高中数学数列知识点总结97965
- 格式:doc
- 大小:263.00 KB
- 文档页数:6
第六章 数列二、重难点击重点:数列的概念,等差数列,等比数列的定义,通项公式和前n 项和公式及运用,等差数列、等比数列的有关性质。
注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、函数与方程思想、分类与讨论思想、化归与转化思想等。
知识网络第一课时 数列四、数列通项n a 与前n 项和n S 的关系1.∑==++++=ni in n aa a a a S 13212.⎩⎨⎧≥-==-2111n S S n S a n n n课前热身3.数列{}n a 的通项公式为 n n a n 2832-=,则数列各项中最小项是( B )A .第4项B .第5项C .第6项D .第7项4.已知数列{}n a 是递增数列,其通项公式为n n a n λ+=2,则实数λ的取值范围是),3(+∞-5.数列{}n a 的前n 项和142+-=n n S n ,,则⎩⎨⎧≥-=-=25212n n n a n数列与正整数集关系等差数列等比数列特殊数列求和方法公式法倒序相加法 错位相减法 裂项相消法n 定义通项公式中项前项的和递推公式通项公式 数列题型一 归纳、猜想法求数列通项【例1】根据下列数列的前几项,分别写出它们的一个通项公式 ⑴7,77,777,7777,…⑶1,3,3,5,5,7,7,9,9… 解析:⑴将数列变形为),110(97-⨯),110(972-)110(973-,,)110(97-n⑶将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,…。
可得数列的通项公式为2)1(1nn n a -++=点拨:本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项数的一般规律,从而求得通项。
题型二 应用⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 求数列通项例2.已知数列{}n a 的前n 项和n S ,分别求其通项公式.⑴23-=nn S解析:⑴当123,1111=-===S a n 时, 当)23()23(,211---=-=≥--n nn n n S S a n 时132-⋅=n又11=a 不适合上式,故⎩⎨⎧≥⋅==-)2(32)1(11n n a n n三、利用递推关系求数列的通项【例3】根据下列各个数列{}n a 的首项和递推关系,求其通项公式 ⑴141,21211-+==+n a a a n n 解析:⑴因为14121-+=+n a a n n ,所以 )121121(2114121+--=-=-+n n n a a n n 所以)3111(2112-=-a a )5131(2123-=-a a 43111()257a a -=-…,…,1111()22321n n a a n n --=---以上)1(-n 个式相加得 )1211(211--=-n a a n即:24342411--=--=n n n a n点拨:在递推关系中若),(1n f a a n n +=+求n a 用累加法,若),(1n f a a nn =+求n a 用累乘法,若q pa a n n +=+1,求n a 用待定系数法或迭代法。
一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项 a n与项数 n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集( 或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2. 通项公式:如果数列 a n的第 n 项与序号之间可以用一个式子表示, 那么这个公式叫做这个数列的通项公式,即a n f (n) .3. 递推公式:如果已知数列a n的第一项(或前几项),且任何一项a n与它的前一项a n 1(或前几项)间的关系可以用一个式子来表示,即 a n f (a n 1 ) 或 a n f (a n 1 , a n 2 ) ,那么这个式子叫做数列a n的递推公式 . 如数列a n中, a1 1, a n2a n 1 ,其中a n2a n 1 是数列 a n的递推公式 .4.数列的前 n项和与通项的公式① S n a1 a2a n;② a nS1 (n1)S n .S n 1 ( n 2)5. 数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列 .①递增数列 : 对于任何n N , 均有 a n 1②递减数列 : 对于任何n N , 均有 a n 1③摆动数列 : 例如 :1,1,1,1,1, .④常数数列 : 例如 :6,6,6,6, ,,.⑤有界数列 : 存在正数M 使 a n M , n a n .a n . N.⑥无界数列 : 对于任何正数M , 总有项 a n使得 a n M .1、已知 a n n (n N *) ,则在数列 { a n } 的最大项为 __(答: 1 );n2156an 252、数列 { a n } 的通项为a n,其中 a,b 均为正数,则 a n与 a n 1的大小关系为 ___(答:bn 1a n a n 1);3、已知数列 { a n }中,a n n2n ,且 { a n } 是递增数列,求实数的取值范围(答:3 );4、一给定函数y f (x) 的图象在下列图中,并且对任意a1(0,1) ,由关系式 a n 1 f (a n )得到的数列{ a n }满足 a n 1 a n(n N *),则该函数的图象是()(答: A )二、等差数列1、等差数列的定义:如果数列an 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
..一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n与项数n是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列a n的第n项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即af(n)n.3.递推公式:如果已知数列a n的第一项(或前几项),且任何一项a n与它的前一项a(或前几项)间的关系可以用一个式子来表示,即a n f(a n1)或a n f(a n1,a n2),n1那么这个式子叫做数列a的递推公式.如数列an中,a11,a n2a n1,其中na n2a n1是数列a n的递推公式.4.数列的前n项和与通项的公式①Sn a1a2a;②nS(n1)1a n.SS(n2)nn15.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何nN,均有a n1a n.②递减数列:对于任何nN,均有a n1a n.③摆动数列:例如:1,1,1,1,1,.④常数数列:例如:6,6,6,6,⋯⋯.⑤有界数列:存在正数M使a n M,n N.⑥无界数列:对于任何正数M,总有项a使得a n M.n1、已知n*a2(nN)nn156,则在数列{}a的最大项为__(答:n125);2、数列{}a的通项为nana n,其中a,b均为正数,则a n与a n1的大小关系为___(答:bn1aa n1);n23、已知数列{a}中,a是递增数列,求实数的取值范围(答:3);ann,且{}nnn4、一给定函数yf(x)的图象在下列图中,并且对任意a(0,1),由关系式a n1f(a n)1*得到的数列{}a满足a n1a n(nN),则该函数的图象是()(答:A)neord完美格式..二、等差数列1、等差数列的定义:如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
⾼中数学:数列知识点总结(⽂字版)
1、数列的通项公式
2、等差数列
定义:对于数列,若(常数),则数列是等差数列。
(1)等差数列的通项公式。
[说明]该公式整理后是关于n的⼀次函数。
(2)等差数列的前n项和①②
[说明]对于公式②,整理后是关于n的没有常数项的⼆次函数。
(3)等差中项:如果,,成等差数列,那么叫做与的等差中项。
即:或
[说明]:在⼀个等差数列中,从第2项起,每⼀项(有穷等差数列的末项除外)都是它的前⼀项与后⼀项的等差中项;事实上,等差数列中的某⼀项是与其等距离的前后两项的等差中项。
(4)等差数列的性质
①
②对于等差数列,若,则。
③若数列是等差数列,是其前n项的和,,那么,,成等差数列。
3、等⽐数列
(1)等⽐数列的判定⽅法
①定义法:对于数列,若,则数列是等⽐数列。
②等⽐中项法:对于数列,若,则数列是等⽐数列。
(2)等⽐数列的通项公式
如果等⽐数列的⾸项是,公⽐是,则等⽐数列的通项为。
(3)等⽐数列的前n项和
①②③当时,
(4)等⽐中项
如果在与之间插⼊⼀个数,使,,成等⽐数列,那么叫做与的等⽐中项。
也就是说,如果G是与的等⽐中项,那么,即。
(5)等⽐数列的性质
①
②对于等⽐数列,若,则
③若数列是等⽐数列,是其前n项的和,,那么,,成等⽐数列。
4、数列的前n项和
(1)重要公式:;
;
(2)等差数列中,
(3)等⽐数列中,
(4)裂项求和:
▍编辑:Wulibang(ID:2820092099)▍来源:综合⽹络。
高中数学数列知识点总结(经典)数列基础知识点和方法归纳一、数列的通项公式求数列通项公式的常用方法有:1.观察与归纳法:观察哪些因素随项数n的变化而变化,哪些因素不变;分析符号、数字、字母与项数n在变化过程中的联系,初步归纳公式。
2.公式法:对于等差数列和等比数列,可以直接利用其通项公式求解。
二、等差数列的定义与性质1.定义:若数列中任意一项与它的前一项的差等于一个常数d,则称该数列为等差数列,常数d称为公差。
等差数列的通项公式为an=a1+(n-1)d。
2.性质:1)若m+n=p+q,则am+an=ap+aq。
2)数列{a2n-1},{a2n},{a2n+1}仍为等差数列,前n项和Sn,S2n-Sn,S3n-S2n……仍为等差数列,公差为n^2d。
3)若三个数成等差数列,可设为a-d,a,a+d。
此时前n项和的最值可求二次函数Sn=an^2+bn的最值;或者求出数列{an}中的正、负分界项,当a1>0,d0时,解不等式组an+1≥0,an≤0,可得Sn达到最小值时的n值。
4)数列{ka_n}也成等差数列。
5)两个等差数列对应项和(差)组成的新数列仍成等差数列。
6)数列a1+a2+…+am,am+1+am+2+…+a2m,a2m+1+a2m+2+…+a3m,…仍成等差数列。
7)递增等差数列中,前n项和的最大值是所有非负项之和;递减等差数列中,前n项和的最大值是所有正项之和。
三、等比数列的定义与性质1.定义:若数列中任意一项与它的前一项的比等于一个常数q,则称该数列为等比数列,常数q称为公比。
等比数列的通项公式为an=a1q^(n-1)。
2.性质:1)若m+n=p+q,则am/aq=ap/an。
2)数列{a2n-1},{a2n},{a2n+1}仍为等比数列,且它们的公比均为q^2.3)前n项和:若q=1,Sn=na1;若q≠1,Sn=a1(1-q^n)/(1-q)。
需要注意的是,当q=1时,上式分母为0,此时前n项和为na1.4)数列{a_n}的通项公式为an=a1q^(n-1)。
1数列中a n 与S n 之间的关系:a nS ‘(n 1)注意通项能否合并。
S n & i ,(n 2).2、等差数列:⑴定义:如果一个数列从第 2项起,每一项与它的前一项的差等于同一个常数,即a n - a n 1=d , (n >2, n € N ), 那么这个数列就叫做等差数列。
⑵等差中项:若三数 a 、A b 成等差数列或a n pn q (p 、q 是常数)⑷前n 项和公式:n n 1 S n n^d2⑸常用性质: ① 若 mn p q m,n, p,q N ,贝U a m a n a p a q;② 下标为等差数列的项 a k ,a k m ,a k 2m ,,仍组成等差数列; ③ 数列 a n b ( ,b 为常数)仍为等差数列;④ 若{a n }、{0}是等差数列,则{ka n }、{ka n pb n } (k 、p 是非零常数)、{a p nq }( p,q N )、,…也成等差数列。
⑤单调性: a n 的公差为d ,则:i) d 0 a n 为递增数列; ii) d 0 a n 为递减数列; iii) d 0a n 为常数列;⑥数列{a n }为等差数列 a n pn q ( p,q 是常数)⑦若等差数列 a n 的前n 项和S n ,则S k 、S 2kS k 、S 3k S 2k …是等差数列。
3、等比数列⑴定义:如果一个数列从第 2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
⑵等比中项:若三数a 、Gb 成等比数列G 2 ab, ( ab 同号)。
反之不一定成立。
数列⑶通项公式:a n a 1(n 1)d a m (n m)dn a-i a n2⑶通项公式:a nn 1n maga m q⑷前n 项和公式:a 1 1 q n S i1 qa 1 a n q 1 q⑸常用性质①若m n pq m,n, p,q N , 则 am ana p a q;② a k ,a k m ,a k 2m ,为等比数列, 公比为 q k (下标成等差数列,则对应的项成等比数列)③ 数列a n (为不等于零的常数)仍是公比为 q 的等比数列;正项等比数列 a n ;则lg a n 是公差为lg q 的等差数列;④ 若a n 是等比数列,则 ca n , a n 2 ,a n r(r Z )是等比数列,公比依次是⑤ 单调性:a i 0,q 1或印 0,0 q 1 a “为递增数列; a i 0,0 q 1或q 0,q1a .为递减数列;q 1 a n 为常数列; q 0a n 为摆动数列;⑥ 既是等差数列又是等比数列的数列是常数列。
高中数学数列知识点总结(精华版)一、数列1. 数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称 为该数列的项 .⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调 有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同 的数列.⑵在数列中同一个数可以重复出现.⑶项 a n与项数 n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集 ( 或它的有限子集 ) 的函数当自变量 从小到大依次取值时对应的一列函数值,但函数不一定是数列2. 通项公式:如果数列 a n 的第 n 项与序号之间可以用一个式子表示 , 那么 这个公式叫做这个数列的通项公式,即 a n f(n).3. 递推公式:如果已知数列 a n 的第一项(或前几项),且任何一项 a n 与 它的前一项 a n 1(或前几项)间的关系可以用一个式子来表示,即 a n f(a n 1) 或a n f(a n1,a n 2) ,那么这个式子叫做数列 a n 的递推公式. 如数列 a n 中, a 1 1,a n 2a n 1,其中 a n 2a n 1是数列 a n 的递推公式 .4. 数列的前 n 项和与通项的公式S 1(n 1) ① S n a 1 a 2 a n ; ② a n 1.n 1 2 n nS n S n1(n 2)5. 数列的表示方法:解析法、图像法、列举法、递推法 .6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列, 常数数列;有界数列,无界数列 .① 递增数列 :对于任何 n N ,均有a n 1 a n . ② 递减数列 : 对于任何 n N , 均有 a n 1 a n . ③ 摆动数列 : 例如: 1,1, 1,1, 1, . ④ 常数数列 : 例如:6,6,6,6, ⋯⋯.⑤ 有界数列 :存在正数 M 使 a n M,n N .⑥ 无界数列:对于任何正数 M ,总有项a n 使得 a n M.n11、已知a n 2 n (n N * ) ,则在数列 { a n }的最大项为__(答: 1);n 2 156 252、数列{a n }的通项为a n an,其中a,b 均为正数,则 a n 与a n1的大小关系bn 1为 ___(答: a n a n 1);a 1 (0,1) ,由关系式 a n 1 f (a n )得到的数列 {a n }满足 a n1 a n (n N*) ,则该函 数的图象是 ()(答: A )1、等差数列的定义 :如果数列 a n 从第二项起每一项与它的前一项的差等于同 一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
高中数学数列知识点总结(精华版)等比数列公式性质知识点1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈n_,q为非零常数).(2)等比中项:如果a、g、b成等比数列,那么g叫做a与b的等比中项.即:g是a与b的等比中项a,g,b成等比数列g2=ab.2.等比数列的有关公式(1)通项公式:an=a1qn-1.3.等比数列{an}的常用性质(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈n_),则am·an=ap·aq=a.特别地,a1an=a2an-1=a3an-2=….(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列sm,s2m-sm,s3m-s2m,…仍是等比数列(此时q≠-1);an=amqn-4.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.(2)由an+1=qan,q≠0并无法立即断言{an}为等比数列,还要检验a1≠0.5.等比数列的前n项和sn(1)等比数列的前n项和sn就是用错位二者加法求出的,特别注意这种思想方法在数列议和中的运用.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.1.等比中项如果在a与b中间插入一个数g,使a,g,b成等比数列,那么g叫做a与b的等比中项。
存有关系:注:两个非零同号的实数的'等比中项有两个,它们互为相反数,所以g2=ab是a,g,b 三数成等比数列的必要不充分条件。
2.等比数列通项公式an=a1_q’(n-1)(其中首项是a1,公比是q)an=sn-s(n-1)(n≥2)前n项和当q≠1时,等比数列的前n项和的公式为sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)当q=1时,等比数列的前n项和的公式为sn=na13.等比数列前n项和与通项的关系an=a1=s1(n=1)an=sn-s(n-1)(n≥2)4.等比数列性质(1)若m、n、p、q∈n_,且m+n=p+q,则am·an=ap·aq;(2)在等比数列中,依次每k项之和仍成等比数列。
数列专题◆ 考点一:求数列的通项公式1. 由a n 与S n 的关系求通项公式由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;数列的通项a n 与前n 项和S n 的关系是a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n .2.由递推关系式求数列的通项公式由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解.◆ 累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; ◆ 累乘法:递推关系形如a n +1a n=f(n),常用累乘法求通项;◆ 构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p ≠1,q ≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列;2)递推关系形如“a n +1=pa n +q n(q ,p 为常数,且p ≠1,q ≠0)”的数列求通项,此类型可以将关系式两边同除以q n转化为类型(4),或同除以p n +1转为用迭加法求解.3) ◆ 倒数变形3.数列函数性质的应用数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决.(2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.(3)数列{a n }的最大(小)项的求法可以利用不等式组⎩⎨⎧ a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎨⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.[例3] 已知数列{a n }.(1)若a n =n 2-5n +4,①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.**数k 的取值*围.考点二:等差数列和等比数列(1)若m 、n 、p 、q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q特别地,若m +n =2p ,则a m ·a n =a 2p . (2)a n =a m qn -m(3)若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q ≠-1). S n =n a 1+a n 2=na 1+n n -12d (1)q ≠1,S n =a 11-qn1-q =a 1-a n q1-q(2)q =1,S n =na 11.在等差(比)数列中,a 1,d(q),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d(公比q)这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.用函数的观点理解等差数列、等比数列(1)对于等差数列a n =a 1+(n -1)d =dn +(a 1-d),当d ≠0时,a n 是关于n 的一次函数,对应的点(n ,a n )是位于直线上的若干个离散的点;当d >0时,函数是单调增函数,对应的数列是单调递增数列,S n 有最小值; 当d =0时,函数是常数函数,对应的数列是常数列,S n =na 1;当d <0时,函数是减函数,对应的数列是单调递减数列,S n 有最大值.若等差数列的前n 项和为S n ,则S n =pn 2+qn(p ,q ∈R ).当p =0时,{a n }为常数列;当p ≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列a n =a 1qn -1,可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }是单调递增数列; 当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是单调递减数列;当q =1时,是一个常数列;当q <0时,无法判断数列的单调性,它是一个摆动数列. 4.常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n},{1a n}等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q .(4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公比为q k.等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d. 5) 5.易错提醒(1)应用关系式a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac. 6.等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn.注意:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断. 7.等比数列的判定方法(1)定义法:若a n +1a n =q(q 为非零常数,n ∈N *)或a n a n -1=q(q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c ·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k(k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.考点三:数列求和中应用转化与化归思想的常见类型:1.公式法——直接利用等差数列、等比数列的前n 项和公式求和(1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -12d ;(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 11-q n1-q ,q ≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,则求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 3.错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.求a 1b 1+a 2b 2+…+a n b n 的和就适用此法.做法是先将和的形式写出,再给式子两边同乘或同除以公比q ,然后将两式相减,相减后以“q n”为同类项进行合并得到一个可求和的数列(注意合并后有两项不能构成等比数列中的项,不要遗漏掉). 4.裂项相消法(注重积累!!!)利用通项变形,将通项分裂成两项或n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n +1的数列的前n 项和,其中{a n }若为等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1. 利用裂项相消法求和时应注意哪些问题?(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项.常见的拆项公式(1)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ;(2)1(2n -1)(2n +1)=12⎝ ⎛12n -1-12n +1; (3)1n (n +1)=1n -1n +1;(4)1n +n +1=n +1-n; (5)1n +n +k =1k(n +k-n). 5.分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf(n)类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 7.放缩法是证明数列型不等式的压轴题的最重要的方法,放缩法的注意问题以及解题策略(1)明确放缩的方向:即是放大还是缩小,看证明的结论,是小于*项,则放大,是大于*个项,则缩小。
数列高考知识点大全总结一、数列的概念1. 数列的定义数列是由一系列有限或无限个数按照一定的顺序排列组成的。
用数学语言描述就是一个由实数构成的序列。
一般用字母或符号表示,如{an}、{bn}等。
2. 数列中的相关概念(1)通项公式:数列中的第n个数的一般表达式,通常用an表示。
(2)前n项和:数列前n项的和,通常用Sn表示。
3. 数列的分类(1)等差数列:若数列中相邻两项的差恒定,称其为等差数列。
其通项公式为an=a1+(n-1)d。
(2)等比数列:若数列中相邻两项的比恒定,称其为等比数列。
其通项公式为an=a1*q^(n-1)。
(3)常数数列:数列中的每一项都相等的数列称为常数数列。
二、数列的性质1. 数列的有界性(1)有界数列:当数列中的数有上界和下界时,称其为有界数列。
(2)无界数列:当数列中的数没有上界和下界时,称其为无界数列。
2. 数列的单调性若数列中的每一项都满足an≤an+1或者an≥an+1时,称其为单调递增数列或者单调递减数列。
3. 数列的性质(1)数列的线性组合:若an和bn是两个数列,k和m是任意常数,那么k*an+m*bn 也是一个数列。
(2)数列的绝对值:若an是一个数列,那么|an|也是一个数列。
三、常见数列1. 等差数列(1)性质:等差数列的前n项和Sn=a1*n+n(n-1)d/2。
(2)求通项公式:an=a1+(n−1)d。
(3)常用公式:Sn=n/2(a1+an)。
2. 等比数列(1)性质:等比数列的前n项和Sn=a1*(q^n-1)/(q-1),|q|>1。
(2)求通项公式:an=a1*q^(n-1)。
(3)常用公式:Sn=a1*(q^n-1)/(q-1)。
3. 斐波那契数列(1)定义:斐波那契数列是一个典型的递推数列,前两项都为1,从第三项开始,每一项都等于前两项之和。
(2)通项公式:an=f(n)=f(n-1)+f(n-2)。
(3)性质:斐波那契数列是一个无界数列。
高中数学数列知识点归纳一、数列的概念与性质1.数列的定义:数列是一组按照一定规律排列的实数,通常用{a1, a2,a3,...}表示。
2.数列的分类:根据项的性质,数列可分为整数数列、有理数数列、实数数列等;根据项之间的关系,数列可分为等差数列、等比数列、几何数列等。
3.数列的性质:数列具有交换性、结合律、分配律等基本运算性质。
二、等差数列1.等差数列的定义与性质:等差数列是相邻两项之差为一个常数的数列。
2.等差数列的通项公式:an = a1 + (n-1)d,其中a1为首项,d为公差。
3.等差数列的前n项和公式:Sn = n/2 * (a1 + an) = n/2 * [2a1 + (n-1)d]。
4.等差数列的求和公式应用:求解等差数列前n项和的最值、求解等差数列中的未知量等问题。
三、等比数列1.等比数列的定义与性质:等比数列是相邻两项之比为一个常数的数列。
2.等比数列的通项公式:an = a1 * q^(n-1),其中a1为首项,q为公比。
3.等比数列的前n项和公式:Sn = a1 * (1 - q^n) / (1 - q)。
4.等比数列的求和公式应用:求解等比数列前n项和的最值、求解等比数列中的未知量等问题。
四、其他数列1.几何数列:几何数列是相邻两项之比为一个常数的数列,通项公式为an = a1 * r^(n-1)。
2.调和数列:调和数列是相邻两项之比为根号下n的数列,通项公式为an = a1 * (n^(1/2))^(n-1)。
3.Fibonacci数列:Fibonacci数列是满足递推关系F(n) = F(n-1) + F(n-2)的数列,具有递归关系。
五、数列的递推关系与迭代1.递推关系的定义与性质:递推关系是利用数列的前几项求解后续项的关系。
2.迭代的方法与应用:迭代是求解递推关系的一种方法,可用于求解数列中的未知量、求解数列的极限等。
六、数列的极限与连续1.数列极限的定义与性质:数列极限是数列趋于某个值的过程,具有唯一性、无穷小性等性质。
数列知识点总结word文档一、数列的概念数列是按照一定的顺序排列的一系列数的集合。
数列中的每个数叫做这个数列的项。
二、数列的表达方式1. 通项公式:数列的每一项和项号之间的函数关系式。
2. 递归公式:通过前一项或者前几项来表示后一项的公式。
3. 初项和公差:初项表示数列中的第一个数,公差表示数列中的相邻两项之间的差值。
三、等差数列1. 概念:如果一个数列中任意两相邻的项的差值都相等,这个数列就是等差数列。
2. 通项公式:如果等差数列的首项为a1,公差为d,那么该数列的通项公式为an=a1+(n-1)d。
四、等比数列1. 概念:如果一个数列中任意两相邻的项的比值都相等,这个数列就是等比数列。
2. 通项公式:如果等比数列的首项为a1,公比为q,那么该数列的通项公式为an=a1*q^(n-1)。
五、数列的性质1. 数列的前n项和:数列前n项之和的公式为Sn=n(a1+an)/2。
2. 数列前n项平方和:数列前n项平方和的公式为Sn=n*(n+1)*(2n+1)/6。
3. 等差数列求和公式:等差数列前n项和的公式为Sn=n(a1+an)/2。
4. 等比数列求和公式:等比数列前n项和的公式为Sn=a1*(1-q^n)/(1-q)。
六、常见数列1. 斐波那契数列:该数列的前两项为1,第三项开始每一项都是前两项之和。
2. 等差数列:每一项与前一项的差值都相等。
3. 等比数列:每一项与前一项的比值都相等。
4. 等比数列:首项为a1,公比为q的等比数列为an=a1*q^(n-1)。
七、数列的应用1. 数学问题:在数学中,数列常常应用于求和问题、发现规律等。
2. 物理问题:在物理学中,数列可以用来描述变化过程。
3. 经济问题:在经济学中,数列可以被用来预测发展趋势。
4. 生活中的应用:例如车流量的变化、人口增长等都可以用数列来描述和预测。
总结:数列是数学中的一个重要概念,它包含了等差数列、等比数列等不同类型的数列,具有广泛的应用价值。
高中数列知识点总结总结一、数列的概念及性质1.1 数列的定义数列是按照一定顺序排列的数的序列。
数列中的每一个数称为这个数列的项。
数列通常用a1, a2, a3, ......, an表示。
1.2 数列的性质- 数列有限项和无穷项- 数列的项可以是实数或复数- 数列的任意项可以用下标来表示- 数列中的项是按照一定的规律排列的,这就是数列的定义二、数列的分类2.1 等差数列若一个数列的相邻项之间的差是一个常数,则这个数列称为等差数列。
这个常数称为公差,通常用d表示。
等差数列的通项公式为:an = a1 + (n-1)d等差数列的前n项和:Sn = (a1 + an)*n/22.2 等比数列若一个数列的相邻项之间的比是一个常数,则这个数列称为等比数列。
这个常数称为公比,通常用q表示。
等比数列的通项公式为:an = a1 * q^(n-1)等比数列的前n项和:Sn = (a1*(1-q^n))/(1-q)2.3 菲波那契数列菲波那契数列是一个非常特殊的数列,它的定义是:F1=1,F2=1,Fn=Fn-1+Fn-2(n>2)。
这个数列的通项公式比较复杂,但它的性质非常有趣,包括黄金分割比例等等。
三、数列的通项公式数列的通项公式是数列中每一项的一般表示形式。
对于等差数列来说,通项公式通常是一个关于n的线性函数;对于等比数列来说,通项公式则通常是一个指数函数。
通项公式的求解是数列问题中一个非常重要的问题,也是数列的一个基本性质。
四、数列求和在数列的学习中,求和也是一个非常重要的问题。
数列的求和通常要涉及到前n项和的计算,这是一个基本的数列问题。
对于等差数列和等比数列来说,求和公式是非常有用的,它们可以简化前n项和的计算。
通过求和,可以得到数列中所有项的总和,从而更好地理解数列的性质和规律。
五、数列的应用数列在现实生活和科学研究中有许多重要的应用,包括金融、物理、生物等等领域。
例如,利息计算、天文学中的天体运动、生物中的种群变化等等都可以用数列来进行建模和计算。
知识点总结数列高中一、数列的概念和基本性质1.1 数列的定义数列是由一系列按照一定规律排列的数所组成的有限序列或无限序列。
其中,按照一定规律排列的数称为数列的项,通常用a₁, a₂, a₃, ...表示。
通常情况下,数列可以表示为a₁, a₂, a₃, ... 或{a_n},其中n为项的下标,表示数列的第n 个项。
在数列中,第一个数称为首项,通常用a₁表示;数列中相邻两项的差称为公差,通常用d 表示。
1.2 等差数列等差数列是数列中相邻两项的差相等的数列。
例如,2, 4, 6, 8, ... 就是一个等差数列,其中公差为2。
等差数列的通项公式为aₙ = a₁ + (n-1)d,其中a₁为首项,n为项数,d为公差。
1.3 等比数列等比数列是数列中相邻两项的比相等的数列。
例如,3, 6, 12, 24, ... 就是一个等比数列,其中公比为2。
等比数列的通项公式为aₙ = a₁ * r^(n-1),其中a₁为首项,n为项数,r为公比。
1.4 通项公式和通项求和公式通项公式是指可以用n的函数来表示数列中第n个项的公式。
通项求和公式是指可以用n 的函数来表示数列的前n项和的公式。
通项公式和通项求和公式在求解数列问题时非常有用。
1.5 递推关系递推关系是指数列中的各项之间存在着某种规律或关系,通过这种关系可以求得数列的各项。
例如,斐波那契数列就是通过递推关系来定义的。
1.6 数列的求和公式对于一般的数列,可以通过数学方法求得其前n项和的公式。
这对于数列的应用问题非常有用。
例如,等差数列的前n项和公式为Sₙ = (a₁ + aₙ) * n / 2,其中a₁为首项,aₙ为第n项,n为项数。
二、数列的应用2.1 数列的应用问题数列在实际生活中有着广泛的应用。
例如,数列可以用来描述物理问题中的运动规律,经济问题中的增长规律,以及金融问题中的利息计算等。
2.2 数列与函数的关系数列和函数是数学中重要的概念,它们之间存在着密切的关系。
数列一、等差数列性质总结1. 等差数列的定义式:d a a n n =--1(d 为常数)(2≥n );2.等差数列通项公式:*1(1) ()n a a n d n N =+-∈ , 首项:1a ,公差:d 推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列*-112(2,)n n n a a a n n N +⇔=+≥∈212+++=⇔n n n a a a4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+(其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n -时,n a 是项数为2n-1的等差数列的中间项()()()1212121212n n n n a a S n a ---+==-(项数为奇数的等差数列的各项和等于项数乘以中间项)5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a . (3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列 等差中项性质法:-112(2n )n n n a a a n N ++=+≥∈,.7.提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。
高中数学《数列》知识点归纳
一、数列的概念
1. 数列的定义与表示
2. 数列的分类:等差数列、等比数列、等差几何数列、斐波那契数列、调和数列等
3. 数列的通项公式、前n项和公式及其应用
五、斐波那契数列
1. 斐波那契数列的定义和性质
2. 斐波那契数列的通项公式及其应用
3. 斐波那契数列的递推公式及其推导方法
4. 斐波那契数列的特殊应用:黄金分割
六、调和数列
1. 调和数列的定义和特征:调和平均数、算术平均数、宾汉姆不等式
2. 调和数列的通项公式及应用
3. 调和数列和几何平均数的关系
4. 调和数列的应用:调和平均数与平均速度等
七、数列极限
1. 数列的极限及其定义
2. 数列极限的性质:唯一性、有界性、保号性、代数运算性等
3. 数列极限的判定法:夹逼定理、单调有界原理等
4. 数列极限的应用:数学归纳法、发散数列的研究等
八、数列的应用领域
1. 数列在经济方面的应用:摆脱“复利”套路等
2. 数列在自然科学中的应用:波动方程、元素周期表等
3. 数列在计算机科学中的应用:搜索算法、排序算法等
4. 数列在生命科学和社会实践中的应用:基因序列分析、大学分配问题等。
数列高考知识点总结一、数列的定义与基本性质1. 数列的定义数列是按照一定的顺序排列起来的一组数,用于表示数学模型中按照某种规律排列的一系列数。
一般用{ }表示,如{an},其中n表示数列的项数,an表示第n个数列的项,称为通项公式。
2. 数列的基本性质(1)有界性:若对于数列{an},存在一个实数M,使得|an| ≤ M对所有n∈N都成立,则称该数列有界;若不存在这样的M,则称该数列无界。
(2)单调性:若对于数列{an},当n增大时,若an递增或递减,则称该数列为单调数列;否则称为非单调数列。
(3)有限性:若数列{an}只有有限项,则称该数列为有限数列;若数列{an}有无限多项,则称该数列为无限数列。
二、常见数列及其求和公式1. 等差数列若数列{an}满足an+1 - an = d(n∈N*),其中d为常数,则称该数列为等差数列。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
等差数列的前n项和为Sn = (a1 + an)n/2,其中a1为首项,an为末项。
2. 等比数列若数列{an}满足an/an-1 = q(n∈N*),其中q为常数,则称该数列为等比数列。
等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比。
等比数列的前n项和为Sn = a1(1 - q^n)/(1 - q),其中a1为首项,q为公比,当|q| < 1时,和为Sn = a1/(1 - q)。
3. 斐波那契数列斐波那契数列是一个特殊的数列,其定义为:f(1) = 1, f(2) = 1, f(n) = f(n-1) + f(n-2)(n≥3),即每一项都是前两项的和。
斐波那契数列的通项公式为f(n) =(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
4. 调和数列调和数列的通项公式为an = 1/n。
5. 已知数列的前n项和求通项公式若数列{an}的前n项和Sn已知,则可以通过递推关系式推导出其通项公式。
数列基础知识点和方法归纳1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+-等差中项:x A y ,,成等差数列2A x y ⇔=+前n 项和()()11122n n a a n n n S na d +-==+ 性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,,(4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --= (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值. 当100a d <>,,由100n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n Snd S S =-奇偶,1+=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质 定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=. 等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩(要注意!) 性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =·· (2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q .注意:由n S 求n a 时应注意什么?1n =时,11a S =;2n ≥时,1n n n a S S -=-.3.求数列通项公式的常用方法(1)求差(商)法如:数列{}n a ,12211125222n n a a a n +++=+……,求n a 解1n =时,112152a =⨯+,∴114a =① 2n ≥时,12121111215222n n a a a n --+++=-+……② ①—②得:122n n a =,∴12n n a +=,∴114(1)2(2)n n n a n +=⎧=⎨≥⎩[练习]数列{}n a 满足111543n n n S S a a +++==,,求n a 注意到11n n n a S S ++=-,代入得14n n S S +=;又14S =,∴{}n S 是等比数列,4n n S =2n ≥时,1134n n n n a S S --=-==……· (2)叠乘法如:数列{}n a 中,1131n n a n a a n +==+,,求n a 解3212112123n n a a a n a a a n --=·……·……,∴11n a a n=又13a =,∴3n a n =. (3)等差型递推公式由110()n n a a f n a a --==,,求n a ,用迭加法2n ≥时,21321(2)(3)()n n a a f a a f a a f n --=⎫⎪-=⎪⎬⎪⎪-=⎭…………两边相加得1(2)(3)()n a a f f f n -=+++…… ∴0(2)(3)()n a a f f f n =++++……[练习]数列{}n a 中,()111132n n n a a a n --==+≥,,求n a (()1312n n a =-)(4)等比型递推公式1n n a ca d -=+(c d 、为常数,010c c d ≠≠≠,,) 可转化为等比数列,设()()111n n n n a x c a x a ca c x --+=+⇒=+-令(1)c x d -=,∴1d x c =-,∴1n d a c ⎧⎫+⎨⎬-⎩⎭是首项为11d a c c +-,为公比的等比数列 ∴1111n n d d a a c c c -⎛⎫+=+ ⎪--⎝⎭·,∴1111n n d d a a c c c -⎛⎫=+- ⎪--⎝⎭ (5)倒数法如:11212n n n a a a a +==+,,求n a 由已知得:1211122n n n na a a a ++==+,∴11112n n a a +-= ∴1n a ⎧⎫⎨⎬⎩⎭为等差数列,111a =,公差为12,∴()()11111122n n n a =+-=+·,∴21n a n =+(附: 公式法、利用{1(2)1(1)n n S S n S n n a --≥==、累加法、累乘法.构造等差或等比1n n a pa q +=+或1()n n a pa f n +=+、待定系数法、对数变换法、迭代法、数学归纳法、换元法) 4. 求数列前n 项和的常用方法(1) 裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项.如:{}n a 是公差为d 的等差数列,求111nk k k a a =+∑解:由()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭· ∴11111223111111111111n n k k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑…… 11111n d a a +⎛⎫=- ⎪⎝⎭[练习]求和:111112123123n+++++++++++ (121)n n a S n ===-+…………, (2)错位相减法若{}n a 为等差数列,{}n b 为等比数列,求数列{}n n a b (差比数列)前n 项和,可由n n S qS -,求n S ,其中q 为{}n b 的公比.如:2311234n n S x x x nx -=+++++……①()23412341n n n x S x x x x n x nx -=+++++-+·……②①—②()2111n n n x S x x x nx --=++++-……1x ≠时,()()2111n n n x nx S x x -=---,1x =时,()11232n n n S n +=++++=…… (3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.121121n n n n n n S a a a a S a a a a --=++++⎫⎬=++++⎭…………相加()()()12112n n n n S a a a a a a -=++++++…… [练习]已知22()1x f x x=+,则 111(1)(2)(3)(4)234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由2222222111()111111x x x f x f x x x x x ⎛⎫ ⎪⎛⎫⎝⎭+=+=+= ⎪+++⎝⎭⎛⎫+ ⎪⎝⎭ ∴原式11111(1)(2)(3)(4)111323422f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=++++++=+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ (附: a.用倒序相加法求数列的前n 项和如果一个数列{an },与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n 项和公式的推导,用的就是“倒序相加法”。
b.用公式法求数列的前n项和对等差数列、等比数列,求前n 项和S n可直接用等差、等比数列的前n 项和公式进行求解。
运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
c.用裂项相消法求数列的前n 项和裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。
d.用错位相减法求数列的前n 项和错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。
即若在数列{an ·b n }中,{a n }成等差数列,{b n }成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。
e .用迭加法求数列的前n项和迭加法主要应用于数列{a n }满足a n +1=a n +f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成a n-a n=f(n),代入各项,得到一系列式子,把所有的式子加到+1,从而求出Sn。
一起,经过整理,可求出anf.用分组求和法求数列的前n项和所谓分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。
g.用构造法求数列的前n项和所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。
)。