A .a 光在玻璃砖中的传播速度比b 光小B .a 光的频率比b 光小C .a 光的临界角比b 光小D .a 、b 通过相同的双缝干涉实验装置,a 光的条纹间距比b 光大(2)P 、Q 是一列简谐横波中的两点,相距9 m ,它们各自的振动图线如图所示,如果Q 比P 离波源近,那么这列波的波长为多少?波速的最大值是多少?解析:(1)由光路图可知,b 光折射率大,a 光在玻璃砖中的传播速度比b 光大,a 光的频率比b 光小,选项A 错误,B 正确;由全反射临界角公式可知,a 光的临界角比b 光大,选项C 错误;由双缝干涉条纹间距公式,a 、b 通过相同的双缝干涉实验装置,a 光的条纹间距比b 光大,选项D 正确.(2)由振动图象可知,T =4 s.由题意可知,9=k λ+λ4,解得λ=364k +1(k =0,1,2,3…) 由公式v =λT ,得v =94k +1(k =0,1,2,3,…) 当k =0时,波速最大,最大波速v =9 m/s.答案:(1)BD (2)364k +1(k =0,1,2,3…) 9 m/s 10.(1)下列说法正确的是________.A .摆钟偏快时可缩短摆长进行校准B .火车鸣笛向我们驶来时,我们听到的笛声频率将比声源发声的频率高C .拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度D .地面附近有一高速水平飞过的火箭,地面上的人观察到的火箭长度要比火箭上的人观察到的短一些E .从地面上观察,飞船上的时间进程比地面上慢(2)高速公路上的标志牌都用“回归反射膜”制成,夜间行车时,它能把车灯射出的光逆向返回.这种“回归反射膜”是用球体反射元件制成的.如图,透明介质球的球心位于O 点,半径为R ,光线DC 平行于直径AOB 射到介质球的C 点,DC 与AB 的距离H =32R .若DC 光线进入介质球折射后,经一次反射,再折射后射出的光线与入射光线平行,试作出光路图,并算出介质球的折射率.解析:(1)由T =2πL g知,摆钟偏快是T 偏小,因此应增大摆长来进行校准,故A 错;由多普勒效应知,B 正确;镜头前加偏振片是为了不让玻璃上的反射光进入镜头,故C 错;由相对论可知,动尺变短,动钟变慢,故D 、E 正确. (2)光路如图所示.光线经反射后到达介质与空气的界面时,由几何关系和折射定律得i ′=r ,r ′=i . 折射光线PQ 与入射光线DC 平行,则:∠POA =∠COA =i ,sin i =HR =32, 故i =60°.由图可知,折射角r =i2=30°, 所以sin r =12,折射率n =sin i sin r = 3.答案:(1)BDE (2)见解析图 3。
2014高考物理二轮复习能力提升演练8 带电粒子在复合场中的运动 常考的2个问题(计算题)1.如图8-9所示,两块平行金属极板MN水平放置,板长L=1 m,间距d= m,两金属板间电压U=1×104 V;在平行金属板右侧依次存在ABC和FGH两个全等的正三角形区域,正三角形ABC内存在垂直纸面向里的匀强磁场B1,三角形的上顶点A与上金属板M平齐,BC边与金属板平行,AB边的中点P恰好在下金属板N的右端点;正三角形FGH内存在垂直纸面向外的匀强磁场B2,已知A、F、G处于同一直线上.B、C、H也处于同一直线上.AF两点距离为m.现从平行金属极板MN左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m=3×10-10 kg,带电荷量q=+1×10-4 C,初速度v0=1×105 m/s. 图8-9 (1)求带电粒子从电场中射出时的速度v的大小和方向; (2)若带电粒子进入中间三角形区域后垂直打在AC边上,求该区域的磁感应强度B1; (3)若要使带电粒子由FH边界进入FGH区域并能再次回到FH界面,求B2应满足的条件. 2.如图8-10所示,一半径为R的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与直线垂直.圆心O到直线的距离为R.现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b点离开该区域.若磁感应强度大小为B,不计重力,求电场强度的大小. 3.如图8-11所示,坐标系xOy在竖直平面内,长为L的水平轨道AB光滑且绝缘,B点坐标为.有一质量为m、电荷量为+q的带电小球(可看成质点)被固定在A点.已知在第一象限内分布着互相垂直的匀强电场和匀强磁场,电场方向竖直向上,场强大小E2=,磁场为水平方向(在图中垂直纸面向外),磁感应强度大小为B;在第二象限内分布着沿x轴正方向的水平匀强电场,场强大小E1=.现将带电小球从A点由静止释放,设小球所带的电荷量不变.试求: 图8-11 (1)小球运动到B点时的速度大小; (2)小球第一次落地点与O点之间的距离; (3)小球从开始运动到第一次落地所经历的时间. 4.如图8-12a所示,水平直线MN下方有竖直向上的匀强电场,现将一重力不计、比荷=106 C/kg的正电荷置于电场中的O点由静止释放,经过×10-5 s后,电荷以v0=1.5×104 m/s的速度通过MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B按图8-12b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻).求: 图8-12 (1)匀强电场的电场强度E的大小; (2)图b中t=×10-5 s时刻电荷与O点的水平距离; (3)如果在O点右方d=68 cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需的时间.(sin37°=0.60,cos 37°=0.80) 训练8 带电粒子在复合场中的运动常考的2个问题(计算题) 1.解析 (1)设带电粒子在电场中做类平抛运动时间为t,加速度为a,则:q=ma 故a==×1010m/s2, t==1×10-5 s, 竖直方向的速度为vy=at=×105 m/s, 射出时的速度大小为v==×105 m/s, 速度v与水平方向夹角为θ,tan θ==,故θ=30°,即垂直于AB方向射出. (2)带电粒子出电场时竖直方向偏转的位移y=at2= m=,即粒子由P点垂直AB射入磁场,由几何关系知在磁场ABC区域内做圆周运动的半径为R1== m, 由B1qv=m知:B1== T. (3)分析知当轨迹与边界GH相切时,对应磁感应强度B2最小,运动轨迹如图所示: 由几何关系可知R2+=1 m, 故半径R2=(2-3)m, 又B2qv=m,故B2= T,所以B2应满足的条件为大于 T. 答案 见解析 2.解析 粒子在磁场中做圆周运动.设圆周的半径为r,由牛顿第二定律和洛伦兹力公式得qvB=m 式中v为粒子在a点的速度. 过b点和O点作直线的垂线,分别与直线交于c和d点.由几何关系知,线段、和过a、b两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此==r 设=x,由几何关系得=R+x =R+ 联立式得r=R 再考虑粒子在电场中的运动.设电场强度的大小为E,粒子在电场中做类平抛运动.设其加速度大小为a,由牛顿第二定律和带电粒子在电场中的受力公式得qE=ma 粒子在电场方向和直线方向所走的距离均为r,由运动学公式得r=at2 r=vt 式中t是粒子在电场中运动的时间. 联立式得E=. 答案 3.解析 (1)小球从A点运动到B点的过程中,由动能定理得mv=qE1L, 所以小球运动到B点时的速度大小vB= = =. (2)小球在第一象限内做匀速圆周运动,设半径为R, 由qBvB=m得 R==·=L, 设图中C点为小球做圆周运动的圆心,它第一次的落地点为D点,则CD=R, OC=OB-R=L-L=L, 所以,第一次落地点到O点的距离为 OD== =. (3)小球从A到B所需时间 tAB===, 小球做匀速圆周运动的周期为T=, 由几何关系知BCD=120°, 小球从B到D所用的时间为tBD==, 所以小球从开始运动到第一次落地所经历的时间为 tAD=tAB+tBD=+=. 答案 (1) (2) (3) 4.解析 (1)电荷在电场中做匀加速直线运动,设其在电场中运动的时间为t1,有:v0=at1,Eq=ma, 解得:E==7.2×103 N/C. (2)当磁场垂直纸面向外时,电荷运动的半径:r==5 cm,周期T1==×10-5 s,当磁场垂直纸面向里时,电荷运动的半径:r2==3 cm, 周期T2==×10-5 s, 故电荷从t=0时刻开始做周期性运动,其运动轨迹如下图所示. t=×10-5 s时刻电荷与O点的水平距离: Δd=2(r1-r2)=4 cm. (3)电荷从第一次通过MN开始,其运动的周期为: T=×10-5 s, 根据电荷的运动情况可知, 电荷到达挡板前运动的完整周期数为15个, 此时电荷沿MN运动的距离:s=15 Δd=60 cm, 则最后8 cm的距离如右图所示,有: r1+r1cos α=8 cm, 解得:cos α=0.6,则α=53° 故电荷运动的总时间: t总=t1+15T+T1-T1=3.86×10-4 s. 答案 (1)7.2×103 N/C (2)4 cm (3)3.86×10-4 s 高考学习网: 高考学习网: 图8-10。
避躲市安闲阳光实验学校高考物理第二轮课堂综合演练试题61.(2011·新课标全国卷)一带负电荷的质点,在电场力作用下沿曲线abc从a 运动到c,已知质点的速率是递减的。
关于b点电场强度E的方向,如图6-11中可能正确的是(虚线是曲线在b点的切线)( )图6-11解析:由a至c的弯曲情况可知受力方向指向图中虚线的右下方,b点的速度方向v b如图,由a至c速率递减可知受力方向如图中F,α角大于90°,因为电荷为负,故场强方向应与F反向,故D正确。
答案:D2.一带电小球悬挂在平行板电容器内部,闭合电键S,电容器充电后,悬线与竖直方向夹角为φ,如图6-12所示。
下列方法中能使夹角φ减小的是( )A.保持电键S闭合,使两极板靠近一些图6-12B.保持电键S闭合,使滑动变阻器滑片向右移动C.保持电键S闭合,使两极板远离一些D.打开电键S,使两极板靠近一些解析:要使悬线夹角φ减小,就要减小小球在电容器中所受到的电场力,即要减小电容器内部电场强度。
保持电键S闭合,即电容器两端电压不变,使两极板靠近些,由E=Ud知,电场强度增大,φ要增大;使两极板远离一些,就会使电场强度减小,夹角φ减小;而调节滑动变阻器是不影响电容器两极板间电压的,因此A、B错误,C正确;若打开电键S,电容器两极板电荷量不变,使两极板靠近一些,由C=εS4πkd,U=QC,E=Ud知,E不变,即夹角φ不变,D 错误。
答案:C3.如图6-13所示,A、B两导体板平行放置,在t=0时将电子从A板附近由静止释放(电子的重力忽略不计)。
分别在A、B两板间加四种电压,它们的U AB-t图线如图6-14中的四图所示。
其中可能使电子到不了B 板的是( ) 图6-13图6-14解析:在A选项所加电压下,电子将一直向B加速;在C选项所加电压下,电子也一直向B板运动,是先加速再减速至0,再加速再减速至0,一直向B板运动;D选项和C选项一样,只不过电子的加速度发生变化;只有在B选项所加电压下,电子先向B板加速再减速,再向A板加速再减速至初始位置,且速度变为0,如此在AB间运动。
第6讲电场中常考的3个问题(选择题)
1.如图6-10所示是某电场中的一条电场线,一电子从a点由静止释放,它将沿电场线向b点运动.下列有关该电场情况的判断正确的是().图6-10 A.该电场一定是匀强电场
B.场强E a一定小于E b
C.电子具有的电势能E p a一定大于E p b
D.电势φa<φb
2.真空中一点电荷形成的电场中的部分电场线如图6-11所示,分别标记为1、2、
3、4、5,且1、2和5、4分别关于3对称.以电场线3上的某点为圆心画一
个圆,圆与各电场线的交点分别为a、b、c、d、e,则下列说法正确的是().图6-11
A.电场强度E a>E c
B.电势φb>φd
C.将一正电荷由a点移到d点,电场力做正功
D.将一负电荷由b点移到e点,电势能增大
3.(2012·海南单科,9)将平行板电容器两极板之间的距离、电压、电场强度大小和极板所带的电荷量分别用d、U、E和Q表示.下列说法正确的是().A.保持U不变,将d变为原来的两倍,则E变为原来的一半
B.保持E不变,将d变为原来的一半,则U变为原来的两倍
C.保持d不变,将Q变为原来的两倍,则U变为原来的一半
D.保持d不变,将Q变为原来的一半,则E
变为原来的一半
4.(2012·山东理综,19)如图6-12中虚线为一组间距相等的同心圆,圆心处固定一带正电的点电荷.一带电粒子以一定初速度射入电场,实线为粒子仅在电场力作用下的运动轨迹,a、b、c三点是实线与虚线的交点.则该粒子 ().A.带负电
B .在c 点受力最大
C .在b 点的电势能大于在c 点的电势能
D .由a 点到b 点的动能变化大于由b 点到c 点的动能变化
5.(2012·重庆理综,20)空间中P 、Q 两点处各固定一个点电荷,其中P 点处为正电荷,P 、Q 两点附近电场的等势面分布如图6-13所示,a 、b 、c 、d 为电场中的4个点,则
( ).
图6-13
A .P 、Q 两点处的电荷等量同种
B .a 点和b 点的电场强度相同
C .c 点的电势低于d 点的电势
D .负电荷从a 到c ,电势能减少
参考答案
1.CD
解析 仅由一条电场线无法判断电场的情况及各点场强的大小,A 、B 错;电子从a 点由静止释放,仅在电场力作用下运动到b 点,电场力做正功,电子的电势能减小,C 对;由题意知电场力方向由a 向b ,说明电场线方向由b 向a ,b 点电势高,a 点电势低,D 对
2.AD
解析 电场强度的大小看电场线的疏密,所以E a >E c ,A 项正确;b 、d 两点电势相等,B 项错误;将一正电荷由a 点移到d 点,电场力做负功,C 项错误;将一负电荷由b 点移到e 点,电场力做负功,电势能增大
3.AD
解析 由E =U d 知,当U 不变,d 变为原来的两倍时,E 变为原来的一半,A 项
正确;当E 不变,d 变为原来的一半时,U 变为原来的一半,B 项错误;当电
容器中d 不变时,C 不变,由C =Q U 知,当Q 变为原来的两倍时,U 变为原来
的两倍,C 项错误,;Q 变为原来的一半,U 变为原来的一半时,则E 变为原来的一半,D 项正确
4.CD
解析由带电粒子进入正点电荷形成的电场中的运动轨迹可以看出两者相互
排斥,故带电粒子带正电,选项A错误;根据库仑定律F=k q1q2
r2可知,a、b、
c三点中,粒子在a点时受力最大,选项B错误;带电粒子从b点到c点的过程中,电场力做正功,电势能减小,故在b点的电势能大于在c点的电势能,选项C正确;由于虚线为等间距的同心圆,故U ab>U bc,所以W ab>W bc,根据动能定理,带电粒子由a点到b点的动能变化大于由b点到c点的动能变化,选项D正确
5.D
解析由题中所给的等势面分布图是对称的及电场线与等势面垂直可得,P、Q 两点应为等量的异种电荷,A错;a、b两点的电场强度大小相等,但方向不同,故B错;因P处为正电荷,因此c点的电势高于d点的电势,C错;因P处为正电荷,故Q处为负电荷,负电荷从靠负电荷Q较近的a点移到靠正电荷P 较近的c点时,电场力做正功,电势能减小,D对。