2016年江苏省苏州市中考数学试卷及解析
- 格式:doc
- 大小:642.02 KB
- 文档页数:27
2016年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1. 23的倒数是( ) A.32 B.−32 C.23 D.−23 【答案】A【考点】倒数【解析】直接根据倒数的定义进行解答即可.【解答】解:∵ 23×32=1,∴ 23的倒数是32.故选A .2. 肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( )A.0.7×10−3B.7×10−3C.7×10−4D.7×10−5 【答案】C【考点】科学记数法--表示较小的数【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】0.0007=7×10−4,3. 下列运算结果正确的是( )A.a +2b =3abB.3a 2−2a 2=1C.a 2⋅a 4=a 8D.(−a 2b)3÷(a 3b)2=−b【答案】D【考点】整式的除法同底数幂的乘法幂的乘方与积的乘方合并同类项【解析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2−2a2=a2,故此选项错误;C、a2⋅a4=a6,故此选项错误;D、(−a2b)3÷(a3b)2=−b,故此选项正确;故选D.4. 一次数学测试后,某班40名学生的成绩被分为5组,第1∼4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1B.0.2C.0.3D.0.4【答案】A【考点】频数与频率【解析】根据第1∼4组的频数,求出第5组的频数,即可确定出其频率.【解答】根据题意得:40−(12+10+6+8)=40−36=4,则第5组的频率为4÷40=0.1,5. 如图,直线a // b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58∘,则∠2的度数为()A.58∘B.42∘C.32∘D.28∘【答案】C【考点】三角形内角和定理平行线的判定与性质【解析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a // b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90∘,∴∠2=∠ACB=180∘−∠1−∠BAC=180∘−90∘−58∘=32∘.故选C.(k<0)的图象上,则y1,y2的大小6. 已知点A(2, y1),B(4, y2)都在反比例函数y=kx关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【答案】B【考点】反比例函数图象上点的坐标特征【解析】直接利用反比例函数的增减性分析得出答案.【解答】(k<0)的图象上,解:∵点A(2, y1),B(4, y2)都在反比例函数y=kx∴每个象限内,y随x的增大而增大,∴y1<y2,故选B.7. 根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:)A.25,27B.25,25C.30,27D.30,25【答案】D【考点】中位数众数【解析】根据众数、中位数的定义即可解决问题.【解答】因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,8. 如图,长4m的楼梯AB的倾斜角∠ABD为60∘,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45∘,则调整后的楼梯AC的长为()A.2√3mB.2√6mC.(2√3−2)mD.(2√6−2)m【答案】B【考点】解直角三角形的应用-坡度坡角问题【解析】先在Rt △ABD 中利用正弦的定义计算出AD ,然后在Rt △ACD 中利用正弦的定义计算AC 即可.【解答】在Rt △ABD 中,∵ sin ∠ABD =AD AB ,∴ AD =4sin 60∘=2√3(m),在Rt △ACD 中,∵ sin ∠ACD =AD AC ,∴ AC =2√3sin 45=2√6(m).9. 矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3, 4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( )A.(3, 1)B.(3, 43)C.(3, 53)D.(3, 2)【答案】B【考点】矩形的性质轴对称——最短路线问题坐标与图形性质【解析】如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小,先求出直线CH 解析式,再求出直线CH 与AB 的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(32, 0),A(3, 0),∴H(92, 0),∴直线CH解析式为y=−89x+4,∴x=3时,y=43,∴点E坐标(3, 43)故选B.10. 如图,在四边形ABCD中,∠ABC=90∘,AB=BC=2√2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2B.94C.52D.3【答案】C【考点】三角形的面积【解析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90∘,AB=BC=2√2,∴AC=√AB2+BC2=√(2√2)2+(2√2)2=4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△ABC=12⋅AB⋅BC=12×2√2×2√2=4,∴S△ADC=2,∵S△ABCS△ACD=2,∵△DEF∽△DAC,∴GH=14BG=12,∴BH=52,又∵EF=12AC=2,∴S△BEF=12⋅EF⋅BH=12×2×52=52,故选C.方法二:S△BEF=S四边形ABCD−S△ABE−S△BCF−S△FED,易知S△ABE+S△BCF=12S四边形ABCD=3,S△EDF=12,∴S△BEF=S四边形ABCD −S△ABE−S△BCF−S△FED=6−3−12=52.故选:C.二、填空题(共8小题,每小题3分,满分24分)分解因式:x2−1=________.【答案】(x+1)(x−1)【考点】因式分解-运用公式法【解析】利用平方差公式分解即可求得答案.【解答】x2−1=(x+1)(x−1).当x =________时,分式x−22x+5的值为0.【答案】2【考点】分式值为零的条件【解析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵ 分式x−22x+5的值为0,∴ x −2=0,解得:x =2.故答案为:2.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m 比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s 2),乙的方差为0.008(s 2),则这10次测试成绩比较稳定的是________运动员.(填“甲”或“乙”)【答案】乙【考点】方差【解析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S 甲2=0.024>S 乙2=0.008,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是________度.【答案】72条形统计图扇形统计图【解析】根据文学类人数和所占百分比,求出总人数,然后用总人数乘以艺术类读物所占的百分比即可得出答案.【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:90÷30%=300(人),则艺术类读物所在扇形的圆心角是的圆心角是360∘×60300=72∘;故答案为:72.不等式组{x+2>12x−1≤8−x的最大整数解是________.【答案】3【考点】一元一次不等式组的整数解【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解不等式x+2>1,得:x>−1,解不等式2x−1≤8−x,得:x≤3,则不等式组的解集为:−1<x≤3,则不等式组的最大整数解为3,如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为________.【答案】3√3−π【考点】圆周角定理扇形面积的计算切线的性质【解析】连接OC,可求得△OCD和扇形OCB的面积,进而可求出图中阴影部分的面积.解:连接OC,如图,∵过点C的切线交AB的延长线于点D,∴OC⊥CD,∴∠OCD=90∘,即∠D+∠COD=90∘,∵AO=CO,∴∠A=∠ACO,∴∠COD=2∠A,∵∠A=∠D,∴∠COD=2∠D,∴3∠D=90∘,∴∠D=30∘,∴∠COD=60∘∵CD=3,∴OC=3×√33=√3,∴阴影部分的面积=12×3×√3−60⋅π×3360=3√3−π2,故答案为:3√3−π2.如图,在△ABC中,AB=10,∠B=60∘,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为________.【答案】2√7【考点】翻折变换(折叠问题)【解析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60∘的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G=2√3,然后再次利用勾股定理求得答案即可.【解答】如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60∘,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G=√B′D2−GD2=√42−22=2√3,∵AB=10,∴AG=10−6=4,∴AB′=√AG2+B′G2=√42+(2√3)2=2√7.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8, 0)、(0, 2√3),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为________.【答案】(1, √3)【考点】坐标与图形性质平行线分线段成比例相似三角形的性质与判定【解析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标.【解答】解:∵点A、B的坐标分别为(8, 0),(0, 2√3)∴BO=2√3,AO=8由CD⊥BO,C是AB的中点,可得BD=DO=12BO=√3=PE,CD=12AO=4设DP=a,则CP=4−a当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP 又∵EP⊥CP,PD⊥BD∴∠EPC=∠PDB=90∘∴△EPC∽△PDB∴DPPE =DBPC,即√3=√34−a解得a1=1,a2=3(舍去)∴DP=1又∵PE=√3∴P(1, √3)故答案为:(1, √3)三、解答题(共10小题,满分76分)计算:(√5)2+|−3|−(π+√3)0.【答案】解:原式=5+3−1=7.【考点】实数的运算零指数幂、负整数指数幂【解析】直接利用二次根式的性质以及结合绝对值、零指数幂的性质分析得出答案.【解答】解:原式=5+3−1=7.解不等式2x−1>3x−12,并把它的解集在数轴上表示出来.【答案】去分母,得:4x−2>3x−1,移项,得:4x−3x>2−1,合并同类项,得:x>1,将不等式解集表示在数轴上如图:【考点】解一元一次不等式在数轴上表示不等式的解集【解析】根据不等式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来. 【解答】去分母,得:4x −2>3x −1, 移项,得:4x −3x >2−1, 合并同类项,得:x >1,将不等式解集表示在数轴上如图:先化简,再求值:x 2−2x+1x 2+x÷(1−2x+1),其中x =√3.【答案】 原式=(x−1)2x(x+1)÷x−1x+1=(x −1)2x(x +1)⋅x +1x −1 =x−1x,当x =√3时,原式=√3−1√3=3−√33.【考点】分式的化简求值 【解析】先括号内通分,然后计算除法,最后代入化简即可. 【解答】 原式=(x−1)2x(x+1)÷x−1x+1=(x −1)2x(x +1)⋅x +1x −1 =x−1x,当x =√3时,原式=√3−1√3=3−√33.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【答案】解:设中型车有x 辆,小型车有y 辆,根据题意,得 {x +y =50,12x +8y =480,解得{x =20,y =30.答:中型车有20辆,小型车有30辆.【考点】二元一次方程组的应用——产品配套问题【解析】先设中型车有x辆,小型车有y辆,再根据题中两个等量关系,列出二元一次方程组进行求解.【解答】解:设中型车有x辆,小型车有y辆,根据题意,得{x+y=50,12x+8y=480,解得{x=20,y=30.答:中型车有20辆,小型车有30辆.在一个不透明的布袋中装有三个小球,小球上分别标有数字−1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为________;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.【答案】13画树状图为:共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,所以点M落在如图所示的正方形网格内(包括边界)的概率=69=23.【考点】列表法与树状图法坐标与图形性质概率公式【解析】(1)直接利用概率公式求解;(2)先画树状图展示所有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,然后根据概率公式求解.【解答】随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率=13;故答案为13;画树状图为:共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,所以点M落在如图所示的正方形网格内(包括边界)的概率=69=23.如图,在菱形ABCD中,对角线AC,BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【答案】(1)证明:∵四边形ABCD是菱形,∴AB // CD,AC⊥BD,∴AE // CD,∠AOB=90∘,∵DE⊥BD,即∠EDB=90∘,∴∠AOB=∠EDB,∴DE // AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【考点】菱形的性质平行四边形的判定【解析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB // CD,AC⊥BD,∴AE // CD,∠AOB=90∘,∵DE⊥BD,即∠EDB=90∘,∴∠AOB=∠EDB,∴DE // AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.(x>0)的图象如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=mx交于点B(2, n),过点B作BC⊥x轴于点C,点P(3n−4, 1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【答案】(x>0)的图象上,解:∵点B(2, n)、P(3n−4, 1)在反比例函数y=mx∴{2n=m3n−4=m.解得:m=8,n=4.∴反比例函数的表达式为y=8.x∵m=8,n=4,∴点B(2, 4),(8, 1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,{∠PBD=∠P′BD BD=BD∠BDP=∠BDP′∴△BDP≅△BDP′.∴DP′=DP=6.∴点P′(−4, 1).将点P′(−4, 1),B(2, 4)代入直线的解析式得:{2k+b=4−4k+b=1,解得:{k=12b=3.∴一次函数的表达式为y=12x+3.【考点】函数的综合性问题【解析】将点B(2, n)、P(3n−4, 1)代入反比例函数的解析式可求得m、n的值,从而求得反比例函数的解析式以及点B和点P的坐标,过点P作PD⊥BC,垂足为D,并延长交AB与点P′.接下来证明△BDP≅△BDP′,从而得到点P′的坐标,最后将点P′和点B的坐标代入一次函数的解析式即可求得一次函数的表达式.【解答】解:∵点B(2, n)、P(3n−4, 1)在反比例函数y=mx(x>0)的图象上,∴{2n=m3n−4=m.解得:m=8,n=4.∴反比例函数的表达式为y=8x.∵m=8,n=4,∴点B(2, 4),(8, 1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,{∠PBD =∠P′BD BD =BD ∠BDP =∠BDP′ ∴ △BDP ≅△BDP′. ∴ DP′=DP =6. ∴ 点P′(−4, 1).将点P′(−4, 1),B(2, 4)代入直线的解析式得:{2k +b =4−4k +b =1,解得:{k =12b =3. ∴ 一次函数的表达式为y =12x +3.如图,AB 是⊙O 的直径,D 、E 为⊙O 上位于AB 异侧的两点,连接BD 并延长至点C ,使得CD =BD ,连接AC 交⊙O 于点F ,连接AE ,DE ,DF .(1)证明:∠E =∠C ;(2)若∠E =55∘,求∠BDF 的度数;(3)设DE 交AB 于点G ,若DF =4,cos B =23,E 是AB ⌢的中点,求EG ⋅ED 的值. 【答案】(1)证明:连结AD ,如图:∵ AB 是⊙O 的直径,∴ ∠ADB =90∘,即AD ⊥BC . ∵ CD =BD ,∴ AD 垂直平分BC . ∴ AB =AC .∴∠B=∠C.又∵∠B=∠E,∴∠E=∠C.(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180∘−∠E.又∵∠CFD=180∘−∠AFD,∴∠CFD=∠E=55∘.又∵∠E=∠C=55∘,∴∠BDF=∠C+∠CFD=110∘.(3)解:连结OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4.在Rt△ABD中,cos B=23,BD=4,∴AB=6,∵E是AB⌢的中点,AB是⊙O的直径,∴∠AOE=90∘.∵AO=OE=3,∴AE=3√2.∵E是AB⌢的中点,∴∠ADE=∠EAB.∴△AEG∼△DEA.∴AEEG =DEAE.即EG⋅ED=AE2=18.【考点】相似三角形的性质与判定圆的综合题【解析】此题主要考查了圆的综合题、圆周角定理以及相似三角形的判定与性质以及圆内接四边形的性质等知识.【解答】(1)证明:连结AD,如图:∵AB是⊙O的直径,∴∠ADB=90∘,即AD⊥BC.∵CD=BD,∴AD垂直平分BC.∴AB=AC.∴∠B=∠C.又∵∠B=∠E,∴∠E=∠C.(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180∘−∠E.又∵∠CFD=180∘−∠AFD,∴∠CFD=∠E=55∘.又∵∠E=∠C=55∘,∴∠BDF=∠C+∠CFD=110∘.(3)解:连结OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4.在Rt△ABD中,cos B=2,BD=4,3∴AB=6,∵E是AB⌢的中点,AB是⊙O的直径,∴∠AOE=90∘.∵AO=OE=3,∴AE=3√2.∵E是AB⌢的中点,∴∠ADE=∠EAB.∴△AEG∼△DEA.∴AEEG =DEAE.即EG⋅ED=AE2=18.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<85).(1)如图1,连接DQ平分∠BDC时,t的值为________;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.【答案】1.(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=12(8−5t),QM=3t,∵MQ // BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90∘,∴△QTM∽△BCD,∴QMBD =TQBC,∴3t10=12(8−5t)8,∴t=4049(s),∴t=4049s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,由此QM交CD于E,∵EQ // BD,∴ECCD =CQCB,∴EC=34(8−5t),ED=DC−EC=6−34(8−5t)=154t,∵DO=3t,∴DE−DO=154t−3t=34t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.∵EC=34(8−5t),DO=3t,∴OE=6−3t−34(8−5t)=34t,∵OH⊥MQ,∴∠OHE=90∘,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90∘,∴△OHE∽△BCD,∴OHBC =OEBD,∴0.88=34t10,∴t=43.∴t=43s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=12PMQ=22.5∘,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5∘,∴∠OFH=∠FOH=45∘,∴OH=FH=0.8,FO=FM=0.8√2,∴MH=0.8(√2+1),由OHBC =HEDC得到HE=35,由ECBD =CQCB得到EQ=53,∴MH=MQ−HE−EQ=4−35−53=2615,∴0.8(√2+1)≠2625,矛盾,∴假设不成立.∴直线PM与⊙O不相切.【考点】圆的综合题【解析】(1)先利用△PBQ∽△CBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题.(2)由△QTM∽△BCD,得QMBD =TQBC列出方程即可解决.(3)①如图2中,由此QM交CD于E,求出DE、DO利用差值比较即可解决问题.②如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.由△OHE∽△BCD,得OHBC =OEBD,列出方程即可解决问题.利用反证法证明直线PM不可能由⊙O相切.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90∘,AB=CD=6.AD=BC=8,∴BD=√AD2+AB2=√62+82=10,∵PQ⊥BD,∴∠BPQ=90∘=∠C,∵∠PBQ=∠DBC,∴△PBQ∽△CBD,∴PBBC =PQDC=BQBD,∴4t8=PQ6=BQ10,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=8−5t,∴t=1,(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=12(8−5t),QM=3t,∵MQ // BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90∘,∴△QTM∽△BCD,∴QMBD =TQBC,∴3t10=12(8−5t)8,∴t=4049(s),∴t=4049s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,由此QM交CD于E,∵EQ // BD,∴ECCD =CQCB,∴EC=34(8−5t),ED=DC−EC=6−34(8−5t)=154t,∵DO=3t,∴DE−DO=154t−3t=34t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.∵EC=34(8−5t),DO=3t,∴OE=6−3t−34(8−5t)=34t,∵OH⊥MQ,∴∠OHE=90∘,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90∘,∴△OHE∽△BCD,∴OHBC =OEBD,∴0.88=34t10,∴t=43.∴t=43s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=12PMQ=22.5∘,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5∘,∴∠OFH=∠FOH=45∘,∴OH=FH=0.8,FO=FM=0.8√2,∴MH=0.8(√2+1),由OHBC =HEDC得到HE=35,由ECBD =CQCB得到EQ=53,∴MH=MQ−HE−EQ=4−35−53=2615,∴0.8(√2+1)≠2625,矛盾,∴假设不成立.∴直线PM与⊙O不相切.如图,直线l:y=−3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2−2ax+ a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).【答案】令x=0代入y=−3x+3,∴y=3,∴B(0, 3),把B(0, 3)代入y=ax2−2ax+a+4,∴3=a+4,∴a=−1,∴二次函数解析式为:y=−x2+2x+3;令y=0代入y=−x2+2x+3,∴ 0=−x 2+2x +3, ∴ x =−1或3,∴ 抛物线与x 轴的交点横坐标为−1和3, ∵ M 在抛物线上,且在第一象限内, ∴ 0<m <3,令y =0代入y =−3x +3, ∴ x =1,∴ A 的坐标为(1, 0),由题意知:M 的坐标为(m, −m 2+2m +3), S =S 四边形OAMB −S △AOB =S △OBM +S △OAM −S △AOB =12×m ×3+12×1×(−m 2+2m +3)−12×1×3 =−12(m −52)2+258∴ 当m =52时,S 取得最大值258.①由(2)可知:M′的坐标为(52, 74);②过点M′作直线l 1 // l′,过点B 作BF ⊥l 1于点F , 根据题意知:d 1+d 2=BF , 此时只要求出BF 的最大值即可, ∵ ∠BFM′=90∘,∴ 点F 在以BM′为直径的圆上, 设直线AM′与该圆相交于点H , ∵ 点C 在线段BM′上,∴ F 在优弧BM′H ̂上, ∴ 当F 与M′重合时, BF 可取得最大值, 此时BM′⊥l 1,∵ A(1, 0),B(0, 3),M′(52, 74),∴ 由勾股定理可求得:AB =√10,M′B =5√54,M′A =√854, 过点M′作M′G ⊥AB 于点G , 设BG =x ,∴ 由勾股定理可得:M′B 2−BG 2=M′A 2−AG 2, ∴8516−(√10−x)2=12516−x 2,∴ x =5√108, cos ∠M′BG =BGM ′B =√22, ∵ l 1 // l′,∴ ∠BCA =90∘, ∠BAC =45∘方法二:过B点作BD垂直于l′于D点,过M′点作M′E垂直于l′于E点,则BD=d1,ME=d2,∵S△ABM′=12×AC×(d1+d2)当d1+d2取得最大值时,AC应该取得最小值,当AC⊥BM′时取得最小值.根据B(0, 3)和M′(52, 74)可得BM′=5√54,∵S△ABM=12×AC×BM′=258,∴AC=√5,当AC⊥BM′时,cos∠BAC=ACAB =√5√10=√22,∴∠BAC=45∘.【考点】二次函数综合题【解析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a 的值;(2)设M 的坐标为(m, −m 2+2m +3),然后根据面积关系将△ABM 的面积进行转化; (3)①由(2)可知m =52,代入二次函数解析式即可求出纵坐标的值;②可将求d 1+d 2最大值转化为求AC 的最小值. 【解答】令x =0代入y =−3x +3, ∴ y =3, ∴ B(0, 3),把B(0, 3)代入y =ax 2−2ax +a +4, ∴ 3=a +4, ∴ a =−1,∴ 二次函数解析式为:y =−x 2+2x +3; 令y =0代入y =−x 2+2x +3, ∴ 0=−x 2+2x +3, ∴ x =−1或3,∴ 抛物线与x 轴的交点横坐标为−1和3, ∵ M 在抛物线上,且在第一象限内, ∴ 0<m <3,令y =0代入y =−3x +3, ∴ x =1,∴ A 的坐标为(1, 0),由题意知:M 的坐标为(m, −m 2+2m +3), S =S 四边形OAMB −S △AOB =S △OBM +S △OAM −S △AOB =12×m ×3+12×1×(−m 2+2m +3)−12×1×3 =−12(m −52)2+258∴ 当m =52时,S 取得最大值258. ①由(2)可知:M′的坐标为(52, 74);②过点M′作直线l 1 // l′,过点B 作BF ⊥l 1于点F , 根据题意知:d 1+d 2=BF , 此时只要求出BF 的最大值即可, ∵ ∠BFM′=90∘,∴ 点F 在以BM′为直径的圆上, 设直线AM′与该圆相交于点H , ∵ 点C 在线段BM′上,∴ F 在优弧BM′H ̂上, ∴ 当F 与M′重合时, BF 可取得最大值, 此时BM′⊥l 1,∵ A(1, 0),B(0, 3),M′(52, 74),∴ 由勾股定理可求得:AB =√10,M′B =5√54,M′A =√854, 过点M′作M′G ⊥AB 于点G , 设BG =x ,∴ 由勾股定理可得:M′B 2−BG 2=M′A 2−AG 2, ∴ 8516−(√10−x)2=12516−x 2,∴ x =5√108, cos ∠M′BG =BG M ′B=√22, ∵ l 1 // l′,∴ ∠BCA =90∘, ∠BAC =45∘方法二:过B 点作BD 垂直于l′于D 点,过M′点作M′E 垂直于l′于E 点,则BD =d 1,ME =d 2,∵ S △ABM′=12×AC ×(d 1+d 2)当d 1+d 2取得最大值时,AC 应该取得最小值,当AC ⊥BM′时取得最小值. 根据B(0, 3)和M′(52, 74)可得BM′=5√54, ∵ S △ABM =12×AC ×BM′=258,∴ AC =√5, 当AC ⊥BM′时,cos ∠BAC =AC AB=√5√10=√22, ∴ ∠BAC =45∘.。
2016年江苏省苏州市中考试卷数 学注意事项: 2016.6 1. 本试卷共28题,满分130分,考试用时120分钟.2. 答案全部写在答题卡上,写在本试卷上无效.3. 答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再涂选其他答案.答非选择题必须用0.5毫米黑色墨水签字笔,在答题卡上对应题号的答题区域书写答案,注意不要答错位置,也不要超界.4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题:本大题目共10小题.每小题3分.共30分.在每小题给出的四个选项中,只有一顶是 符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.23的倒数是( ) A . 32 B . 32- C . 23 D . 23- 2.肥皂泡的泡壁厚度大约是0.0007㎜,将0.0007用科学记数法科表示为( )A . 30.710-⨯B . 3710-⨯C . 4710-⨯D . 5710-⨯3.下列运算结果正确的是( )A . 23a b ab +=B . 22321a a -=C . 248a a a ⋅=D . 2332()()a b a b b -÷=- 4.一次数学测试后,某班40名学生的成绩被分为5组,第14组的频数分别为12、10、6、8,则第5组的频数是( )A .0.1B .0.2C .0.3D .0.45.如图,直线//a b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 做直线l的垂线交直线b 于点C ,若∠1=58°,则 ∠2的度数为( )A .58°B .42°C .32°D .28°6.已知点1(2,)A y 、2(4,)B y 都是反比例函数(0)k y k x=<的图像上,则1y 、2y 的大小关系为( ) A . y y > B . y y < C . y y = D .无法比较户家庭某月的用水量,如小表所示: 用水量(吨) 15 20 25 30 35 户数 3 6 7 9 5则这30户家庭该月应水量的众数和中位数分别是( )A .25 ,27.5B .25,25C .30 ,27.5D . 30 ,258.如图,长4 m 的楼梯AB 的倾斜角∠ABD 为60度,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°免责调整后的楼梯AC 的长为( )A . 23mB . 26mC . (232)m -D . (262)m -9.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),点D 是OA 的中的,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( )A . (3,1)B . 4(3,)3 C . 5(3,)3D . (3,2)10.如图,在四边形ABCD 中,∠ABC=90°,AB=BC=22,E 、F 分别是AD 、CD 的中点,连接BE 、BF 、EF .若四边形ABCD 的面积为6,则△BEF 的面积为( )A .2B . 94C . 52D .3 二、填空题:本文题共8小题.每小题3分,共24分,把答案直接填在答题卡相应位置上.......... 12.分解因式:21x -=_________13.当x =________时,分式225x x -+的值为0. 13.要从甲、乙两名运动员中选出一鸣参加“2016里约奥运会”100m 比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(2s ),乙的方差为0.008(2s ),则这10次测试成绩比较稳定的是_________运动员。
2016年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷共21题,满分130分,考试用时150分钟;2.答题前,考生务必将由己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,井认真核对条形码上的准考号、姓名是否与本人的相符合; 3.答选择题须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题; 4.考生答题,必须答在答题卡上,答在试卷和草稿纸上无效。
一、选择题:本大题目共10小题.每小题3分.共30分.在每小题给出的四个选项中,只有一顶是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.23的倒数是 A. 32 B. 32- C. 23 D. 23-2.肥皂泡的泡壁厚度大约是0.0007㎜,将0.0007用科学记数法科表示为()A. 30.710-⨯B. 3710-⨯C. 4710-⨯D. 5710-⨯3.下列运算结果正确的是A. 23a b ab +=B. 22321a a -= C. 248a a a ⋅= D. 2332()()a b a b b -÷=-4.一次数学测试后,某班40名学生的成绩被分为5组,第14组的频数分别为12、10、6、8,则第5组的频数是A.0.1B.0.2C.0.3D.0.45.如图,直线//a b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 做直线l 的垂线交直线b 于点C ,若∠1=58°,则 ∠2的度数为A.58°B.42°C.32°D.28°6.已知点1(2,)A y 、2(4,)B y 都是反比例函数(0)ky k x=<的图像上,则1y 、2y 的大小关系为A. 12y y >B. 12y y <C. 12y y =D.无法比较7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从20161月1日起对居民生活用水按照新的“阶梯水价”标准收费,某中学研究性学习小组的同学们在社会实践活动中调查了50户家庭某月的用水量,如小表所示:则这30户家庭该月应水量的众数和中位数分别是A.25 ,27.5B.25,25C.30 ,27.5D. 30 ,258.如图,长4 m的楼梯AB的倾斜角∠ABD为60度,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°免责调整后的楼梯AC的长为A. B. C. 2)m D. 2)m9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D是OA的中的,点E在AB上,当△CDE的周长最小时,点E的坐标为A. (3,1)B.4(3,)3C.5(3,)3D. (3,2)10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为A.2B. 94C.52D.3二、填空题:本文题共8小题.每小题3分,共24分,把答案直接填在答题卡相应位置上..........12.分解因式:21x-=_________13.当x=________时,分式225xx-+的值为0.13.要从甲、乙两名运动员中选出一鸣参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(2s),乙的方差为0.008(2s),则这10次测试成绩比较稳定的是_________运动员。
2016年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷共21题,满分130分,考试用时150分钟;2.答题前,考生务必将由己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,井认真核对条形码上的准考号、姓名是否与本人的相符合;3.答选择题须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题,必须答在答题卡上,答在试卷和草稿纸上无效。
一、选择题:本大题目共10小题.每小题3分.共30分.在每小题给出的四个选项中,只有一顶是 符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.23的倒数是 A. 32 B. 32- C. 23 D. 23- 2.肥皂泡的泡壁厚度大约是0.0007㎜,将0.0007用科学记数法科表示为()A. 30.710-⨯B. 3710-⨯C. 4710-⨯D. 5710-⨯3.下列运算结果正确的是A. 23a b ab +=B. 22321a a -=C. 248a a a ⋅=D. 2332()()a b a b b -÷=-4.一次数学测试后,某班40名学生的成绩被分为5组,第14组的频数分别为12、10、6、8,则第5组的频数是A.0.1B.0.2C.0.3D.0.45.如图,直线//a b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 做直线l 的垂线交直线b 于点C ,若∠1=58°,则∠2的度数为A.58°B.42°C.32°D.28°6.已知点1(2,)A y 、2(4,)B y 都是反比例函数(0)k y k x=<的图像上,则1y 、2y 的大小关系为 A. 12y y > B. 12y y < C. 12y y = D.无法比较7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从20161月1日起对居民生活用水按照新的“阶梯水价”标准收费,某中学研究性学习小组的同学们在社会实践活动中调查了50户家庭某月的用水量,如小表所示: 5则这30户家庭该月应水量的众数和中位数分别是A.25 ,27.5B.25,25C.30 ,27.5D. 30 ,258.如图,长4 m的楼梯AB的倾斜角∠ABD为60度,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°免责调整后的楼梯AC的长为A. B. C. 2)m D. 2)m9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D是OA的中的,点E在AB上,当△CDE的周长最小时,点E的坐标为A. (3,1)B.4(3,)3C.5(3,)3D. (3,2)10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为A.2B. 94C.52D.3二、填空题:本文题共8小题.每小题3分,共24分,把答案直接填在答题卡相应位置上..........12.分解因式:21x-=_________13.当x=________时,分式225xx-+的值为0.13.要从甲、乙两名运动员中选出一鸣参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(2s),乙的方差为0.008(2s),则这10次测试成绩比较稳定的是_________运动员。
2016年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷共21题,满分130分,考试用时150分钟;2.答题前,考生务必将由己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,井认真核对条形码上的准考号、姓名是否与本人的相符合;3.答选择题须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题,必须答在答题卡上,答在试卷和草稿纸上无效。
一、选择题:本大题目共10小题.每小题3分.共30分.在每小题给出的四个选项中,只有一顶是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1. 23的倒数是 A. 32 B. 32- C. 23 D. 23- 2.肥皂泡的泡壁厚度大约是0.0007㎜,将0.0007用科学记数法科表示为() A. 30.710-⨯ B. 3710-⨯ C. 4710-⨯ D. 5710-⨯3.下列运算结果正确的是A. 23a b ab +=B. 22321a a -=C. 248a a a ⋅=D. 2332()()a b a b b -÷=- 4.一次数学测试后,某班40名学生的成绩被分为5组,第14组的频数分别为12、10、6、8,则第5组的频数是A.0.1B.0.2C.0.3D.0.45.如图,直线//a b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 做直线l 的垂线交直线b 于点C ,若∠1=58°,则∠2的度数为A.58°B.42°C.32°D.28°6.已知点1(2,)A y 、2(4,)B y 都是反比例函数(0)k y k x=<的图像上,则1y 、2y 的大小关系为A. 12y y >B. 12y y <C. 12y y =D.无法比较7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从20161月1日起对居民生活用水按照新的“阶梯水价”标准收费,某中学研究性学习小组的同学们在社会实践活动中调查了50户家庭某月的用水量,如小表所示:用水量(吨) 15 20 25 30 35 户数 3 6 7 9 5则这30户家庭该月应水量的众数和中位数分别是A.25 ,27.5B.25,25C.30 ,27.5D. 30 ,258.如图,长4 m 的楼梯AB 的倾斜角∠ABD 为60度,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°免责调整后的楼梯AC 的长为A. 23mB. 26mC. (232)m -D. (262)m -9.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),点D 是OA 的中的,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为A. (3,1)B. 4(3,)3 C. 5(3,)3D. (3,2)10.如图,在四边形ABCD 中,∠ABC=90°,AB=BC=22,E 、F 分别是AD 、CD 的中点,连接BE 、BF 、EF.若四边形ABCD 的面积为6,则△BEF 的面积为A.2B. 94C. 52D.3 二、填空题:本文题共8小题.每小题3分,共24分,把答案直接填在答题卡相应位置上.......... 12.分解因式:21x -=_________13.当x =________时,分式225x x -+的值为0. 13.要从甲、乙两名运动员中选出一鸣参加“2016里约奥运会”100m 比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(2s ),乙的方差为0.008(2s ),则这10次测试成绩比较稳定的是_________运动员。
2016年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷共21题,满分130分,考试用时150分钟;2.答题前,考生务必将由己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,井认真核对条形码上的准考号、姓名是否与本人的相符合;3.答选择题须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题,必须答在答题卡上,答在试卷和草稿纸上无效。
一、选择题:本大题目共10小题.每小题3分.共30分.在每小题给出的四个选项中,只有一顶是 符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.(2016 苏州 1,3分)23的倒数是 A. 32 B. 32- C. 23 D. 23- 答案:A2. (2016 苏州 2,3分)肥皂泡的泡壁厚度大约是0.0007㎜,将0.0007用科学记数法科表示为()A. 30.710-⨯B. 3710-⨯C. 4710-⨯D. 5710-⨯答案:C3. (2016 苏州,3,3分)下列运算结果正确的是A. 23a b ab +=B. 22321a a -=C. 248a a a ⋅= D. 2332()()ab a b b -÷=-答案:D4. (2016 苏州 4,3分)一次数学测试后,某班40名学生的成绩被分为5组,第14组的频数分别为12、10、6、8,则第5组的频数是A.0.1B.0.2C.0.3D.0.4答案:A5. (2016 苏州 5,3分)如图,直线//a b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 做直线l 的垂线交直线b 于点C ,若∠1=58°,则∠2的度数为A.58°B.42°C.32°D.28°答案:C6. (2016 苏州 6,3分)已知点1(2,)A y 、2(4,)B y 都是反比例函数(0)k y k x=<的图像上,则1y 、2y 的大小关系为A. 12y y >B. 12y y <C. 12y y =D.无法比较答案:B7. (2016 苏州 7,3分)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从20161月1日起对居民生活用水按照新的“阶梯水价”标准收费,某中学研究性学习小组的同学们在社会实践活动中调查了50户家庭某月的用水量,如小表所示:5 则这30户家庭该月应水量的众数和中位数分别是A.25 ,27.5B.25,25C.30 ,27.5D. 30,25答案:D8. (2016 苏州 8,3分)如图,长4 m的楼梯AB 的倾斜角∠ABD 为60度,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°免责调整后的楼梯AC 的长为A.B. C. 2)m D. 2)m答案:B9. (2016 苏州 9,3分)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),点D 是OA 的中的,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为A. (3,1)B. 4(3,)3 C. 5(3,)3D. (3,2)答案:A10. (2016 苏州 10,3分)如图,在四边形ABCD 中,∠ABC=90°,AB=BC=E 、F 分别是AD 、CD 的中点,连接BE 、BF 、EF.若四边形ABCD 的面积为6,则△BEF 的面积为A.2B. 94C. 52D.3 答案:C二、填空题:本文题共8小题.每小题3分,共24分,把答案直接填在答题卡相应位置上..........11. (2016 苏州 11,3分)分解因式:21x -=_________答案:(x +1)(x -1)12. (2016 苏州 12,3分)当x =________时,分式225x x -+的值为0. 答案:213. (2016 苏州 13,3分)要从甲、乙两名运动员中选出一鸣参加“2016里约奥运会”100m 比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(2s ),乙的方差为0.008(2s ),则这10次测试成绩比较稳定的是_________运动员。
2016年苏州市初中毕业暨升学考试试卷数 学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.2的相反数是A .2B .12C .-2D .-122.有一组数据:3,5,5,6,7,这组数据的众数为A .3B .5C .6D .7 3.月球的半径约为1 738 000m ,1 738 000这个数用科学记数法可表示为A .1.738×106B .1.738×107C .0.1738×107D .17.38×105 4.若()222m =⨯-,则有 A .0<m <1 B .-1<m <0 C .-2<m <-1 D .-3<m <-25.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表: 通话时间x /min0<x ≤5 5<x ≤10 10<x ≤15 15<x ≤20 频数(通话次数) 20 16 9 5则通话时间不超过15min 的频率为A .0.1B .0.4C .0.5D .0.9 6.若点A (a ,b )在反比例函数2y x =的图像上,则代数式ab -4DCB A (第7题)的值为A .0B .-2C . 2D .-6 7.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为A .35°B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为A .433π- B .4233π- C .3π- D .233π-10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为A .4kmB .()22+kmC .22kmD .()42-km 二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.(第9题) D C B A O (第10题) l北西南东C D B A 45°22.5°c b a 21(第12题) (第13题)20%10%30%40%其他乒乓球篮球羽毛球13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名.14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F 作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ .三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分5分) 计算:()09523+---.(第17题) G F E D CB A F EDC B A (第18题)(第15题) 8765432120.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分) 先化简,再求值:2121122x x x x ++⎛⎫-÷ ⎪++⎝⎭,其中31x =-.22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC 中,AB =AC .分别以B 、C 为圆心,BC 长为半径在BC 下方画弧,设两弧交于点D ,与AB 、AC 的延长线分别交于点E 、F ,连接AD 、BD 、CD .(1)求证:AD 平分∠BAC ;(2)若BC =6,∠BAC =50︒,求DE 、DF 的长度之和(结果保留π).(第24题) FE DCB A25.(本题满分8分)如图,已知函数k y x=(x >0)的图像经过点A 、B ,点B 的坐标为(2,2).过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥y 轴,垂足为D ,AC 与BD 交于点F .一次函数y=ax +b 的图像经过点A 、D ,与x 轴的负半轴交于点E .(1)若AC =32OD ,求a 、b 的值; (2)若BC ∥AE ,求BC 的长.26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED .(1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.y xF O E D C B A (第25题) E B CDA O (第26题)27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接PA 、PC ,PA =PC .(1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△PAC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示);(2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由. y x O P C B A l (第27题)。
2016年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵×=1,∴的倒数是.故选A.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.3.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【考点】频数与频率.【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.5.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°【考点】平行线的性质.【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【考点】众数;中位数.【分析】根据众数、中位数的定义即可解决问题.【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.8.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【考点】解直角三角形的应用-坡度坡角问题.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【考点】三角形的面积.【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△A B C=•AB•AC=×2×2=4,∴S△A D C=2,∵=2,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△B E F=•EF•BH=×2×=,故选C.二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1=(x+1)(x﹣1).【考点】因式分解-运用公式法.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.当x=2时,分式的值为0.【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2.故答案为:2.13.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是乙运动员.(填“甲”或“乙”)【考点】方差.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2=0.024>S乙2=0.008,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是72度.【考点】条形统计图;扇形统计图.【分析】根据文学类人数和所占百分比,求出总人数,然后用总人数乘以艺术类读物所占的百分比即可得出答案.【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:90÷30%=300(人),则艺术类读物所在扇形的圆心角是的圆心角是360°×=72°;故答案为:72.15.不等式组的最大整数解是3.【考点】一元一次不等式组的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式x+2>1,得:x>﹣1,解不等式2x﹣1≤8﹣x,得:x≤3,则不等式组的解集为:﹣1<x≤3,则不等式组的最大整数解为3,故答案为:3.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.【考点】切线的性质;圆周角定理;扇形面积的计算.【分析】连接OC,可求得△OCD和扇形OCB的面积,进而可求出图中阴影部分的面积.【解答】解:连接OC,∵过点C的切线交AB的延长线于点D,∴OC⊥CD,∴∠OCD=90°,即∠D+∠COD=90°,∵AO=CO,∴∠A=∠ACO,∴∠COD=2∠A,∵∠A=∠D,∴∠COD=2∠D,∴3∠D=90°,∴∠D=30°,∴∠COD=60°∵CD=3,∴OC=3×=,∴阴影部分的面积=×3×﹣=,故答案为:.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为2.【考点】翻折变换(折叠问题).【分析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60°的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G=2,然后再次利用勾股定理求得答案即可.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∵AB=10,∴AG=10﹣6=4,∴AB′===2.故答案为:2.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为(1,).【考点】坐标与图形性质;平行线分线段成比例;相似三角形的判定与性质.【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标.【解答】解:∵点A、B的坐标分别为(8,0),(0,2)∴BO=,AO=8由CD⊥BO,C是AB的中点,可得BD=DO=BO==PE,CD=AO=4设DP=a,则CP=4﹣a当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP又∵EP⊥CP,PD⊥BD∴∠EPC=∠PDB=90°∴△EPC∽△PDB∴,即解得a1=1,a2=3(舍去)∴DP=1又∵PE=∴P(1,)故答案为:(1,)三、解答题(共10小题,满分76分)19.计算:()2+|﹣3|﹣(π+)0.【考点】实数的运算;零指数幂.【分析】直接利用二次根式的性质以及结合绝对值、零指数幂的性质分析得出答案.【解答】解:原式=5+3﹣1=7.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据分式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,将不等式解集表示在数轴上如图:21.先化简,再求值:÷(1﹣),其中x=.【考点】分式的化简求值.【分析】先括号内通分,然后计算除法,最后代入化简即可.【解答】解:原式=÷=•=,当x=时,原式==.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【考点】二元一次方程组的应用.【分析】先设中型车有x辆,小型车有y辆,再根据题中两个等量关系,列出二元一次方程组进行求解.【解答】解:设中型车有x辆,小型车有y辆,根据题意,得解得答:中型车有20辆,小型车有30辆.23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.【考点】列表法与树状图法;坐标与图形性质;概率公式.【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,然后根据概率公式求解.【解答】解:(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,所以点M落在如图所示的正方形网格内(包括边界)的概率==.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【考点】菱形的性质;平行四边形的判定与性质.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x >0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【考点】反比例函数与一次函数的交点问题.【分析】将点B(2,n)、P(3n﹣4,1)代入反比例函数的解析式可求得m、n的值,从而求得反比例函数的解析式以及点B和点P的坐标,过点P作PD ⊥BC,垂足为D,并延长交AB与点P′.接下来证明△BDP≌△BDP′,从而得到点P′的坐标,最后将点P′和点B的坐标代入一次函数的解析式即可求得一次函数的表达式.【解答】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y=(x>0)的图象上,∴.解得:m=8,n=4.∴反比例函数的表达式为y=.∵m=8,n=4,∴点B(2,4),(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).将点P′(﹣4,1),B(2,4)代入直线的解析式得:,解得:.∴一次函数的表达式为y=x+3.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD 并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.【考点】圆的综合题.【分析】(1)直接利用圆周角定理得出AD⊥BC,劲儿利用线段垂直平分线的性质得出AB=AC,即可得出∠E=∠C;(2)利用圆内接四边形的性质得出∠AFD=180°﹣∠E,进而得出∠BDF=∠C+∠CFD,即可得出答案;(3)根据cosB=,得出AB的长,再求出AE的长,进而得出△AEG∽△DEA,求出答案即可.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM 与⊙O是否也相切?说明理由.【考点】圆的综合题.【分析】(1)先利用△PBQ∽△CBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题.(2)由△QTM∽△BCD,得=列出方程即可解决.(3)①如图2中,由此QM交CD于E,求出DE、DO利用差值比较即可解决问题.②如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.由△OHE∽△BCD,得=,列出方程即可解决问题.利用反证法证明直线PM不可能由⊙O相切.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴BD===10,∵PQ⊥BD,∴∠BPQ=90°=∠C,∵∠PBQ=∠DBC,∴△PBQ∽△CBD,∴==,∴==,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=6﹣5t,∴t=,故答案为.(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=(8﹣5t),QM=3t,∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴=,∴=,∴t=(s),∴t=s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,由此QM交CD于E,∵EQ∥BD,∴=,∴EC=(8﹣5t),ED=DC﹣EC=6﹣(8﹣5t)=t,∵DO=3t,∴DE﹣DO=t﹣3t=t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.∵EC=(8﹣5t),DO=3t,∴OE=6﹣3t﹣(8﹣5t)=t,∵OH⊥MQ,∴∠OHE=90°,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴=,∴=,∴t=.∴t=s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=0.8,FO=FM=0.8,∴MH=0.8(+1),由=得到HE=,由=得到EQ=,∴MH=MQ﹣HE﹣EQ=4﹣﹣=,∴0.8(+1)≠,矛盾,∴假设不成立.∴直线MQ与⊙O不相切.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).【考点】二次函数综合题.【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;(2)过点M作ME⊥y轴于点E,交AB于点D,所以△ABM的面积为DM•OB,设M的坐标为(m,﹣m2+2m+3),用含m的式子表示DM,然后求出S与m 的函数关系式,即可求出S的最大值,其中m的取值范围是0<m<3;(3)①由(2)可知m=,代入二次函数解析式即可求出纵坐标的值;②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,所以d1+d2=BF,所以求出BF的最小值即可,由题意可知,点F在以BM′为直径的圆上,所以当点F与M′重合时,BF可取得最大值.【解答】解:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,过点M作ME⊥y轴于点E,交AB于点D,由题意知:M的坐标为(m,﹣m2+2m+3),∴D的纵坐标为:﹣m2+2m+3,∴把y=﹣m2+2m+3代入y=﹣3x+3,∴x=,∴D的坐标为(,﹣m2+2m+3),∴DM=m﹣=,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;(3)①由(2)可知:M′的坐标为(,);②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∵l1∥l′,∴∠BCA=90°,∠BAC=45°。
2016年苏州市中考数学试卷【WORD】含答案汇总D3.下列运算结果正确的是( )A .23a b ab += B . 22321a a -= C . 248a a a ⋅= D . 2332()()a b a b b-÷=- 4.一次数学测试后,某班40名学生的成绩被分为5组,第14组的频数分别为12、10、6、8,则第5组的频数是( )A .0.1B .0.2C .0.3D .0.45.如图,直线//a b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 做直线l 的垂线交直线b 于点C ,若∠1=58°,则 ∠2的度数为( )A .58°B .42°C .32°D .28°6.已知点1(2,)A y 、2(4,)B y 都是反比例函数(0)k y k x =<的图像上,则1y 、2y 的大小关系为( ) A . 12y y > B . 12y y < C . 12y y = D .无法比较7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从20161月1日起对居民生活用水按照新的“阶梯水价”标准收费,某中学研究性学习小组的同学们在社会实践活动中调查了50户家庭某月的用水量,如小表所示:用水量(吨)1520 25 30 35户数 3 6 7 9 5则这30户家庭该月应水量的众数和中位数分别是()A.25 ,27.5 B.25,25 C.30 ,27.5 D.30 ,258.如图,长4 m的楼梯AB的倾斜角∠ABD为60度,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°免责调整后的楼梯AC的长为()A.23m B.26m C.(232)m-D.(262)m-9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D是OA的中的,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.4(3,)3C.5(3,)3D.(3,2)10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=22E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A .2B . 94C . 52D .3 二、填空题:本文题共8小题.每小题3分,共24分,把答案直接填在答题卡相应位置上..........12.分解因式:21x -=_________13.当x =________时,分式225x x -+的值为0.13.要从甲、乙两名运动员中选出一鸣参加“2016里约奥运会”100m 比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(2s ),乙的方差为0.008(2s ),则这10次测试成绩比较稳定的是_________运动员。
2016年江苏省苏州市中考数学试卷一、选择题(共10小题, 21 . 1的倒数是()A 3 r 3-2A .一B .- — C . — D .22 3每小题3分,满分30分)2 •肥皂泡的泡壁厚度大约是0.0007mm , 0.0007用科学 记数法表示为( ) -3- 3- 4- 5A . 0.7 X 10B . 7 X10C . 7 X10D . 7 X10 3 .下列运算结果正确的是()2 2A. a+2b=3ab B . 3a - 2a =12482332C . a ?a =aD . ( - a b ) +( a b ) = - b4. 一次数学测试后,某班40名学生的成绩被分为5组,第1〜4组的频数分 别为12、10、6、8,则第5组的频率是()A . 0.1B . 0.2C . 0.3D . 0.4(y 1=y 2D .无法确定阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的 阶梯水价”标准收费,某中学 研究学习小组的同学们在社会实践活动中调查了 30户家庭某月的用水量,如 用水量(吨)1520 25 30 35 户数36795则这30户家庭该用用水量的众数和中位数分别是( )A . 25 , 27B . 25 , 25C . 30 , 27D . 30 , 258.如图,长4m 的楼梯AB 的倾斜角/ ABD 为60 °为了改善楼梯的安全 性 能,准备重新建造楼b 分别相交于A 、B 两点,过点A 作直线I °则/ 2的度数为() (4, y 2) 都在反比例函数y= — ( k v 0)的图象上,则 A. y 1、y 2的大小关系为 y 1 > y 2B . y 1v y 2C .根据国家发改委实施28已知点A ( 2, y 1)、 B 6. 5.如图,直线a // b ,直线I 与a 、若/仁58梯,使其倾斜角/ ACD为45。
2016年江苏省苏州市中考数学试卷(含答案解析)2016年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)的倒数是()A.B. C.D.2.(3分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3 C.7×10﹣4 D.7×10﹣53.(3分)下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8 D.(﹣a2b)3÷(a3b)2=﹣b4.(3分)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.45.(3分)如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58°B.42°C.32°D.28°6.(3分)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.(3分)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)1520253035户数36795则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,258.(3分)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)10.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.(8分)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.26.(10分)如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.27.(10分)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ 为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.28.(10分)如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).2016年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)的倒数是()A.B. C.D.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵×=1,∴的倒数是.故选A.【点评】本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.(3分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()2.A.0.7×10﹣3B.7×10﹣3 C.7×10﹣4 D.7×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8 D.(﹣a2b)3÷(a3b)2=﹣b【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.【点评】此题主要考查了同底数幂的乘法运算以及合并同类项、积的乘方运算等知识,正确把握相关定义是解题关键.4.(3分)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.【点评】此题考查了频数与频率,弄清题中的数据是解本题的关键.5.(3分)如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58°B.42°C.32°D.28°【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=∠ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.【点评】本题考查了对平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补6.(3分)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.7.(3分)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)1520253035户数36795则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【分析】根据众数、中位数的定义即可解决问题.【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.【点评】本题考查众数、中位数的定义,解题的关键是记住众数、中位数的定义,属于基础题,中考常考题型.8.(3分)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.【点评】本题考查了解直角三角形的应用﹣坡度坡角:坡度是坡面的铅直高度h 和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=tanα.9.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.10.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△ABC=•AB•BC=×2×2=4,∴S△ADC=2,∵=2,∵△DEF∽△DAC,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△BEF=•EF•BH=×2×=,故选C.方法二:S△BEF =S四边形ABCD﹣S△ABE﹣S△BCF﹣S△FED,易知S△ABE +S△BCF=S四边形ABCD=3,S△EDF=,∴S△BEF =S四边形ABCD﹣S△ABE﹣S△BCF﹣S△FED=6﹣3﹣=.故选C.【点评】此题主要考查了三角形面积的运算,作出恰当的辅助线得到三角形的底和高是解答此题的关键.二、填空题(共8小题,每小题3分,满分24分)11.(3分)分解因式:x2﹣1= (x+1)(x﹣1).【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了平方差公式分解因式的知识.题目比较简单,解题需细心.12.(3分)当x= 2 时,分式的值为0.【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2.故答案为:2.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.13.(3分)要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是乙运动员.(填“甲”或“乙”)【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2=0.024>S乙2=0.008,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.(3分)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是72 度.【分析】根据文学类人数和所占百分比,求出总人数,然后用360乘以艺术类读物所占的百分比即可得出答案.【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:90÷30%=300(人),则艺术类读物所在扇形的圆心角是的圆心角是360°×=72°;故答案为:72.【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.15.(3分)不等式组的最大整数解是 3 .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式x+2>1,得:x>﹣1,解不等式2x﹣1≤8﹣x,得:x≤3,则不等式组的解集为:﹣1<x≤3,则不等式组的最大整数解为3,故答案为:3.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(3分)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.【分析】连接OC,可求得△OCD和扇形OCB的面积,进而可求出图中阴影部分的面积.【解答】解:连接OC,∵过点C的切线交AB的延长线于点D,∴OC⊥CD,∴∠OCD=90°,即∠D+∠COD=90°,∵AO=CO,∴∠A=∠ACO,∴∠COD=2∠A,∵∠A=∠D,∴∠COD=2∠D,∴3∠D=90°,∴∠D=30°,∴∠COD=60°∵CD=3,∴OC=3×=,∴阴影部分的面积=×3×﹣=,故答案为:.【点评】本题主要考查切线的性质及扇形面积的计算,掌握过切点的半径与切线垂直是解题的关键.求出∠D=30°是解题的突破口.17.(3分)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为2.【分析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60°的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G=2,然后再次利用勾股定理求得答案即可.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∵AB=10,∴AG=10﹣6=4,∴AB′===2.故答案为:2.【点评】本题考查了翻折变换的性质,解题的关键是根据等边三角形的判定定理判定等边三角形,难度不大.18.(3分)如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为(1,).【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标.【解答】解:∵点A、B的坐标分别为(8,0),(0,2)∴BO=,AO=8由CD⊥BO,C是AB的中点,可得BD=DO=BO==PE,CD=AO=4设DP=a,则CP=4﹣a当BP所在直线与EC所在直线第一次垂直时,设BP与CE交于点F,则∠FCP=∠DBP又∵EP⊥CP,PD⊥BD∴∠EPC=∠PDB=90°∴△EPC∽△PDB∴,即解得a1=1,a2=3(舍去)∴DP=1又∵PE=∴P(1,)故答案为:(1,)【点评】本题主要考查了坐标与图形性质,解决问题的关键是掌握平行线分线段成比例定理以及相似三角形的判定与性质.解题时注意:有两个角对应相等的两个三角形相似.三、解答题(共10小题,满分76分)19.(5分)计算:()2+|﹣3|﹣(π+)0.【分析】直接利用二次根式的性质以及结合绝对值、零指数幂的性质分析得出答案.【解答】解:原式=5+3﹣1=7.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)解不等式2x﹣1>,并把它的解集在数轴上表示出来.【分析】根据不等式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,将不等式解集表示在数轴上如图:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.21.(6分)先化简,再求值:÷(1﹣),其中x=.【分析】先括号内通分,然后计算除法,最后代入化简即可.【解答】解:原式=÷=•=,当x=时,原式==.【点评】本题考查分式的化简求值,解题的关键熟练掌握分式的混合运算法则,注意运算顺序,属于基础题,中考常考题型.22.(6分)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【分析】先设中型车有x辆,小型车有y辆,再根据题中两个等量关系,列出二元一次方程组进行求解.【解答】解:设中型车有x辆,小型车有y辆,根据题意,得解得答:中型车有20辆,小型车有30辆.【点评】本题主要考查了二元一次方程组,解决问题的关键是找出等量关系列出方程.本题也可以运用一元一次方程进行解答.23.(8分)在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,然后根据概率公式求解.【解答】解:(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,所以点M落在如图所示的正方形网格内(包括边界)的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.24.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.25.(8分)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【分析】将点B(2,n)、P(3n﹣4,1)代入反比例函数的解析式可求得m、n 的值,从而求得反比例函数的解析式以及点B和点P的坐标,过点P作PD⊥BC,垂足为D,并延长交AB与点P′.接下来证明△BDP≌△BDP′,从而得到点P′的坐标,最后将点P′和点B的坐标代入一次函数的解析式即可求得一次函数的表达式.【解答】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y=(x>0)的图象上,∴.解得:m=8,n=4.∴反比例函数的表达式为y=.∵m=8,n=4,∴点B(2,4),P(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).将点P′(﹣4,1),B(2,4)代入直线的解析式得:,解得:.∴一次函数的表达式为y=x+3.【点评】本题主要考查的是一次函数和反比例函数的综合应用,根据题意列出方程组是解题的关键.26.(10分)如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.【分析】(1)直接利用圆周角定理得出AD⊥BC,再利用线段垂直平分线的性质得出AB=AC,即可得出∠E=∠C;(2)利用圆内接四边形的性质得出∠AFD=180°﹣∠E,进而得出∠BDF=∠C+∠CFD,即可得出答案;(3)根据cosB=,得出AB的长,即可求出AE的长,再判断△AEG∽△DEA,求出EG•ED的值.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.【点评】此题主要考查了圆的综合题、圆周角定理以及相似三角形的判定与性质以及圆内接四边形的性质等知识,根据题意得出AE,AB的长是解题关键.27.(10分)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ 为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为 1 ;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.【分析】(1)先利用△PBQ∽△CBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题.(2)由△QTM∽△BCD,得=列出方程即可解决.(3)①如图2中,延长QM交CD于E,求出DE、DO利用差值比较即可解决问题.②如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.由△OHE∽△BCD,得=,列出方程即可解决问题.利用反证法证明直线PM不可能由⊙O相切.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴BD===10,∵PQ⊥BD,∴∠BPQ=90°=∠C,∵∠PBQ=∠DBC,∴△PBQ∽△CBD,∴==,∴==,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=8﹣5t,∴t=1,故答案为:1.(补充:直接利用角平分线的性质得到DP=DC=6,BP=4,从而t=1)(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=(8﹣5t),QM=3t,∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴=,∴=,∴t=(s),∴t=s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,延长QM交CD于E,∵EQ∥BD,∴=,∴EC=(8﹣5t),ED=DC﹣EC=6﹣(8﹣5t)=t,∵DO=3t,∴DE﹣DO=t﹣3t=t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.∵EC=(8﹣5t),DO=3t,∴OE=6﹣3t﹣(8﹣5t)=t,∵OH⊥MQ,∴∠OHE=90°,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴=,∴=,∴t=.∴t=s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=,FO=FM=,∴MH=(+1),由=得到HE=,由=得到EQ=,∴MH=MQ﹣HE﹣EQ=4﹣﹣=,∴(+1)≠,矛盾,∴假设不成立.∴直线PM与⊙O不相切.【点评】本题考查圆综合题、正方形的性质、相似三角形的判定和性质、切线的判定和性质、勾股定理、角平分线的性质等知识,解题的关键灵活运用这些知识解决问题,学会利用方程的思想思考问题,充分利用相似三角形的性质构建方程,在最后一个问题证明中利用了反证法,属于中考压轴题.28.(10分)如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;(2)设M的坐标为(m,﹣m2+2m+3),然后根据面积关系将△ABM的面积进行转化;(3)①由(2)可知m=,代入二次函数解析式即可求出纵坐标的值;②可将求d1+d2最大值转化为求AC的最小值.【解答】解:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),S=S四边形OAMB ﹣S△AOB=S△OBM +S△OAM﹣S△AOB=×m×3+×1×(﹣m2+2m+3)﹣×1×3=﹣(m﹣)2+∴当m=时,S取得最大值.(3)①由(2)可知:M′的坐标为(,);②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∵l1∥l′,∴∠BCA=90°,∠BAC=45°方法二:过B点作BD垂直于l′于D点,过M′点作M′E垂直于l′于E点,则BD=d1,ME=d2,∵S△ABM′=×AC×(d1+d2)当d1+d2取得最大值时,AC应该取得最小值,当AC⊥BM′时取得最小值.根据B(0,3)和M′(,)可得BM′=,∵S△ABM=×AC×BM′=,∴AC=,当AC⊥BM′时,cos∠BAC===,∴∠BAC=45°.。
2016年江苏省苏州市中考数学试卷
一、选择题(共10小题,每小题3分,满分30分)
1.的倒数是()
A.B.C.D.
2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为() A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5
3.下列运算结果正确的是()
A.a+2b=3ab B.3a2﹣2a2=1
C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b
4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()
A.0.1 B.0.2 C.0.3 D.0.4
5.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()
A.58° B.42° C.32° D.28°
6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的
大小关系为()
A.y1>y2B.y1<y2C.y1=y2D.无法确定
7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:
用水量(吨) 15 20 25 30 35
户数 3 6 7 9 5
则这30户家庭该用用水量的众数和中位数分别是()
A.25,27 B.25,25 C.30,27 D.30,25
8.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为
()
A.2m B.2m C.(2﹣2)m D.(2﹣2)m
9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()
A.(3,1) B.(3,) C.(3,) D.(3,2)
10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD 的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()
A.2 B.C.D.3
二、填空题(共8小题,每小题3分,满分24分)
11.分解因式:x2﹣1=.
12.当x=时,分式的值为0.
13.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)
14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两
幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是
度.
15.不等式组的最大整数解是.
16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.
17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.
18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C 是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为.
三、解答题(共10小题,满分76分)
19.计算:()2+|﹣3|﹣(π+)0.
20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.
21.先化简,再求值:÷(1﹣),其中x=.
22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?
23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.
(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;
(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M 所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.
24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.
(1)证明:四边形ACDE是平行四边形;
(2)若AC=8,BD=6,求△ADE的周长.
25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)
的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.
26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.
(1)证明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度数;
(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.
27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD 向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,
设它们的运动时间为t(单位:s)(0<t<).
(1)如图1,连接DQ平分∠BDC时,t的值为;
(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;
(3)请你继续进行探究,并解答下列问题:
①证明:在运动过程中,点O始终在QM所在直线的左侧;
②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O 是否也相切?说明理由.。