7.1同位角、内错角、同旁内角归类习题
- 格式:doc
- 大小:479.00 KB
- 文档页数:3
同位角、内错角、同旁内角测试题A卷一、填空题1.如图1,直线a、b被直线c所截,∠1和∠2是,∠3和∠4是,∠3和∠2是。
直线和线∠,2.如图2∠1和2是直角。
所截得的被直线的同位角A ,∠33.如图,∠1的内错角是。
,∠B的同旁内角是是1个;和∠1如图4,和∠构成内错角的角有 4.构成同旁内角的角有个;和∠构成同位角的角有 1个。
.位角是,内错角同55.如图,指出是,同旁内角是。
二、选择题6.如图6,和∠1互为同位角的是( )(A)∠2; (B)∠3;(C)∠4; (D)∠5。
7.如图7,已知∠1与∠2是内错角,则下列表达正确的是( )(A)由直线、被所截而得到的;(B)由直线、被所截而得到的;(C)由直线、被所截而得到的;(D)由直线、被所截而得到的。
( )是同位角的有2和1中8在图8.;、(3) (B)(2)、(3); (C)(1)(A)(1)、(2);(4)。
(D)(2)、,在指明的角中,下列说法不正确的是( )9.如图9 对;同旁内角有对; (B)5(A)同位角有2不是内错41和∠ (D)(C)内错角有4对;∠角。
对内错角如图10,则图中共有( )10. (D)6。
(C)5(A)3; (B)4;;三、简答题 11.如图11 互为什么角?2与∠1说出∠(1).(2)写出与∠1成同位角的角;成内错角的角。
写出与∠1(3)1212.如图 A(1)说出∠与∠1互为什么角?∠B是否是同位角;与∠2(2)成内错角的角。
写出与∠2(3),指出同位角、内错角、同旁内角。
13.如图13B卷一、填空题被和直线可以看作直线2和∠1∠,1如图1. 直线所截得的角。
被直线和直线 1和∠2是直线 22.如图,∠所截得的角。
被直线与;∠B如图3,直线、被直线所截得的内错角是 3.所截、被直线可以看作直线∠C角。
得的;与 4.如图4,与∠构成内错角的是∠构成同旁内角的是。
1个;与∠1如图5,与∠构成内错角的角有 5.构成同旁内角的角有个;与∠构成同位角的角有 1个。
同位角、内错角、同旁内角练习1.填空、(1)如图2-43,直线AB、CD被DE所截,则∠1和是同位角,∠1和是内错角,∠1和是同旁内角,如果∠1=∠5.那么∠1 ∠3.(2)上题中(图2-43)如果∠5=∠1,那么∠1=∠3的推理过程如下,请在括号内注明理由:∵∠5=∠1()又∵∠5=∠3()∴∠1=∠3()(3)如图2-44,∠1和∠4是AB、被所截得的角,∠3和∠5是、被所截得的角,∠2和∠5是、所截得的角,AC、BC被AB所截得的同旁内角是.∠(4)如图2-45,AB、DC被BD所截得的内错角是,AB、CD被AC所截是的内错角是,AD、BC被BD所截得的内错角是,AD、BC被AC所截得的内错角是.2.选择题(1)如图2-46,∠1与∠2是同位角的个数有()个个个个(2)如图2-47,()是内错角A. ∠1和∠2B. ∠3和∠4C. ∠2和∠3D. ∠1和∠4(3)如图2-48,图中的同位角的对数是().6 C3.如图2-49,已知∠1的同旁内角等于57°28′,求∠1的内错的度数.4.如图2-50图中,共有几对内错角这几对内错角分别是哪两条直线被哪一条直线所截构成的5.如图2-51,直线AB、CD被EF所截,如果∠1与∠2互补,且∠1=110°,那么∠3、∠4的度数是多少1、如图,∠1的内错角是,它们是直线、被直线所截得的;∠1的同位角是,它们是直线、被直线所截得的;∠1的同旁内角是,它们是直线、被直线所截的;2.如图,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是…………………………………()(A)①、②、③(B)①、②、④(C)②、③、④(D)①、②、③、④3、如图,图中的同位角共有……………………………………………………………()(A)6对(B)8对(C)10对(D)12对4.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.3121212125.三条直线两两相交于同一点时,对顶角有m对,交于不同三点时,对顶角有n对,则m 与n的关系是()A.m = n B.m>n C.m<n D.m + n = 106.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD = 38°,则∠AOC = ,∠COB = 。
5.1.3同位角、内错角、同旁内角分层作业基础训练1.如图所示,两只手的食指和拇指在同一平面内,它们构成的一对角可以看成()A.同位角B.同旁内角C.内错角D.对顶角【答案】B【分析】两个拇指所在的两条直线被两个食指所在的直线所截,并且形成的两角位于两直线之间且在截线同侧,因而构成的一对角可看成是同旁内角.【详解】解:两只手的食指和拇指在同一个平面内,两个拇指所在的两条直线被两个食指所在的直线所截,并且形成的两角位于两直线之间且在截线同侧,因而构成的一对角可看成是同旁内角.故选:B.【点睛】本题考查了同旁内角,正确记忆同旁内角的定义是解决本题的关键.2.如图,1 和2 是同位角的是()A.B.C.D.【答案】A【分析】本题考查了同位角的判断.根据同位角的定义:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解即可.【详解】解:由同位角的定义可知选项A符合题意,故选:A.3.如图,1 与2 是内错角,是由_______________构成()A .,AD BC 被AC 所截B .,AB CD 被AD 所截C .,AB CD 被BC 所截D .,AB CD 被AC 所截【答案】D【分析】根据内错角的定义,即可解答.【详解】解:1 与2 是,AB CD 被AC 所截形成的内错角.故选:D .【点睛】本题主要考查了内错角的定义,解题的关键是掌握两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.4.传统文化风筝是由中国古代劳动人民发明于东周春秋时期的产物,其材质在不断改进之后,坊间开始用纸做风筝,称为“纸鸢”.如图所示的纸骨架中,与3 构成同旁内角的是()A .1B .2C .4D .5【答案】A 【分析】根据同旁内角的定义解答即可,即两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角.【详解】解:如图可知,1 和3 是同旁内角,故选:A .【点睛】本题考查的是同旁内角的定义,关键是知道哪两条直线被第三条直线所截.5.下列判断错误的是()A.2 与4 是同旁内角B.3 与4 是内错角C.5 与6 是同旁内角D.1 与5 是同位角【答案】C【分析】此题主要考查了三线八角.根据同位角、内错角、同旁内角的定义进行解答即可.【详解】解:A、2与4是同旁内角,说法正确;B、3 与4 是内错角,说法正确;C、5 与6 不是两条直线被第三条直线截成的角,说法错误;D、1 与5 是同位角,说法正确.故选:C.6.如图,下列结论正确的是()A.5 与4 是对顶角B.1 与3 是同位角C.2 与3 是同旁内角D.1 与2 是同旁内角【答案】D【分析】本题考查同位角同旁内角、对顶角,根据同位角、同旁内角、对顶角的定义进行判断,熟练掌握各角的定义是解题的关键.【详解】A 、5 与23 是对顶角,故本选项错误,不符合题意;B 、1 与34 是同位角,故本选项错误,不符合题意;C 、2 与3 没有处在两条被截线之间,故本选项错误,不符合题意;D 、1 与2 是同旁内角;故本选项正确,符合题意;故选:D .7.如图,下列说法错误的是()A .∠1和∠3是同位角B .∠A 和∠C 是同旁内角C .∠2和∠3是内错角D .∠3和∠B 是同旁内角【答案】A 【详解】观察图形可得:∠1和∠3是同旁内角;∠A 和∠C 是同旁内角;∠2和∠3是内错角;∠3和∠B 是同旁内角,说法错误的只有选项A ,故选A.点睛:①同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角;②内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角;③同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.8.如图,3 的同旁内角是,4 的内错角是,7 的同位角是.【答案】4,5 2,6 1,4【分析】两直线被第三条直线所截,同位角位于两直线同侧,第三条直线的同旁;内错角位于两直线之间,第三条直线的两侧;同旁内角位于两直线之间,第三条直线的同侧.【详解】解:由图可得:3 的同旁内角是4,5 ;4 的内错角是2,6 ;7 的同位角是1,4 ,故答案为:4,5 ;2,6 ;1,4 .【点睛】本题涉及到三线八角的知识,熟练掌握同位角、内错角、同旁内角的定义是关键.9.如图所示的四个图形中,1 和2 是同位角的是.(填序号)【答案】①②④【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】解:①∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角;②∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角;③∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角;④∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角.故答案为:①②④.【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.10.如图所示,1 和2 是内错角的是:.(请把正确的序号都写上)【答案】①②④【分析】根据两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,逐一判断即可得到答案.【详解】解:根据内错角的概念可知:①②④是内错角,③图不是.故答案为:①②④.【点睛】此题考查的是内错角的概念,掌握其概念是解决此题关键.11.如图,(1)当直线AC 、DG 被直线CD 所截时,2 的内错角是;(2)AEF 的同位角是;(3)1 的同旁内角是.【答案】ACD ACD 、ACB ACD 、ACB 、EFD【分析】(1)根据内错角的定义进行解答即可;(2)根据同位角的定义进行解答即可;(3)根据同旁内角的定义进行解答即可.【详解】解:(1)当直线AC 、DG 被直线CD 所截时,2 的内错角是ACD .故答案为:ACD .(2)AEF 的同位角是ACD 、ACB .故答案为:ACD 、ACB .(3)1 的同旁内角是ACD 、ACB 、EFD .故答案为:ACD 、ACB 、EFD .【点睛】本题主要考查了同位角,内错角和同旁内角的定义,解题的关键是熟练掌握定义,同位角:在截线同旁,被截线相同的一侧的两角;内错角:在截线两旁,被截线之内的两角;同旁内角:在截线同旁,被截线之内的两角.12.如图所示,直线AB 与BC 被直线AD 所截得的内错角是;直线DE 与AC 被直线AD 所截得的内错角是;4 的内错角是.AI【答案】1 和3 2 和4 5 和2【分析】根据内错角的概念,结合图形中各角的位置即可顺利完成填空.【详解】直线AB 与BC 被直线AD 所截得的内错角是1 和3 ;直线DE 与AC 被直线AD 所截得的内错角是2 和4 ;4 的内错角是5 和2 .故答案为:1 和3 ;2 和4 ;5 和2 .【点睛】本题考查了内错角的概念,熟练掌握两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角叫做内错角是解题的关键.13.如图.在图中,(1)同位角共对,内错角共对,同旁内角共对;(2)1 与2 是,它们是被截成的;(3)3 与4 中被所截而得到的角;(4)AB 和BE 被AC 所截而成的内错角是,同旁内角是.【答案】4612内错角AD 和BC AC AB 和CD AC 3 和ACE 3 和2【分析】(1)直接利用同位角、内错角、同旁内角的定义得出答案;(2)利用内错角的定义得出答案;(3)利用内错角的定义得出答案;(4)利用已知图形得出内错角、同旁内角.【详解】解:(1)同位角共4对,内错角共6对,同旁内角共12对.故答案为:4;6;12;(2)1 与2 是内错角,它们是AD 和BC 被AC 截成的.故答案为:内错角;AD 和BC ;AC ;(3)3 与4 中AB 和CD 被AC 所截而得到的角.故答案为:AB 和CD ;AC ;(4)AB 和BE 被AC 所截而成的内错角是3 和ACE ,同旁内角是3 和2 .故答案为:3 和ACE ;3 和2 .【点睛】本题考查了同位角、内错角、同旁内角,解本题的关键在熟练掌握同位角、内错角、同旁内角的定义,并充分利用数形结合思想解答.14.如图,填空.(1)若直线ED ,BC 被直线AB 所截,则1 与是同位角;(2)若直线ED ,BC 被直线AF 所截,则3 与是内错角;(3)1 与3 是直线AB 和直线AF 被直线所截构成的角;(4)2 与4 是直线和直线被直线BC 所截构成的角;(5)图中5 的同旁内角有个,它们是.【答案】2 4 DE 内错AB AF 同位3A ,3 ,2【分析】根据同位角、内错角、同旁内角的定义逐个求解即可.【详解】解:(1)若直线ED ,BC 被直线AB 所截,则1 与2 是同位角;(2)若直线ED ,BC 被直线AF 所截,则3 与4 是内错角;(3)1 与3 是直线AB 和直线AF 被直线DE 所截构成的内错角;(4)2 与4 是直线AB 和直线AF 被直线BC 所截构成的同位角;(5)图中5 的同旁内角有3个,它们是A ,3 ,2 ,故答案为:2 ,4 ,DE ,内错,AB ,AF ,同位,3,A ,3 ,2 .【点睛】本题考查了同位角、内错角、同旁内角的定义,能根据图形找出同位角、内错角和同旁内角是解此题的关键.15.如图,李老师在黑板上画了一个图形,请你在这个图形中分别找出角A 的一个同位角、内错角和同旁内角,并指出是哪两条直线被哪条直线所截形成的.【答案】见解析【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可.【详解】详解:A 的同位角是BCE ,是直线AB BC 、被AE 所截而成;A 的内错角是ACF ,是直线AB GF 、被AC 所截而成;A 的同旁内角是B ,是直线AC BC 、被AB 所截而成.【点睛】此题主要考查了三线八角,关键是掌握同位角的边构成“F ”形,内错角的边构成“Z ”形,同旁内角的边构成“U ”形.16.如图,1 与2 ,3 与4 各是哪两条直线被哪一条直线所截而形成的什么角?图①图②【答案】图①中,1 与2 是AB ,CE 被AD 所截而形成的内错角;3 与4 是AD ,BC 被EC 所截而形成的同旁内角.图②中,1 与2 是AB ,CD 被BD 所截而形成的内错角;3 与4 是AD ,BC 被BD 所截而形成的内错角.【解析】略17.如图,1 与D ,1 与B ,3 与4 ,B 与BCD ,2 与4 分别是哪两条直线被哪一条直线所截得到的?它们中的每一对角分别叫做什么角?【答案】1 与D 是直线BA 和直线CD 被直线AD 所截得到的内错角;1 与B 是直线AD 和直线BC 被直线AB 所截得到的同位角;3 与4 是直线AB 和直线CD 被直线AC 所截得到的内错角;B 与BCD 是直线AB 和直线CD 被直线BC 所截得到的同旁内角;2 与4 是直线AD 和直线CD 被直线AC 所截得到的同旁内角.【分析】根据同位角、内错角、同旁内角的定义分析可得答案.【详解】解:1 与D 是直线BA 和直线CD 被直线AD 所截得到的内错角;1 与B 是直线AD 和直线BC 被直线AB 所截得到的同位角;3 与4 是直线AB 和直线CD 被直线AC 所截得到的内错角;B 与BCD 是直线AB 和直线CD 被直线BC 所截得到的同旁内角;2 与4 是直线AD 和直线CD 被直线AC 所截得到的同旁内角.【点睛】此题主要考查了三线八角,关键是掌握在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F ”形,内错角的边构成“Z ”形,同旁内角的边构成“U ”形.18.如图所示,直线a ,b 被直线c 所截,∠1=40°,∠2=105°,求∠1的同位角,∠4的内错角,∠3的同旁内角的度数.【答案】∠1的同位角为75°;∠4的内错角是40°;∠3的同旁内角是75°【分析】根据内错角、同旁内角、同位角的定义进行判断,由已知条件结合互补可求解.【详解】∠1的同位角为∠4,而∠4+∠2=180°,因此∠4=180°-∠2=180°-105°=75°;∠4的内错角∠5与∠1是对顶角,根据对顶角相等,∠4的内错角∠5=∠1=40°;∠3的同旁内角为∠4,因此∠3的同旁内角是75°【点睛】本题运用同位角、同旁内角、内错角的定义进行求解,熟练掌握同位角、同旁内角、内错角的定义是解题关键.能力提升19.如图所示,有下列五种说法:①1 和4 是同位角;②3 和5 是内错角;③2 和6 是同旁内角;④5 和2 是同位角;⑤1 和3 是同旁内角;其中正确的是()A .①②③⑤B .①②③④C .①②③④⑤D .①②④⑤【答案】D 【分析】本题考查了同位角、内错角以及同旁内角的定义,根据内错角、同位角以及同旁内角的定义寻找出各角之间的关系,再比照五种说法判断对错,即可得出结论.【详解】解:根据内错角、同位角以及同旁内角的定义分析五种说法.①1 和4 是同位角,即①正确;②3 和5 是内错角,即②正确;③2 和6 是内错角,即③不正确;④5 和2 是同位角,即④正确;⑤1 和3 是同旁内角,即⑤正确.故选:D .20.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是()A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠4【答案】B 【分析】同位角:两条直线a ,b 被第三条直线c 所截(或说a ,b 相交c ),在截线c 的同旁,被截两直线a ,b 的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.根据此定义即可得出答案.【详解】解:∵直线AD ,BE 被直线BF 和AC 所截,∴∠1与∠2是同位角,∠5与∠6是内错角,故选:B .【点睛】本题考查的知识点是同位角和内错角的概念,解题的关键是熟记内错角和同位角的定义.21.如图,下列判断中正确的个数是()(1)∠A与∠1是同位角;(2)∠A和∠B是同旁内角;(3)∠4和∠1是内错角;(4)∠3和∠1是同位角.A.1个B.2个C.3个D.4个【答案】C【分析】准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.【详解】解:(1)∠A与∠1是同位角,正确,符合题意;(2)∠A与∠B是同旁内角.正确,符合题意;(3)∠4与∠1是内错角,正确,符合题意;(4)∠1与∠3不是同位角,错误,不符合题意.故选:C.【点睛】此题主要考查了三线八角,在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系.22.如图,∠1和∠3是直线和被直线所截而成的角;图中与∠2是同旁内角的角有个.【答案】AB AC DE内错3【分析】根据内错角和同旁内角的定义得出即可.【详解】解:∠1和∠3是直线AB 和AC 被直线DE 所截而成的内错角;图中与∠2是同旁内角的角有∠6、∠5、∠7,共3个.故答案为AB ;AC ;DE ;内错;3.【点睛】此题考查同位角、内错角、同旁内角等知识点,能根据图形找出各对角是解题的关键.根据内错角和同旁内角的定义得出即可.23.如图,有下列说法:①能与DEF 构成同旁内角的角的个数有2个,②能与BFE 构成同位角的角的个数有2个;③能与C 构成同旁内角的角的个数有4个。
2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知∠1和∠2是同旁内角,∠1=60°,∠2等于()A.140°B.120°C.60°D.无法确定【答案】D【解析】【分析】本题只是给出两个角的同旁内角关系,没有两直线平行的条件,故不能判断两个角的数量关系.【详解】解:同旁内角只是一种位置关系,两直线平行时同旁内角互补,不平行时无法确定同旁内角的大小关系,故选D.【点睛】特别注意,同旁内角互补的条件是两直线平行.2.下列各图中,与是同位角的是()A.B.C.D.【答案】B【解析】【分析】本题需先根据同位角的定义进行筛选,即可得出答案.【详解】A、∵根据同位角的定义得:∠1与∠2不是同位角,故本选项错误;B、∵根据同位角的定义得:∠1与∠2是同位角,故本选项正确;∠1与∠2不是同位角,故本选项错误;D、∵根据同位角的定义得:∠1与∠2不是同位角,故本选项错误.故选B.【点睛】本题主要考查了同位角,在解题时要根据同位角的定义进行筛选是本题的关键.3.如图所示,和是同位角的是()A.②③B.①②③C.①②④D.①④【答案】C【解析】【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】如图①,∠1、∠2是直线m与直线n被直线p所截形成的同位角,故①符合题意;如图②,∠1、∠2是直线p与直线q被直线r所截形成的同位角,故②符合题意;如图③,∠1是直线d与直线e构成的夹角,∠2是直线g与直线f形成的夹角,∠1与∠2不是同位角,故③不符合题意;如图④,∠1、∠2是直线a与直线b被直线c所截形成的同位角,故④符合题意.故选C.【点睛】角的边构成“U”形.4.下列所示的四个图形中,∠1和∠2是同位角...的是()A.③④B.①③C.①③④D.①②④【答案】D【解析】【分析】根据同位角,内错角,同旁内角的概念解答即可.【详解】∠1和∠2是同位角的是①②④.故选D.【点睛】本题考查了同位角,内错角,同旁内角的概念,关键是根据同位角,内错角,同旁内角的概念解答.5.下列选项中∠1与∠2不是同位角的是()A.B.C.D.【答案】C【解析】【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:A、B、D中∠1和∠2是同位角;C、∠1和∠2不满足两条直线被第三条直线所截形成的角,所以不是同位角;故选:C.【点睛】边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形.6.如图,下列说法不正确的是()A.∠1和∠B是同位角B.∠1和∠4是内错角C.∠3和∠B是同旁内角D.∠C和∠A不是同旁内角【答案】D【解析】【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.【详解】A. ∠1和∠B是DE与BC被AB所截得到的同位角,正确;B. ∠1和∠4是AB与AC被DE所截得到的内错角,正确;C. ∠3和∠B是DE与BC被AB所截得到的同旁内角,正确;D. ∠C和∠A是AB与BC被AC所截得到的同旁内角,故不正确;故选D.【点睛】本题考查了同位角、内错角、同旁内角的定义,熟练掌握三种角的特征是解答本题的关键.7.如图,直线被直线a所截,则∠1和∠2的关系是( )【分析】结合图形,根据同位角、内错角、同旁内角的概念进行判断即可.【详解】观察图形可知,∠1和∠2两个角都在两被截直线b和c的内侧,并且在第三条直线a (截线)的同旁,故∠1和∠2是直线b、c被a所截而成的同旁内角,故选D.【点睛】本题考查了“三线八角”,熟练掌握同位角、内错角、同旁内角的图形特征是解题的关键. 8.∠1与∠2是内错角,∠1=30°,则∠2的度数为( )A.30°B.150°C.30°或150°D.不能确定【答案】D【解析】【分析】两直线平行时内错角相等,不平行时无法确定内错角的大小关系,据此分析判断即可得.【详解】内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等,故选D.【点睛】本题考查了三线八角,明确同位角、内错角、同旁内角只是两个角的一种位置关系,而没有一定的大小关系是解此类问题的关键.9.两条直线被第三条直线所截,若∠1与∠2 是同旁内角,且∠1=70o,则( ) A.∠2=70o B.∠2=110oC.∠2=70o或∠2=110o D.∠2的度数不能确定【答案】D【解析】【分析】两直线被第三条直线所截,只有当两条被截直线平行时,内错角相等,同位角相等,同旁内角互补.不平行时以上结论不成立.【详解】】解:因为两条直线的位置关系不明确,所以无法判断∠1和∠2大小关系.本题考查平行线的性质,注意性质定理的条件是两直线平行.10.如图,点O是直线AB上一点,OE,OF分别平分∠AOC和∠BOC,当OC的位置发生变化时(不与直线AB重合),那么∠EOF的度数( )A.不变,都等于90°B.逐渐变大C.逐渐变小D.无法确定【答案】A【解析】【分析】由OE与OF为角平分线,利用角平分线定义得到两对角相等,由平角的定义及等式的性质即可求出所求角的度数.【详解】∵OE、OF分别是∠AOC、∠BOC的角平分线,∴∠AOE=∠COE,∠COF=∠BOF,∵∠AOC +∠COB=∠AOE+∠COE+∠COF+∠BOF=180°,∴2(∠COE+∠COF)=180°,即∠COE +∠COF=90°,∴∠EOF=∠COE+∠COF=90°.故选A.【点睛】本题主要考查角平分线的性质和平角的定义,得出2(∠COE+∠COF)=180°是解题的关键.11.如图,直线AB,CD,EF相交于点O,则∠COF的一个邻补角是( )A.∠BOFD.∠DOE【答案】B【解析】【分析】根据邻补角的定义解答即可.【详解】两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角,因此∠COF的一个邻补角是∠DOF.故选B.【点睛】本题主要考查邻补角的定义,熟记邻补角的定义是解答的关键.12.下列图形中,∠3和∠4不是内错角的是()A.B.C.D.【答案】D【解析】【分析】根据内错角的定义找出即可.【详解】由内错角的定义可得A、B、C中∠3与∠4是内错角,D中的∠3与∠4不是内错角.故选D.【点睛】本题考查了同位角、内错角、同旁内角,熟记内错角的定义是解题的关键.13.如图,∠1,∠2不是同旁内角的是()A.B.C.D.【答案】B【解析】【分析】根据同旁内角的定义,逐条分析四个选项,即可得出结论.A、∠1和∠2是同旁内角;B、∠1和∠2不是同旁内角;C、∠1和∠2是同旁内角;D、∠1和∠2是同旁内角.故选:B.【点睛】本题考查了同旁内角的定义,解题的关键是根据同旁内角的定义去逐条分析选项.本题属于基础题,难度不大,解决该题型题目时,分析图形寻找两角的关系是关键.14.下列各图中,∠1,∠2不是同位角的是()A.B.C.D.【答案】B【解析】【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】根据同位角定义可得B不是同位角,故选:B.【点睛】此题主要考查了同位角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.二、填空题15.同位角的特征是在两条线被截线的____________,并且在截线的__________,如图,∠______和∠_______是同位角.【答案】同一方;同侧; 1 ,2.【解析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;结合题中所给的图形,运用同位角的定义即可求解.【详解】解:同位角的特征是在两条被截线的同一方,并且在截线的同一侧,如图,∠1和∠2是同位角.【点睛】本题考查同位角的定义,熟悉掌握是解题关键.16.如图,直线l1,l2被直线l3所截,则图中同位角有_____对.【答案】4【解析】【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【详解】如图所示:∠1和∠3,∠2和∠4,∠8和∠6,∠7和∠5,都是同位角,一共有4对.故答案为:4.【点睛】本题考查的知识点是同位角的定义,解题关键是正确把握定义.17.如图,∠F的内错角有_____________.【解析】【分析】根据内错角的定义,结合图形寻找符合条件的角.【详解】根据内错角的定义可知:与∠F互为内错角的只有∠AEF和∠ADF.故答案为:∠AEF和∠ADF.【点睛】本题考查的知识点是内错角的定义,解题关键是熟记内错角的定义.18.如图,∠DCB和∠ABC是直线_____和______被直线______所截而成的_____角.【答案】DE AB BC 同旁内【解析】【分析】根据三线八角的概念,以及同旁内角的定义求得.【详解】如图所示,∠DCB和∠ABC具有公共边BC,另外两条边分别在直线CD和AB上,故∠DCB 和∠ABC是直线DE和AB被直线BC所截而成的同旁内角.故答案为:DE,AB,BC,同旁内.【点睛】本题考查了三线八角的概念中的同旁内角的概念.19.如图,直线AB,CD相交于点O,OE⊥AB,O为垂足,∠EOD=26°,则∠AOC=____,∠COB=___.【答案】64°116°.【解析】【分析】由OE⊥AB,得到∠AOE=90°,所以∠AOC=180°-∠EOD-∠AOE=64°;因为∠BOD=64°,∠COB=180°-∠BOD= 116°.【点睛】本题考查了垂线的定义,熟练掌握垂线的定义是本题解题关键.20.如图:a∥b,图中的∠1,∠2,∠3,∠4,∠5,∠6,∠7 中同位角有___________对.【答案】3【解析】【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.同位角的边构成“F“形作答.【详解】观察图形可知:∠1的同位角是∠4,∠3的同位角是∠5,∠7的同位角是∠6,∴图中同位角有3个.故答案为:3.【点睛】此题主要考查同位角的概念,有以下几个要点:1、分清截线与被截直线;2、两个相同,在截线同旁,在被截直线同侧.21.如图,直线MN分别交直线AB,CD于E,F,其中,∠AEF的对顶角是∠___________,∠BEF的同位角是∠___________.【答案】BEM;DFN.【解析】∠AEF与∠BEM有公共顶点,∠BEM的两边是∠AEF的两边的反向延长线,所以是对顶角;∠BEF与∠DFN,在截线MN的同侧,被截线AB、CD的同旁,所以是同位角.【详解】∠AEF的对顶角是∠BEM,∠BEF的同位角是∠DFN.故答案为:BEM,DFN.【点睛】本题考查对顶角与同位角的概念,是需要熟记的内容.三、解答题22.如图,AB、CD相交于点O,OM平分∠BOD,∠MON是直角,∠AOC=50°.(1)求∠AON的度数;(2)求∠DON的邻补角的度数.【答案】(1)65°;(2)115°.【解析】【分析】(1)根据角平分线的定义求出∠MOB的度数,根据邻补角的性质计算即可.(2)根据题意得到:∠CON为∠DON的邻补角.【详解】解:(1)∵∠AOC+∠AOD=∠AOD+∠BOD=180°,∴∠BOD=∠AOC=50°,∵OM平分∠BOD,∴∠BOM=∠DOM=25°,又由∠MON=90°,∴∠AON=180°-(∠MON+∠BOM)=180°-(90°+25°)=65°;(2)∵∠AON=65°,∠AOC=50°,∴∠CON=∠AON+∠AOC=115°,即∠DON的邻补角的度数为115°.【点睛】本题考查的是邻补角的概念以及角平分线的定义,掌握邻补角的性质是邻补角互补是解23.如图,直线a,b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.【答案】∠2的同位角是140°,∠2的同旁内角是40°.【解析】【分析】首先找出∠2的同位角与同旁内角;再结合已知角的度数,找出待求角与已知角的关系,即可求解.【详解】解:∵∠1=40°,∴∠3=∠1=40°,∠4=180°-∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°.【点睛】本题考查同位角、内错角、同旁内角,解题的关键是掌握定义,灵活运用.24.如图所示,已知射线DM与直线AB交于点A,线段EC与直线AB交于点C,AB∥DE.(1)当∠MAC=100°,∠BCE=120°时,把EC绕点E旋转多大角度(所求角度小于180°)时,可判定MD∥EC请你设计出两种方案,并画出草图;(2)若将EC绕点E逆时针旋转60°时,点C与点A恰好重合,请画出草图,并在图中找出同位角、内错角各两对(先用数字标出角,再回答).【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据平行线的判断,只要把EC绕点E顺时针旋转或逆时针旋转,使(2)先根据题意画出草图,再根据同位角、内错角的概念分别找出两对角即可.【详解】(1)方案1:把EC绕点E逆时针旋转40°时,可判定MD∥EC,如图①;方案2:把EC绕点E顺时针旋转140°时,可判定MD∥EC,如图②.(2)如图③,同位角:∠3与∠5,∠4与∠5;内错角:答案不唯一,如∠1与∠6,∠2与∠5.【点睛】本题主要考查了平行线的判定和作图等知识,注意运用旋转变换的性质.25.如图,按要求画图并回答相关问题:(1)过点A画线段BC的垂线,垂足为D;(2)过点D画线段..DE∥AB,交AC的延长线于点E;(3)指出∠E的同位角和内错角.【答案】(1)见解析(2)见解析(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE 和∠BCE.【解析】【分析】(1)如图,过A点作AD⊥BD与BC的延长线交于D点即可;(2)如图,过D点作DE∥AB与AC的延长线交于E点即可;(3)根据同位角与内错角的定义进行解答即可.【详解】(1)(2)如图所示.本题主要考查基础作图,同位角与内错角的定义,熟练掌握其知识点是解此题的关键. 26.如图,BCD是一条直线,∠1=∠B,∠2=∠A,指出∠1的同位角,∠2的内错角,并求出∠A+∠B+∠ACB的度数.【答案】∠1的同位角是∠B,∠2的内错角∠A;180°【解析】【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.内错角就是:两个角都在截线的两侧,又分别处在被截的两条直线中间位置的角;根据等量代换,角的和差,可得答案.【详解】由同位角的定义,内错角的定义,得∠1的同位角是∠B,∠2的内错角∠A,由角的和差,得∠A+∠B+∠ACB=∠ACB+∠1+∠2=180°.【点睛】本题考查了同位角、内错角、同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.27.找出图中所有的同位角、内错角、同旁内角.【答案】图1中的同位角:∠1与∠8,∠2与∠5,∠3与∠6,∠4与∠7,内错角有∠1与∠6,∠4与∠5;同旁内角有∠1与∠5,∠4与∠6;图2同位角有∠1与∠3,∠2根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都在截线的两侧,又分别处在被截的两条直线中间的位置的角,同旁内角是两个角都在截线的同旁,又分别处在被截的两条直线中间位置的角,可得答案.【详解】如图:图1中的同位角:∠1与∠8,∠2与∠5,∠3与∠6,∠4与∠7,内错角有∠1与∠6,∠4与∠5;同旁内角有∠1与∠5,∠4与∠6;图2同位角有∠1与∠3,∠2与∠4,同旁内角有∠2与∠3.【点睛】本题考查了同位角、内错角、同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.28.在同一个“三线八角”的基本图形中,如果已知一对内错角相等.(1)图中其余的各对内错角相等吗为什么(2)图中的各对同位角相等吗为什么(3)猜想图中各对同旁内角有怎样的数量关系.【答案】(1)相等;理由见解析;(2)相等;理由见解析;(3)互补.【解析】【分析】根据三线八角进行求解即可.【详解】(1)相等;(2)相等;(3)互补. 理由如下:如图,(1)由∠1=∠2,又∠3=∠4(等角的补角相等);(2) 由∠1=∠2, 又∠1=∠5(对顶角相等),所以∠2=∠5,同理可得:其他对同位角也相等;(3)由∠1=∠2,又∠1+∠3=180°,所以∠2+∠3=180°(等量代换),同理:∠1+∠4=180°.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.29.如图,∠1和哪些角是内错角∠1和哪些角是同旁内角∠2和哪些角是内错角∠2和哪些角是同旁内角它们分别是由哪两条直线被哪一条线截成的【答案】详见解析.【解析】【分析】根据同旁内角,内错角的定义,结合图形进行判断即可.【详解】∠1和∠DAB是内错角,由直线DE和BC被直线AB所截而成;∠1和∠BAC是同旁内角,由直线BC和AC被直线AB所截而成;∠1和∠2也是同旁内角,是直线AB和AC被直线BC所截而成;∠1和∠BAE也是同旁内角,是直线DE和BC被直线AB所截而成;∠2和∠EAC是内错角,是直线DE和BC被直线AC所截而成;∠2和∠BAC是同旁内角,是直线AB和BC被直线AC所截而成;∠2和∠1也是同旁内角,是直线AB和AC被直线BC所截而成;【点睛】本题考查了同位角、内错角及同旁内角的知识,注意掌握各自的定义是解题关键.30.指出图中的同位角、内错角、同旁内角.【答案】同位角:∠DAE和∠C;∠BAE和∠C,内错角:∠BAD和∠B ;∠B和∠BAE,同旁内角:∠CAD和∠C;∠B和∠C,∠B和∠BAC,∠C和∠BAC.【解析】【分析】根据同位角、内错角、同旁内角的定义求解.【详解】如图,可分解成三个基本图形,由图(1)得内错角:∠BAD和∠B;由图(2)得同位角:∠DAE和∠C,同旁内角:∠CAD和∠C;由图(3)得同位角:∠BAE和∠C,内错角:∠B和∠BAE,同旁内角:∠B和∠C,∠B和∠BAC,∠C和∠BAC.即原图形中共有两组同位角,两组内错角,四组同旁内角.【点睛】本题考查了同位角、内错角、同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.。
2019年4月16日初中数学作业一.单选题1.已知Z1和Z2是同旁内角,Zl=60° , Z2等于() A. 140°B. 120°C. 60。
D.无法确定 【答案】D【解析】【分析】 本题只是给出两个角的同旁内角关系,没有两直线平行的条件,故不能判断两个角的数 量关系.【详解】解:同旁内角只是一种位置关系,两直线平行时同旁内角互补,不平行时无法确定同旁 内角的人小关系,故选D.【点睛】特别注意,同旁内角互补的条件是两直线平行.[Wr]【分析】 本题需先根据同位角的定义进行筛选,即町得岀答案.【详解】A 、•••根据同位角的定义得:Z1与Z2不是同位角,故本选项错误:E 、I 根据同位角的定义得:Z1与Z2是同位角,故本选项正确:C. I 根据同位角的定义得:学校: _____________ 姓名: _____________ 班级:____________ 考号: _____________ 2.下列各图中,乙1与乙2是同位角的是(Z1与Z2不是同位角,故本选项错误:D 、•・•根据同位角的定义得:Z1与Z2不是同位角,故本选项错误.故选E.【点睛】本题主要考查了同位角,在解题时要根据同位角的定义进行筛选是本题的关键.【答案]C【分析】 根据同位角:两条直线彼第三条直线所截形成的角中,若两个角都在两直线的同侧,并 且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】如图①,Zls Z2是直线加与直线“被直线"所截形成的同位角,故①符合题意;如图②,ZU Z2是直线卩与直线q 被直线『所截形成的同位角,故②符合题意;如图③,Z1是直线d 与直线e 构成的夹角,Z2是直线g 与直线/形成的夹角,Z1与Z2不是同位角,故③不符合题意;如图④,ZU Z2是直线a 与直线b 被直线c 所截形成的同位角,故④符合题意.故选C.【点睛】本题考查了同位角,关键是掌握同位角的边构成“F “形,内错角的边构成“Z“形,同3.如图所示,乙1和乙2是同位角的是(D.旁内角的边构成W 形・4.下列所示的四个图形中,Z1和Z2是同位角的是()• • • 【答案】D【解析】【分析】 根据同位角,内错角,同旁内角的概念解答即可.【详解】Z1和Z2是同位角的是①©④.故选D.【点睛】本题考查了同位角,内错角,同旁内角的概念,关键是根据同位角, 【分析】 根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线 的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】 解:A 、B. D 中Z1和Z2是同位角;C 、Z1和Z2不满足两条直线彼第三条直线所截 形成的角,所以不是同位角;故选:C.【点睛】 本题考查三线八角中的某两个角是不是同位角,同位角完全由两个角在图形中的相对位 置决定.在复杂的图形中判别同位角时,应从角的两边入于具有上述关系的角必有两 试卷第3页,总18页B.①® 内错角,同旁内角A.③©D ・④ 的概念解答.【衢]A.对顶角【答案】DB.同位角C.内错角 0.同旁内角边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即 为被截的线.同位角的边构成“F “形.6.如图,下列说法不正确的是()两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直 线(截线)的同旁,则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中, 若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁 内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第 三条直线(截线)的两旁,则这样一对角叫做内错角.【详解】A ・Z1和ZB 是DE 与被AB 所截得到的同位角,正确;B. Z1和Z4是初与AC 被DE 所截得到的内错角,正确;C. Z3和ZB 是DE 与BC 被AB 所截得到的同旁内角,正确;D. ZC 和ZA 是AB 与BC 被AC 所截得到的同旁内角,故不正确:故选D.【点睛】本题考查了同位角、内错角、同旁内角的定义,熟练掌握三种角的特征是解答本题的关 键.7.如图,直线b.c 被直线a 所截,则Z1和Z2的关系是()【衢】【分析】A. Z1和ZB 是同位角C. Z3和ZB 是同旁内角【答案】D 【梯】【分析】B. Z1和Z4是内错角 D. ZC 和ZA 不是同旁内角结合图形,根据同位角、内错角、同旁内角的概念进行判断即可.【详解】观察图形可知,Z1和Z2两个角都在两被截直线b和c的内侧,并且在第三条直线a(截线)的同旁,故Z1和Z2是直线b、c被a所截而成的同旁内角,故选D.【点睛】本题考查了“三线八角”,熟练掌握同位角、内错角、同旁内角的图形特征是解题的关键.8.Z1与Z2是内错角,Zl=30°,则Z2的度数为()A.30°B. 150°C. 30°或150°D.不能确定【答案】D【和】【分析】两直线平行时内错角相等,不平行时无法确定内错角的人小关系,据此分析判断即可得.【详解】内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等,故选D.【点睛】本题考查了三线八角,明确同位角、内错角、同旁内角只是两个角的一种位置关系,而没有一定的大小关系是解此类问题的关键.9.两条直线被第三条直线所截,若Z1与Z2是同旁内角,且Zl=70°,则()A.Z2=70°B. Z2=110°C. Z2=70O S EZ2=110°D. Z2的度数不能确定【答案】D【解析】【分析】两直线被第三条直线所截,只有当两条被截直线平行时,内错角相等,同位角相等,同旁内角互补.不平行时以上结论不成立.【详解】】解:因为两条直线的位置关系不明确,所以无法判断Z1和Z2大小关系.故选:D.【点睛】本题考查平行线的性质,注意性质定理的条件是两直线平行.10.如图,点O是宜线AB上一点,OE, OF分别平分ZAOC和ZBOC,当OC的位置发生变化时(不与直线AB重合),那么ZEOF的度数()A.不变,都等于90°B.逐渐变大C.逐渐变小D.无法确定【答案】A【解析】【分析】由0E与OF为角平分线,利用角平分线定义得到两对角相等,由平角的定义及等式的性质即可求出所求角的度数.【详解】TOE、OF分别是ZAOC. ZBOC的角平分线,A ZAOE=ZCOE, ZCOF=ZBOF, V ZAOC+ ZCOB= ZAOE+ ZCOE+ ZCOF+ ZBOF=180。
1.1 同位角、内错角、同旁内角◆目标指引1.经历观察、比拟、动手操作等过程,培养识图能力和思维能力.2.体会两条直线被第三条直线所截产生的同位角、内错角、同旁内角概念.3.会识别两条直线被第三条直线所截产生的同位角、内错角、同旁内角.4.培养由较复杂的图形中分解出简单的、根本图形的能力.◆要点讲解1.两条直线被第三条直线所截时,构成了八个角,简称"三线八角〞.2.两条直线被第三条直线所截时,•要分清是哪两条直线被哪一条直线所截〔即第三条直线〕.3.每对同位角〔或内错角或同旁内角〕的四条边仅涉及三条直线,•两个角的边涉及的同一条直线就是截其余两条直线的"第三条直线〞,其余涉及的两条即为被截的两条直线.4.通过一定数量的变式图形的识别,大量正反例子的识别来形成同位角、•内错角、同旁内角的正确认识.◆学法指导1.在被截两条直线的同一方向,•在截线〔即第三条直线〕的同一侧的一对角为同位角;在被截两条直线之间,在截线〔即第三条直线〕的两侧的一对角为内错角;在被截两条直线之间,在截线〔即第三条直线〕的同一侧的一对角为同旁内角.2.在同位角、内错角、•同旁内角中的"同〞指在被截两条直线的同一方向或截线〔即第三条直线〕的同一侧:"〞指被截两条直线之间;"错〞指在截线〔即第三条直线〕的两侧.3.同位角的形状像英文字母"F〞;内错角的形状像英文字母"Z〞;•同旁内角的形状像英文字母"C〞或"n〞.4.同位角、内错角、•同旁内角都是两条直线被第三条直线所截形成的没有公共顶点的一些所对的角.如果两角由四条直线构成〔即它们没有公共截线〕,则肯定既不是同位角,也不是内错角、同旁内角.5.对于有些较复杂的图形,刚开场识别时有一定困难,•解决这一困难的有效措施是:将指定的三条直线用有色笔描出来,突出研究截线,再去辩认角.假设图形不标准,可根据情况把线段〔或射线〕向两边〔或一边〕作适当延长.例题分析【例1】如下图,∠1和∠4,∠2和∠3,∠3和∠4•分别是哪两条直线被哪一条直线所截而成的?它们是同位角、内错角、同旁内角中的哪一类角?【分析】由于∠1和∠4的公共边是BD,则BD为截线,AB,CE为被截直线,且∠1•和∠4在BD同一侧,在AB和CE的同一方向,∠2和∠3的公共边是AC,则AC为截线,CE,AB为被截直线,且∠2和∠3在AC的两侧,在AB和CE之间.∠3和∠4的公共边是AB,则AB为截线,AC、BC为被截直线,且∠3和∠4在AB的同一侧,在BC和AC之间.【解】∠1和∠4是直线AB和CE被直线BD所截而成的同位角.∠2和∠3是直线AB和CE被直线AC所截而成的内错角.∠3和∠4是直线AC和BC被直线AB所截而成的同旁内角.【注意】识别同位角、内错角、同旁内角的方法是:首先分清"两条直线〞和"第三条直线〞,再用"两条直线〞分内外,"第三条直线〞分两旁来确定每一个角的位置.【例2】如下图,直线DE交射线BA和BC于点E和D,请找出∠1•的同位角与∠B的同旁内角.【分析】∠1的同位角应与∠1有一条公共边DE或BC,假设公共边是DE,则DE是截线,BA和BC是被截两线.此时在直线DE同一侧,在直线BA和BC同一方向的角是∠5;•假设公共边是BC,则BC为截线,DE和BA为被截两线,此时在BC同一侧,DE和BA 同一方向的角是∠B.同理,∠B的同旁内角也有两个.【解】∠1的同位角是∠5与∠B.∠B的同旁内角是∠2与∠3.【注意】〔1〕三条线两两相交,任何一条线都可以看作是截线,•而其余两条为截线,故需要分类讨论.〔2〕找同位角、内错角、同旁内角应根据图形特点找出与角有关的线,•剔除与相关的角无联系的线.〔3〕假设图形不标准,•可视情况把线段〔或射线〕向两边〔或一边〕延长或者剔除一局部线段.【例3】平行线EF、MN与两相交直线AB、CD相交成如图的图形.请你找出图中共有多少对同旁内角?【分析】因为每一个"三线八角〞根本图形中都有2对同旁内角,从图中可以分解出以下4类根本图形〔图1,图2,图3,图4〕.图1 图2图3 图4对于图1,三条直线AB、CD、EF两两相交,找同旁内角时,有三种情形:•两直线AB和CD被第三条直线EF所截;两直线AB和EF被第三条直线CD所截;两直线CD 和EF被第三条直线AB所截.因此,对于图1,可分解出三个根本图形,每个根本图形有2对同旁内角,共有6对同旁内角.类似地,对图2,也可分解出三个根本图形,共有6对同旁内角.对于图3,由于EF和MN两直线平行,所以只有这一个根本图形,从而有2•对同旁内角.类似地,对于图4,也只有2对同旁内角.【解】图中共有16对同旁内角.【注意】将复杂的图形分解为根本图形,是解决几何问题的重要方法.◆练习提升一、根底训练1.如下图,AB、CD分别交EF于G、M,GH、MN分别与AB、CD交于G、M,•有以下结论:①∠1与∠4是同位角;②∠2与∠5是同位角;③∠EGB与∠GMD是同位角;④∠3与∠4是同旁内角.其中正确的结论个数有〔〕A.4个B.3个C.8对D.12对3.以下图中,∠α和∠β不是同位角的是〔〕A B C D4.如下图,E是BC延长线上一点,则直线AB和CD被AC所截而成的内错角是〔〕A.∠2与∠3 B.∠1与∠4C.∠D与∠5 D.∠1与∠ACE(第4题) (第5题)5.如下图,直线MN分别交AB、AC于点D、E.〔1〕直线DE和BC被AB所截而成的同位角是______,同旁内角是______.〔2〕∠2与∠6是直线_____和_____被直线_____所截而成的内错角.〔3〕∠A与∠3是直线_____和_____被直线_____所截而成的_______.6.如下图,答复以下问题:〔1〕∠1和∠B构成什么角?〔2〕∠2和∠A构成什么角?〔3〕∠B和哪些角构成同旁内角?7.如下图,直线a和直线b被直线L所截而成的同位角、内错角、同旁内角分别有多少对?请写出这些同位角、内错角、同旁内角.8.如下图,BD是四边形ABCD的对角线,E是CD延长线上一点.〔1〕∠1与∠2是哪两条直线被哪条直线所截得的什么角?〔2〕AB和CD被BD所截,其内错角是哪一对角?9.如下图,假设以AB、CD为两条被截直线,则第三条直线有几种可能?•都出现什么角?分别写出来.10.如下图,△ABC中,D、E、F分别是AB、AC、BC上的一点,连结DE、•EF.〔1〕∠1和∠2是哪两条直线被哪一条直线所截得的什么角?〔2〕∠1和∠B是哪两条直线被哪一条直线所截得的什么角?∠EFC和∠C呢?二、提高训练11.以下图中,∠1与∠2不是同旁内角的是〔〕12.如下图,以下判断正确的选项是〔〕A.4对同位角,4对内错角,2对同旁内角B.4对同位角,4对内错角,4对同旁内角C.6对同位角,4对内错角,4对同旁内角D.以上判断都不对13.如下图,直线a∥b∥c,则图中共有内错角〔〕A.4对B.6对C.8对D.10对14.如下图,直线DE和BC被直线AB所截.〔1〕∠1与∠2,∠1与∠3,∠1与∠4各是什么角?〔2〕∠1与∠5是内错角吗?〔3〕如果∠1=∠4,则∠1=∠2呢?∠1和∠3互补吗?为什么?15.如下图,直线a、b被直线c所截,假设∠1的同旁内角等于60°56′,求∠1的内错角的度数.三、拓展训练16.如下图,如果与∠1成同位角的角的个数为a,与∠1成内错角的角的个数为b,则a、b的大小关系是:a_____b.〔填">〞、"=〞或"<〞〕(第16题) (第17(1)题) (第17(2)题)17.〔1〕如下图,直线a,b,c两两相交于A,B,C三点,则图中有______对对顶角;有______对同位角;有______对内错角;______对同旁内角.〔2〕如下图,假设四条直线两两相交于不同点,则图中有_____对对顶角;有______对同位角;有_____对内错角;______对同旁内角.〔3〕假设n条直线两两相交于不同点,则图中有____对对顶角;有_____对同位角;有_____对内错角;有_____对同旁内角.答案:1.B 2.B 3.A 4.B5.〔1〕∠1和∠B,∠6和∠B 〔2〕AB,AC,DE 〔3〕•AB,•DE,AC,同位角6.〔1〕同位角〔2〕内错角〔3〕∠3,∠A,∠BCD7.4对同位角:∠1•与∠6,∠4与∠5,∠2与∠8,∠3与∠7;2对内错角:∠3与∠6,∠4与∠8;2对同旁内角:∠4与∠6,∠3与∠88.〔1〕∠1与∠2是BC、AD被BD所截而成的内错角.〔2〕∠ABD与∠BDC9.略〔提示:分四种情况,第三条直线可能是AD,AC,CE或BC.〕10.〔1〕∠1和∠2是AB,EF被DE所截得的内错角〔2〕∠1和∠B是DE,BC•被AB•所截得的同位角;∠EFC和∠C是EF,EC被FC 所截得的同旁内角11.B 12.C 13.B14.〔1〕内错角、•同旁内角、同位角〔2〕不是〔3〕∠1=∠2,∠1+∠3=180°.理由略15.119°4′16.<17.〔1〕6,12,6,6 〔2〕12,48,24,24〔3〕n〔n-1〕,2n〔n-1〕〔n-2〕,n〔n-1〕〔n-2〕,n〔n-1〕〔n-2〕〔提示:三条直线两两相交共有3个三线八角的根本图形,•四条直线两两相交于不同点共有12个三线八角的根本图形,n条直线两两相交于不同点共有12n〔n-1〕〔n-2〕个三线八角的根本图形,而每个三线八角根本图形有4对同位角,2对内错角,2对同旁内角〕。
同位角、内错角、同旁内角练习一、选择题1.如图,下列各组角中,互为内错角的是( )A. ∠1和∠2B. ∠2和∠3C. ∠1和∠3D. ∠2和∠52.如图,直线a,b被c所截,则∠1与∠2是( )A. 同位角B. 内错角C. 同旁内角D. 邻补角3.如图,直线a,b被直线c所截,则∠1与∠2的位置关系是( )A. 同位角B. 内错角C. 同旁内角D. 邻补角4.如下图,∠1和∠2为同旁内角的是( )A. B.C. D.5.如图,下列结论中错误的是( )A. ∠1与∠2是同旁内角B. ∠1与∠4是内错角C. ∠5与∠6是内错角D. ∠3与∠5是同位角6.如图,直线a,b被直线c所截,则∠1与∠2的位置关系是()A. 同位角B. 内错角C. 同旁内角D. 邻补角7.如图,在图中∠BAO和∠AOC是一对()A. 内错角B. 同旁内角C. 同位角D. 对顶角8.如图,直线l1,l2被直线13所截,则( )A. ∠1和∠2是同位角B. ∠1和∠2是内错角C. ∠1和∠3是同位角D. ∠1和∠3是内错角9.如图,∠1的内错角是( )A. ∠1B. ∠2C. ∠3D. ∠410.如图,下列说法错误的是( )A. ∠1与∠3是对顶角B. ∠3与∠4是内错角C. ∠2与∠6是同位角D. ∠3与∠5是同旁内角11.如图,直线AB,CD分别与直线EF交于点G,M,GH,MN分别与AB,CD交于点G,M,有下列结论:①∠1与∠4是同位角;②∠2与∠5是同位角;③∠EGB与∠GMD是同位角;④∠3与∠4是同旁内角.其中正确的结论有()A. 4个B. 3个C. 2个D. 1个二、填空题12.如下图,如果∠2=100°,那么∠1的同位角等于______度,∠1的内错角等于______度,∠1的同旁内角等于_____度.13.如下图,标有数字的四个角中,属于内错角的是________.14.已知直线a、b被直线c所截,则与∠1是内错角关系的是____.15.如图,∠1的同位角是,∠2的内错角,∠A的同旁内角是.16.如图所示,把一根筷子的一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.若不再添加新的标注,则图中与∠1是同旁内角的有________;与∠2是内错角的有________.三、解答题17.两条直线被第三条直线所截,∠1是∠2的同旁内角,∠2是∠3的内错角.(1)画出大致示意图;(2)若∠1=2∠2,∠2=2∠3,求∠1和∠2的度数.18.如图,∠1与∠2,∠3与∠4各是哪两条直线被哪一条直线所截而形成的什么角?19.两条直线都与第三条直线相交,∠1与∠2是内错角,∠1和∠3是同旁内角.(1)根据上述条件,画出符合题意的图形;(2)若∠1:∠2:∠3=1:2:3,求∠1,∠2,∠3的度数.答案和解析1.【答案】B【解析】解:A、∠1和∠2是对顶角,不是内错角,故本选项不符合题意;B、∠2和∠3是内错角,故本选项符合题意;C、∠1和∠3是同位角,不是内错角,故本选项不符合题意;D、∠2和∠5是同旁内角,不是内错角,故本选项不符合题意;2.【答案】B【解答】解:两条直线a、b被直线c所截形成的角中,∠1与∠2都在a、b直线的之间,并且在直线c的两旁,所以∠1与∠2是内错角.3.【答案】A【解答】解:直线a,b被直线c所截,∠1与∠2是同位角.4.【答案】C【解析】本题考查同旁内角的判定。
同位角、内错角、同旁内角测试题及答案A卷一、填空题1、如图1,直线a、b被直线c所截,∠1与∠2就是,∠3与∠4就是,∠3与∠2就是。
2、如图2,∠1与∠2就是直线与直线被直线所截得的角。
3、如图3,∠1的内错角就是,∠A的同位角就是,∠B的同旁内角就是。
4、如图4,与∠1构成内错角的角有个;与∠1构成同位角的角有个;与∠1构成同旁内角的角有个。
5、如图5,指出同位角就是 ,内错角就是 ,同旁内角就是。
二、选择题6、如图6,与∠1互为同位角的就是( )(A)∠2; (B)∠3;(C)∠4; (D)∠5。
7、如图7,已知∠1与∠2就是内错角,则下列表达正确的就是( )(A)由直线AD、AC被CE所截而得到的;(B)由直线AD、AC被BD所截而得到的;(C)由直线DA、DB被CE所截而得到的;(D)由直线DA、DB被AC所截而得到的。
8、在图8中1与2就是同位角的有( )(A)(1)、(2); (B)(2)、(3); (C)(1)、(3); (D)(2)、(4)。
9、如图9,在指明的角中,下列说法不正确的就是( )(A)同位角有2对; (B)同旁内角有5对;(C)内错角有4对; (D)∠1与∠4不就是内错角。
10、如图10,则图中共有( )对内错角(A)3; (B)4; (C)5; (D)6。
三、简答题11、如图11(1)说出∠1与∠2互为什么角?(2)写出与∠1成同位角的角;(3)写出与∠1成内错角的角。
12、如图12(1)说出∠A与∠1互为什么角?(2) ∠B与∠2就是否就是同位角;(3)写出与∠2成内错角的角。
13、如图13,指出同位角、内错角、同旁内角。
B卷一、填空题1、如图1,∠1与∠2可以瞧作直线与直线被直线所截得的角。
2、如图2,∠1与∠2就是直线与直线被直线被直线所截得的角。
3、如图3,直线DE、BC被直线AC所截得的内错角就是;∠B与∠C可以瞧作直线、被直线所截得的角。
4、如图4,与∠EFC构成内错角的就是;与∠EFC构成同旁内角的就是。
2019年4月16日初中数学作业学校:___________:___________班级:___________考号:___________一、单选题1.已知∠1和∠2是同旁角,∠1=60°,∠2等于()A.140°B.120°C.60°D.无法确定【答案】D【解析】【分析】本题只是给出两个角的同旁角关系,没有两直线平行的条件,故不能判断两个角的数量关系.【详解】解:同旁角只是一种位置关系,两直线平行时同旁角互补,不平行时无法确定同旁角的大小关系,故选D.【点睛】特别注意,同旁角互补的条件是两直线平行.2.下列各图中,与是同位角的是()A.B.C.D.【答案】B【解析】【分析】本题需先根据同位角的定义进行筛选,即可得出答案.【详解】A、∵根据同位角的定义得:∠1与∠2不是同位角,故本选项错误;B、∵根据同位角的定义得:∠1与∠2是同位角,故本选项正确;∠1与∠2不是同位角,故本选项错误;D、∵根据同位角的定义得:∠1与∠2不是同位角,故本选项错误.故选B.【点睛】本题主要考查了同位角,在解题时要根据同位角的定义进行筛选是本题的关键.3.如图所示,和是同位角的是()A.②③B.①②③C.①②④D.①④【答案】C【解析】【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】如图①,∠1、∠2是直线m与直线n被直线p所截形成的同位角,故①符合题意;如图②,∠1、∠2是直线p与直线q被直线r所截形成的同位角,故②符合题意;如图③,∠1是直线d与直线e构成的夹角,∠2是直线g与直线f形成的夹角,∠1与∠2不是同位角,故③不符合题意;如图④,∠1、∠2是直线a与直线b被直线c所截形成的同位角,故④符合题意.故选C.【点睛】角的边构成“U”形.4.下列所示的四个图形中,∠1和∠2是同位角...的是()A.③④B.①③C.①③④D.①②④【答案】D【解析】【分析】根据同位角,错角,同旁角的概念解答即可.【详解】∠1和∠2是同位角的是①②④.故选D.【点睛】本题考查了同位角,错角,同旁角的概念,关键是根据同位角,错角,同旁角的概念解答.5.下列选项中∠1与∠2不是同位角的是()A.B.C.D.【答案】C【解析】【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:A、B、D中∠1和∠2是同位角;C、∠1和∠2不满足两条直线被第三条直线所截形成的角,所以不是同位角;故选:C.【点睛】边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形.6.如图,下列说法不正确的是()A.∠1和∠B是同位角B.∠1和∠4是错角C.∠3和∠B是同旁角D.∠C和∠A不是同旁角【答案】D【解析】【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做错角.【详解】A. ∠1和∠B是DE与BC被AB所截得到的同位角,正确;B. ∠1和∠4是AB与AC被DE所截得到的错角,正确;C. ∠3和∠B是DE与BC被AB所截得到的同旁角,正确;D. ∠C和∠A是AB与BC被AC所截得到的同旁角,故不正确;故选D.【点睛】本题考查了同位角、错角、同旁角的定义,熟练掌握三种角的特征是解答本题的关键. 7.如图,直线b.c被直线a所截,则∠1和∠2的关系是( )A.对顶角B.同位角C.错角D.同旁角【分析】结合图形,根据同位角、错角、同旁角的概念进行判断即可.【详解】观察图形可知,∠1和∠2两个角都在两被截直线b和c的侧,并且在第三条直线a(截线)的同旁,故∠1和∠2是直线b、c被a所截而成的同旁角,故选D.【点睛】本题考查了“三线八角”,熟练掌握同位角、错角、同旁角的图形特征是解题的关键. 8.∠1与∠2是错角,∠1=30°,则∠2的度数为( )A.30°B.150°C.30°或150°D.不能确定【答案】D【解析】【分析】两直线平行时错角相等,不平行时无法确定错角的大小关系,据此分析判断即可得. 【详解】错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,错角才相等,故选D.【点睛】本题考查了三线八角,明确同位角、错角、同旁角只是两个角的一种位置关系,而没有一定的大小关系是解此类问题的关键.9.两条直线被第三条直线所截,若∠1与∠2 是同旁角,且∠1=70º,则( ) A.∠2=70ºB.∠2=110ºC.∠2=70º或∠2=110ºD.∠2的度数不能确定【答案】D【解析】【分析】两直线被第三条直线所截,只有当两条被截直线平行时,错角相等,同位角相等,同旁角互补.不平行时以上结论不成立.【详解】】解:因为两条直线的位置关系不明确,所以无法判断∠1和∠2大小关系.故选:D.本题考查平行线的性质,注意性质定理的条件是两直线平行.10.如图,点O是直线AB上一点,OE,OF分别平分∠AOC和∠BOC,当OC的位置发生变化时(不与直线AB重合),那么∠EOF的度数( )A.不变,都等于90°B.逐渐变大C.逐渐变小D.无法确定【答案】A【解析】【分析】由OE与OF为角平分线,利用角平分线定义得到两对角相等,由平角的定义及等式的性质即可求出所求角的度数.【详解】∵OE、OF分别是∠AOC、∠BOC的角平分线,∴∠AOE=∠COE,∠COF=∠BOF,∵∠AOC+∠COB=∠AOE+∠COE+∠COF +∠BOF=180°,∴2(∠COE+∠COF)=180°,即∠COE+∠COF=90°,∴∠EOF=∠COE+∠COF=90°.故选A.【点睛】本题主要考查角平分线的性质和平角的定义,得出2(∠COE+∠COF)=180°是解题的关键.11.如图,直线AB,CD,EF相交于点O,则∠COF的一个邻补角是( )A.∠BOFC.∠AOED.∠DOE【答案】B【解析】【分析】根据邻补角的定义解答即可.【详解】两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角,因此∠COF的一个邻补角是∠DOF.故选B.【点睛】本题主要考查邻补角的定义,熟记邻补角的定义是解答的关键.12.下列图形中,∠3和∠4不是错角的是( )A.B.C.D.【答案】D【解析】【分析】根据错角的定义找出即可.【详解】由错角的定义可得A、B、C中∠3与∠4是错角,D中的∠3与∠4不是错角.故选D.【点睛】本题考查了同位角、错角、同旁角,熟记错角的定义是解题的关键.13.如图,∠1,∠2不是同旁角的是( )A.B.C.D.【答案】B【解析】【分析】根据同旁角的定义,逐条分析四个选项,即可得出结论.A、∠1和∠2是同旁角;B、∠1和∠2不是同旁角;C、∠1和∠2是同旁角;D、∠1和∠2是同旁角.故选:B.【点睛】本题考查了同旁角的定义,解题的关键是根据同旁角的定义去逐条分析选项.本题属于基础题,难度不大,解决该题型题目时,分析图形寻找两角的关系是关键.14.下列各图中,∠1,∠2不是同位角的是( )A.B.C.D.【答案】B【解析】【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】根据同位角定义可得B不是同位角,故选:B.【点睛】此题主要考查了同位角,关键是掌握同位角的边构成“F“形,错角的边构成“Z“形,同旁角的边构成“U”形.二、填空题15.同位角的特征是在两条线被截线的____________,并且在截线的__________,如图,∠______和∠_______是同位角.【答案】同一方;同侧;1,2.【解析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;结合题中所给的图形,运用同位角的定义即可求解.【详解】解:同位角的特征是在两条被截线的同一方,并且在截线的同一侧,如图,∠1和∠2是同位角.【点睛】本题考查同位角的定义,熟悉掌握是解题关键.16.如图,直线l1,l2被直线l3所截,则图中同位角有_____对.【答案】4【解析】【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【详解】如图所示:∠1和∠3,∠2和∠4,∠8和∠6,∠7和∠5,都是同位角,一共有4对.故答案为:4.【点睛】本题考查的知识点是同位角的定义,解题关键是正确把握定义.17.如图,∠F的错角有_____________.【解析】【分析】根据错角的定义,结合图形寻找符合条件的角.【详解】根据错角的定义可知:与∠F互为错角的只有∠AEF和∠ADF.故答案为:∠AEF和∠ADF.【点睛】本题考查的知识点是错角的定义,解题关键是熟记错角的定义.18.如图,∠DCB和∠ABC是直线_____和______被直线______所截而成的_____角.【答案】DE AB BC同旁【解析】【分析】根据三线八角的概念,以及同旁角的定义求得.【详解】如图所示,∠DCB和∠ABC具有公共边BC,另外两条边分别在直线CD和AB上,故∠DCB和∠ABC是直线DE和AB被直线BC所截而成的同旁角.故答案为:DE,AB,BC,同旁.【点睛】本题考查了三线八角的概念中的同旁角的概念.19.如图,直线AB,CD相交于点O,OE⊥AB,O为垂足,∠EOD=26°,则∠AOC=____,∠COB=___.【答案】64°116°.【解析】【分析】由OE⊥AB,得到∠AOE=90°,所以∠AOC=180°-∠EOD-∠AOE=64°;因为∠BOD=64°,∠COB=180°-∠BOD= 116°.【点睛】本题考查了垂线的定义,熟练掌握垂线的定义是本题解题关键.20.如图:a∥b,图中的∥1,∥2,∥3,∥4,∥5,∥6,∥7 中同位角有___________对.【答案】3【解析】【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.同位角的边构成“F“形作答.【详解】观察图形可知:∠1的同位角是∠4,∠3的同位角是∠5,∠7的同位角是∠6,∴图中同位角有3个.故答案为:3.【点睛】此题主要考查同位角的概念,有以下几个要点:1、分清截线与被截直线;2、两个相同,在截线同旁,在被截直线同侧.21.如图,直线MN分别交直线AB,CD于E,F,其中,∥AEF的对顶角是∥___________,∥BEF的同位角是∥___________.【答案】BEM;DFN.【解析】∠AEF与∠BEM有公共顶点,∠BEM的两边是∠AEF的两边的反向延长线,所以是对顶角;∠BEF与∠DFN,在截线MN的同侧,被截线AB、CD的同旁,所以是同位角.【详解】∠AEF的对顶角是∠BEM,∠BEF的同位角是∠DFN.故答案为:BEM,DFN.【点睛】本题考查对顶角与同位角的概念,是需要熟记的容.三、解答题22.如图,AB、CD相交于点O,OM平分∠BOD,∠MON是直角,∠AOC=50°.(1)求∠AON的度数;(2)求∠DON的邻补角的度数.【答案】(1)65°;(2)115°.【解析】【分析】(1)根据角平分线的定义求出∠MOB的度数,根据邻补角的性质计算即可.(2)根据题意得到:∠CON为∠DON的邻补角.【详解】解:(1)∵∠AOC+∠AOD=∠AOD+∠BOD=180°,∴∠BOD=∠AOC=50°,∵OM平分∠BOD,∴∠BOM=∠DOM=25°,又由∠MON=90°,∴∠AON=180°-(∠MON+∠BOM)=180°-(90°+25°)=65°;(2)∵∠AON=65°,∠AOC=50°,∴∠CON=∠AON+∠AOC=115°,即∠DON的邻补角的度数为115°.【点睛】本题考查的是邻补角的概念以及角平分线的定义,掌握邻补角的性质是邻补角互补是解23.如图,直线a,b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁角的度数.【答案】∠2的同位角是140°,∠2的同旁角是40°.【解析】【分析】首先找出∠2的同位角与同旁角;再结合已知角的度数,找出待求角与已知角的关系,即可求解.【详解】解:∵∠1=40°,∴∠3=∠1=40°,∠4=180°-∠1=140°,即∠2的同位角是140°,∠2的同旁角是40°.【点睛】本题考查同位角、错角、同旁角,解题的关键是掌握定义,灵活运用.24.如图所示,已知射线DM与直线AB交于点A,线段EC与直线AB交于点C,AB∥DE.(1)当∠MAC=100°,∠BCE=120°时,把EC绕点E旋转多大角度(所求角度小于180°)时,可判定MD∥EC?请你设计出两种方案,并画出草图;(2)若将EC绕点E逆时针旋转60°时,点C与点A恰好重合,请画出草图,并在图中找出同位角、错角各两对(先用数字标出角,再回答).【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据平行线的判断,只要把EC绕点E顺时针旋转或逆时针旋转,使∠ACE=∠MA C=100°或∠CED=∠EDM=100°即可得MD∥EC;【详解】(1)方案1:把EC绕点E逆时针旋转40°时,可判定MD∥EC,如图①;方案2:把EC绕点E顺时针旋转140°时,可判定MD∥EC,如图②.(2)如图③,同位角:∠3与∠5,∠4与∠5;错角:答案不唯一,如∠1与∠6,∠2与∠5.【点睛】本题主要考查了平行线的判定和作图等知识,注意运用旋转变换的性质.25.如图,按要求画图并回答相关问题:(1)过点A画线段BC的垂线,垂足为D;(2)过点D画线段..DE∥AB,交AC的延长线于点E;(3)指出∠E的同位角和错角.【答案】(1)见解析(2)见解析(3)∠E的同位角是∠ACD,∠E的错角是∠BAE 和∠BCE.【解析】【分析】(1)如图,过A点作AD⊥BD与BC的延长线交于D点即可;(2)如图,过D点作DE∥AB与AC的延长线交于E点即可;(3)根据同位角与错角的定义进行解答即可.【详解】(1)(2)如图所示.(3)∠E的同位角是∠ACD,∠E的错角是∠BAE和∠BCE.本题主要考查基础作图,同位角与错角的定义,熟练掌握其知识点是解此题的关键. 26.如图,BCD是一条直线,∥1=∥B,∥2=∥A,指出∥1的同位角,∥2的错角,并求出∥A+∥B+∥ACB的度数.【答案】∠1的同位角是∠B,∠2的错角∠A;180°【解析】【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.错角就是:两个角都在截线的两侧,又分别处在被截的两条直线中间位置的角;根据等量代换,角的和差,可得答案.【详解】由同位角的定义,错角的定义,得∠1的同位角是∠B,∠2的错角∠A,由角的和差,得∠A+∠B+∠ACB=∠ACB+∠1+∠2=180°.【点睛】本题考查了同位角、错角、同旁角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.27.找出图中所有的同位角、错角、同旁角.【答案】图1中的同位角:∠1与∠8,∠2与∠5,∠3与∠6,∠4与∠7,错角有∠1与∠6,∠4与∠5;同旁角有∠1与∠5,∠4与∠6;图2同位角有∠1与∠3,∠2与∠4,同旁角有∠2与∠3.根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,错角是两个角都在截线的两侧,又分别处在被截的两条直线中间的位置的角,同旁角是两个角都在截线的同旁,又分别处在被截的两条直线中间位置的角,可得答案.【详解】如图:图1中的同位角:∠1与∠8,∠2与∠5,∠3与∠6,∠4与∠7,错角有∠1与∠6,∠4与∠5;同旁角有∠1与∠5,∠4与∠6;图2同位角有∠1与∠3,∠2与∠4,同旁角有∠2与∠3.【点睛】本题考查了同位角、错角、同旁角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.28.在同一个“三线八角”的基本图形中,如果已知一对错角相等.(1)图中其余的各对错角相等吗?为什么?(2)图中的各对同位角相等吗?为什么?(3)猜想图中各对同旁角有怎样的数量关系.【答案】(1)相等;理由见解析;(2)相等;理由见解析;(3)互补.【解析】【分析】根据三线八角进行求解即可.【详解】(1)相等;(2)相等;(3)互补. 理由如下:如图,(1)由∠1=∠2,又∠3=∠4(等角的补角相等);(2) 由∠1=∠2, 又∠1=∠5(对顶角相等),所以∠2=∠5,同理可得:其他对同位角也相等;(3)由∠1=∠2,又∠1+∠3=180°,所以∠2+∠3=180°(等量代换),同理:∠1+∠4=180°.【点睛】正确识别“三线八角”中的同位角、错角、同旁角是正确答题的关键.29.如图,∥1和哪些角是错角?∥1和哪些角是同旁角?∥2和哪些角是错角?∥2和哪些角是同旁角?它们分别是由哪两条直线被哪一条线截成的?【答案】详见解析.【解析】【分析】根据同旁角,错角的定义,结合图形进行判断即可.【详解】∠1和∠DAB是错角,由直线DE和BC被直线AB所截而成;∠1和∠BAC是同旁角,由直线BC和AC被直线AB所截而成;∠1和∠2也是同旁角,是直线AB和AC被直线BC所截而成;∠1和∠BAE也是同旁角,是直线DE和BC被直线AB所截而成;∠2和∠EAC是错角,是直线DE和BC被直线AC所截而成;∠2和∠BAC是同旁角,是直线AB和BC被直线AC所截而成;∠2和∠1也是同旁角,是直线AB和AC被直线BC所截而成;【点睛】本题考查了同位角、错角及同旁角的知识,注意掌握各自的定义是解题关键.30.指出图中的同位角、错角、同旁角.【答案】同位角:∠DAE和∠C;∠BAE和∠C,错角:∠BAD和∠B ;∠B和∠BAE,同旁角:∠CAD和∠C;∠B和∠C,∠B和∠BAC,∠C和∠BAC.【解析】【分析】根据同位角、错角、同旁角的定义求解.【详解】如图,可分解成三个基本图形,由图(1)得错角:∠BAD和∠B;由图(2)得同位角:∠DAE和∠C,同旁角:∠CAD和∠C;由图(3)得同位角:∠BAE和∠C,错角:∠B和∠BAE,同旁角:∠B和∠C,∠B和∠BAC,∠C和∠BAC.即原图形中共有两组同位角,两组错角,四组同旁角.【点睛】本题考查了同位角、错角、同旁角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做错角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁角.。
同位角、内错角、同旁内角练习【同步达纲练习】1.填空(1)如图2-43,直线AB、CD被DE所截,则∠1和是同位角,∠1和是内错角,∠1和是同旁内角,如果∠1=∠5.那么∠1 ∠3.(2)上题中(图2-43)如果∠5=∠1,那么∠1=∠3的推理过程如下,请在括号内注明理由:∵∠5=∠1()又∵∠5=∠3()∴∠1=∠3()(3)如图2-44,∠1和∠4是AB、被所截得的角,∠3和∠5是、被所截得的角,∠2和∠5是、所截得的角,AC、BC被AB所截得的同旁内角是 .∠(4)如图2-45,AB、DC被BD所截得的内错角是,AB、CD被AC所截是的内错角是,AD、BC被BD所截得的内错角是,AD、BC被AC所截得的内错角是 .2.选择题(1)如图2-46,∠1与∠2是同位角的个数有()A.1个B.2个C.3个D.4个(2)如图2-47,()是内错角A. ∠1和∠2B. ∠3和∠4C. ∠2和∠3D. ∠1和∠4(3)如图2-48,图中的同位角的对数是()A.4B.6C.8D.123.如图2-49,已知∠1的同旁内角等于57°28′,求∠1的内错的度数.【素质优化训练】1.如图2-50图中,共有几对内错角?这几对内错角分别是哪两条直线被哪一条直线所截构成的?2.如图2-51,直线AB、CD被EF所截,如果∠1与∠2互补,且∠1=110°,那么∠3、∠4的度数是多少?参考答案【同步达纲练习】1.(1)∠3,∠5,∠2= (2)已知,对顶角相等,等量代换(3)CD,BE,同位角;AB,BC,AC,同旁内角 AB,CD,AC,内错角;∠4和∠5 (4)∠1和∠5,∠4和∠8,∠6和∠2,∠3和∠72.(1)D (2)B (3)B 3.122°32′【素质优化训练】1.BC、BE被DF截得的两对内错角;∠DFB和∠CDF;∠FDB和∠FDB;AC、AD被BE截得的两对内错角:∠AFE和∠CEF,∠AEF和∠EFD2.∠3=70°,∠4=70°。
同位角、内错角、同旁内角测试题A卷一、填空题1.如图1,直线a、b被直线c所截,∠1与∠2是,∠3与∠4是,∠3与∠2是。
2.如图2,∠1与∠2是直线与直线被直线所截得的角。
3.如图3,∠1的内错角是,∠A的同位角是,∠B的同旁内角是。
4.如图4,与∠1构成内错角的角有个;与∠1构成同位角的角有个;与∠1构成同旁内角的角有个。
5.如图5,指出同位角是,内错角是,同旁内角是。
二、选择题6.如图6,与∠1互为同位角的是( )(A)∠2;(B)∠3;(C)∠4;(D)∠5。
7.如图7,∠1及∠2是内错角,那么以下表达正确的选项是( )(A)由直线、被所截而得到的;(B)由直线、被所截而得到的;(C)由直线、被所截而得到的;(D)由直线、被所截而得到的。
8.在图8中1与2是同位角的有( )(A)(1)、(2);(B)(2)、(3);(C)(1)、(3);(D)(2)、(4)。
9.如图9,在指明的角中,以下说法不正确的选项是( )(A)同位角有2对;(B)同旁内角有5对;(C)内错角有4对;(D)∠1与∠4不是内错角。
10.如图10,那么图中共有( )对内错角(A)3;(B)4;(C)5;(D)6。
三、简答题(1)说出∠1及∠2互为什么角?(2)写出及∠1成同位角的角;(3)写出及∠1成内错角的角。
(1)说出∠A及∠1互为什么角?(2) ∠B及∠2是否是同位角;(3)写出及∠2成内错角的角。
13.如图13,指出同位角、内错角、同旁内角。
B卷一、填空题1.如图1,∠1与∠2可以看作直线与直线被直线所截得的角。
2.如图2,∠1与∠2是直线与直线被直线被直线所截得的角。
3.如图3,直线、被直线所截得的内错角是;∠B及∠C 可以看作直线、被直线所截得的角。
4.如图4,及∠构成内错角的是;及∠构成同旁内角的是。
5.如图5,及∠1构成内错角的角有个;及∠1构成同位角的角有个;及∠1构成同旁内角的角有个。
二、选择题6.如图6,及∠C互为同位角的是( )(A) ∠1;(B) ∠2;(C) ∠3;(D) ∠4。
学生做题前请先回答以下问题问题1:如下图所示,图中标出的8个角中哪些是同位角,哪些是内错角,哪些是同旁内角?问题2:如图,①图中的∠3和∠4是什么角?答:直线____与直线____被直线____所截,得到的__________。
②图中的∠3和∠5是什么角?答:直线____与直线____被直线____所截,得到的__________。
③若AB∥CD,则若∠A+______=180°,理由是什么?同位角、内错角、同旁内角一、单选题(共12道,每道8分)1.如图,∠1和∠2是直线_____和直线_____被直线_____所截得到的_____.( )A.a,b,c,同旁内角B.a,c,b,同位角C.a,b,c,同位角D.c,b,a,同位角答案:C解题思路:∠1与直线a和c有关,∠2与直线b和c有关,由图中的位置关系可知∠1和∠2是直线a和直线b被直线c所截得到的同位角.故选C.试题难度:三颗星知识点:同位角、内错角、同旁内角2.如图,∠1和∠2是直线_____和直线_____被直线_____所截得到的_____.( )A.c,d,a,内错角B.a,d,c,内错角C.c,d,a,同位角D.c,d,a,同旁内角答案:A解题思路:∠1与直线a和c有关,∠2与直线a和d有关,由图中的位置关系可知∠1和∠2是直线c和直线d被直线a所截得到的内错角.故选A.试题难度:三颗星知识点:同位角、内错角、同旁内角3.如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是( )A.同位角B.内错角C.同旁内角D.对顶角答案:B解题思路:两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是内错角,故选B.试题难度:三颗星知识点:同位角、内错角、同旁内角4.如图,∠1和∠2是直线_____和直线_____被直线_____所截得到的_____.( )A.b,c,a,同位角B.a,b,c,同位角C.a,c,b,同位角D.b,c,a,同旁内角答案:A解题思路:∠1与直线a和b有关,∠2与直线a和c有关,由图中的位置关系可知∠1和∠2是直线b和直线c被直线a所截得到的同位角.故选A.试题难度:三颗星知识点:同位角、内错角、同旁内角5.如图,与∠1是内错角的是( )A.∠2B.∠3C.∠4D.∠5答案:B解题思路:根据图中的位置关系,直线a和直线b被直线c所截形成的角中,∠1与∠4是同位角,∠1与∠3是内错角,∠1与∠2是同旁内角,故选B.试题难度:三颗星知识点:同位角、内错角、同旁内角6.如图,∠1和∠2是直线_____和直线_____被直线_____所截得到的_____.( )A.AB,CD,AC,内错角B.AD,BC,AC,内错角C.AD,BC,AC,同位角D.AC,AD,DC,内错角答案:B解题思路:∠1与直线AD和直线AC有关,∠2与直线BC和直线AC有关,由图中的位置关系可知∠1和∠2是直线AD和直线BC被直线AC所截得到的内错角.故选B.试题难度:三颗星知识点:同位角、内错角、同旁内角7.如图,∠1和∠2是直线_____和直线_____被直线_____所截得到的_____.( )A.AB,BC,AC,内错角B.AB,BC,AC,同旁内角C.EF,BC,AC,同旁内角D.AB,BC,AC,同位角答案:B解题思路:∠1与直线BC和直线AC有关,∠2与直线AB和直线AC有关,由图中的位置关系可知∠1和∠2是直线AB和直线BC被直线AC所截得到的同旁内角.故选B.试题难度:三颗星知识点:同位角、内错角、同旁内角8.如图,∠1和∠2是直线_____和直线_____被直线_____所截得到的_____.( )A.AC,BE,AB,内错角B.AC,BD,AB,同位角C.AC,BD,AB,同旁内角D.AC,BE,AB,同位角答案:D解题思路:∠1与直线BE和直线AB有关,∠2与直线AB和直线AC有关,由图中的位置关系可知∠1和∠2是直线BE和直线AC被直线AB所截得到的同位角.故选D.试题难度:三颗星知识点:同位角、内错角、同旁内角9.下列四个图形中,∠1和∠2是同位角的是( )A.(1),(2)B.(3),(4)C.(1),(2),(3)D.(2),(3),(4)答案:C解题思路:先找出∠1和∠2是怎么形成的,然后利用擦线法找基本结构,可以判断图(1)、(2)、(3)中的∠1与∠2均是同位角.故选C.试题难度:三颗星知识点:同位角、内错角、同旁内角10.下列图形中,∠1与∠2不是同旁内角的是( )A. B.C. D.答案:B解题思路:选项B中∠1与∠2与四条直线相关,不是同位角、内错角和同旁内角中的任何一个.选项A,C,D中∠1与∠2均是同旁内角,故选B.试题难度:三颗星知识点:同位角、内错角、同旁内角11.如图,下列说法错误的是( )A.∠1与∠5是内错角B.∠4与∠5是内错角C.∠O与∠1是同旁内角D.∠3与∠5是同位角答案:B解题思路:∠1与∠5是直线OA和直线OB被直线DE所截得到的内错角,选项A说法正确;∠O与∠1是直线DE和直线OB被直线OA所截得到的同旁内角,选项C说法正确;∠3与∠5是直线OA和直线OB被直线DE所截得到的同位角,选项D说法正确;∠4与∠5不是同位角、内错角,也不是同旁内角,因此选项B说法错误.故选B.试题难度:三颗星知识点:同位角、内错角、同旁内角12.如图,下列各组角中,不是同旁内角的是( )A.∠1与∠3B.∠5与∠6C.∠1与∠6D.∠2与∠7答案:C解题思路:∠1与∠3是直线a和直线b被直线c所截得到的同旁内角;∠5与∠6是直线b和直线c被直线a所截得到的同旁内角;∠1与∠6是直线a和直线c被直线b所截得到的同位角;∠2与∠7是直线a和直线c被直线b所截得到的同旁内角.故选C.试题难度:三颗星知识点:同位角、内错角、同旁内角。
题型一:寻找同位角、内错角和同旁内角
1.如图,在所标识的角中,是同位角的有 ( )
A .∠1和∠2
B . ∠l 和∠3
C .∠1和∠4
D .∠2和∠
3
2.
上图中共有多少对同位角?分别指出这些角。
题型二:利用平行性质定理判断角度大小和关系
1. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.
题型三:推理填空题
1.阅读理解并在括号内填注理由:
如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,
A
B
C
D E M
F
N
A B
C D
E
M
F
N
H
A
B
E
M
F
N
H
∴∠MEB =∠MFD ( ) 又∵∠1=∠2,
∴∠MEB -∠1=∠MFD -∠2, 即 ∠MEP =∠______
∴EP ∥_____.( )
题型四:求值推理题
2. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,
求:⑴∠BAC 的大小;⑵∠P AG 的大小.
题型五:证明平行关系或角度相等关系
1.如图,∠3=∠4,则从下列条件中不能推出AB ∥CD 的是 ( ) A .∠1与∠2互余 B .∠1=∠2 C .∠1=∠2且∠2=∠4 D .BM ∥CN
2.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.
12.如图,当______或______时,有a 1∥a 2.
19.(10分)如图,AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80º.
(1)求∠EDC的度数.
(2)若∠BCD=nº,求∠BED的度数.。