2014-2015年江西省上饶市广丰县八年级(上)期末数学试卷
- 格式:doc
- 大小:249.52 KB
- 文档页数:19
广丰县2014-2015学年度第一学期八年级数学单元测试卷(六)(期末考试)命题人:周焕山审题人:周欣阳学校___________ 班级___________ 姓名_____________ 班号_________一、选择题(本大题共6小题,每小题3分,共18分. 每小题只有一个正确选项)1.以下五家银行行标中,是轴对称图形的有()A.1个B.2个C.3个D.4个2.下列计算中正确的是()A.a2+a3=a5 B.a2×a4=a8C.263-=-D.021=3.若等腰三角形的周长为16cm,一边长为4cm,则腰长为()A.4㎝B.6㎝C.4㎝或6㎝D.以上都不对4.如果把分式xyyx2+中的x和y都扩大2倍,那么分式的值( )A.扩大4倍B.扩大2倍C.缩小4倍D.缩小2倍5.在边长为a的正方形中挖掉一个边长为b的小正方形(阴影部分)(a>b),把余下的部分剪拼成一个矩形(如图),通过计算图形的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B. (a+b)2=a+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-ab=a(a-b)6.下列条件中,不能确定....△ABC≌△DEF的是()A.BC=EF,∠B=∠E, AB=DE B.,A D∠=∠AC=,DF∠C =∠FC.,A D∠=∠∠C=∠F, AB= DE D.,A D∠=∠∠B=∠E,BC=DF二、填空题(本大题共8小题,每小题3分,共24分)7.分式22||--xx的值为零,则x = .8.已知点P(2a+b,b)与P'(8,-2)关于y轴对称,则a+b=__________。
9.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm, 最长边AB的长为cm.10.已知6x y+=,2xy=-,则2211x y+=.11. 因式分解:222224)(nmnm-+=__________________________.12.如图,在△ABC中,90C∠=︒, AD平分∠ABC, BC=10cm,BD=6cm, 则点D到AB的距离是cm.13.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为______.(用m的式子表示)14.若分式方程无解,则k=______.三、(本大题共4小题,每小题6分,共24分)15.化简:2152.39mmm----16.解方程:1123326.x x x++-⋅=17.已知2410,x x--=求式子()()()2223x x y x y y--+--的值。
期末考试参考答案及评分标准八年级数学二.解答题(计75分)16.(6分)解:原式=4(x2+2x+1)-(4x2-25)………………3分=4 x2+8x+4-4x2+25………………5分=8x+29;………………6分17. (6分)解:(1)如图………………3分(2)A′(1,3 ),B′(2,1),C′(-2 ,-2 );………………6分18. (7分)解:原式=[m+3(m-3) (m+3)+m-3(m-3) (m+3)]×(m-3)22m………………3分=2m(m-3) (m+3)×(m-3)22m………………5分= m-3m+3.………………6分当m= 12时,原式=(12-3)÷(12+3)=-52×27= -57.………………7分19.(7分)解:x(x+2)-3=(x-1)(x+2). ………………3分x2+2x-3= x2+x-2. ………………4分x=1. ………………5分检验:当x=1时,(x-1)(x+2)=0,所以x=1不是原分式方程的解. (6)所以,原分式方程无解. ………………7分20.(8分)(1)证明:∵C 是线段AB 的中点, ∴AC =BC ,……………1分 ∵CD 平分∠ACE ,∴∠ACD=∠DCE ,……………2分 ∵CE 平分∠BCD , ∴∠BCE=∠DCE ,∴∠ACD=∠BCE ,……………3分在△ACD 和△BCE 中,AC =BC ,∠ACD =∠BCE , DC =EC ,∴△ACD ≌△BCE (SAS ),……………5分(2)∵∠ACD =∠BCE =∠DCE ,且∠ACD +∠BCE +∠DCE =180°, ∴∠BCE =60°,……………6分 ∵△ACD ≌△BCE ,∴∠E =∠D =50°,……………7分∠E =180°-(∠E +∠BCE )= 180°-(50°+60°)=70°.……………8分 21.(8分)(1)2a -b ;………………2分(2)由图21-2可知,小正方形的面积=大正方形的面积-4个小长方形的面积, ∵大正方形的边长=2a +b =7,∴大正方形的面积=(2a +b )2=49, 又∵4个小长方形的面积之和=大长方形的面积=4a ×2b =8ab =8×3=24, ∴小正方形的面积=(2a -b )2==49-24=25;………………5分 (3)(2a +b )2-(2a -b )2=8ab . ………………8分 22.(10分)(第22题图1) (第22题图2) (第22题图C【方法I】证明(1)如图∵长方形ABCD,∴AB=DC=DE,∠BAD=∠BCD=∠BED=90°,……………1分在△ABF和△DEF中,∠BAD=∠BED=90°∠AFB=∠EFD,AB=DE,∴△ABF≌△EDF(AAS),……………2分∴BF=DF. ……………3分(2)∵△ABF≌△EDF,∴F A=FE,……………4分∴∠F AE=∠FEA,……………5分又∵∠AFE=∠BFD,且2∠AEF+∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,……………6分(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB(SSS),……………7分∴∠ABD=∠EDB,∴GB=GD,……………8分在△AFG和△EFG中,∠GAF=∠GEF=90°,F A=FE,FG=FG,∴△AFG≌△EFG(HL),……………9分∴∠AGF=∠EGF,∴GH垂直平分BD. ……………10分【方法II】证明(1)∵△BCD≌△BED,∴∠DBC=∠EBD……………1分又∵长方形ABCD,∴AD∥BC,∴∠ADB=∠DBC,……………2分∴∠EBD=∠ADB,∴FB=FD. ……………3分(2)∵长方形ABCD,∴AD=BC=BE,……………4分又∵FB=FD,∴F A=FE,∴∠F AE=∠FEA,……………5分又∵∠AFE=∠BFD,且2∠AEF+∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,……………6分(3)∵长方形ABCD ,∴AD =BC =BE ,AB =CD =DE ,BD =DB , ∴△ABD ≌△EDB ,……………8分 ∴∠ABD =∠EDB ,∴GB =GD , ……………9分 又∵FB =FD ,∴GF 是BD 的垂直平分线,即GH 垂直平分BD . ……………10分 23.(11分)证明(1)如图, ∵AB =AC ,∴∠ACB =∠ABC ,……………1分 ∵∠BAC =45°,∴∠ACB =∠ABC = 12 (180°-∠BAC )=12 (180°-45°)=67.5°.……………2分第(2)小题评分建议:本小题共9分,可以按以下两个模块评分(9分=6分+3分):模块1(6分): 通过证明Rt △BDC ≌Rt △ADF ,得到BC =AF ,可评 6分; 模块2(3分): 通过证明等腰直角三角形HEB ,得到HE =12 BC ,可评 3分.(2)连结HB ,∵AB =AC ,AE 平分∠BAC , ∴AE ⊥BC ,BE =CE , ∴∠CAE +∠C =90°, ∵BD ⊥AC ,∴∠CBD +∠C =90°,∴∠CAE =∠CBD ,……………4分∵BD ⊥AC ,D 为垂足, ∴∠DAB +∠DBA =90°, ∵∠DAB =45°, ∴∠DBA =45°,∴∠DBA =∠DAB ,∴DA =DB ,……………6分 在Rt △BDC 和Rt △ADF 中, ∵∠ADF =∠BDC =90°, DA =DB ,∠DAF =∠DBC =67.5°-45°=22.5°, ∴Rt △BDC ≌Rt △ADF (ASA), ∴BC =AF ,……………8分∵DA =DB ,点G 为AB 的中点, ∴DG 垂直平分AB , ∵点H 在DG 上,A∴HA =HB ,……………9分∴∠HAB =∠HBA = 12 ∠BAC=22.5°,∴∠BHE =∠HAB +∠HBA =45°, ∴∠HBE =∠ABC -∠ABH =67.5°-22.5°=45°, ∴∠BHE =∠HBE ,∴HE =BE = 12 BC ,……………10分∵AF =BC ,∴HE = 12 AF . ……………11分24.(12分)解:(1)依题意得,my (1+20%)= m +20 (1-10%)y .……………3分解得, m =250.∴m +20=270……………4分 答:2013年的总产量270吨.(2)依题意得,270 a -30=250a (1+14%);① ……………7分(1-10%)y a -30= y a -12 . ② ……………10分解①得 a=570.检验:当a=570时,a (a -30)≠0,所以a=570是原分式方程的解,且有实际意义. 答:该农场2012年有职工570人; ……………11分将a=570代入②式得,(1-10%)y 540 = y 570 -12.解得,y =5700.答:2012年的种植面积为5700亩. ……………12分。
广丰县2014-2015学年度第一学期八年级数学单元测试题(二)(第十二章 全等三角形)命题人:周焕山一、选择题(本大题共6小题,每小题3分,共18分. 每小题只有一个正确选项)1. 如图,△ABC ≌△DEF ,AC ∥DF ,BC ∥EF ,则∠C 的对应角为( )A. ∠FB. ∠BACC. ∠AEFD. ∠D 2. 如图,在△ABC 中,AB =AC ,D 、E 两点在BC 上,且有AD =AE ,BD =CE.,若∠BAD =30°,∠DAE =50°,则∠BAC 的度数为( ) A. 130° B. 120° C. 110° D. 100°3. 如图所示,△ABD 和△ACE 中,AB =AC ,AD =AE ,要证△ABD ≌△ACE ,需补充的条件是( )A.∠B =∠CB.∠D =∠EC.∠DAE =∠BAC4. 如图, AC 与BD相交点O ,且OA =OC ,OB =OD ,则图中全等三角形对数有()A. 2对B.3对C.4对D. 6对5. 如图所示,P 是∠BAC 的平分线的点,PM ⊥AB 于M ,PN ⊥AC 于N ,则下列结论:⑴PM =PN ;⑵AM =AN ;⑶△APM 与△APN 的面积相等;⑷∠PAN +∠APM =90°.其中,正确结论的个数是( ) A.1个 B. 2个 C. 3个D. 4个.6.以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等。
其中能判断两直角三角形全等的是( )A .①B ②C ③D ①②二、填空题(本大题共8小题,每小题3分,共24分)7. △ABC 与△DEF 全等,其中点A 和点E ,点C 与点D 是对应点,则△ABC ≌____________。
8. 两边一角对应相等的两个三角形__________ 全等( 填 一定 或 不一定 )。
(第9题图) (第10题图) 12.如图,已知在ABC ∆中,90,,A AB AC CD ∠=︒=平分ACB ∠,DE BC ⊥于E ,若15c m BC =,则DE B △的周长为 cm .13.如图,△ABC 是三边都不相等的三角形,DE=BC ,以D 、E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以作出 个.14. 如图所示,在直角三角形ABC 中,∠BAC =90°,AB =AC ,分别过B 、C 作经过点A 的直线的垂线BD 、CE ,若BD =1cm ,CE =4cm ,则DE = .三、(本大题共4小题,每小题6分,共24分)15.如图,已知AB 与CD 相交于O ,∠A =∠D , CO =BO ,求证: △AOC ≌△DOB .16.已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF .求证:△ABE ≌△CDF .17.如图,D 是△ABC 的边AB 上一点, DF 交AC 于点E , DE =FE ,FC ∥AB ,求证:AD =CF .EA B D FCAABDE E B9.如图,将ΔABC 沿直线AB 向右平移后到达ΔBDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数是_______.10.如图,ΔABC ≅ΔDEF ,∠B=50°,∠C=60°,∠D=70°,则 x=______。
2014-2015 年人教版八年级数学上册期末测试题2014-2015 年人教版八年级数学上册期末测试题带详尽解说一.选择题(共12 小题,满分 36 分,每题 3 分)1.( 3 分)(2012?宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是()A .B .C. D .2.( 3 分)(2011?绵阳)王师傅用4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?()A.0 根B.1 根C.2 根D.3 根3.( 3 分)以以下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A .A B=ACB .∠BAE= ∠CAD C.B E=DCD . A D=DE4.( 3 分)( 2012?凉山州)如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠β的度数是()A .180°B . 220°C.240° D . 300°5.( 3 分)(2012?益阳)以下计算正确的选项是()A .2a+3b=5ab2 2+43 2 6 0B .( x+2) =x C.( ab ) =ab D.(﹣ 1) =16.( 3 分)(2012?柳州)如图,给出了正方形ABCD 的面积的四个表达式,此中错误的选项是()A .( x+a)( x+a) 2 2 C.( x﹣ a)( x﹣ a) D .(x+a) a+( x+a) xB . x +a +2ax7.( 3 分)(2012?济宁)以下式子变形是因式分解的是( )A . 2 ( x ﹣ 5)+6B . 2C . 22( x+2)( x+3)x ﹣ 5x+6=x x ﹣ 5x+6=( x ﹣ 2)( x ﹣ 3) ( x ﹣ 2)(x ﹣ 3) =x ﹣ D . x ﹣5x+6=5x+68.( 3 分)(2012?宜昌)若分式存心义,则 a 的取值范围是()A .a=0B . a=1C .a ≠﹣ 1D . a ≠09.( 3 分)(2012?安徽)化简的结果是( ) A .x+1 B . x ﹣ 1C .﹣ xD . x2 3 5;③2 ﹣2 4 2 2 210.(3 分)( 2011?鸡西)以下各式: ①a =1 ;②a ?a =a =﹣ ;④﹣( 3﹣ 5)+(﹣ 2) ÷8×(﹣ 1)=0 ;⑤x +x =2x , 此中正确的选项是( )A .①②③B .①③⑤C .②③④D .②④⑤11.( 3 分)(2012?本溪)跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了交车均匀每小时走A .15 分钟,现已知小林家距学校 8 千米,乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,若设乘公x 千米,依据题意可列方程为( )B .C .D .12.( 3 分)( 2011?西藏)如图,已知∠ 1=∠2,要获得 △ABD ≌△ACD ,还需从以下条件中补选一个,则错误的选法是( )A .A B=ACB . DB=DCC .∠ADB= ∠ADCD . ∠B=∠C二.填空题(共 5 小题,满分 20 分,每题 4 分)13.( 4 分)( 2012?潍坊)分解因式: x3﹣ 4x 2﹣ 12x= _________ .14.( 4 分)( 2012?攀枝花)若分式方程:有增根,则 k= _________ .15.( 4 分)( 2011?昭通)以下图,已知点 A 、 D 、B 、F 在一条直线上, AC=EF , AD=FB ,要使 △ABC ≌△FDE ,还需增添一个条件,这个条件能够是_________.(只需填一个即可)16.( 4 分)( 2012?白银)如图,在 △ABC 中, AC=BC , △ABC 的外角∠ACE=100 °,则∠A= _________ 度.17.( 4 分)( 2012?佛山)如图,边长为 m+4 的正方形纸片剪出一个边长为m 的正方形以后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________.三.解答题(共 7 小题,满分64 分)18.( 6 分)先化简,再求值:2 2 2 2, b=﹣.5( 3a b﹣ ab )﹣ 3( ab +5a b),此中 a=19.( 6 分)( 2009?漳州)给出三个多项式:2 2 2﹣ 2x.请选择你最喜爱的两个多项式进行x +2x ﹣1,x +4x+1 , x加法运算,并把结果因式分解.20.( 8 分)( 2012?咸宁)解方程:.21.( 10 分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证: AD=CE ;(2)求证: AD 和 CE 垂直.22.( 10 分)( 2012?武汉)如图,CE=CB , CD=CA ,∠DCA= ∠ECB ,求证: DE=AB .23.( 12 分)( 2012?百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队独自施工恰幸亏规准时间内达成;若乙队独自施工,则达成工程所需天数是规定天数的 1.5 倍.假如由甲、乙队先合做15 天,那么余下的工程由甲队独自达成还需 5 天.( 1)这项工程的规准时间是多少天?( 2)已知甲队每日的施工花费为6500 元,乙队每日的施工花费为3500 元.为了缩散工期以减少对居民用水的影响,工程指挥部最后决定该工程由甲、乙队合做来达成.则该工程施工花费是多少?24.( 12 分)( 2012?凉山州)在学习轴对称的时候,老师让同学们思虑课本中的研究题.如图( 1),要在燃气管道 l 上修筑一个泵站,分别向 A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你能够在l 上找几个点试一试,能发现什么规律?聪慧的小华经过独立思虑,很快得出认识决这个问题的正确方法.他把管道为,要在直线l 上找一点P,使 AP 与 BP 的和最小.他的做法是这样的:①作点 B 对于直线 l 的对称点B′.②连结 AB ′交直线 l 于点 P,则点 P 为所求.请你参照小华的做法解决以下问题.如图在△ABC 中,点 D 、E 分别是4,请你在BC 边上确立一点P,使△PDE 得周长最小.( 1)在图中作出点P(保存作图印迹,不写作法).( 2)请直接写出△PDE周长的最小值:_________.l 当作一条直线(图(2)),问题就转变AB 、 AC 边的中点, BC=6 , BC 边上的高为参照答案与试题分析一.选择题(共12 小题,满分 36 分,每题 3 分)1.( 3 分)(2012?宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是()A . B .C. D .考点:轴对称图形.剖析:据轴对称图形的观点求解.假如一个图形沿着一条直线对折后两部分完整重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不切合题意;B、是轴对称图形,切合题意;D、不是轴对称图形,不切合题意.应选 B.评论:本题主要考察轴对称图形的知识点.确立轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.2.( 3 分)(2011?绵阳)王师傅用4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?()A.0 根B.1 根C.2 根 D . 3 根考点:三角形的稳固性.专题:存在型.剖析:依据三角形的稳固性进行解答即可.解答:解:加上AC 后,原不稳固的四边形ABCD 中拥有了稳固的△ACD 及△ABC ,故这类做法依据的是三角形的稳固性.应选 B.评论:本题考察的是三角形的稳固性在实质生活中的应用,比较简单.3.( 3 分)以以下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A .A B=ACB .∠BAE= ∠CAD C.B E=DCD . A D=DE考点:全等三角形的性质.剖析:依据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC ,∠BAE= ∠CAD ,BE=DC , AD=AE ,故 A 、B、C 正确;AD 的对应边是AE 而非 DE,因此 D 错误.应选 D.评论:本题主要考察了全等三角形的性质,依据已知的对应角正确确立对应边是解题的重点.4.( 3 分)( 2012?凉山州)如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠β的度数是()A .180°B . 220°C.240° D . 300°考点:等边三角形的性质;多边形内角与外角.专题:研究型.剖析:本题可先依据等边三角形顶角的度数求出两底角的度数和,而后在四边形中依据四边形的内角和为360°,求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和 =180°﹣ 60°=120°;∴∠α+∠β=360°﹣ 120°=240°;应选 C.评论:本题综合考察等边三角形的性质及三角形内角和为 180°,四边形的内角和是 360°等知识,难度不大,属于基础题5.( 3 分)(2012?益阳)以下计算正确的选项是()A .2a+3b=5ab2 23 2 6 0B .( x+2) =x +4 C.( ab ) =ab D.(﹣ 1) =1考点:完整平方公式;归并同类项;幂的乘方与积的乘方;零指数幂.剖析: A 、不是同类项,不可以归并;B、按完整平方公式睁开错误,掉了两数积的两倍;C、按积的乘方运算睁开错误;D 、任何不为0 的数的 0 次幂都等于1.解答:解:A、不是同类项,不可以归并.故错误;2 2B 、( x+2) =x +4x+4 .故错误;32 2 6C、( ab ) =a b .故错误;D 、(﹣ 1) =1.故正确.应选 D.评论:本题考察了整式的相关运算公式和性质,属基础题.6.( 3 分)(2012?柳州)如图,给出了正方形ABCD 的面积的四个表达式,此中错误的选项是()A .( x+a )( x+a ) 2 2C .( x ﹣ a )( x ﹣ a )D . (x+a ) a+( x+a ) xB . x +a +2ax考点 : 整式的混淆运算.剖析: 依据正方形的面积公式,以及切割法,可求正方形的面积,从而可清除错误的表达式.解答: 解:依据图可知,222S 正方形 =( x+a ) =x +2ax+a ,应选 C .评论: 本题考察了整式的混淆运算、正方形面积,解题的重点是注意完整平方公式的掌握.7.( 3 分)(2012?济宁)以下式子变形是因式分解的是( )A . 2 ( x ﹣ 5)+6B . 2C .22( x+2)( x+3)x ﹣ 5x+6=x x ﹣ 5x+6=( x ﹣ 2)( x ﹣ 3) ( x ﹣ 2)(x ﹣ 3) =x ﹣ D . x ﹣5x+6=5x+6考点 : 因式分解的意义.剖析: 依据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答: 解: A 、 x 2﹣ 5x+6=x ( x ﹣5) +6 右侧不是整式积的形式,故不是分解因式,故本选项错误; B 、 x 2﹣5x+6= ( x ﹣ 2)( x ﹣3)是整式积的形式,故是分解因式,故本选项正确;C 、( x ﹣ 2)( x ﹣ 3) =x 2﹣ 5x+6 是整式的乘法,故不是分解因式,故本选项错误; D 、 x 2﹣ 5x+6= ( x ﹣ 2)( x ﹣ 3),故本选项错误.应选 B .评论: 本题考察的是因式分解的意义,把一个多项式化为几个整式的积的形式,这类变形叫做把这个多项式因式分解,也叫做分解因式.8.( 3 分)(2012?宜昌)若分式存心义,则 a 的取值范围是()A .a=0B . a=1C .a ≠﹣ 1D . a ≠0考点 : 分式存心义的条件. 专题 : 计算题.剖析: 依据分式存心义的条件进行解答. 解答: 解:∵分式存心义,∴a+1≠0, ∴a ≠﹣ 1. 应选 C .评论: 本题考察了分式存心义的条件,要从以下两个方面透辟理解分式的观点: ( 1)分式无心义 ? 分母为零;( 2)分式存心义 ? 分母不为零;9.( 3 分)(2012?安徽)化简的结果是( )A .x+1B . x ﹣ 1C .﹣ xD . x考点:分式的加减法.剖析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x ,应选 D.评论:本题考察了分式的加减运算.分式的加减运算中,假如是同分母分式,那么分母不变,把分子直接相加减即可;假如是异分母分式,则一定先通分,把异分母分式化为同分母分式,而后再相加减.0 2 3 5 ﹣2 4 2 2 2 10.(3 分)( 2011?鸡西)以下各式:①a =1;②a ?a =a ;③2 =﹣;④﹣( 3﹣ 5)+(﹣ 2)÷8×(﹣ 1)=0 ;⑤x +x =2x ,此中正确的选项是()A .①②③B.①③⑤C.②③④D.②④⑤考点:负整数指数幂;有理数的混淆运算;归并同类项;同底数幂的乘法;零指数幂.专题:计算题.剖析:分别依据0 指数幂、同底数幂的乘法、负整数指数幂、有理数混淆运算的法例及归并同类项的法例对各小题进行逐个计算即可.解答:解:①当 a=0 时不建立,故本小题错误;②切合同底数幂的乘法法例,故本小题正确;﹣2= ,依据负整数指数幂的定义﹣p( a≠0, p 为正整数),故本小题错误;③2 a =④﹣( 3﹣ 5)+(﹣ 2)4÷8×(﹣ 1) =0 切合有理数混淆运算的法例,故本小题正确;2 2 2,切合归并同类项的法例,本小题正确.⑤x +x =2x应选 D.评论:本题考察的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混淆运算的法例及归并同类项的法例,熟知以上知识是解答本题的重点.11.( 3 分)(2012?本溪)跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了交车均匀每小时走A.15 分钟,现已知小林家距学校8 千米,乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,若设乘公x 千米,依据题意可列方程为()B.C.D.考点:由实质问题抽象出分式方程.剖析:依据乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,乘坐私人车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.解答:解:设乘公交车均匀每小时走x 千米,依据题意可列方程为:=+ ,应选: D.评论:本题主要考察了由实质问题抽象出分式方程,解题重点是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转变为列代数式的问题.12.( 3 分)( 2011?西藏)如图,已知∠ 1=∠2,要获得 △ABD ≌△ACD ,还需从以下条件中补选一个,则错误的选法是( )A .A B=ACB . DB=DC C .∠ADB= ∠ADCD . ∠B=∠C考点 : 全等三角形的判断.剖析: 先要确立现有已知在图形上的地点,联合全等三角形的判断方法对选项逐个考证,清除错误的选项.本题中 C 、AB=AC 与∠1=∠2、 AD=AD 构成了 SSA 是不可以由此判断三角形全等的.解答: 解: A 、∵AB=AC ,∴,∴△ABD ≌△ACD ( SAS );故此选项正确;B 、当 DB=DC 时, AD=AD ,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误; C 、∵∠ADB= ∠ADC , ∴,∴△ABD ≌△ACD ( ASA );故此选项正确;D 、∵∠B=∠C ,∴,∴△ABD ≌△ACD ( AAS );故此选项正确. 应选: B .评论: 本题考察了三角形全等的判断定理,一般两个三角形全等共有四个定理,即 AAS 、 ASA 、 SAS 、 SSS ,但 SSA没法证明三角形全等.二.填空题(共 5 小题,满分 20 分,每题 4 分)13.( 4 分)( 2012?潍坊)分解因式:x 3﹣ 4x 2﹣ 12x=x ( x+2)( x ﹣ 6) .考点 : 因式分解 -十字相乘法等;因式分解-提公因式法.剖析: 第一提取公因式 x ,而后利用十字相乘法求解即可求得答案,注意分解要完全.解答: 解: x 3﹣ 4x 2﹣ 12x2=x ( x ﹣ 4x ﹣ 12)故答案为: x ( x+2 )( x ﹣ 6).评论: 本题考察了提公因式法、十字相乘法分解因式的知识.本题比较简单,注意因式分解的步骤:先提公因式,再利用其余方法分解,注意分解要完全.14.( 4 分)( 2012?攀枝花)若分式方程: 有增根,则 k= 1 或 2 .考点:分式方程的增根.专题:计算题.剖析:把 k 看作已知数求出x=,依据分式方程有增根得出x﹣ 2=0 ,2﹣ x=0 ,求出 x=2,得出方程=2,求出 k 的值即可.解答:解:∵,去分母得: 2( x﹣ 2) +1 ﹣ kx=﹣ 1,整理得:( 2﹣ k) x=2,当 2﹣ k=0 时,此方程无解,∵分式方程有增根,∴x﹣ 2=0 , 2﹣ x=0 ,解得: x=2,把 x=2 代入( 2﹣ k)x=2 得: k=1.故答案为: 1 或 2.评论:本题考察了对分式方程的增根的理解和运用,把分式方程变为整式方程后,求出整式方程的解,若代入分式方程的分母恰巧等于 0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.15.( 4 分)( 2011?昭通)以下图,已知点A、 D、B 、F 在一条直线上,AC=EF , AD=FB ,要使△ABC ≌△FDE ,还需增添一个条件,这个条件能够是∠A= ∠F 或 AC ∥EF 或 BC=DE (答案不独一).(只需填一个即可)考点:全等三角形的判断.专题:开放型.剖析:要判断△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故增添∠A=∠F,利用SAS可证全等.(也可增添其余条件).解答:解:增添一个条件:∠ A=∠F,明显能看出,在△ABC和△FDE中,利用SAS 可证三角形全等(答案不独一).故答案为:∠ A= ∠F 或 AC ∥EF 或 BC=DE (答案不独一).评论:本题考察了全等三角形的判断;判断方法有ASA 、 AAS 、SAS、 SSS 等,在选择时要联合其余已知在图形上的地点进行选用.16.( 4 分)( 2012?白银)如图,在△ABC 中, AC=BC ,△ABC 的外角∠ACE=100 °,则∠A= 50 度.考点:三角形的外角性质;等腰三角形的性质.剖析:依据等角平等边的性质可得∠ A= ∠B,再依据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答: 解:∵AC=BC ,∴∠A= ∠B , ∵∠A+ ∠B=∠ACE ,∴∠A= ∠ACE=×100°=50°.故答案为: 50.评论: 本题主要考察了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边平等角的性质,是基础题,熟记性质并正确识图是解题的重点.17.( 4 分)( 2012?佛山)如图,边长为 m+4 的正方形纸片剪出一个边长为 m 的正方形以后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 2m+4 .考点 : 平方差公式的几何背景.剖析: 依据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答: 解:设拼成的矩形的另一边长为 x ,则 4x= ( m+4)2﹣ m 2=( m+4+m )( m+4﹣m ),解得 x=2m+4 . 故答案为: 2m+4 .评论: 本题考察了平方差公式的几何背景,依据拼接前后的图形的面积相等列式是解题的重点.三.解答题(共 7 小题,满分 64 分)18.( 6 分)先化简,再求值: 2222, b=﹣ .5( 3a b ﹣ ab )﹣ 3( ab +5a b ),此中 a= 考点 : 整式的加减 —化简求值.剖析: 第一依据整式的加减运算法例将原式化简,而后把给定的值代入求值.注意去括号时,假如括号前是负号,那么括号中的每一项都要变号;归并同类项时,只把系数相加减,字母与字母的指数不变.解答: 解:原式 =15a 22222b ﹣ 5ab ﹣3ab ﹣ 15a b=﹣ 8ab ,当 a= , b=﹣ 时,原式 =﹣8× × =﹣ .评论: 娴熟地进行整式的加减运算,并能运用加减运算进行整式的化简求值.19.( 6 分)( 2009?漳州)给出三个多项式:2﹣1, 2, 2﹣ 2x .请选择你最喜爱的两个多项式进行 x +2xx +4x+1 x加法运算,并把结果因式分解.考点 : 提公因式法与公式法的综合运用;整式的加减.专题 : 开放型.剖析: 本题考察整式的加法运算,找出同类项,而后只需归并同类项就能够了.解答: 解:状况一: 2 ﹣ 1+ 2 2( x+6 ).x +2x x +4x+1=x +6x=x状况二:x 2+2x ﹣ 1+ x 2﹣ 2x=x 2﹣ 1=( x+1)( x ﹣ 1).状况三:2 2 2 2x +4x+1+ x ﹣ 2x=x +2x+1= ( x+1) .评论: 本题考察了提公因式法,公式法分解因式,整式的加减运算实质上就是去括号、归并同类项,这是各地中考的常考点.熟记公式构造是分解因式的重点.平方差公式:2 22 2a ﹣ b=( a+b )(a ﹣ b );完整平方公式: a ±2ab+b =( a ±b )2 .20.( 8 分)( 2012?咸宁)解方程:.考点 : 解分式方程.剖析: 察看可得最简公分母是( x+2)( x ﹣ 2),方程两边乘最简公分母,能够把分式方程转变为整式方程求解.解答:解:原方程即:.(1 分)方程两边同时乘以( x+2 )( x ﹣ 2), 得 x ( x+2)﹣( x+2 )( x ﹣ 2)=8.( 4 分) 化简,得2x+4=8 .解得: x=2.( 7 分)查验: x=2 时,( x+2 )( x ﹣ 2)=0,即 x=2 不是原分式方程的解,则原分式方程无解. ( 8 分)评论: 本题考察了分式方程的求解方法.本题比较简单,注意转变思想的应用,注意解分式方程必定要验根.21.( 10 分)已知:如图, △ABC 和 △DBE 均为等腰直角三角形.( 1)求证: AD=CE ; ( 2)求证: AD 和 CE 垂直.考点 : 等腰直角三角形;全等三角形的性质;全等三角形的判断.剖析: ( 1)要证 AD=CE ,只需证明 △ABD ≌△CBE ,因为 △ABC 和 △DBE 均为等腰直角三角形,因此易证得结论.( 2)延伸 AD ,依据( 1)的结论,易证∠ AFC= ∠ABC=90 °,因此 AD⊥CE .解答: 解:( 1)∵△ABC 和△DBE 均为等腰直角三角形,∴AB=BC , BD=BE ,∠ABC= ∠DBE=90 °, ∴∠ABC ﹣∠DBC= ∠DBE ﹣∠DBC , 即∠ABD= ∠CBE , ∴△ABD ≌△CBE ,∴AD=CE .(2)垂直.延伸 AD 分别交 BC 和 CE 于 G 和 F,∵△ABD ≌△CBE,∴∠BAD= ∠BCE,∵∠BAD+ ∠ABC+ ∠BGA= ∠BCE+ ∠AFC+ ∠CGF=180 °,又∵∠BGA= ∠CGF ,∴∠AFC= ∠ABC=90 °,∴AD ⊥CE.评论:利用等腰三角形的性质,能够证得线段和角相等,为证明全等和相像确立基础,从而进前进一步的证明.22.( 10 分)( 2012?武汉)如图,CE=CB , CD=CA ,∠DCA= ∠ECB ,求证: DE=AB .考点:全等三角形的判断与性质.专题:证明题.剖析:求出∠DCE=∠ACB,依据SAS证△DCE≌△ACB,依据全等三角形的性质即可推出答案.解答:证明:∵∠DCA=∠ECB,∴∠DCA+ ∠ACE= ∠BCE+ ∠ACE ,∴∠DCE= ∠ACB ,∵在△DCE 和△ACB 中,∴△DCE ≌△ACB ,∴DE=AB .评论:本题考察了全等三角形的性质和判断的应用,主要考察学生可否运用全等三角形的性质和判断进行推理,题目比较典型,难度适中.23.( 12 分)( 2012?百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队独自施工恰幸亏规准时间内达成;若乙队独自施工,则达成工程所需天数是规定天数的 1.5 倍.假如由甲、乙队先合做15 天,那么余下的工程由甲队独自达成还需 5 天.( 1)这项工程的规准时间是多少天?( 2)已知甲队每日的施工花费为6500 元,乙队每日的施工花费为3500 元.为了缩散工期以减少对居民用水的影响,工程指挥部最后决定该工程由甲、乙队合做来达成.则该工程施工花费是多少?考点:分式方程的应用.专题:应用题.剖析:(1)设这项工程的规准时间是x 天,依据甲、乙队先合做15 天,余下的工程由甲队独自需要 5 天达成,可得出方程,解出即可.( 2)先计算甲、乙合作需要的时间,而后计算花费即可.解答:解:(1)设这项工程的规准时间是x 天,依据题意得:(+)×15+=1 .解得: x=30.经查验 x=30 是方程的解.答:这项工程的规准时间是30 天.( 2)该工程由甲、乙队合做达成,所需时间为:1÷(+)=18(天),则该工程施工花费是:18×(6500+3500 ) =180000(元).答:该工程的花费为180000 元.评论:本题考察了分式方程的应用,解答此类工程问题,常常设工作量为“单位1”,注意认真审题,运用方程思想解答.24.( 12 分)( 2012?凉山州)在学习轴对称的时候,老师让同学们思虑课本中的研究题.如图( 1),要在燃气管道 l 上修筑一个泵站,分别向 A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你能够在l 上找几个点试一试,能发现什么规律?聪慧的小华经过独立思虑,很快得出认识决这个问题的正确方法.他把管道l 当作一条直线(图(2)),问题就转变为,要在直线l 上找一点P,使 AP 与 BP 的和最小.他的做法是这样的:①作点 B 对于直线 l 的对称点B′.②连结 AB ′交直线 l 于点 P,则点 P 为所求.请你参照小华的做法解决以下问题.如图在△ABC 中,点 D 、E 分别是 AB 、 AC 边的中点, BC=6 , BC 边上的高为4,请你在BC 边上确立一点P,使△PDE 得周长最小.( 1)在图中作出点P(保存作图印迹,不写作法).( 2)请直接写出△PDE周长的最小值:8.考点:轴对称 -最短路线问题.剖析:(1)依据供给资料DE 不变,只需求出DP+PE 的最小值即可,作 D 点对于 BC 的对称点 D ′,连结 D′E,与 BC 交于点 P, P 点即为所求;( 2)利用中位线性质以及勾股定理得出D′E 的值,即可得出答案.解答:解:(1)作D点对于BC的对称点D′,连结D′E,与BC交于点P,P点即为所求;(2)∵点 D、 E 分别是 AB 、 AC 边的中点,∴DE 为△ABC 中位线,∵BC=6 , BC 边上的高为 4,∴DE=3 , DD ′=4,∴D′E===5,∴△PDE 周长的最小值为:DE+D ′E=3+5=8 ,故答案为: 8.评论:本题主要考察了利用轴对称求最短路径以及三角形中位线的知识,依据已知得出要求△PDE周长的最小值,求出 DP+PE 的最小值即但是解题重点.2013 八年级上学期期末数学试卷及答案二一、选择题(每题 3 分,共 24 分)1.的值等于()A .4B.-4C.±4 D .±22. 以下四个点中,在正比率函数的图象上的点是()A.( 2, 5)B.(5,2)C.(2,-5)D.(5,― 2)3. 估量的值是()A.在 5与6之间B.在 6与7之间 C .在 7与8之间 D .在 8与 9之间4. 以下算式中错误的选项是()A.B.C.D.5.以下说法中正确的选项是()A.带根号的数是无理数B.无理数不可以在数轴上表示出来C.无理数是无穷小数D.无穷小数是无理数6. 如图,一根垂直于地面的旗杆在离地面5m处扯破折断,旗杆顶部落在离旗杆底部12m处,旗杆折断以前的高度是()A . 5m B.12m C.13m D.18m7.已知一个两位数,十位上的数字x 比个位上的数字y 大 1,若颠倒个位与十位数字的地点,获得新数比原数小9,求这个两位数列出的方程组正确的选项是()座位号(考号末两位)A.B.C.D.8.点A(3,y1,),B(-2,y2)都在直线上,则y1与y2的大小关系是()A. y1>y2B.y2>y1C.y1=y2D.不可以确立二、填空题(每题 3 分,共 24 分)9. 计算:.10. 若点 A 在第二象限,且 A 点到 x 轴的距离为 3,到 y 轴的距离为4,则点 A 的坐标为.11. 写出一个解是的二元一次方程组.12. 矩形两条对角线的夹角是60°,若矩形较短的边长为 4cm,则对角线长.13. 一个正多边形的每一个外角都是36°,则这个多边形的边数是.14. 等腰梯形 ABCD中, AD= 2,BC=4,高 DF=2,则腰 CD长是.15. 已知函数的图象不经过第三象限则0,0.16. 如图,已知 A 地在 B 地正南方 3 千米处,甲、乙两人同时分别从 A、 B 两地向正北方向匀速直行,他们与 A 地的距离 S(千米)与所行时间t (小时)之间的函数关系图象如右图所示的AC和 BD给出,当他们行走 3 小时后,他们之间的距离为千米.三、解答题(每题 5 分,共 15 分)17. (1)计算(2)化简( 3)解方程组四、解答题(每小题6分,共12分)18.如图:在每个小正方形的边长为 1 个单位长度的方格纸中,有一个△ ABC和点O,△ABC的各极点和O点均与小正方形的极点重合. (1)在方格纸中,将△ ABC向下平移 5 个单位长度得△ A1B1C1,请画出△ A1B1C1.(2)在方格纸中,将△ ABC绕点 O顺时针旋转 180°获得△ A2B2C2,请画出△ A2B2C2.19. 某校教师为了对学生零花费的使用进行教育指导,对全班50 名学生每人一周内的零花费数额进行了检查统计,并绘制了下表零花费数额 / 元 5 10 15 20学生人数10 15 20 5(1 )求出这 50 名学生每人一周内的零花费数额的均匀数、众数和中位数(2 )你以为( 1)中的哪个数据代表这50 名学生每人一周零花费数额的一般水平较为适合?简要说明原因.五、解答题( 20 题 6 分,21 题 7 分,共 13 分)20. 已知点 A( 2,2), B(- 4, 2), C(- 2,- 1), D(4,- 1). 在以下图的平面直角坐标系中描出点A、B、C、 D,而后挨次连结 A、B、C、 D 获得四边形ABCD,试判断四边形ABCD的形状,并说明原因.21. 阅读以下资料:如图(1)在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为“筝形”解答问题:如图(2)将正方形ABCD绕着点 B 逆时针旋转必定角度后,获得正方形GBEF,边 AD与 EF订交于点 H.请你判断四边形ABEH是不是“筝形”,说明你的原因.六、(每题10 分,共 20 分)22 .以下图,已知矩形ABCD中,AD=8c m,AB=6cm,对角线AC的垂直均分线交AD于 E,交 BC于 F. (1)试判断四边形AFCE是如何的四边形?(2)求出四边形AFCE的周长.23.某景点的门票价钱规定以下表购票人数1—50 人51—100 人100 人以上每人门票价12 元10 元8 元某校八年( 1)( 2)两班共 102 人去旅行该景点,此中(1)班不足50 人,( 2)班多于 50 人,假如两班都以班为单位分别购票,则一共付款1118 元(1)两班各有多少名学生?(2)假如你是学校负责人,你将如何购票?你的购票方法可节俭多少钱?七、( 12 分)24.我国是世界上严重缺水的国家之一,为了加强居民的节水意识,某自来水企业对居民用水采纳以户为单位分段计费方法收费;即每个月用水 10 吨之内(包含 10 吨)的用户,每吨水收费 a 元,每个月用水超出 10 吨的部分,按每吨 b 元( b>a)收费,设一户居民月用水x (吨),应收水费y(元), y 与 x 之间的函数关系以下图.(1)分段写出 y 与 x 的函数关系式 .(2)某户居民上月用水 8 吨,应收水费多少元?(3)已知居民甲上月比居民乙多用水 4 吨,两家一共交水费46 元,求他们上月分别用水多少吨?八年级数学参照答案四、 18 略(1)3 分(2)3 分19( 1)均匀数是 12 元( 2 分)众数是 15 元( 1 分)中位数是12.5 元( 1 分)( 2)用众数代表这50 名学生一周零花费数额的一般水平较为适合,因为15 元出现次数最多,因此能代表一周零花费的一般水平(2 分)五、 20 画出图形( 3 分)说明是平行四边形( 3 分) 21 能够判断 ABEH是筝形,证△ HAB≌△ HEB(7 分)六、 22( 1)菱形( 5 分)( 2)周长是25cm(5 分)23( 1)设一班学生x 名,二班学生y 名依据题意(5 分)。
2014—2015学年度第一学期期末学业水平检测八 年 级 数 学(检测时间:120 分钟;满分:120分)请将1—8各小题所选答案的标号填写在第8小题后面的表格中. 1.下列说法正确的是( ).A .带根号的数都是无理数;B .绝对值最小的实数是0;C .数轴上的每一个点都表示一个有理数;D .两个无理数的和还是无理数. 2.下面四组数值中,是二元一次方程2x +y =10解的是( ).① ② ③ ④ A .①② B .①③ C .②③ D .②④3.某校为了丰富校园文化,举行书法比赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断他能否获奖,只需知道这11名选手决赛得分的( ).A .中位数 B.平均数 C.众数 D.方差4.若a ,b 异号,则点P (a ,b )关于x 轴的对称点在( ).A .第二象限B .第四象限C .第一象限或第三象限D .第二象限或第四象限 5.某粮食生产专业户去年计划生产水稻和小麦共15吨,实际生产了17吨,其中水稻超产15%,小麦超产10%.该专业户去年实际生产水稻和小麦各多少吨?设该专业户去年实际生产水稻x 吨,小麦y 吨,根据题意列方程组得( ).A .B .①如果∠1和∠2是对顶角,那么∠1=∠2;市区___________________ 学校___________________ 班级_______________ 姓名_________________ 考号__________________ 密 封 线⎩⎨⎧=-=62y x ⎩⎨⎧==43y x ⎩⎨⎧==34y x ⎩⎨⎧-==26y x ⎩⎨⎧=+=+17%10%1515y x y x ()()⎩⎨⎧=+++=+17%101%15115y x y x ⎪⎧=+17y x ⎪⎧=+17y x8.已知正比例函数y =kx (k ≠0)的函数值随x 值的增大而增大,则一次函数y =-2kx +k 在平面直角坐标系内的图象大致是( ).二、填空题:(本题满分24分,共有8道小题,每小题3分)请将 9—16各小题的答案填写在第16小题后面的表格内. 9.估算: (结果精确到1). 10.在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成不完整的统计图(如图).其中捐100元的人数占全班总人数的25%,则本次捐款的众数是 元.11.如图,等腰三角形ABC 的面积是 . 12.如图,已知∠B =40°,∠C =59°,∠DEC =47°,则∠F 的度数是 °.13.计算: =_______.A C DC 6(第10题)(第11题)AB CDF E32715.16124-+÷⎪⎪⎭⎫ ⎝⎛-(第12题)≈4814.已知直线y =2x 与y =-x +b 的交点坐标为(a ,4),则关于x ,y 的方程组 的解是 .三.解答题(本题满分72分,共有8道小题) 17.(本小题满分10分,共有2道小题,每小题5分) 20x y x y b -=⎧⎨+-=⎩第16题18.(本小题满分6分)如图,在正方形ABCD 中,边长AB =4.(1)在图中建立直角坐标系,使x 轴与BC 平行,且点C 的坐标为(2,1);如图是一个滑梯的示意图,若将滑道AC 水平放置,则刚好与AB 一样长.已知滑梯的高CE =DB =3 m ,CD =1 m ,求滑道AC 的长. 解: 密 封 线22.(本小题满分10分)小颖和小亮两位同学在八年级某次考试8门科的成绩(假设成绩均为整数,且个位数字为0)如图所示.利用图中提供的信息,解答下列问题:文学语品 史理物 理小颖 文学语品 史理物理小亮 市区___________________ 学校___________________ 班级_______________ 姓名_________________ 考号__________________ 密 封 线10:10:10:10:5:8:8:8的比例计算各人的成绩,那么谁的成绩高(计算结果精确到0.1)? (3)根据图、表信息,请你对小颖和小亮各提一条不超过30字的学习建议. 解:(2)B 追赶.图中的l 1,l 2分别表示A ,B 两船相对于海岸的距离y (n mile )与追赶时间x (min )之间的关系.(1)求l 1,l 2对应的两个一次函数表达式;(2)求快艇B 出发多长时间后,追上可疑船只A ?(3)在l 1,l 2对应的两个一次函数表达式中,一次项系数的实际意义各是什么?解:(1)2(第23题)(2)(3)24.(本小题满分12分)数学问题:在同一直角坐标系内直线y =k 1x (k 1≠0)与y =k 2x (k 2≠0),当k 1,k 2满足什么条件时,这两条直线互相垂直?探究问题:我们采取一般问题特殊化的策略来进行探究.探究一:如图①,在同一直角坐标系内直线y =x 与y =-x 有怎样的位置关系? 解:如图①,设点A (t ,t )(t >0)在直线y =x 上,则点B (-t ,t )一定在直线 y =-x 上.过点A 、B 分别作x 轴的垂线,垂足分别为C ,D .则OC =AC =t ,OD =BD =t ∴∠AOC =∠BOD =45° ∵∠DOC =180° ∴∠AOB =90°所以,在同一直角坐标系内直线y =x 与y =-x 互相垂直.探究二:如图②,在同一直角坐标系内直线y =2x 与y = 有怎样的位置关系?解:如图②,设点A (t ,2t )(t>0)在直线y =2x 上,则点B (-2t ,t )一定在直线 y = x 上.过点A 、B 分别作x 轴的垂线,垂足分别为C ,D .∵OC =t ,AC=2t ,OD =2t ,BD =t ∴OC=BD ,AC=OD①21-21-又∵∠ACO =∠ODB =90°∴△AOC ≌△ODB ∴∠AOC =∠OBD又∵∠BOD +∠OBD =90° ∴∠BOD +∠AOC =90° ∵∠DOC =180° ∴∠AOB =90°所以,在同一直角坐标系内直线y =2x 与y = x 互相垂直.探究三:如图③,在同一直角坐标系内直线y =3x 与y = x 有怎样的位置关系?(仿照上述方法解答,写出探究过程) 解决问题:在同一直角坐标系内直线y =k 1x (k 1≠0)与y =k 2x (k 2≠0),当k 1,k 2满足 条件时,这两条直线互相垂直.拓广应用:(1)在同一直角坐标系内已知直线 y =0.1x ,请写出一条直线的函数表达式, 使它与直线y =0.1x 互相垂直(只写出结果, 不需要证明).(2)在同一直角坐标系内直线y = x -与y = x -7是否互相垂直?若垂直,请直接写出垂足的坐标;若不垂直,请说明理由. 解:探究三:解决问题:拓广应用:(1) (2)密 封 线21-1-3223-。
2014-2015学年江西省八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)在下列的计算中,正确的是()A.2x+3y=5xy B.(a+2)(a﹣2)=a2+4C.a2•ab=a3b D.(x﹣3)2=x2+6x+93.(3分)如果分式的值为0,则x的值是()A.1B.0C.﹣1D.±14.(3分)已知x2+kxy+64y2是一个完全平方式,则k的值是()A.8B.±8C.16D.±165.(3分)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6B.2,2,4C.1,2,3D.2,3,4 6.(3分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)分解因式:ax2﹣ay2=.8.(3分)若关于x的方程=+1无解,则a的值是.9.(3分)已知点A(x,y)关于x轴对称的点坐标是(x,﹣8),关于y轴对称的点坐标是(4,y),那么点A的坐标是.10.(3分)一个等腰三角形的两条边长分别为4cm和3cm,那么它的周长为cm.11.(3分)如图,AF=DC,BC∥EF,只需补充一个条件,就得△ABC≌△DEF.12.(3分)如图,映在镜子里的这个英文单词是.13.(3分)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为.14.(3分)在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB ≌△ADC的序号是.三、计算题(本大题共2大题,第15题每小题10分,第16题6分,共16分)15.(10分)(1)计算:(﹣1)2015﹣|﹣2|+(3.14﹣π)0+(2)因式分解:(x+2)(x+4)+x2﹣4.16.(6分)如图,求作一点P,使PA=PD,并且点P到∠BAC两边的距离相等(不写作法,但保留作图痕迹)四、解答题(本大题共3小题,每题8分,共24分)17.(8分)先化简,再求值:,其中x=2014.18.(8分)解方程:﹣=.19.(8分)如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E 是BD的中点,连接AE.(1)求证:∠AEC=∠C;(2)求证:BD=2AC.五、(本大题共2题,每题9分,共18分.)20.(9分)已知:如图,△ABC和△BDE都是等边三角形.(1)求证:AD=CE;(2)当AC⊥CE时,判断并证明AB与BE的数量关系.21.(9分)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x.六、(本大题共2题,每题10分,共20分.)22.(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.23.(10分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN 于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.2014-2015学年江西省八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.2.(3分)在下列的计算中,正确的是()A.2x+3y=5xy B.(a+2)(a﹣2)=a2+4C.a2•ab=a3b D.(x﹣3)2=x2+6x+9【解答】解:A、2x与3y不是同类项不能合并,B、应为(a+2)(a﹣2)=a2﹣4,故本选项错误;C、a2•ab=a3b,正确;D、应为(x﹣3)2=x2﹣6x+9,故本选项错误.故选:C.3.(3分)如果分式的值为0,则x的值是()A.1B.0C.﹣1D.±1【解答】解:由分式的值为零的条件得x2﹣1=0,2x+2≠0,由x2﹣1=0,得x=±1,由2x+2≠0,得x≠﹣1,综上,得x=1.故选:A.4.(3分)已知x2+kxy+64y2是一个完全平方式,则k的值是()A.8B.±8C.16D.±16【解答】解:根据题意,原式是一个完全平方式,∵64y2=(±8y)2,∴原式可化成=(x±8y)2,展开可得x2±16xy+64y2,∴kxy=±16xy,∴k=±16.故选:D.5.(3分)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6B.2,2,4C.1,2,3D.2,3,4【解答】解:A、1+2<6,不能组成三角形,故此选项错误;B、2+2=4,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、2+3>4,能组成三角形,故此选项正确;故选:D.6.(3分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm【解答】解:∵AB的垂直平分AB,∴AE=BE,BD=AD,∵AE=3cm,△ADC的周长为9cm,∴△ABC的周长是9+2×3=15cm,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)分解因式:ax2﹣ay2=a(x+y)(x﹣y).【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).8.(3分)若关于x的方程=+1无解,则a的值是2或1.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.9.(3分)已知点A(x,y)关于x轴对称的点坐标是(x,﹣8),关于y轴对称的点坐标是(4,y),那么点A的坐标是(﹣4,8).【解答】解:∵点A(x,y)关于x轴对称的点坐标是(x,﹣8),∴y=8,∵关于y轴对称的点坐标是(4,y),∴x=﹣4,∴点A的坐标是:(﹣4,8 ).故答案为:(﹣4,8).10.(3分)一个等腰三角形的两条边长分别为4cm和3cm,那么它的周长为10或11cm.【解答】解:①3cm是腰长时,三角形的三边分别为3cm、3cm、4cm,能组成三角形,周长=3+3+4=10(cm),②3cm是底边长时,三角形的三边分别为3cm、4cm、4cm,能组成三角形,周长=3+4+4=11(cm),综上所述,这个等腰三角形的周长是10或11cm.故答案为:10或11.11.(3分)如图,AF=DC,BC∥EF,只需补充一个条件BC=EF,就得△ABC ≌△DEF.【解答】解:补充条件BC=EF,∵AF=DC,∴AF+FC=CD+FC,即AC=DF,∵BC∥EF,∴∠EFC=∠BCF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:BC=EF.12.(3分)如图,映在镜子里的这个英文单词是HAPPY.【解答】解:根据镜面对称的性质,题中所显示的图片与HAPPY成轴对称,所以映在镜子里的这个英文单词为HAPPY.13.(3分)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.【解答】解:根据题意得:﹣=3;故答案为:﹣=3.14.(3分)在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB ≌△ADC的序号是①②④.【解答】解:①在△ADB和△ADC中,AD=AD,若添加条件BD=DC,AB=AC,根据全等三角形的判定定理SSS可以证得△ADB≌△ADC;故本选项正确;②在△ADB和△ADC中,AD=AD,若添加条件∠B=∠C,∠BAD=∠CAD,根据全等三角形的判定定理AAS可以证得△ADB≌△ADC;故本选项正确;③在△ADB和△ADC中,AD=AD,若添加条件∠B=∠C,BD=DC,由SSA不可以证得△ADB≌△ADC;故本选项错误;④在△ADB和△ADC中,AD=AD,若添加条件∠ADB=∠ADC,BD=DC,根据全等三角形的判定定理SAS可以证得△ADB≌△ADC;故本选项正确;综上所述,符合题意的序号是①②④;故答案是:①②④.三、计算题(本大题共2大题,第15题每小题10分,第16题6分,共16分)15.(10分)(1)计算:(﹣1)2015﹣|﹣2|+(3.14﹣π)0+(2)因式分解:(x+2)(x+4)+x2﹣4.【解答】解:(1)原式=﹣1﹣2+1+9=7;(2)原因=(x+2)(x+4)+(x﹣2)(x+2)=2(x+1)(x+2).16.(6分)如图,求作一点P,使PA=PD,并且点P到∠BAC两边的距离相等(不写作法,但保留作图痕迹)【解答】解:如图所示:P点即为所求.四、解答题(本大题共3小题,每题8分,共24分)17.(8分)先化简,再求值:,其中x=2014.【解答】解:原式=÷=•=﹣x﹣1,当x=2014时,原式=﹣2014﹣1=﹣2015.18.(8分)解方程:﹣=.【解答】解:去分母得:x﹣1+2x+2=4,移项合并得:3x=3,解得:x=1,经检验x=1是增根,分式方程无解.19.(8分)如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E 是BD的中点,连接AE.(1)求证:∠AEC=∠C;(2)求证:BD=2AC.【解答】(1)证明:∵AD⊥AB,∴△ABD为直角三角形,又∵点E是BD的中点,∴AE=BD,又∵BE=BD,∴AE=BE,∴∠B=∠BAE,又∵∠AEC=∠B+∠BAE,∴∠AEC=∠B+∠B=2∠B,又∵∠C=2∠B,∴∠AEC=∠C.(2)证明:∵∠AEC=∠C,∴AE=AC,又∵AE=BD,∴BD=2AE,∴BD=2AC.五、(本大题共2题,每题9分,共18分.)20.(9分)已知:如图,△ABC和△BDE都是等边三角形.(1)求证:AD=CE;(2)当AC⊥CE时,判断并证明AB与BE的数量关系.【解答】证明:(1)∵△ABC和△BDE都是等边三角形,∴AB=CB,BD=BE,∠ABD=∠CBE=60°,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)AB=2BE,证明:∵△ABC,△BED是等边三角形,∴∠ACB=∠DBE=60°,AB=BC,∵AC⊥CE,∴∠BCE=30°,∴∠BEC=90°,∴BC=2BE,∴AB=2BE.21.(9分)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x.【解答】解:(1)若每副乒乓球拍的价格为x元,则购买羽毛球拍花费:2000+25x,则购买这批乒乓球拍和羽毛球拍的总费用为:2000+2000+25x=4000+25x;(2)若购买的两种球拍数一样,根据题意得:=,解得:x1=40,x2=﹣40,经检验;x1=40,x2=﹣40都是原方程的解,但x2=﹣40不合题意,舍去,则x=40.六、(本大题共2题,每题10分,共20分.)22.(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?不彻底(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.【解答】解:(1)∵(x2﹣4x+4)2=(x﹣2)4,∴该同学因式分解的结果不彻底.(2)设x2﹣2x=y原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2﹣2x+1)2=(x﹣1)4.故答案为:不彻底.23.(10分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN 于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【解答】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.。
江西省上饶市八年级上学期数学期末考试试卷姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 20 分)1. (2 分) (2019·苏州模拟) 下列运算中,正确的是( )A.B.C . (-2a)2=4a2D. 2. (2 分) (2015 八上·龙岗期末) 点 M(2,1)关于 x 轴对称的点的坐标是( ) A . (1,﹣2) B . (﹣2,1) C . (2,﹣1) D . (﹣1,2) 3. (2 分) (2017 七下·钦南期末) 如图,为估计池塘岸边 A,B 的距离,小方在池塘的一侧选取一点 O,测 得 OA=15 米,OB=10 米,A,B 间的距离不可能是( )A . 20 米 B . 15 米 C . 10 米 D . 5米4. (2 分) (2018·吉林模拟) 若二次根式有意义,则 的取值范围是( )A.B.C.D.5. (2 分) (2019·防城模拟) 一个多边形的内角和是 720°,这个多边形的边数是( )A.6B.7C.8第 1 页 共 21 页D.9 6. (2 分) (2016·龙岩) 与- 是同类二次根式的是( ) A. B. C. D. 7. (2 分) 已知△ABC≌△DEF,∠A=70°,∠E=30°,则∠F 的度数为( ) A . 80° B . 70° C . 30° D . 100° 8. (2 分) (2020 八下·河池期末) 下列图形中,具有稳定性的是 A . 正方形 B . 长方形 C . 直角三角形 D . 平行四边形 9. (2 分) (2016 八下·滕州期中) 如图,将一个含有 45°角的直角三角板的直角顶点放在一张宽为 2cm 的 矩形纸带边沿上,另一个顶点在纸带的另一边沿上.若测得三角板的一边与纸带的一边所在的直线成 30°角,则三 角板最长边的长是( )A . 2cm B . 4cm C . 2 cm D . 4 cm 10. (2 分) (2017·河西模拟) 数轴上点 A 表示 a,将点 A 沿数轴向左移动 3 个单位得到点 B,设点 B 所表示 的数为 x,则 x 可以表示为( ) A . a﹣3 B . a+3第 2 页 共 21 页C . 3﹣a D . 3a+3二、 填空题 (共 6 题;共 15 分)11. (1 分) (2016·平房模拟) 函数 12. (1 分) (2020 八下·莲湖期末) 多项式中,自变量 x 的取值范围是________.与多项式的公因式分别是________.13. (1 分) 如图,AB=AC , BD=CD , ∠B=20° , 则∠C=________°.14. (1 分) (2020 八上·鄞州期末) 如图,R△ABC 中,∠C=90°,∠BAC 的角平分线 AE 与 AC 的中线 BD 交 于点 F,P 为 CE 中点,连结 PF,若 CP=2,S△BFP=15,则 AB 的长度为________。
2014—2015学年上期期末学业水平测试八年级数学试题卷注意: 本试卷分试题卷和答题卡两部分, 考试时间90分钟, 满分100分, 学生应先阅读答题卡上的文字信息, 然后在答题卡上用蓝色笔或者黑色笔作答, 在试题卷上作答无效, 交卷时只交答题卡。
题号 一 二 三 总分分数一、选择题(每小题3分, 共24分)1. 的算术平方 根是( C ) 2、A. 4 B. 2C. D.在﹣2, 0, 3,A . ﹣2B . 0C . 3D .这四个数中, 最大的数是( C )3.如图, 直线a ∥b, AC ⊥AB, AC 交直线b 于点C, ∠1=60°, 则∠2的度数是( D )A . 50°B . 45°C . 35°D . 30°4.一次函数y=﹣2x+1的图象不经过下列哪个象限( C )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5、若方程mA . 4,2B . 2,4C . ﹣4, ﹣2D . ﹣2, ﹣4阅卷人 得分………试…………题……………卷………………不…………………装………………订…………位: 度), 下列说法错误的是( C )7、下列四组线段A . 4, 5, 6B . 1.5, 2, 2.5C . 2, 3, 4D . 1, , 3中, 可以构成直角三角形的是( B )8、图象中所反映的过程是: 张强从家跑步去体育场, 在那里锻炼了一阵后, 又去早餐店吃早餐, 然后散步走回家.其中x 表示时间, y 表示张强离家的距离. 根据图象提供的信息, 以下四个说法错误的是( C )A . 体育场离张强家2.5千米B . 张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时选择题(每小题3分, 共21分)9、计算: 1 。
10、命题“相等的角是对顶角”是假命题(填“真”或“假”)。
若+(b+2)2=0, 则点M(a, b)关于y轴的对称点的坐标为(﹣3, ﹣2)。
2014-2015学年八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本题共10小题,每题3分,共30分)1.(3分)在直角坐标系中,下列各点位于第三象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)考点:点的坐标.分析:根据点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得答案.解答:解:A、点在第一象限,故A错误;B、点在第二象限,故B错误;C、点在第三象限,故C正确;D、点在第四象限,故D错误;故选:C.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)下列各个图形中,哪一个图形中AD是△ABC中BC边上的高()A.B.C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段即为该边上的高线.解答:解:过点A作直线BC的垂线段,即画BC边上的高AD,所以画法正确的是D.故选D.点评:考查了三角形的高的概念,能够正确作三角形一边上的高.3.(3分)下图中的轴对称图形有()A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)考点:轴对称图形.数学是一种别具匠心的艺术。
——哈尔莫斯分析:根据轴对称图形的概念求解,看图形是不是关于直线对称.解答:解:(1)是轴对称图形;(2)、(3)是中心对称图形;(4)是轴对称图形.故选B.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.4.(3分)在△ACB中,如果∠C=∠A﹣∠B,那么此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定考点:三角形内角和定理.分析:根据三角形的内角和等于180°列方程求出∠A=90°,然后判断即可.解答:解:由三角形的内角和定理得,∠A+∠B+∠C=180°,∵∠C=∠A﹣∠B,∴∠B+∠C=∠A,∴∠A+∠A=180°,解得∠A=90°,所以,此三角形是直角三角形.故选A.点评:本题考查了三角形的内角和定理,熟记定理并列方程求出∠A=90°是解题的关键.5.(3分)正比例函数y=kx的图象经过点(1,﹣3),那么它一定经过的点是()A.(3,﹣1)B.(,﹣1)C.(﹣3,1)D.(,﹣1)考点:一次函数图象上点的坐标特征.专题:计算题.分析:先把(1,﹣3)代入y=kx求出k得到一次函数解析式为y=﹣3x,在分别计算出自变量为3、、﹣3、﹣所对应的函数值,然后根据一次函数图象上点的坐标特征进行判断.解答:解:把(1,﹣3)代入y=kx得k=﹣3,所以一次函数解析式为y=﹣3x,当x=3时,y=﹣3x=﹣9;当x=时,y=﹣3x=﹣1;当x=﹣3时,y=﹣3x=9;当x=﹣时,y=﹣3x=1,所以点(,﹣1)在一次函数y=﹣3x的图象上.故选B.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.数学是一种别具匠心的艺术。
(完整版)人教版2014-2015八年级数学上期末试卷【精选3套】编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)人教版2014-2015八年级数学上期末试卷【精选3套】)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)人教版2014-2015八年级数学上期末试卷【精选3套】的全部内容。
(完整版)人教版2014—2015八年级数学上期末试卷【精选3套】编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)人教版2014-2015八年级数学上期末试卷【精选3套】这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)人教版2014—2015八年级数学上期末试卷【精选3套】> 这篇文档的全部内容.3 / 31人教版2014-2015八年级数学上册 期末考试试卷 后附答案一、选择题(本大题共有8题,每题3分,共24分) 1、已知6x y +=,2xy =-,则2211x y+= 。
2、以下五家银行行标中,是轴对称图形的有( )A 、1个B 。
2个 C. 3个 D. 4个3、下列条件中,不能确定....△ABC ≌△C B A '''的是( ) A 、BC = B 'C ' ,AB =A 'B ' ,∠B =∠B ' B 、∠B =∠B ' AC =A 'C 'AB = A 'B 'C 、∠A =∠A ',AB = A 'B ', ∠C =∠C 'D 、BC = B 'C '4、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ) A.11㎝B 。
2014-2015上册期末考试八年级数学试题一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个。
B2 C.3 -2相等的是( ) A.91B.91- 21-x 有意义时,x 的取值范围是( ) A.x <2 B.x >2 C.x ≠≥24.下列长度的各种线段,可以组成三角形的是( )A.1,2,3B.1,5,5C.3,3,6D.4,5,6 5.下列式子一定成立的是( )A.3232a a a =+B.632a a a =•C. ()623a a = D.326a a a =÷°,则这个多边形的边数为( ) A.6 B.7 C7.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=,2.5微米用科学记数法可表示为( )米。
×106×105 C ×10-5×10-6°,则这个等腰三角形的顶角为( )。
°°°或80°°或65°x x x +-232分解因式结果正确的是( )A.2)1(-x xB.2)1(+x xC.)2(2x x x - D.)1)(1(+-x x x x x x +--2)2(2中,一定含下列哪个因式( )。
A.2x+1 B.x (x+1)2C.x (x 2-2x ) D.x (x-1)11.如图,在△ABC 中,∠BAC=110°,MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是( ) ° B.40° ° °12.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D 点,AD=,DE=,则BE 的长为( ) B.1 C .1.513.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是( )A.12B.10 C14. 如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长为(a+1)cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是( )cm 2.A .a a 522+ B.3a+15 C .(6a+9) D .(6a+15)15.艳焕集团生产某种精密仪器,原计划20天完成全部任务,若每天多生产4个,则15天完成全部的生产任务还多生产10个。
江西省上饶市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共16题;共27分)1. (1分)分式有意义的条件为________.2. (1分)某种计算机完成一次基本运算的时间用科学记数法可以表示为1.2×10﹣9s,则此数所对应的原数为________ s.3. (1分)(2019·广州) 如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②的周长为;③ ;④ 的面积的最大值 .其中正确的结论是________.(填写所有正确结论的序号)4. (4分)(2014·常州) 计算:|﹣1|=________,2﹣2=________,(﹣3)2=________, =________.5. (1分) (2020八上·镇赉期末) 正多边形的一个外角是,则这个多边形的内角和的度数是________.6. (1分) (2016八下·红安期中) 如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C 向上拉升3cm到D,则橡皮筋被拉长了________ cm.7. (1分)如图1所示,从边长为a的正方形纸片中减去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形.这一过程所揭示的乘法公式是________.8. (1分)如图,长方体中,AB=12m,BC=2m,BB'=3m,一只蚂蚁从点A出发,以4cm/秒的速度沿长方体表面爬行到点C′ ,至少需要________分钟。
9. (2分) (2017七下·钦州期末) 下列图形中,不是轴对称图形的是()A .B .C .D .10. (2分)已知AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC及中线AD的取值范围是()A .B .C .D .11. (2分)(2016·苏州) 下列运算结果正确的是()A . a+2b=3abB . 3a2﹣2a2=1C . a2•a4=a8D . (﹣a2b)3÷(a3b)2=﹣b12. (2分)(2014·扬州) 如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A .B .C .D . ﹣213. (2分)下列分式中,属于最简分式的个数是()① ,② ,③ ,④ ,⑤ ,⑥ .A . 1个B . 2个C . 3个D . 4个14. (2分)如图在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A . ∠B=∠E,BC=EFB . BC=EF,AC=DFC . ∠A=∠D,∠B=∠EDD . ∠A=∠D,BC=EF15. (2分)小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x米/分.根据题意,下面列出的方程正确的是()A . -=30B . -=30C . -=30D . -=3016. (2分)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A . 转化思想B . 三角形的两边之和大于第三边C . 两点之间,线段最短D . 三角形的一个外角大于与它不相邻的任意一个内角二、解答题: (共9题;共86分)17. (20分) (2017八上·重庆期中) 计算(1)100×103×102(2)x2•x3+(x3)2(3) 3(x2)2•(x2)5﹣(x5)2•(x2)2(4)()100×(1 )100×()2013×42014.18. (15分)分解因式:(1) x5﹣4x4+4x3(2) a4﹣2a2b2+b4(3)﹣(a+1)2+9(a﹣2)2.19. (6分) (2015八上·郯城期末) 在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形上)(1)画出△ABC关于直线l:x=﹣1的对称三角形△A1B1C1;并写出A1、B1、C1的坐标.(2)在直线x=﹣l上找一点D,使BD+CD最小,满足条件的D点为________.提示:直线x=﹣l是过点(﹣1,0)且垂直于x轴的直线.20. (5分) (2016八上·仙游期中) 已知:如图,点E在AC上,点F在AB上,BE,CF交于点O,且∠C=2∠B,∠BFC比∠BEC大20°,求∠C的度数.21. (5分) (2018七上·青浦期末) 解方程: .22. (5分)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.求证:AD=CE.23. (5分) (2019八上·嘉荫期末) 先化简,再求值:,其中x=.24. (15分)(2017·准格尔旗模拟) 我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:养殖种类成本(万元/亩)销售额(万元/亩)甲鱼 2.43桂鱼2 2.5(1) 2010年,王大爷养殖甲鱼20亩,桂鱼10亩,求王大爷这一年共收益多少万元?(收益=销售额﹣成本)(2) 2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3)已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg,根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少千克?25. (10分)已知△ABC是等腰直角三角形,∠BAC=90°,E为△ABC外一点,CE⊥FE,CE=FE,连接AE、BF,点M为AE中点,点N为BF中点.(1)若BC=4 ,FC=2 ,∠ECA=30°,求S△ACE.(2)求证:MN⊥AE.参考答案一、选择题: (共16题;共27分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、解答题: (共9题;共86分)17-1、17-2、17-3、17-4、18-1、18-2、18-3、19-1、19-2、20-1、21-1、22-1、23-1、24-1、24-2、24-3、25-1、25-2、。
上饶市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列图形中,既是轴对称图形,又是中心对称图形的是()A . 等边三角形B . 平行四边形C . 矩形D . 正五边形2. (2分)如图所示,要在离地面5米处引拉线固定电线杆,使拉线和地面成45°角.若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.2米,L4=10米四种备用拉线材料中,拉线AC 最好选用()A . L1B . L2C . L3D . L43. (2分)生态园位于县城东北方向5公里处,如图表示准确的是()A .B .C .D .4. (2分) (2019八下·松北期末) 将直线平移后,得到直线,则原直线()A . 沿y轴向上平移了8个单位B . 沿y轴向下平移了8个单位C . 沿x轴向左平移了8个单位D . 沿x轴向右平移了8个单位5. (2分)如图,在△ABC中,AB=AC,∠B=50°,P边AB上的一个动点(不与顶点A重合),则∠BPC的值可能是()A . 135°B . 85°C . 50°D . 40°6. (2分)一汽车在某一直线道路上行驶,该车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系如图所示(折线ABCDE),根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在行驶过程中的平均速度为千米/小时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减小.其中正确的说法共有()A . 4个B . 3个C . 2个D . 1个7. (2分)如图所示,AB∥CD,AD∥BC,BE=DF,则图中全等三角形共有()对.A . 2B . 3C . 4D . 58. (2分)如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A . 30°B . 40°C . 50°D . 60°二、填空题 (共10题;共12分)9. (1分)据统计,到2015年末我国现有人口约为1375000000人,把1375000000用科学记数法表示为________.10. (1分) 25的平方根等于________ .11. (1分)等腰三角形ABC的底边BC=6,△ABC的外接圆⊙O的半径为5,则S△ABC=________.12. (2分)已知一次函数y=ax+b(a<0)的图象与x的交点坐标是(3,0),那么关于x的方程ax+b=0的解是 ________,关于x的不等式ax+b>0的解集是________ .13. (1分) (2017·邵阳模拟) 一次函数y=kx+2(k为常数,且k≠0)的图象如图所示,则k的可能值为________(写一个即可)14. (2分)方程组的解为________,则一次函数y=2-2x,y=5-2x的图象之间________.15. (1分)(2012·绵阳) 如图,BC=EC,∠1=∠2,要使△ABC≌△DEC,则应添加的一个条件为________.(答案不唯一,只需填一个).16. (1分)(2017·保康模拟) 如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为________m(结果保留根号).17. (1分)(2020·和平模拟) 如图,是等边三角形,,点在上,,是延长线上一点,将线段绕点逆时针旋转90°得到线段,当时,线段的长为________.18. (1分) (2018八下·柳州期末) 在Rt△ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN⊥AE 于N,若AC=6,BC=8,则MN=________.三、解答题 (共8题;共81分)19. (10分) (2019七上·慈溪期中) 已知的平方等于a,b立方等于,的算术平方根为3.(1)写出a,b,c的值;(2)求的平方根.20. (10分)(2017·东莞模拟) 如图,在平行四边形ABCD中,AD>AB.(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE 为菱形.21. (11分) (2016八上·罗田期中) 已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N 分别是射线AE,AF上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM 的面积.22. (5分)杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.23. (10分) (2020九下·霍林郭勒月考) 工厂准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)工厂准备购进这两种型号的节能灯共50只,且A型节能灯的数量不多于B型节能灯数量的4倍,如何购买A、B型节能灯,可以使总费用最少,且总费用最少是多少.24. (15分) (2019八上·椒江期中) 规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,请写出图中两对“等角三角形”.(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°。
111---a a a 11-+a a 1--a a ()⎪⎭⎫ ⎝⎛•-b a ab 24382013—2014学年第一学期期末考试八年级数学试卷(时间:90分钟 卷面分100分)一、选择题(每小题3分,共24分)1、下列运算正确的是( )A 、a+a=a 2B 、(3a ) 2=6a 2C 、(a+1) 2=a 2+1D 、a ·a=a 22、某三角形其中两边长分别为5cm 和8cm ,则此三角形的第三边长可能是( )A 、2cmB 、5cmC 、13cmD 、15cm3、观察下列中国传统工艺品的花纹,其中轴对称图形是( )4、计算 的结果为( ) A 、 B 、 C 、 -1 D 、1-a5、如图,某人将一块五边形玻璃打碎成四块,现要到玻璃店配一块完全一样的玻璃,那么最省事的方法是( )A 、带①去B 、带①②去C 、带①②③去D 、带①②③④去6、如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是横板AB 的中点,AB 可以绕着点O 上下转动,当A 端落地时,∠OAC=20°,横板上下可转动的最大角度(即∠A ′OA )是( )A 、80°B 、60°C 、40°D 、20°7、的边长为a 的正方形中挖去一个边长为b 的小正方形(a 〉b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A 、(a+b) 2=a 2+2ab+b 2B 、(a —b) 2=a 2—2ab+b 2C 、a 2-b 2=(a+b )(a —b )D 、(a+2b)(a-b )=a 2+ab-2b 28、如图,已知△AB C ≌△CDA ,下列结论:(1)AB=CD ,BC=DA ;(2)∠BAC=∠DCA ,∠ACB=∠CAD;(3)A B ∥CD ,BC ∥DA.其中正确的结论有( )个A 、0B 、1C 、2D 、3二、填空题(每小题3分,共24分)9、计算: =53-x 22322=--+x x x 2112211112+-÷⎪⎭⎫ ⎝⎛-++a a a a a 10、当x 时,分式 有意义11、分解因式:x 3-9x=12、点P (-3,a )和点Q (b ,-2)关于Y 轴对称,则a+b=13、如图,点P 在∠AOB 人平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是 (只写一个即可,不添加辅助线)14、已知:在Rt △AB C 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=32cm ,且BD :DC=9:7,则D 到AB 边的距离为15、如图,△AB C 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E,CD=2,则AC=16、如图所示,△AB C 中,点A 的坐标为(0,1),点C 的坐标为(4,3),若要使使△AB C 和△AB D 全等,则点D 的坐标为三、解答题(共52分)17、(6分)解方程:18、(7分)先化简再求值:(a 2b —2ab 2-b 2)÷b —(a+b )(a —b ),其中a=-3,b=19、(7分)先化简: ,再先一个你认为合适的数作为a 的值代入求值。
江西省上饶市广丰县2014-2015学年八年级上学期期末数学试卷一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列各图形中不一定是轴对称图形的是()A.长方形B.正方形C.平行四边形D.圆2.(3分)关于幂的乘积运算:x m•x n结果正确的是()A.x m+n B.x mn C.(x•x)m+n D.(x•x)mn3.(3分)下列条件中,能使分式有意义的是()A.x≠0 B.3x≠0 C.3x+1≠0 D.3x≠14.(3分)计算:(﹣2ab2)3•(a2)2的结果是()A.2a7b8B.﹣2a7b6C.2a7b7D.﹣2a7b75.(3分)计算:=()A.B.C.D.6.(3分)把分式中的x,y同时扩大5倍,则分式的值的变化结果是()A.不变B.扩大5倍C.扩大25倍D.缩小到原来的二、填空题(共8小题,每小题3分,满分24分)7.(3分)分式的值为0,则x=.8.(3分)因式分解:x3﹣4x2+4x=.9.(3分)有两条边长分别为8cm,6cm的等腰三角形的周长等于.10.(3分)化简:(x+)÷()=.11.(3分)分式方程无解,则k=.12.(3分)△ABC的三个顶点的坐标分别为A(4,4),B(1,1),C(6,2),△ABC关于x轴对称的图形为△A′B′C′,那么A′、B′、C′的坐标分别为、、.13.(3分)已知:a>b,a+b=3,ab=2,那么a﹣b的值为.14.(3分)a>0,b>0,a<b把分式的分子、分母同时增加一个相同的正数x,得到,那么它的大小变化是.三、解答题(共4小题,满分24分)15.(6分)尺规作图,在l上找一点P,使它到线段AB两端的距离相等,保留作图痕迹.16.(6分)计算:(π﹣3.14)0﹣2﹣1﹣(﹣1)2015.17.(6分)解方程:=1﹣.18.(6分)将多项式3x2+bx+c分解因式的结果是:3(x﹣3)(x+2),求b,c的值.四、(本大题共3小题,每小题8分,共24分)19.(8分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.20.(8分)已知,求的值.21.(8分)如图,点D、E、F分别在等边△ABC的三边AB、BC、CA上,且△DEF也是等边三角形,求证:AD=BE=CF.五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,在梯形ABCD中,∠ABC=∠DCB,AB=DC=6cm,BC=8cm,若点P从点B开始沿BC方向运动,同时点Q从点C开始沿CD方向运动,速度不一样,当它们的速度比是多少时,以A、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等?23.(9分)如图,点P在AC上,点Q在AB上,BE平分∠ABP,交AC于E,CF平分∠ACQ,交AB于F,BE、CF相交于G,CQ、BP相交于D,若∠BDC=140°,∠BGC=110°,求∠A的度数.六、(本大题共12分)24.(12分)已知点O为线段AB的中点,P为线段AB外一点,过P作直线l,分别过A、B作直线l的垂线段AM、BN;(1)当点O在直线l上时,求证:OM=ON;(2)直角三角形斜边上的中线有下列性质:斜边上的中线等于斜边的一半.请你利用这一性质回答问题:当点O不在直线l上时,OM=ON吗?江西省上饶市广丰县2014-2015学年八年级上学期期末数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列各图形中不一定是轴对称图形的是()A.长方形B.正方形C.平行四边形D.圆考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、一定是轴对称图形,故错误;B、一定是轴对称图形,故错误;C、不一定是轴对称图形,故正确;D、一定是轴对称图形,故错误.故选C.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(3分)关于幂的乘积运算:x m•x n结果正确的是()A.x m+n B.x mn C.(x•x)m+n D.(x•x)mn考点:同底数幂的乘法.分析:根据同底数幂的乘法法则求解即可.解答:解:x m•x n=x m+n.故选A.点评:本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:底数不变,指数相加.3.(3分)下列条件中,能使分式有意义的是()A.x≠0 B.3x≠0 C.3x+1≠0 D.3x≠1考点:分式有意义的条件.分析:根据分式有意义的条件是分母不等于0可得3x+1≠0,再解即可.解答:解:根据分式有意义的条件可得:3x+1≠0,故选:C.点评:此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于0.4.(3分)计算:(﹣2ab2)3•(a2)2的结果是()A.2a7b8B.﹣2a7b6C.2a7b7D.﹣2a7b7考点:单项式乘单项式;幂的乘方与积的乘方.分析:先算积的乘方,再根据单项式与单项式相乘的计算法则计算即可求解.解答:解:(﹣2ab2)3•(a2)2=(﹣8a3b6)•(a4)=﹣2a7b6.故选:B.点评:本题考查了积的乘方,单项式与单项式相乘,熟练掌握运算法则是解题的关键.5.(3分)计算:=()A.B.C.D.考点:分式的加减法.分析:先通分,再计算,选择答案即可.解答:解:=,故选D.点评:本题考查了分式的加减,题目比较简单,要熟练掌握.6.(3分)把分式中的x,y同时扩大5倍,则分式的值的变化结果是()A.不变B.扩大5倍C.扩大25倍D.缩小到原来的考点:分式的基本性质.分析:根据分式的分子分母都乘以或处以同一个不为零的数,分式的值不变,可得答案.解答:解:把分式中的x,y同时扩大5倍,则分式的值不变,故选:A.点评:本题考查了分式的基本性质,分式的分子分母都乘以或处以同一个不为零的数,分式的值不变.二、填空题(共8小题,每小题3分,满分24分)7.(3分)分式的值为0,则x=﹣3.考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.点评:本题主要考查分式的值为0的条件,注意分母不为0.8.(3分)因式分解:x3﹣4x2+4x=x(x﹣2)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再根据完全平方公式进行二次分解.解答:解:x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2.故答案为:x(x﹣2)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.9.(3分)有两条边长分别为8cm,6cm的等腰三角形的周长等于22cm或20cm.考点:等腰三角形的性质;三角形三边关系.分析:分两种情况:①当8cm为腰长,6cm为底边长时,由三边关系得出周长为22(cm);②当6cm为腰长,8cm为底边长时,由三边关系得出周长为20(cm);解答:解:分两种情况:①当8cm为腰长,6cm为底边长时,8+6>8,8+8+6=22(cm);②当6cm为腰长,8cm为底边长时,6+6>8,6+6+8=20(cm)点评:本题考查了等腰三角形的性质和三角形三边的关系;注意分类讨论两种情况.10.(3分)化简:(x+)÷()=.考点:分式的混合运算.分析:原式括号中三项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=÷=•= =.故答案为:点评:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则是解本题的关键.11.(3分)分式方程无解,则k=2.考点:分式方程的解.分析:分式方程无解是指这个解不是分式方程的解是化简的整式方程的解,也就是使分式方程的分母为0,可以根据增根的意义列出方程,求出k的值,先把分式分式转化成整式方程,根据分式方程无解得出分母x+1=0,求出x 的值,把x的值代入整式方程求出即可.解答:解:,去分母得:2x+k=x+1,即k=﹣x+1,因为分式方程无解,所以x+1=0,即x=﹣1,所以k=2.故答案为:2.点评:本题考查了分式方程的解,若分式方程无解,即可得最简公分母为0,关键是能根据题意得出关于k的方程.12.(3分)△ABC的三个顶点的坐标分别为A(4,4),B(1,1),C(6,2),△ABC关于x轴对称的图形为△A′B′C′,那么A′、B′、C′的坐标分别为(4,﹣4)、(1,﹣1)、(6,﹣2).考点:关于x轴、y轴对称的点的坐标.分析:利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.解答:解:∵△ABC的三个顶点的坐标分别为A(4,4),B(1,1),C(6,2),△ABC关于x轴对称的图形为△A′B′C′,∴A′、B′、C′的坐标分别为(4,﹣4),(1,﹣1),(6,﹣2).故答案为:(4,﹣4),(1,﹣1),(6,﹣2).点评:此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.13.(3分)已知:a>b,a+b=3,ab=2,那么a﹣b的值为1.考点:完全平方公式.分析:根据完全平方公式得出(a﹣b)2=(a+b)2﹣4ab,代入求出(a﹣b)2的值,即可得出答案.解答:解:∵a>b,a+b=3,ab=2,∴(a﹣b)2=(a+b)2﹣4ab=32﹣4×2=1,∴a﹣b=1.故答案为:1.点评:本题考查了完全平方公式的应用,能灵活运用公式进行变形是解此题的关键,注意:完全平方公式:①(a+b)2=a2+2ab+b2,②(a﹣b)2=a2﹣2ab+b2.14.(3分)a>0,b>0,a<b把分式的分子、分母同时增加一个相同的正数x,得到,那么它的大小变化是<.考点:分式的加减法.专题:计算题.分析:利用作差法比较两式大小即可.解答:解:∵a>0,b>0,a<b,x>0,∴a﹣b<0,b+x>0,∴﹣==<0,则<.故答案为:<.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.三、解答题(共4小题,满分24分)15.(6分)尺规作图,在l上找一点P,使它到线段AB两端的距离相等,保留作图痕迹.考点:作图—基本作图;线段垂直平分线的性质.分析:首先作出AB的垂直平分线EF,EF与l的交点就是P的位置.解答:解:如图所示:点P即为所求.点评:此题主要考查了基本作图,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.16.(6分)计算:(π﹣3.14)0﹣2﹣1﹣(﹣1)2015.考点:实数的运算;零指数幂;负整数指数幂.分析:分别根据0指数幂及负整数指数幂的计算法则、数的乘方法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=1﹣+1=.点评:本题考查的是实数的运算,熟知数的乘方法则、0指数幂的运算法则是解答此题的关键.17.(6分)解方程:=1﹣.考点:解分式方程.专题:计算题.分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x=x﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(6分)将多项式3x2+bx+c分解因式的结果是:3(x﹣3)(x+2),求b,c的值.考点:因式分解-十字相乘法等.分析:直接利用多项式乘法去括号整理求出即可.解答:解:∵3x2+bx+c=3(x﹣3)(x+2)=3(x2﹣x﹣6)=3x2﹣3x﹣18,∴b=﹣3,c=﹣18.点评:此题主要考查了多项式乘法,正确掌握运算法则是解题关键.四、(本大题共3小题,每小题8分,共24分)19.(8分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.考点:等腰三角形的性质.分析:由已知条件开始,通过线段相等,得到角相等,再由三角形内角和求出各个角的大小.解答:解:设∠A=x°.∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠BCD=2x°,在△ABC中x+2x+2x=180,解得:x=36,∴∠A=36°.点评:此题考查了等腰三角形的性质;熟练掌握等于三角形的性质,以及三角形内角和定理,得到各角之间的关系式解答本题的关键.20.(8分)已知,求的值.考点:分式的化简求值.分析:根据分式的基本性质,分式的分子分母都除以ab,分式的值不变,再把﹣换成1计算即可.解答:解:分式的分子分母都除以ab,得==,∵,∴原式==.故的值为.点评:本题利用分式的基本性质,分子分母都除以ab,巧妙运用已知条件是解本题的关键,也是解本题的突破口.21.(8分)如图,点D、E、F分别在等边△ABC的三边AB、BC、CA上,且△DEF也是等边三角形,求证:AD=BE=CF.考点:全等三角形的判定与性质;等边三角形的性质.专题:证明题.分析:由等边三角形的性质可知∠A=∠B=60°,DF=DE,且∠FDE=60°,所以可得出∠AFD=∠BDE,从而可证得△ADF≌△BED,同理可证得其它三角形全等,利用全等三角形的性质证得结论.解答:证明)∵△ABC,△DEF是等边三角形,∴∠A=∠B=60°,DF=DE,且∠FDE=60°,∴∠BAD+∠ADF=∠ADF+∠AFD=120°,∴∠AFD=∠BDE,在△ADF和△BED中,,∴△ADF≌△BED(AAS),同理可得:△ADF≌△CFE,∴△ADF≌△CFE≌△BED;∴AD=BE=CF.点评:此题考查了等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,在梯形ABCD中,∠ABC=∠DCB,AB=DC=6cm,BC=8cm,若点P从点B开始沿BC方向运动,同时点Q从点C开始沿CD方向运动,速度不一样,当它们的速度比是多少时,以A、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等?考点:梯形;全等三角形的判定.专题:动点型.分析:设BP=acm,CQ=bcm,CP=(8﹣a)cm,根据全等得出AB=CP,BP=CQ或AB=CQ,BP=CP,代入得出或,求出即可.解答:解:设BP=acm,CQ=bcm,∵AB=DC=6cm,BC=8cm,∴CP=(8﹣a)cm,∵∠ABC=∠DCB,∴要使以A、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,必须AB=CP,BP=CQ或AB=CQ,BP=CP,即或解得:或,即它们的速度比是1:1或2:3时,以A、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等.点评:本题考查了全等三角形的性质,等腰梯形的性质的应用,能求出符合情况的所有情况是解此题的关键,用了分类讨论的思想,有一定的难度.23.(9分)如图,点P在AC上,点Q在AB上,BE平分∠ABP,交AC于E,CF平分∠ACQ,交AB于F,BE、CF相交于G,CQ、BP相交于D,若∠BDC=140°,∠BGC=110°,求∠A的度数.考点:三角形内角和定理;三角形的外角性质.分析:根据三角形的内角和定理,及角平分线上的性质先计算∠ABC+∠ACB的度数,从而得出∠A的度数.解答:解:如图,连接BC.∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABE=∠DBE=∠ABD,∠ACF=∠DCF=∠ACD,又∠BDC=140°,∠BGC=110°,∴∠DBC+∠DCB=40°,∠GBC+∠GCB=70°,∴∠EBD+∠FCD=70°﹣40°=30°,∴∠ABE+∠ACF=30°,∴∠ABE+∠ACF+∠GBC+∠GCB=70°+30°=100°,即∠ABC+∠ACB=100°,∴∠A=80°.点评:本题考查角平分线的性质及三角形的内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键.六、(本大题共12分)24.(12分)已知点O为线段AB的中点,P为线段AB外一点,过P作直线l,分别过A、B作直线l的垂线段AM、BN;(1)当点O在直线l上时,求证:OM=ON;(2)直角三角形斜边上的中线有下列性质:斜边上的中线等于斜边的一半.请你利用这一性质回答问题:当点O不在直线l上时,OM=ON吗?考点:全等三角形的判定与性质;直角三角形斜边上的中线.分析:(1)证出△AMO≌△BNO,据此即可解答;(2)作AC∥l,延长BN交AC于C,连接OC;作BD∥l,延长AM交BD于D,连接OD.证出△MAO≌△NCO 即可解答.解答:解:(1)在Rt△AMO和Rt△BNO中,,∴△AMO≌△BNO(AAS),∴OM=ON.(2)OM=ON.作AC∥l,延长BN交AC于C,连接OC;作BD∥l,延长AM交BD于D,连接OD.可知,∠ACB=90°,AM=CN.∵O为AB的中点,∴CO=AO,∴∠OAC=∠OCA,∴∠OAM=∠OCN,在△MAO和△NCO中,,∴△MAO≌△NCO(SAS),∴OM=ON.点评:本题考查了全等三角形的性质,直角三角形斜边上的中线,正确作出辅助线,构造所需图形是解题的关键.。
2014~2015学年度素质教育评估试卷 第一学期期末八年级数学一.选择题(每小题3分,共计30分)1、数—2,0.3,722,2,—∏中,无理数的个数是( ) A 、2个; B 、3个 C 、4个; D 、5个2、计算6x 5÷3x 2·2x 3的正确结果是 ( ) A 、1; B 、x C 、4x 6; D 、x 43、一次函数 12+-=x y 的图象经过点 ( ) A .(2,-3) B.(1,0) C.(-2,3) D.(0,-1)4、下列从左到右的变形中是因式分解的有 ( ) ①1))((122--+=--y x y x y x ②)1(23+=+x x x x ③2222)(y xy x y x +-=- ④)3)(3(922y x y x y x -+=- A .1个 B .2 个 C .3个 D .4个5、三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的( )A 、三条中线的交点;B 、三边垂直平分线的交点;C 、三条高的交战;D 、三条角平分线的交点;6、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )ADB C7、如图,C F B E ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是( )A .AB=DEB ..DF ∥AC C .∠E=∠ABCD .AB ∥DE8、下列图案中,是轴对称图形的是 ( )9.一次函数y=mx-n 的图象如图所示,则下面结论正确的是( )A .m<0,n<0B .m<0,n>0C .m>0,n>0D .m>0,n<010.如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有() A :1个 B :2个 C :3个 D :4个二、填空题(每小题3分,共计30分)11、16的算术平方根是 .12、点A (-3,4)关于原点Y 轴对称的点的坐标为 。
2014-2015学年江西省上饶市广丰县八年级(上)期末数学试卷一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列各图形中不一定是轴对称图形的是()A.长方形B.正方形C.平行四边形D.圆2.(3分)关于幂的乘积运算:x m•x n结果正确的是()A.x m+n B.x mn C.(x•x)m+n D.(x•x)mn 3.(3分)下列条件中,能使分式有意义的是()A.x≠0B.3x≠0C.3x+1≠0D.3x≠14.(3分)计算:(﹣2ab2)3•(a2)2的结果是()A.2a7b8B.﹣2a7b6C.2a7b7D.﹣2a7b7 5.(3分)计算:=()A.B.C.D.6.(3分)把分式中的x,y同时扩大5倍,则分式的值的变化结果是()A.不变B.扩大5倍C.扩大25倍D.缩小到原来的二、填空题(共8小题,每小题3分,满分24分)7.(3分)若分式的值为0,则x的值为.8.(3分)因式分解:x3﹣4x2+4x=.9.(3分)有两条边长分别为8cm,6cm的等腰三角形的周长等于.10.(3分)化简:(x+)÷()=.11.(3分)分式方程无解,则k=.12.(3分)△ABC的三个顶点的坐标分别为A(4,4),B(1,1),C(6,2),△ABC关于x轴对称的图形为△A′B′C′,那么A′、B′、C′的坐标分别为、、.13.(3分)已知:a>b,a+b=3,ab=2,那么a﹣b的值为.14.(3分)a>0,b>0,a<b把分式的分子、分母同时增加一个相同的正数x,得到,那么它的大小变化是.三、解答题(共4小题,满分24分)15.(6分)尺规作图,在l上找一点P,使它到线段AB两端的距离相等,保留作图痕迹.16.(6分)计算:(π﹣3.14)0﹣2﹣1﹣(﹣1)2015.17.(6分)解方程:=1﹣.18.(6分)将多项式3x2+bx+c分解因式的结果是:3(x﹣3)(x+2),求b,c的值.四、(本大题共3小题,每小题8分,共24分)19.(8分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A 的度数.20.(8分)已知,求的值.21.(8分)如图,点D、E、F分别在等边△ABC的三边AB、BC、CA上,且△DEF也是等边三角形,求证:AD=BE=CF.五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,在梯形ABCD中,∠ABC=∠DCB,AB=DC=6cm,BC=8cm,若点P从点B开始沿BC方向运动,同时点Q从点C开始沿CD方向运动,速度不一样,当它们的速度比是多少时,以A、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等?23.(9分)如图,点P在AC上,点Q在AB上,BE平分∠ABP,交AC于E,CF 平分∠ACQ,交AB于F,BE、CF相交于G,CQ、BP相交于D,若∠BDC=140°,∠BGC=110°,求∠A的度数.六、(本大题共12分)24.(12分)已知点O为线段AB的中点,P为线段AB外一点,过P作直线l,分别过A、B作直线l的垂线段AM、BN;(1)当点O在直线l上时,求证:OM=ON;(2)直角三角形斜边上的中线有下列性质:斜边上的中线等于斜边的一半.请你利用这一性质回答问题:当点O不在直线l上时,OM=ON吗?2014-2015学年江西省上饶市广丰县八年级(上)期末数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列各图形中不一定是轴对称图形的是()A.长方形B.正方形C.平行四边形D.圆【解答】解:A、一定是轴对称图形,故错误;B、一定是轴对称图形,故错误;C、不一定是轴对称图形,故正确;D、一定是轴对称图形,故错误.故选:C.2.(3分)关于幂的乘积运算:x m•x n结果正确的是()A.x m+n B.x mn C.(x•x)m+n D.(x•x)mn【解答】解:x m•x n=x m+n.故选:A.3.(3分)下列条件中,能使分式有意义的是()A.x≠0B.3x≠0C.3x+1≠0D.3x≠1【解答】解:根据分式有意义的条件可得:3x+1≠0,故选:C.4.(3分)计算:(﹣2ab2)3•(a2)2的结果是()A.2a7b8B.﹣2a7b6C.2a7b7D.﹣2a7b7【解答】解:(﹣2ab2)3•(a2)2=(﹣8a3b6)•(a4)=﹣2a7b6.故选:B.5.(3分)计算:=()A.B.C.D.【解答】解:=,故选:D.6.(3分)把分式中的x,y同时扩大5倍,则分式的值的变化结果是()A.不变B.扩大5倍C.扩大25倍D.缩小到原来的【解答】解:把分式中的x,y同时扩大5倍,则分式的值不变,故选:A.二、填空题(共8小题,每小题3分,满分24分)7.(3分)若分式的值为0,则x的值为﹣3.【解答】解:因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.8.(3分)因式分解:x3﹣4x2+4x=x(x﹣2)2.【解答】解:x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2.故答案为:x(x﹣2)2.9.(3分)有两条边长分别为8cm,6cm的等腰三角形的周长等于22cm或20cm.【解答】解:分两种情况:①当8cm为腰长,6cm为底边长时,8+6>8,8+8+6=22(cm);②当6cm为腰长,8cm为底边长时,6+6>8,6+6+8=20(cm)10.(3分)化简:(x+)÷()=.【解答】解:原式=÷=•==.故答案为:11.(3分)分式方程无解,则k=2.【解答】解:,去分母得:2x+k=x+1,即k=﹣x+1,因为分式方程无解,所以x+1=0,即x=﹣1,所以k=2.故答案为:2.12.(3分)△ABC的三个顶点的坐标分别为A(4,4),B(1,1),C(6,2),△ABC关于x轴对称的图形为△A′B′C′,那么A′、B′、C′的坐标分别为(4,﹣4)、(1,﹣1)、(6,﹣2).【解答】解:∵△ABC的三个顶点的坐标分别为A(4,4),B(1,1),C(6,2),△ABC关于x轴对称的图形为△A′B′C′,∴A′、B′、C′的坐标分别为(4,﹣4),(1,﹣1),(6,﹣2).故答案为:(4,﹣4),(1,﹣1),(6,﹣2).13.(3分)已知:a>b,a+b=3,ab=2,那么a﹣b的值为1.【解答】解:∵a>b,a+b=3,ab=2,∴(a﹣b)2=(a+b)2﹣4ab=32﹣4×2=1,∴a﹣b=1.故答案为:1.14.(3分)a>0,b>0,a<b把分式的分子、分母同时增加一个相同的正数x,得到,那么它的大小变化是<.【解答】解:∵a>0,b>0,a<b,x>0,∴a﹣b<0,b+x>0,∴﹣==<0,则<.故答案为:<.三、解答题(共4小题,满分24分)15.(6分)尺规作图,在l上找一点P,使它到线段AB两端的距离相等,保留作图痕迹.【解答】解:如图所示:点P即为所求.16.(6分)计算:(π﹣3.14)0﹣2﹣1﹣(﹣1)2015.【解答】解:原式=1﹣+1=.17.(6分)解方程:=1﹣.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.18.(6分)将多项式3x2+bx+c分解因式的结果是:3(x﹣3)(x+2),求b,c的值.【解答】解:∵3x2+bx+c=3(x﹣3)(x+2)=3(x2﹣x﹣6)=3x2﹣3x﹣18,∴b=﹣3,c=﹣18.四、(本大题共3小题,每小题8分,共24分)19.(8分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A 的度数.【解答】解:设∠A=x°.∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠BCD=2x°,在△ABC中x+2x+2x=180,解得:x=36,∴∠A=36°.20.(8分)已知,求的值.【解答】解:分式的分子分母都除以ab,得==,∵,∴原式==.故的值为.21.(8分)如图,点D、E、F分别在等边△ABC的三边AB、BC、CA上,且△DEF也是等边三角形,求证:AD=BE=CF.【解答】证明)∵△ABC,△DEF是等边三角形,∴∠A=∠B=60°,DF=DE,且∠FDE=60°,∴∠BDE+∠ADF=∠ADF+∠AFD=120°,∴∠AFD=∠BDE,在△ADF和△BED中,,∴△ADF≌△BED(AAS),同理可得:△ADF≌△CFE,∴△ADF≌△CFE≌△BED;∴AD=BE=CF.五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,在梯形ABCD中,∠ABC=∠DCB,AB=DC=6cm,BC=8cm,若点P从点B开始沿BC方向运动,同时点Q从点C开始沿CD方向运动,速度不一样,当它们的速度比是多少时,以A、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等?【解答】解:设BP=acm,CQ=bcm,∵AB=DC=6cm,BC=8cm,∴CP=(8﹣a)cm,∵∠ABC=∠DCB,∴要使以A、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,必须AB=CP,BP=CQ或AB=CQ,BP=CP,即或解得:或,即它们的速度比是1:1(舍去),它们的速度比是2:3时,以A、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等.23.(9分)如图,点P在AC上,点Q在AB上,BE平分∠ABP,交AC于E,CF 平分∠ACQ,交AB于F,BE、CF相交于G,CQ、BP相交于D,若∠BDC=140°,∠BGC=110°,求∠A的度数.【解答】解:如图,连接BC.∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABE=∠DBE=∠ABD,∠ACF=∠DCF=∠ACD,又∠BDC=140°,∠BGC=110°,∴∠DBC+∠DCB=40°,∠GBC+∠GCB=70°,∴∠EBD+∠FCD=70°﹣40°=30°,∴∠ABE+∠ACF=30°,∴∠ABE+∠ACF+∠GBC+∠GCB=70°+30°=100°,即∠ABC+∠ACB=100°,∴∠A=80°.六、(本大题共12分)24.(12分)已知点O为线段AB的中点,P为线段AB外一点,过P作直线l,分别过A、B作直线l的垂线段AM、BN;(1)当点O在直线l上时,求证:OM=ON;(2)直角三角形斜边上的中线有下列性质:斜边上的中线等于斜边的一半.请你利用这一性质回答问题:当点O不在直线l上时,OM=ON吗?【解答】解:(1)在Rt△AMO和Rt△BNO中,,∴△AMO≌△BNO(AAS),∴OM=ON.(2)OM=ON.作AC∥l,延长BN交AC于C,连接OC;作BD∥l,延长AM交BD于D,连接OD.可知,∠ACB=90°,AM=CN.∵O为AB的中点,∴CO=AO,∴∠OAC=∠OCA,∴∠OAM=∠OCN,在△MAO和△NCO中,,∴△MAO≌△NCO(SAS),∴OM=ON.附赠:初中数学易错题填空专题一、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。