概率论与数理统计 练习题
- 格式:doc
- 大小:549.00 KB
- 文档页数:11
概率论与数理统计 练习题1答案题目局部,〔卷面共有22题,100分,各大题标有题量和总分〕 一、选择题〔10小题,共30分〕1、假设P(A),()0.1P AB =,那么P(AB)=__________. 答案:0.22、设()0, ()0,P A P B >>那么以下公式正确的选项是( )。
A 、[]()()1()P A B P A P B -=-B 、( )()()P A B P A P B =⋅C 、(|)(|)P AB A P B A =D 、()(|)P A B P B A =答案:C3、设I 是一个区间,sin()0x Ix x Iϕ∈⎧=⎨∈⎩,是一个概率密度函数,那么I 是( )。
A 、[,)2ππ B 、(0,]π C 、3(,]2ππ D 、(,0]2π-答案:A4、将一枚硬币抛掷三次,设头两次抛掷中出现正面的次数为ξ,第三次抛掷出现正面的次数为η,二维随机变量(,)ξη所有可能取值的数对有( )。
A 、2对 B 、6对 C 、3对 D 、8对 答案:B5、设2~(, ),~(0, 1)N a N ξση那么η与ξ的关系为( )。
A 、2aξησ-=B 、a a ηξ=+C 、a ξησ-=D 、a ξησ=- 答案:C6、具有下面分布密度的随机变量中方差不存在的是( )。
答案:D7、设独立随机变量12100,,,ξξξ⋅⋅⋅均服从参数为4λ=的泊松分布,试用中心极限定理确定概率1001420i i P ξ=⎧⎫<=⎨⎬⎩⎭∑____________。
,0,1(0.5)0.6915F =,0,1(1)0.8413F =,0,1(2)0.9772F = 答案:0.8413 8、样本1(,, )n X X 来自总体ξ,ξ有分布密度()x ϕ及分布函数()F x ,那么以下结论不成立的是( )。
A 、i X 有分布密度()x ϕ,1, 2, , i n =B 、i X 有分布函数()F x ,1, 2, , i n =C 、{}1 ,, n Max X X 的分布函数为[]()nF xD 、n X 为{}1,,ax n M X X 的一个元偏估计答案:D 9、设(12,,, n X X X )是正态总体2~(, )X N μσ的样本,统计量()(U X μσ=-服从(0,1)N ,又知20.64,16n σ==,及样本均值X ,利用U 对μ作区间估计,假设已指定置信度1α-,并查得U 的临界值为121.96U α-=,那么μ的置信区间为( )。
概率论与数理统计检测题第一章 习 题1、设A, B, C 为三个事件,用A, B, C 的运算关系表示下列各事件:(1)A 发生,B 与C 不发生; (2)A 与B 都发生,而C 不发生;(3)A, B, C 中至少有一个发生; (4)A, B, C 都发生;(5)A, B, C 都不发生; (6)A, B, C 中不多于一个发生;(7)A, B, C 中不多于两个发生; (8)A, B, C 中至少有两个发生;2、设A, B, C 是三个事件且41)()()(===C P B P A P ,0)()(==BC P AB P ,81)(=AC P ,求A, B, C 至少有一个发生的概率. 3、已知21)(=A P ,(1)若A,B互不相容,求)(B A P ;(2)若81)(=AB P ,求)(B A P . 4、10片药片中有5片是安慰剂.(1)从中任意抽取5片,求其中至少有2片是安慰剂的概率.(2)从中每次取一片,作不放回抽样,求前3次都取到安慰剂的概率.5、某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶、红漆3桶,在搬运中所有标签脱落,交货人随意将这些油漆发给顾客.问一个订货为4桶白漆、3桶黑漆和2桶红漆的顾客,能按所定颜色如数得到订货的概率是多少?6、从5双不同的鞋子中任取4只,问这4只鞋子中至少有两只配成一双的概率是多少? 7、将3只球随机地放入4各杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 8、已知41)(=A P ,31)|(=A B P ,21)|(=B A P ,求)(B A P ⋃. 9、掷两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率.10、已知在10件产品中有2件次品,在其中取两件,每次任取一件,作不放回抽样.求下列事件的概率:(1)两件都是正品(2)两件都是次品(3)一件正品、一件次品4)第二次取出的是次品.11、将两信息分别编码A 和B 传送出去,接收站收到时,A 被误收作B 的概率为0.02,而B 被误、收作A 的概率为0.01.信息A 与信息B 传送的频繁程度为2:1.若接受站收到信息是A ,问原发信息是A 的概率是多少?12、有两种花籽,发芽率分别为0.8、0.9,从中各取一颗,设各花籽是否发芽相互独立.(1)这两颗花籽都能发芽的概率(2)至少有一颗能发芽的概率(3)恰有一颗能发芽的概率.13、三人独立去破译一份密码,已知各人能译出的概率分别为41,31,51.问三人中至少有一人能将此密码译出的概率是多少?。
概率论与数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。
2、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
3、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
5. 设随机变量X 的概率密度是:⎩⎨⎧<<=其他103)(2x x x f ,且{}784.0=≥αX P ,则α=0.6 。
6. 已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (Y )= 3/4 。
7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。
设Z =X -Y +3,则Z ~ N(2, 13) 。
8. 设A ,B 为随机事件,且P (A)=0.7,P (A -B)=0.3,则=⋃)(B A P 0.6 。
9. 设随机变量X ~ N (1, 4),已知Φ(0.5)=0.6915,Φ(1.5)=0.9332,则{}=<2X P 0.6247 。
10. 随机变量X 的概率密度函数1221)(-+-=x xe xf π,则E (X )= 1 。
11. 已知随机向量(X ,Y )的联合密度函数⎩⎨⎧≤≤≤≤=其他,010,20,),(y x xy y x f ,则E (X )= 4/3 。
12. 设A ,B 为随机事件,且P (A)=0.6, P (AB)= P (B A ), 则P (B )= 0.4 。
13. 设随机变量),(~2σμN X ,其密度函数644261)(+--=x x ex f π,则μ= 2 。
概率论与数理统计习题一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)1.设)4,5.1(~N X ,且8944.0)25.1(=Φ,9599.0)75.1(=Φ,则P{-2<x<4}=___ (A)0.8543 (B)0.1457 (C)0.3541 (D)0.2543 2.设)4,1(~N X ,且6179.0)3.0(=Φ,6915.0)5.0(=Φ,则P{0<x<1.6}=____ (A)0.3094 (B)0.1457 (C)0.3541 (D)0.25433.设随机变量的概率密度21()01qxx f x x -⎧>=⎨≤⎩,则q=_____ (A)1/2 (B)1 (C)-1 (D)3/24.事件A ,B 为对立事件,则_____不成立。
(A) ()0P AB = (B) ()P B A φ= (C) ()1P A B = (D) ()1P A B += 5.掷一枚质地均匀的骰子,则在出现奇数点的条件下出现3点的概率为____(A)1/3 (B)2/3 (C)1/6 (D)3/6 6.设(|)1P B A = ,则下列命题成立的是_____A .B A ⊂ B . A B ⊂ C.A B -=Φ D.0)(=-B A P7.设连续型随机变量的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正确的是_____A . 0()1F x ≤≤B .0()1f x ≤≤ C.{}()P X x F x ==D.{}()P Xx f x ==8.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____A.4114i i X X ==∑ B.142X X μ+- C.42211()ii K XX σ==-∑D.4211()3i i S X X ==-∑9.设,A B 为两随机事件,且B A ⊂,则下列式子正确的是_____ A .()()P A B P A += B .()()P AB P A =C. ()()|P B A P B = D. ()()()P B A P B P A -=- 10. 设()2~,,X N μσ那么当σ增大时,{}-P X μσ<=A .增大B .减少C .不变D .增减不定11. 设()()()()~,E X-1X 21,X P poission λλ-==⎡⎤⎣⎦分布且则___ A.1 B. 2 C .3 D .0 12.设 ()2~,X Nμσ,其中μ已知,2σ未知,123X , X ,X ,为其样本, 下列各项不是统计量的是____A. 123X X X ++ B. {}123min X ,X ,X C.23i 2i 1X σ=∑ D.1X μ-13.对于事件,A B ,下列命题正确的是_____ A .若,A B 互不相容,则.A 与B 也互不相容B .若,A B 相容,则.A 与B 也相容C.若,A B 互不相容,则.A 与B 也相互独立 D.若A 与B 相互独立, 那么.A 与B 相互独立14.假设随机变量X的分布函数为()F x ,密度函数为()f x .若X与-X有相同的分布函数,则下列各式中正确的是_____A .()F x =()F x -;B .()F x =()F x --;C .()f x =()f x -;D .()f x =()f x --; 15若()~X t n ,那么2~X ____A . (1,)F n ; B.(,1)F n ; C. 2()n χ; D. ()t n .二、填空题(在每个小题填入一个正确答案,填在题末的括号中)1.设随机变量X 的概率密度⎩⎨⎧≤≤=其它,010,1)(x x f 则{}0.4P X >=2.设有7件产品,其中有1件次品,今从中任取出1件为次品的概率为 3.设AB φ=,()0.3,()0.4,P A P B ==则=⋃)(B A P4.设2~(,)X N μσ~X5 .设A 、B 、C 、是三个随机事件。
第一章 概率论的基本概念习题一 随机试验、随机事件一、判断题1.()A B B A =⋃- ( )2.C B A C B A =⋃ ( )3.()φ=B A AB ( )4.若C B C A ⋃=⋃,则B A = ( )5.若B A ⊂,则AB A = ( )6.若A C AB ⊂=,φ,则φ=BC ( )7.袋中有1个白球,3个红球,今随机取出3个,则(1)事件“含有红球”为必然事件; ( )(2)事件“不含白球”为不可能事件; ( )(3)事件“含有白球”为随机事件; ( )8.互斥事件必为互逆事件 ( )二、填空题1. 一次掷两颗骰子,(1)若观察两颗骰子各自出现的点数搭配情况,这个随机试验的样本空间为 ;(2)若观察两颗骰子的点数之和,则这个随机试验的样本空间为 。
2.化简事件()()()=⋃⋃⋃B A B A B A 。
3.设A,B,C 为三事件,用A,B,C 交并补关系表示下列事件:(1)A 不发生,B 与C 都发生可表示为 ;(2)A 与B 都不发生,而C 发生可表示为 ;(3)A 发生,但B 与C 可能发生也可能不发生可表示为 ;(4)A,B,C 都发生或不发生可表示为 ;(5)A,B,C 中至少有一个发生可表示为 ;(6)A,B,C 中至多有一个发生可表示为 ;(7)A,B,C 中恰有一个发生可表示为 ;(8)A,B,C 中至少有两个发生可表示为 ;(9)A,B,C 中至多有两个发生可表示为 ;(10)A,B,C 中恰有两个发生可表示为 ;三、选择题1.对飞机进行两次射击,每次射一弹,设A 表示“恰有一弹击中飞机”,B 表示“至少有一弹击中飞机”,C 表示“两弹都击中飞机”,D 表示“两弹都没击中飞机”,则下列说法中错误的是( )。
A 、A 与D 是互不相容的B 、A 与C 是相容的C 、B 与C 是相容的D 、B 与D 是相互对应的事件2.下列关系中能导出“A 发生则B 与C 同时发生”的有( )A 、A ABC =;B 、AC B A =⋃⋃; C 、A BC ⊂ ;D 、C B A ⊂⊂四、写出下列随机试验的样本空间1.记录一个小班一次数学考试的平均分数(设以百分制记分);2.一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球;3.某人射击一个目标,若击中目标,射击就停止,记录射击的次数。
《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。
《概率论与数理统计》期(末)练习一.选择题1.甲、乙、丙三人各向目标射击一发子弹,以A、8、。
分别表示甲、乙、丙命中目标,用A、B、C的运算关系表示大事“恰好有一人命中目标”,下列表达式正确的是(C )A. Λ∪B∪CB. Λ∩B∩CC. ABC∪ ABC∪ ABCD. ABC U ABC U ABC2.设大事A,B满意P(A3)=0,则(D )oA. A8是不行能大事B. A和8不相容C. P(A)=()或P(8)=0D. A8不肯定是不行能大事3.设随机变量X4(〃,p),且E(X)=2.4, D(X)=1.44,则二项分布的参数为(B )。
A. n=4,p=0.6B. n=6,p=0.4C. n=8,p=O.3D. n=24,p=0.14.随机变量乂。
(-3,1),丫~"(2,1),且瓦丫相互独立,设2=乂-2丫+7,则及(A )。
A. N(0,5)B. N(0,6)C. N(0, 12)D. N(0,54)5.对于任意两个随机变量X和匕若E(XY)=E(X)E(Y),则(B )。
A. D(XY)=D(X)D(Y)B. D(X+Y)=D(X)+D(Y)c. x和y相互独立D. x和y不独立6.对随机变量X,函数∕x)=P{X≤x}称为X的(D )A.概率分布B.概率C.概率密度D.分布函数7.在对总体的假设检验中,若给定显著性水平为α ,则犯第一类错误的概率为(B )0CCA. 1 —ocB. (XC. —D.不能确定2版X;8.设X∣,X),…,X 〃,…,Xj是来自正态总体N(0,M)的样本,则统计量V = 3一听∕=n÷l从的分布是(B )oA. t(n+1)B. F(π, tn)C. F(H- 1, ∕w-1)D. F(∕n, n)2k9.设X 的概率分布为P{X=A}=-^ (k=0,l,2,...),则O(2X) = ( D )e k∖A. 1B. 2C. 4D. 810.设0,2, 2, 3, 3为来自匀称分布总体U(0,9)的样本观看值,则。
概率论与数理统计练习题一、单项选择题1.将两封信随机地投入四个邮筒中,则未向前两个邮筒中投信的概率为( A )A .2224B .1224C C C .242!A D .2!4!2、抛一枚不均匀硬币,正面朝上的概率为23,将此硬币连抛4次,则恰好3次正面朝上的概率是( C ) A .881B .827C .3281D .343、设()0.5,()0.6,()0.4,()P A P B P B A P AB ===则=( C ) A .0. 3 B .0.6 C .0.4 D .0.84、设连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他,020,2)(x xx f ,则{}11≤≤-X P =( B )A .0B .0.25C .0.5D .15、已知随机变量X 的概率密度为)(x f X ,令=2Y X ,则Y 的概率)(Y f Y 为( D )A. )2(2y f X -B. )2(y f X -C. )2(21y f X --D. )2(21yf X -6.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( A ) A .0)|(=B A P B .P (B |A )=0 C .P (AB )=0D .P (A ∪B )=17.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( D ) A .P (A ) B .P (AB ) C .P (A|B )D .18.设随机变量X 在区间[2,4]上服从均匀分布,则P{2<X<3}=(C ) A .P{3.5<X<4.5} B .P{1.5<X<2.5} C .P{2.5<X<3.5}D .P{4.5<X<5.5},9.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 则常数c 等于(D )A .-1B .21- C .21 D .110.设二维随机变量(X ,Y )的分布律为则P{X=Y}=( A ) A .0.3 B .0.5 C .0.7D .0.811.设随机变量X 服从参数为2的指数分布,则下列各项中正确的是( A ) A .E (X )=0.5,D (X )=0.25 B .E (X )=2,D (X )=2 C .E (X )=0.5,D (X )=0.5D .E (X )=2,D (X )=412.设随机变量X 服从参数为3的泊松分布,Y~B (8,31),且X ,Y 相互独立,则D (X-3Y-4)=( C ) A .-13 B .15 C .19D .2313.已知D (X )=1,D (Y )=25,ρXY =0.4,则D (X-Y )=(B ) A .6 B .22 C .30D .4614.在假设检验问题中,犯第一类错误的概率α的意义是(C ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率15.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( B ) A .x 2 B .x C .2xD .x21二、填空题16.一口袋装有3只红球,2只黑球,近从中任取2只球,则这2只球恰为一红一黑的 概率是_ 0.6 _17.某射手命中率为23,他独立地向目标设计4次,则至少命中一次的概率为_80/81 _18.抛硬币5次,记其中正面向上的次数为X ,则{}4≤X P =___30/31_. 19. 设X ~N (2,4),则{}=≤2X P ___0.5___.20、设连续型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+<=2,120),1(310,31)(x x x x e x F x记X 的概率密度为f (x ),则当x <0时f (x )=__1/3ex______.21.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ⋃)=____0.5________. 22.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为___18/25_________.23.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为____0.7________.24.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为___0.9_________.25.抛一枚均匀硬币5次,记正面向上的次数为X ,则P{X ≥1}=___31/32_________.三、计算题26、甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.27、一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律28、设X 的概率密度为⎩⎨⎧≤≤-=其他,011,)(x x x f ,求:(1) X 的分布函数F(x);(2) {}5.0<X P ;(3){}5.0->X P29.设二维随机变量(X ,Y )的分布律为 试问:X 与Y 是否相互独立?为什么?30.假设某校考生数学成绩服从正态分布,随机抽取25位考生的数学成绩,算得平均成绩61=x 分,标准差s=15分.若在显著性水平0.05下是否可以认为全体考生的数学平均成绩为70分?(附:t 0.025(24)=2.0639)四、证明题31、设A,B 为随机事件,且()P B >0.证明:()1()P A B P A B =- 五、综合32、设随机变量X 在区间[2 ,5]上服从均匀分布。
练习题1、设随机变量)6.0,10(b ~X ,则22[()][(X)]D X E = ; 2、若随机变量X 的分布未知,但2,EX DX μσ==,则X 落在区间(2,2)μσμσ-+内的概率必不小于_________3、设ˆˆ(,......)12X X X n θθ=是未知参数θ的一个估计量,满足条件_________ 则称ˆθθ是的无偏估计。
4. 设X,Y 为随机变量,且D (X +Y )=7, D(X)=4, D(Y)=1,则相关系数XY ρ= 5. 设随机变量12,,,n X X X 相互独立,且(1,2,,)=i X i n 都服从区间[0,1]上的均匀分布,则当n 充分大时,∑==ni i nn X Y 11近似服从(写出具体分布与参数)6.设(,)X Y 服从区域222:G x y R +≤上的均匀分布,其概率密度为:222(,)0Cx y R f x y ⎧+≤=⎨⎩其它,则C=( );(A) 2R π ; (B)21R π; (C) Rπ2; (D) R π21 。
7.设,......12X X X n 为相互独立的随机变量,且2(,())E X D X i iμσ==(1,2......i n =),11nX X i i n ∑==,则DX =( ) (A)2nσ(B)2n σ (C)nσ(D)22n σ8.设一次试验中事件A 不发生的概率为p,独立重复n 次试验,A 发生了X 次则正确的是:( )(A) ()()21p p X E -= ; (B)()E X np = ;(C)(1)DX np p =- ; (D) 2DX p p =-。
9.设随机变量X 和Y 不相关,则下列结论中正确的是( ) A . X 与Y 独立; B. ()D X Y DX DY -=+; C .()D X Y DX DY -=-; D. ()D XY DXDY =. 10. 任何一个连续型随机变量的概率密度)(x ϕ一定满足( )。
概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P Y 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P Y 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A )=0.5,P (B )=0.6,P (B |A )=0.8,则P (A +B )=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(−−X X E =1,则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 ,成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ∼B (2,p ),Y ∼B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。
,,n X 是来自正态总体小概率事件在一次试验中绝对不会发生;是正态随机变量的分布函数,则一定有已知随机变量~X U 已知二维随机变量(,X 是来自总体,,n X 是来自于总体知参数,12,,,n x x x 为样本值,求(设纸张重量(以g 记)服从正态分布2的置信水平为已知某炼铁厂的铁水含碳量在正常情况下服从正态分布炉铁水,算得平均含碳量仍为4.55?)0.8B =、3、4、5,从中同时取掷一枚质地均匀的骰子,已知出现的是偶数点,则出现)i X x c ==,则c = 的分布函数为2,0,x x F ≥其它,则概率 ;⎪⎩⎪⎨⎧<0081x,n X 是来自总体的一组,n x 是样本的一组观测值,求(的最大似然估计值。
随机取某种炮弹9发做试验,测得炮口速度的样本标准差。
设炮口速度服从正态分布这种炮口速度的方差σ一种燃料的辛烷等级服从正态分布。
现抽取997.7。
若标准差不变,是否可以认为新油的辛烷平均等级?(显著水平21,,n X X +是取自总体~(1n t n n +)B=}0==;= X是正态总体,,n服从自由度为若一件事的成功率是是标准正态的分布函数,则有若随机变量X与Y相互独立,则随机变量若随机变量X和Y服从正态分布且相互独立X是正态总体,n)求参数θ的矩估计量某工厂生产一批零件,其长度服从正态分布,求总体均值μ的置信水平为某一地区生产的苹果长期以来服从标准差为)B=}1==;= ,,nX是正态总体与B对立,则事件是标准正态的分布函数,则有已知随机变量~X U若随机变量X和Y服从正态分布,X是来自总体,,nX是来自于总体2,,nx x为样本值,求(某机械零件的长度服从正态分布2.4,2.6,2.5某厂生产的某种型号的电池,其寿命(以小时计)长期以来服从方差从它的生产情况来看,问根据这一数据能否推断这批电池的寿命的波动性较以往有显著变化.。
《概率论与数理统计》试题一1.设事件A 与B 互斥,且1)(0<<B P ,试证明:)(1)()/(B P A P B A P -=. 2.设0>)A (P ,试证明:)()(1)|(A P B P A B P -≥. 3.甲乙2班共有70名同学,其中女同学40名,设甲班有30名同学,而女生15名,求在碰到甲班同学时,正好碰到1名女同学的概率.4.一栋10层的楼房中的一架电梯,在底层登上7位乘客,电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有2位及2位以上乘客在同一层离开的概率.5.设某厂的某种生产设备的寿命X 服从指数分布,其概率密度为⎪⎩⎪⎨⎧≤>=-0,00,41)(41x x e x P x ,工厂规定:若出售的设备在一年内损坏,则可予以调换,已知工厂售出1台设备获利100元,调换1台设备厂房需花费300元,求厂方售出1台设备净获利的数学期望.6.设随机变量X 在)2,0(内服从均匀分布,求随机变量2X Y =的分布函数和分布密度.7.假设随机变量X 服从)1,0(上的均匀分布,求证:随机变量2)1ln(x Y --=服从参数为2的指数分布.8.设随机变量X 与Y 相互独立,且分别服从二项分布),p ,m (B ),p ,n (B 求证: )p ,m n (B ~Y X ++. 9.从正态总体)6,4.3(2N 中抽取容量为n 的样本,如果要求其样本均值位于区间)4.5,4.1(内的概率不小于95.0,问样本容量n 至少应取多大?《概率论与数理统计》试题二1.一个袋中装有12个球,其中4个红球,8个白球,从中不放回地取出3个球,试求取出3个同颜色球的概率.2.某工厂生产的产品共有100个,其中有5个次品,从这批产品中任取一半来检查,求发现次品不多于1个的概率.3.袋中有4个白球,2个红球,从中任取3个球,用ε表示所取3个球中红球的个数,求ε的分布列.4.某工厂有400台同类机器,各台机器发生故障的概率都是02.0,假设各台机器工作是相互独立的,试求机器出故障的台数不少于2的概率.试求X 的分布函数)(x F X .6.设随机变量X 所有可能的取值为n ,,2,1 ,且已知概率),,2,1()(n k ak k X P ===,求常数a 的值.7.设X 与Y 相互独立,且X 与Y 分别服从区间)1,0(),1,1(-的均匀分布,求方程 022=++Y Xt t 无实根的概率.8.设二维随机变量),(Y X 的密度函数为:⎪⎩⎪⎨⎧<<<<+=其它,020,10,3),(2y x xy x y x f , 求)1(<+Y X P .9.设n X X X ,,21是来自于总体X 的容量为n 的样本,试证明样本均值∑==ni i n X n X 11是总体均值)(X E 的一致估计量.《概率论与数理统计》试题三1.在区间)1,0(内任取2个数,求这2个数的乘积小于41的概率. 2.从10,2,1 共10个数中任取7个数,取后放回,每次取一个,求10恰好出现2次的概率.3.设C B A ,,3个事件相互独立,证明B A +与C 相互独立.4.证明事件在1次实验中发生次数的方差不超过41. 5.证明对任意实数c 均有)(])[(2X D c X E ≥-,且等号成立当且仅当)(X E c =.6.在下列两种情形下,求方程012=++Xt t 有实根的概率,其中X 是随机变量.(1)X 服从}{6,,2,1 上的均匀分布.(2)X 服从区间]6,1[上的均匀分布. 7.证明对任意实数c 均有)(])[(2X D c X E ≥-,且等号成立当且仅当)(X E c =.8.已知罐头番茄汁中维生素)(c V C 的含量服从正态分布,按照规定c V 的平均含量不得低于21mg ,现从一批罐头中取17罐,算得c V 含量的平均值23=X ,2298.3=s ,问该批罐头的c V 含量是否合格?9.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-<≤-+=其它,010,101,1)(x x x x x f ,求)(X D .10.车间用一台包装机包装葡萄糖,规定标准为每袋净重5.0kg ,设包装机实际生产的每袋质量服从正态分布,且由长期的经验知其标准差015.0=σkg ,某天开工后,为了检验包装机的工作是否正常,随机抽取了9袋,称得净重为:518.0,512.0,515.0,510.0,511.0,488.0,524.0,506.0,497.0问这天包装机的工作是否正常?)05.0(=α《概率论与数理统计》试题四1.某人从甲地到乙地,乘火车,轮船,飞机的概率分别为4.0,4.0,2.0,乘火车迟到的概率为5.0,乘轮船迟到的概率为2.0,乘飞机不会迟到,问这个人迟到的概率是多少?又如果迟到,问他乘轮船的概率是多少?2.在1~200中随机地取整数,问取到的整数不能被6和8整除的概率是多少?3.一批产品分一,二,三级,其中一级品是二级品的2被,三级品是二级品的一半,从这批产品中随机地取出抽取1个检验质量,用随机变量描述检验的可能结果,写出它的概率分布.4.在区间)1,0(中随机地取出2个数,求2个数之和小于2.1的概率.5.将n 只球(n ~1号)中去,一只盒子装一只球,若一只微2装入与球同号的盒子中称为一个配对,记总的配对数为随机变量X ,求)(X E .6.设随机变量X ,Y 相互独立它们分别服从参数为2和5的指数分布,求YX +的数学期望和方差.7.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其它,00,2cos 21)(πx x x f ,对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望. 8.设随机变量X 的概率密度为)(21)(+∞<<-∞=-x e x P x ,证明:X 与X 不相关.9.设随机变量X 的概率密度为)(21)(+∞<<-∞=-x e x P x ,证明:X 与X 不相关.10.设某次考试的考生成绩服从正态分布,从中随机地抽取36为考生的成绩,算得平均成绩为5.66分,标准差为15分.问在显著性水平05.0下是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.《概率论与数理统计》试题五1.某小组有20名射手,其中一、二、三、四级射手分别为2、6、9、3名.又若选一、二、三、四级射手参加比赛,则在比赛中射中目标的概率分别为0.85、0.64、0.45、0.32,今随机选一人参加比赛,试求该小组在比赛中射中目标的概率.2.袋中有10个黑球,5个白球.现掷一枚均匀的骰子,掷出几点就从袋中取出几个球.若已知取出的球全是白球,求掷出3点的概率.3.设射击中靶的概率为0.45,X 表示首次中靶时的射击次数.(1)求X 的分布律;(2)求P (X 取偶数).4.设随机变量[]1,0~U X ,求X Y ln 2-=的概率密度.5.某电子元件的寿命(单位:小时)是以()⎪⎩⎪⎨⎧>≤=10010010002x x x x f 为密度函数的连续型随机变量.求5个同类型的元件在使用的前 150 小时内恰有 2 个需要更换的概率.6.将n 个人的帽子混放,然后每人任取一顶帽子,以X 记配对个数,求EX .7.设随机变量X 服从⎪⎭⎫ ⎝⎛-21,21上的均匀分布, ()⎩⎨⎧≤>==.0,0,0,ln x x x x g y , 求()X g Y =的数学期望和方差.8.在总体()25.0,2N 中随机抽取容量为9的样本,求样本均值X 落在1.5到2.5之间的概率.9.设总体X 的分布律为 P {X=x }= ,2,1,)1(1=--x p p x ,(),,,21n X X X 是来自X 的样本,试求:(1)p 的矩估计量;(2)p 的极大似然估计量.10.设21,X X 是来自总体N (1,μ)的样本,证明以下统计量均是μ的无偏估计,并指出选择哪一个统计量作为μ的估计量最好.2113132X X +=∧μ ,2124341X X +=∧μ ,2132121X X +=∧μ《概率论与数理统计》试题六1.设随机变量X ,Y 独立,其密度函数分别为1,01,0(),()0,0,y X Y x e y f x f y -≤≤⎧⎧>==⎨⎨≤⎩⎩其他y 0, 求Z=2X+Y 的概率密度函数.2.已知 X 在[0,2]上服从均匀分布,求3X Y =的概率密度.3.设X ~()9,108N ,(1)求()6.1171.101<<X P ;(2)求a ,使()90.0=<a X P ;(3)求a ,使()01.0=>-a a X P .4.设()1021,...,,X X X 为总体X 的一个样本,X ~()23.0,0N ,求⎭⎬⎫⎩⎨⎧>∑=44.11012i i X P . 5.某保险公司规定,如果在一年内顾客的投保事件A 发生,该公司就赔偿顾客a 元,若1年内事件A 发生的概率为p ,为使公司收益的期望值等于a 的10%,问该公司应要求顾客交多少保险费?6.盒中有4只次品和6只正品,在其中取两次,每次取一只不放回,求:(1)恰有一只次品的概率;(2)至少有一只次品的概率;(3)全为正品的概率.7.已知()Y X ,在区域(){}20,10,≤≤≤≤=y x y x D 上服从均匀分布,试计算概率{}1≥+Y X P ,{}Y X P <2.8.设总体X ~()2,σμN ,123,,X X X 为总体的一个样本,试证明:11231315102X X X μ∧=++,21231153412X X X μ∧=++,3123111362X X X μ∧=++ 都是μ的无偏估计量,并分析哪一个最好.。
概率论与数理统计模拟试题(概率论部分)一、填空题(每小题3分):1、同时抛出两枚硬币,两枚硬币均为正面的概率为 ;2、依次抛两枚骰子,若第一枚为3点,则第二枚也为3点的概率为 ;3、设事件A 、B ,()0.8,()0.5,()P A P AB P AB === ;4、若事件A 、B 互斥,()0.3,()0.4,()P A P B P A B ==-= ;5、设A 和B 相互独立,且()0.4,()0.3P A P B ==,则()P A B += ;6、设随机变量~(0,1)X N ,分布函数为()x Φ,则(0)Φ= ;7、设2(0,)XN σ,若{}20.45P X <-=,则{}22P X -<<= ;8、已知随机变量X 服从区间[0,1]上的均匀分布,21Y X =-,则DY = ; 9、设随机变量X 与Y 相互独立,方差分别为2和3,则(23)D X Y -= ; 10、设随机变量X 、Y 满足()()()E XY E X E Y =,则协方差(,)Cov X Y = ; 11、设随机变量X 、Y 满足0XY ρ=,则协方差(,)Cov X Y = ; 二、选择题(每小题3分,每题只有一个正确答案):1、设事件A 、B ,()0,P AB =则下面说法中正确的是( ).()A A 、B 互斥;()B A 、B 相互独立;()C ()0P A =或()0P B =;()D ()()P A B P A -=.2、(),(),(),()P A a P B b P A B c P AB ====( ).()A a b -; ()B c b -; ()C a ab -; ()D b a -.3、设事件A 、B 互斥,()0P A >,()0P B >,则下面说法中正确的是( ); ()A ()0P B A >;()B ()()P A B P A =;()C ()0P A B =;()D ()()()P AB P A P B =.4、()0.8,()0.7,()0.8,P A P B P A B ===则下面说法中正确的是( );()A A 、B 相互独立;()B A 、B 互斥;()C A B ⊂;()D ()()()P A B P A P B +=+.5、设事件A 、B 相互独立,则下面的说法中,错误的是( );()A A 与B 独立;()B A 与B 独立;()C ()()()P AB P A P B =;()D A 、B 一定互斥.6、设随机变量X 的概率密度为2(3)4(),x f x x --=-∞<<∞,则( )(0,1)N .3()4X A -; ()B ; 3()2X C +; ()D . 7、设总体X 服从2(3,4)N ,且常数c 满足{}{}P X c P X c >=<,则C 等于( );()A 3; ()B 2; ()C 1; ()D 0.8、设()P A p =,则n 次独立重复试验中事件A 至少发生一次的概率为( ).()A p ; ()B 1p -; ()C (1)n p -; ()D 1(1)n p --.9、设随机变量X 与Y 相互独立,方差分别为6和3,则(2)D X Y -=( ).()A 9; ()B 15; ()C 27; ()D 33.10、若随机变量X 和Y 的协方差(,)0Cov X Y =,则下列结论中正确的 ( ) ()A X 、Y 相互独立; ()B ()D X Y DX DY +=+;()C ()D X Y DX DY -=-; ()D ()D XY DX DY =⋅.三、计算题(一维随机变量部分)1、如图系统由3个电子元件组成,各元件独立工作,其正常工作的概率皆为0.8,求系统正常工作的概率.解:()()()()P P AB C P AB P C P ABC ==+- ()()()()()()P A P B P C P A P B P C =+- 0.80.80.80.80.80.80.928.=⨯+-⨯⨯=2、在区间(0,1)上任意取5个数,求这5个数中有2个大于23的概率. 解:设取得的数为X ,则2133P X ⎧⎫>=⎨⎬⎩⎭,又设5个数中大于23的个数为Y ,则{}2522511802133243P Y C -⎛⎫⎛⎫==-=⎪⎪⎝⎭⎝⎭. 3、设随机变量X 在[]2,5上服从均匀分布,现在对X 进行三次独立观测,求至少有两次观测值大于3的概率.解:由已知,X 的分布密度为:1,25()30,.x f x ⎧≤≤⎪=⎨⎪⎩其他,则 {}5312333P X dx >==⎰,设在三次独立观测中观测值大于3的次数为Y ,则2(3,)3Yb ,那么{}223333212202()()()33327P Y C C ≥=+=.4、已知离散型随机变量X 的分布列为:10120.10.40.20.3-⎛⎫ ⎪⎝⎭,求: (1) {1 1.5}P X -<≤;(2) 2()E X 、DX . 解: (1) {1 1.5}0.40.20.6P X -<≤=+=. (2) 0.7EX =2()00.410.340.3 1.5E X =⨯+⨯+⨯=. 22()() 1.50.70.8.DX E X EX =-=-= 5、已知随机变量X 的概率密度为:(12),01()0,A x x f x +<<⎧=⎨⎩其它, (1) 求A 的值; (2) 计算{0.10.5}P X << 解: (1) 由 11()(12)2f x dx A x dx A +∞-∞==+=⎰⎰得12A =. (2): {}0.50.10.10.5()P X f x dx <<=⎰.0.50.11(12)0.322x dx =+=⎰.6、已知随机变量X 服从(0,1)上的均匀分布,求X Y e =的概率密度函数.解:X 的概率密度:1,01()0,x f x <<⎧=⎨⎩,其他 当0Y ≤时,()0Y f x =;当0Y >时,(){}{}(ln )X Y X F y P Y y P e y F y =≤=≤=,故1,1()0,Y X y e y f y F ⎧<<⎪'==⎨⎪⎩其他. 7、已知连续型随机变量X 的密度函数为sin 0,()0A x x f x π<<⎧=⎨⎩ 其他.,求: (1)常数A ; (2)求33P X ππ⎧⎫-<<⎨⎬⎩⎭.解: (1) 由 01()sin 2f x dx A xdx A π+∞-∞===⎰⎰,得 12A =. (2)330311()sin 3324P X f x dx xdx πππππ+-⎧⎫-<<===⎨⎬⎩⎭⎰⎰.四、(二维随机变量部分:边缘分布、函数分布、概率、期望、方差)1、在区间(0,1)任意取2个数,求这2个数之和小于65的概率。
第一章 随机事件及其概率练习: 1. 判定正误(1)必然事件在一次实验中必然发生,小概率事件在一次实验中必然不发生。
(B )(2)事件的发生与否取决于它所包括的全数样本点是不是同时显现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)假设()0,P A = 那么A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个小孩的家庭小孩的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),那么P{}1=3两个女孩。
(B )(8)假设P(A)P(B)≤,那么⊂A B 。
(B ) (9)n 个事件假设知足,,()()()i j i j i j P A A P A P A ∀=,那么n 个事件彼此独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件知足P(AB)=0,那么©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,那么P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,那么其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)假设A, B 为两随机事件,且B A ⊂,那么以下式子正确的选项是(A)A. P(A ∪B)=P(A)B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,那么()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 知足P(B|A)=1, 那么(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂(7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 那么(D)A. 事件A, B 互不相容B. 事件A 和B 相互对立C. 事件A, B 互不独立 D . 事件A, B 相互独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率别离是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
《概率论与数理统计》练习题试卷及答案解析一.单项选择题(每小题2 分,共 20 分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )B A .A 1A 2 B .21A A C .21A A D .21A A 2.则( )DA .121=a B .61=a C .121=a D .41=a 3.设事件A 与B 相互独立,则有( )CA .0)(=AB P B .)()()(B P A P B A P +=C .)()()(B P A P AB P =D .)()(A P A B P =4.设随机变量X 服从正态分布),(2σμN ,则其概率密度函数的最大值为( )D A .0 B .1 C .π21 D .212)2(-πσ5. 设随机变量X 与Y 互相独立, 且X ~),,(211σa N Y ~),,(222σa N 则Y X Z +=仍服从正态分布,且( ) DA . Z ~),(22211σσ+a N B . Z ~),(2121σσa a N +C . Z ~),(222121σσa a N + D . Z ~),(222121σσ++a a N6.设随机变量X 服从[-1,2]上的均匀分布,则X 的概率密度)(x f 为( )AA .⎪⎩⎪⎨⎧≤≤-=.,0;21,31)(其他x x f B .⎩⎨⎧≤≤-=.,0;21,3)(其他x x fC .⎩⎨⎧≤≤-=.,0;21,1)(其他x x fD . ⎪⎩⎪⎨⎧≤≤--=.,0;21,31)(其他x x f7.设,21X X ,3X 是总体~X ()2,σμN 的样本,则μ的无偏估计量是( )AA .3212110351X X X ++ B .321316131X X X ++ C .3211274131X X X ++ D .3211513151X X X ++8.某店有7台电视机,其中2台为次品,今从中随机地抽取3台,设X 为其中次品数,则数学期望EX =( )D A .73 B .74 C .75 D .76 9.设总体X ~N (2,σμ),X 1,X 2,…,X 10为来自总体X 的样本,X 为样本均值,则X ~( )CA .)10(2σμ,N B .)(2σμ,N C .)10(2σμ,N D .)10(2σμ,N 10.在假设检验中,H 0为原假设,H 1为备择假设,则第一类错误是( )BA. H 1成立,拒绝H 0B. H 0成立,拒绝H 0C. H 1成立,拒绝H 1D. H 0成立,拒绝H 1 二.填空题(每空 2 分,共 20 分)1.连续抛一枚均匀硬币4次,则正面至少出现一次的概率为___________.1615 2.设A ,B 为互不相容的两个随机事件,P (A )=0.3,P (B )=0.4,则)(B A P ⋃)=________.0.73.设随机变量X 的概率密度⎪⎩⎪⎨⎧≤≤=,,0;10,A )(2其他x x x f 则常数A=_________.34.设随机变量X 是服从区间(μ,2)上的均匀分布,且1=EX ,则μ= . 1 5.设X 为连续随机变量,c 为一个常数,则P {X =c }=____________.06.设随机变量X 服从二项分布),(p n B ,且,44.1,4.2==DX EX 则二项分布的参数p = . 0.47.10X =E ,4=DX ,若{}04.010≤≥-c X P ,则常数c = . 108.已知E (X )=1,E (Y )=2,E (XY )=3,则X ,Y 的协方差Cov (X ,Y )=_____________.2 9.设二维随机变量(X,Y)的分布律为则P{XY=0}=___________。
概率论与数理统计练习题一、填空题1、已知P (A )=0.3,P (B )=0.4,P (AB )=0.2,则P (B|A+B )= 。
2、设随机变量ξ在[]5,2上服从均匀分布,则()43≤≤ξP = 。
3、设随机变量ξ服从Poisson 分布,若()()()4,21====ξξξP P P 则= 。
4、设随机变量ξ的密度函数为()xe x p -=21,()∞+∞-x ,则E ξ= ,D ξ= 。
5、某射手中靶的概率为0.6,他首次中靶的射击次数为偶数的概率为______。
6、设α服从()4,2-上的均匀分布,方程0122=++x x α有两个相异实根的概率为______。
7已知随机变量Y X ,,有{}730,0=≥≥Y X P ,{}0≥X P ={}0≥Y P =74,(){}0,max ≥Y X P =______。
8设n X X X ,,21是来自总体()2,~σμNX 的样本,且()∑=+-ni i i X Xc 11为2σ的无偏估计,则c =_______。
9设事件A 当且仅当互不相容的事件B 1,B 2,……B n 中的任一事件发生时才可能发生,已知事件i B 的概率是)(i B P 及事件A 在i B 已发生的条件下的条件概率是)(i B A P ,则计算事件A 的全概率公式是____________。
10事件A 与事件B 是独立的,则事件B 与事件A 是_____________。
11超几何分布的概率函数是_____________。
12正态分布),(2σμN 的分布函数是______________。
二、是非判断题1、若事件A ,B 相互独立,则P ()()()B P A P B A =。
( )2、随机变量ξ的密度函数()x p 在某点a 处的数值,表示ξ取这个值的概率。
( )3、凡只有两个可能结果的随机试验,皆可用两点分布的随机变量。
( )4、设b a ,为常数,ξ为随机变量,则()b aD b a D +=+ξξ。
《概率论与数理统计》习题(一)一、单项选择题 1.已知21)(=B P ,=)(B A P 32,若事件A 与B 相互独立,则=)(A P ( C )A .91B .61C .31D .21 因为A 与B 独立,所以)()()()()(B P A P B P A P B A P -+= ,即)(2121)(32A P A P -+=,可得31)(=A P . 2.对于事件A 与B ,下列命题正确的是( D )A .如果A ,B 互不相容,则B ,A 也互不相容 B .如果B A ⊂,则B A ⊂C .如果B A ⊃,则B A ⊃D .如果A ,B 对立,则B ,A 也对立如果A 与B 对立,则B A =且A B =,所以A 与B 对立(就是B 与A 对立).3.每次试验成功率为p (10<<p ),则在3次重复试验中至少失败一次的概率为( B ) A .3)1(p - B .31p -C .)1(3p -D .)1()1()1(223p p p p p -+-+-设X 是试验成功的次数,则X ~),3(p B ,所求概率为303331)1(1}3{1}3{p p p C X P X P -=--==-=<.4.已知离散型随机变量X 的概率分布如下表所示: X 1- 0 1 2 4则下列概率计算结果正确的是( A )P1/10 1/5 1/10 1/5 2/5A .0}3{==X PB .0}0{==X PC .1}1{=->X PD .1}4{=<X P5.已知连续型随机变量X 服从区间],[b a 上的均匀分布,则=⎭⎬⎫⎩⎨⎧+<32b a X P ( B )A .0B .31C .32 D .1X 的概率密度为⎪⎩⎪⎨⎧≤≤-=其他,0,1)(b x a a b x f ,注意到b b a a <+<32,31311)(323232=-⋅-=-==⎭⎬⎫⎩⎨⎧+<⎰⎰++∞-a b a b dx a b dx x f b a X P b a aba 6.设),(Y X 的概率分布如下表所示,当X 与Y 相互独立时,),(q p =( C ) Y X1-10 151p1 q51 251 103 A .⎪⎭⎫ ⎝⎛151,51B .⎪⎭⎫ ⎝⎛51,151C .⎪⎭⎫ ⎝⎛152,101D .⎪⎭⎫ ⎝⎛101,1522110351}2{=+==X P ,154}1{+=-=q Y P ,21}1{+==p Y P . 由}1{}2{}1,2{=====Y P X P Y X P ,即⎪⎭⎫ ⎝⎛+=2121103p ,可得101=p ; 由}1{}2{}1,2{-===-==Y P X P Y X P ,即⎪⎭⎫ ⎝⎛+=1542151q ,可得152=q . 7.设),(Y X 的联合概率密度为⎩⎨⎧≤≤≤≤+=,,0,10,20,)(),(其他y x y x k y x f 则=k ( A )A .31B .21 C .1D .3由222020102201022212)(),(⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛+=⎥⎥⎦⎤⎢⎢⎣⎡+=⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-x x k dx x k dx y xy k dx dy y x k dxdy y x f 13==k ,得31=k . 8.已知随机变量X ~)1,0(N ,则随机变量12-=X Y 的方差为( D )A .1B .2C .3D .4414)(4)(=⨯==X D Y D .9.设X 服从参数为0.5的指数分布,用切比雪夫不等式估计≤≥-}3|2{|X P ( A )A .94 B .31C .21D .125.01)(==X E ,45.01)(2==X D ,3=ε,由切比雪夫不等式有2)(}|)({|εεX D X E X P ≤≥-,即94}3|2{|≤≥-X P .10.321,,X X X 为X 的样本,3216121kX X X T ++=是)(X E 的无偏估计,则=k ( B ) A .61B .31C .94 D .21 由)()(X E T E =,即)()()(61)(21X E X kE X E X E =++,得16121=++k ,31=k . 二、填空题1.设7.0)(=A P ,3.0)(=-B A P ,则=)(AB P ________.由)()()(AB P A P B A P -=-,即)(7.03.0AB P -=,得4.0)(=AB P ,所以6.04.01)(1)(=-=-=AB P AB P .2.袋中有5个黑球,3个白球,从中任取的4个球中恰有3个白球的概率为________.141483315=C C C . 3.在时间],0[T 内通过某交通路口的汽车数X 服从泊松分布,且已知}3{3}4{===X P X P ,则在时间],0[T 内至少有一辆汽车通过的概率为_________.由}3{3}4{===X P X P ,即λλλλ--⋅=e e!33!434,得12=λ,所求概率为121}0{1}1{--==-=≥e X P X P .4.某地一年内发生旱灾的概率为31,则在今后连续四年内至少有一年发生旱灾的概率为__________.设X 为今后连续四年内发生旱灾的年数,则X ~⎪⎭⎫⎝⎛31,4B ,所求概率为816532132311}0{1}1{44004=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-==-=≥C XP X P . 5.设随机变量),(Y X 的概率分布为Y X120 4161 81 141 81 121 则==}{Y X P ________.838141}1,1{}0,0{}{=+===+====Y X P Y X P Y X P . 6.设),(Y X 的联合分布函数为⎩⎨⎧>>--=--其他,00,0),1)(1(),(43y x e e y x F y x ,则),(Y X 关于X 的边缘概率密度=)(x f X ________.⎩⎨⎧≤>-=+∞=-0,00,1),()(3x x e x F x F x X ,='=)()(x F x f X X ⎩⎨⎧≤>=-0,00,33x x e x . 7.设X ,Y 的期望和方差分别为5.0)(=X E ,5.0)(-=Y E ,75.0)()(==Y D X D ,0)(=XY E ,则X ,Y 的相关系数=XY ρ________.3175.075.0)5.0(5.00)()()()()(=⨯-⨯-=-=Y D X D Y E X E XY E XY ρ. 8.n X X X ,,,21 是正态总体)4,3(N 的样本,则2123∑=⎪⎭⎫⎝⎛-ni i X ~________.(标明参数) 因为23-i X 独立同分布于)1,0(N ,所以2123∑=⎪⎭⎫ ⎝⎛-ni i X ~)(2n χ.9.设某个假设检验的拒绝域为W ,当原假设0H 成立时,样本),,,(21n x x x 落入W 的概率是0.1,则犯第一类错误的概率为________.1.0=α.10.已知一元线性回归方程为x y 1ˆ3ˆβ+=,且1=x ,6=y ,则=1ˆβ________. 已知3ˆ0=β,由x y 10ˆˆββ-=,即1ˆ63β-=,得3ˆ1=β. 三、计算题1.100张彩票中有7张有奖,现有甲先乙后各买了一张彩票,试用计算说明甲、乙两人中奖中概率是否相同.解:设A 表示“甲中奖”,B 表示“乙中奖”,则1007)(=A P , 1007997100939961007)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P , 甲、乙两人中奖中概率相同.2.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≤-<≤-+=其他,010,101,1)(x x x x x f ,试求)(X E 及)(X D .解:注意到⎩⎨⎧<≤--=其他,011|,|1)(x x x f ,0|)|1()()(11=-==⎰⎰-+∞∞-dx x x dx x xf X E ,61432)(2)1(2|)|1()()(104313210211222=⎪⎪⎭⎫ ⎝⎛-=-=-=-==⎰⎰⎰⎰-∞+∞-x x dx x x dx x x dx x x dx x f x X E ,61)()()(22=-=X E X E X D .四、综合题1.设袋中有依次标着3,3,2,1,1,2--数字的6个球,现从中任取一球,记随机变量X 为取得的球标有的数字,求:(1)X 的分布函数;(2)2X Y =的概率分布. 解:(1)X 的分布律为X2- 1- 1 2 3P1/6 1/6 1/6 1/6 1/3X 的分布函数为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤--<≤--<=3,132,3/221,2/111,3/112,6/12,0)(x x x x x x x F ;(2)2X Y =的概率分布为Y1 4 9 P1/31/31/32.设随机变量X ,Y 相互独立,X ~)1,0(N ,Y ~)4,0(N ,Y X U +=,Y X V -=. 求:(1))(XY E ;(2))(U D ,)(V D ;(3)),cov(V U . 解:(1)000)()()(=⨯==Y E X E XY E ;(2)541)()()(=+=+=Y D X D U D ,541)()()(=+=+=Y D X D V D ; (3)341)]()([)]()([)()()()(222222-=-=+-+=-=-=Y E Y D X E X D Y E X E Y X E UV E , 000)()()()(=+=+=+=Y E X E Y X E U E ,000)()()()(=-=-=-=Y E X E Y X E V E , 3003)()()(),cov(-=⨯--=-=V E U E UV E V U .五、应用题按照质量要求,某果汁中的维生素含量应该超过50(单位:毫克),现随机抽取9件同型号的产品进行测量,得到结果如下:45.1,47.6,52.2,46.9,49.4,50.3,44.6,47.5,48.4根据长期经验和质量要求,该产品维生素含量服从正态分布)5.1,(2μN ,在01.0=α下检验该产品维生素含量是否显著低于质量要求?(32.201.0=u ,58.205.0=u )解:0H :50≥μ,1H :50<μ.选用统计量nx u /00σμ-=.已知500=μ,5.10=σ,9=n ,01.0=α,32.201.0==u u α,算得6.47=xασμu nx u -=-<-=-=-=32.28.49/5.1506.47/00,拒绝0H ,该产品维生素含量显著低于质量要求.《概率论与数理统计》习题(二)一、单项选择题1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( A ) A .0)|(=B A P B .P (B |A )=0 C .P (AB )=0 D .P (A ∪B )=1 2.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( D ) A .P (A ) B .P (AB ) C .P (A|B )D .13.设随机变量X 在区间[2,4]上服从均匀分布,则P{2<X<3}=( C ) A .P{3.5<X<4.5} B .P{1.5<X<2.5} C .P{2.5<X<3.5} D .P{4.5<X<5.5} 4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c则常数c 等于( D )A .-1B .21-C .21D .15.设二维随机变量(X ,Y )的分布律为YX120 0.1 0.2 0 10.30.10.120.1 0 0.1则P{X=Y}=( A )A .0.3B .0.5C .0.7D .0.8 6.设随机变量X 服从参数为2的指数分布,则下列各项中正确的是( A ) A .E (X )=0.5,D (X )=0.25 B .E (X )=2,D (X )=2 C .E (X )=0.5,D (X )=0.5D .E (X )=2,D (X )=47.设随机变量X 服从参数为3的泊松分布,Y~B (8,31),且X ,Y 相互独立,则D (X-3Y-4)=( C )A .-13B .15C .19D .23 8.已知D (X )=1,D (Y )=25,ρXY =0.4,则D (X-Y )=( B ) A .6 B .22 C .30D .469.在假设检验问题中,犯第一类错误的概率α的意义是( C ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率10.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( B ) A .x 2 B .x C .2xD .x21二、填空题1.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ⋃)= 0.5 . 2.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为 18/35 .3.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为 0.7 .4.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为 0.9 .5.抛一枚均匀硬币5次,记正面向上的次数为X ,则P{X ≥1}= 31/32 .6.随机变量X 的所有可能取值为0和x ,且P{X=0}=0.3,E (X )=1,则x= 10/7 . 7.设随机变量X 服从参数为3的指数分布,则D (2X+1)= 4/9 . 8.设二维随机变量(X ,Y )的概率密度为f (x, y)=⎩⎨⎧≤≤≤≤,,0;10,10,1其他y x则P{X ≤21}= 0.5 . 9.设二维随机变量(X ,Y )~N (μ1,μ2;2221,σσ;ρ),且X 与Y 相互独立,则ρ= 0 . 10.设总体X~N (μ,σ2),x 1,x 2,x 3,x 4为来自总体X 的体本,且241241)(,41σ∑∑==-=i ii i x xx x 则服从自由度为 3 的2χ分布. 三、计算题1.设二维随机变量(X ,Y )的分布律为YX121 91 92 292 94试问:X 与Y 是否相互独立?为什么?解:X 12P31 32Y 1 2P31 32因为对一切i,j 有}{}P{},P{j i j i Y Y P X X Y Y X X =⋅==== 所以X ,Y 独立。