六年级数学组合图形面积经典习题
- 格式:doc
- 大小:1.93 MB
- 文档页数:5
小学六年级(组合图形)试题训练
求阴影部分面积
1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求
三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S 阴。
部分12平方厘米,求阴影部分面积。
3、求下列图形的体积。
(单位:厘米)。
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
小学六年级(组合图形)试题训练
求阴影部分面积
1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求
三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S 阴。
部分12平方厘米,求阴影部分面积。
3、求下列图形的体积。
(单位:厘米)。
2022-2023学年小学六年级思维拓展举一反三精编讲义专题10 面积计算(组合图形的面积)对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。
有些图形可以根据“容斥问题“的原理来解答。
在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。
【典例分析01】如图20-1所示,求图中阴影部分的面积。
【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图20-2),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米【3.14×102×14-10×(10÷2)】×2=107(平方厘米)答:阴影部分的面积是107平方厘米。
解法二:以等腰三角形底的中点为中心点。
把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。
(20÷2)2×12-(20÷2)2×12=107(平方厘米)知识精讲典例分析【典例分析02】如图20-6所示,求图中阴影部分的面积(单位:厘米)。
【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a )的面积,再用大扇形的面积减去空白部分(a )的面积。
如图20-7所示。
3.14×62×14 -(6×4-3.14×42×14 )=16.82(平方厘米)解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。
把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。
3.14×42×14 +3.14×62×14 -4×6=16.28(平方厘米) 答:阴影部分的面积是16.82平方厘米。
1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是
18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面
积。
(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)
部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S阴。
部分12平方厘米,求阴影部分面积。
六年级上册数学组合图形〔圆〕的周长和面积练习题一、根底训练:1.求阴影局部的面积(单位:厘米)。
2X2÷2-3.14x2x2÷42.正方形面积是16平方厘米,求阴影局部的面积。
16÷4=4(cm) 16-3.14x4x4÷43.求图中阴影局部的面积及周长。
〔单位cm〕面积:2x2-3.14x1x1=0.86〔平方厘米〕周长:3.14x1x1=3.14〔cm〕4.求阴影局部的面积及周长。
(单位:厘米)面积:4x4-3.14x〔4÷2〕x〔4÷2〕周长:4x2+3.14x45.求阴影局部的面积。
7.如图〔8〕,求阴影局部的面积。
(单位:厘米)8.如图〔9〕求阴影局部的面积。
(单位:厘米)S=〔2+1〕X2=6〔平方厘米〕9. 如图〔11〕求阴影局部的面积。
(单位:厘米)〖3.14x4x4-3.14x3x3〗÷610.在如图〔12〕是正三角形中求阴影局部的面积及周长。
(单位:厘米) 面积:3.14x3x3÷2 周长:3.14x3+3x612. 如图〔13〕求阴影局部的面积。
(单位:厘米)13.如图〔14〕求阴影局部的面积。
(单位:厘米)16.如右图〔33〕,求阴影局部的面积及周长。
(单位:厘米)二、能力提升:17.如右图〔19〕正方形边长为4厘米,求阴影局部的面积及周长。
18.如图〔20〕,正方形ABCD的面积是36平方厘米,求阴影局部的面积。
19.如图〔22〕,正方形边长为8厘米,求阴影局部的面积。
20.如图〔28〕求阴影局部的面积。
(单位:厘米)21.如图〔33〕求阴影局部的面积。
六年级上册数学:《组合图形面积》应用题1、如下图,大正方形内有一个最大的圆,圆内有一个最大的正方形。
算一算,大正方形与小正方形的面积之比是多少?大正方形的面积:2r×2r=4r²小正方形的面积:(1/2×2r×r)×2=2r²4r²: 2r²=2:1答:大正方形与小正方形的面积之比是2:1。
2、光盘的银色部分是一个圆环,内圆半径是2厘米,外圆半径是6厘米,它的面积是多少?3.14×(6²-2²)=100.48(平方厘米)答:它的面积是100.48平方厘米。
3、一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其它地方是草坪。
草坪的占地面积是多少?3.14×[(50÷2)²-(10÷2)²]=1884(平方米)答:草坪的占地面积是1884平方米。
4、求下面图形阴影部分的面积。
(单位:厘米)(16÷2)×4÷2×2=32(平方厘米)5、一个运动场如右图,两端是半圆形,中间是长方形。
这个运动场的周长是多少米?面积是多少平方米?周长:2×3.14×32+100×2=4009.6(m)面积:3.14×32²+100×(32×2)=9615.36(m²)6、右图中的花瓣状门洞的边是由4个直径相等的半圆组成的。
这个门洞的周长和面积分别是多少?周长:3.14×1×2=6.28(m)面积:3.14×(1÷2)²×2+1×1=2.57(m²)。
班级小组姓名成绩(满分120)一、组合图形的面积(一)组合图形的面积计算(共4小题,每题3分,共计12分)例1.求下面图形的面积。
(单位:cm)32×10÷2+32×203×4÷2+(5+10)×5÷210×12-(4+8)×2÷2=160+640=6+37.5=120-12=800(cm²)=43.5(cm²)=108(cm²)例1.变式1.先回答问题,再计算图形的面积。
(单位:cm)(1)组合图形的面积=(长方形)面积+(三角形)面积36×24+24×21÷2=1116(平方厘米)(2)52阴影部分的面积=(梯形)面积-(三角形)面积(30+52)×28÷2-30×28÷2=728(cm²)例1.变式2.计算下面图形的面积,你能用不同的计算方法吗?5×2.5+(3+5)×(5-2.5)÷2=5×2.5+8×2.5÷2=12.5+10=22.5(平方米)5×3+(2.5+5)×(5-3)÷2=5×3+7.5×2÷2=15+7.5=22.5(平方米)例1.变式3.如图,左边阴影部分的面积是60平方厘米。
求右边空白部分(梯形)的面积。
(单位:厘米)60×2÷8=15(厘米)(16+16+8)×15÷2=40×15÷2=300(平方厘米)答:空白部分的面积是300平方厘米.(二)组合图形的面积计算(共4小题,每题3分,共计12分)例2.计算下列组合图形的面积。
(单位:cm)(8.5+15)×13÷2-8.5×4÷2=135.75(cm²)例2.变式1.解决问题。
小学六年级(组合图形)试题训练
求阴影部分面积
1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求
三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S 阴。
部分12平方厘米,求阴影部分面积。
3、求下列图形的体积。
(单位:厘米)。
六年级图形组合面积练习题题目一:矩形与正方形的组合在一块长为8厘米,宽为6厘米的长方形纸板中,有一个边长为4厘米的正方形窗孔,求纸板的面积。
解析:首先,计算正方形窗孔的面积:正方形的面积 = 边长 ×边长 = 4厘米 × 4厘米 = 16平方厘米然后,计算剩下的长方形部分的面积:长方形的面积 = 长 ×宽 = 8厘米 × 6厘米 = 48平方厘米最后,计算纸板的面积:纸板的面积 = 长方形的面积 - 正方形的面积 = 48平方厘米 - 16平方厘米 = 32平方厘米因此,纸板的面积为32平方厘米。
题目二:三角形与梯形的组合在一张底边长为10厘米,高度为6厘米的梯形中,有一个底边长为4厘米,高度为4厘米的三角形突出部分,求梯形的面积。
解析:首先,计算三角形突出部分的面积:三角形的面积 = 底边 ×高度 / 2 = 4厘米 × 4厘米 / 2 = 8平方厘米然后,计算梯形的面积:梯形的面积 = (上底边 + 下底边) ×高度 / 2 = (10厘米 + 4厘米) × 6厘米 / 2 = 84平方厘米因此,梯形的面积为84平方厘米。
题目三:圆与矩形的组合在一张长宽分别为8厘米的矩形纸板中,有一个直径为6厘米的圆形突出部分,求纸板的面积。
解析:首先,计算圆形突出部分的面积:圆形的面积= π × 半径 ×半径 = 3.14 × 3厘米 × 3厘米 = 28.26平方厘米然后,计算剩下的矩形部分的面积:矩形的面积 = 长 ×宽 = 8厘米 × 8厘米 = 64平方厘米最后,计算纸板的面积:纸板的面积 = 矩形的面积 - 圆形的面积 = 64平方厘米 - 28.26平方厘米 = 35.74平方厘米因此,纸板的面积为35.74平方厘米。
总结:通过以上三个练习题,我们学习了图形组合面积的计算方法。
六年级数学组合图形的面积试题答案及解析1.两个边长相等的正方形各被分成25个大小相同的小方格.现将这两个正方形的一部分重叠起来,若左上角的阴影部分(块状)面积为,右下角的阴影部分(线状)面积为,求大正方形的面积.【答案】19【解析】块状部分与线状部分之间的部分称为D,则D与前者共14个方格,与后者共17个方格,因此每个方格的面积是大正方形的面积为.2.把同一个三角形的三条边分别5等分、7等分(如图1,图2),然后适当连接这些等分点,便得到了若干个面积相等的小三角形.已知图1中阴影部分面积是294平方分米,那么图2中阴影部分的面积是______平方分米.【答案】200【解析】图1中阴影部分占整个三角形面积的,图2中阴影部分占整个三角形面积的,故图2中阴影部分的面积为294÷=200(平方分米).3.求下列各个格点多边形的面积.【答案】15,20,14,17【解析】⑴∵;,∴(面积单位);⑵∵;,∴(面积单位);⑶∵;,∴(面积单位);⑷∵;,∴(面积单位).4.如图,每一个小方格的面积都是1平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【答案】6.5【解析】方法一:正方形格点阵中多边形面积公式:(N+-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=4,L=7,则用粗线围成图形的面积为:(4+-1)×1=6.5(平方厘米)方法二:如右上图,先求出粗实线外格点内的图形的面积,有①=3÷2=1.5,②=2÷2=1,③=2÷2=1,④=2÷2=1,⑤=2÷2=l,⑥=2÷2=1,还有三个小正方形,所以粗实线外格点内的图形面积为1.5+l+1+1+1+1+3=9.5,而整个格点阵所围成的图形的面积为16,所以粗线围成的图形的面积为:16-9.5=6.5平方厘米.5.四个面积为的正六边形如图摆放,求阴影三角形的面积.【答案】13/6【解析】如图,将原图扩展成一个大正三角形,则与都是正三角形.假设正六边形的边长为为,则与的边长都是,所以大正三角形的边长为,那么它的面积为单位小正三角形面积的49倍.而一个正六边形是由6个单位小正三角形组成的,所以一个单位小正三角形的面积为,三角形的面积为.由于,,所以与三角形的面积之比为.同理可知、与三角形的面积之比都为,所以的面积占三角形面积的,所以的面积的面积为.6.如图,与均为正方形,三角形的面积为6平方厘米,图中阴影部分的面积为多少?【答案】6【解析】如图,连接,比较与,由于,,即与的底与高分别相等,所以与的面积相等,那么阴影部分面积与的面积相等,为6平方厘米.7.如右图,过平行四边形内的一点作边的平行线、,若的面积为8平方分米,求平行四边形的面积比平行四边形的面积大多少平方分米?【答案】16【解析】根据差不变原理,要求平行四边形的面积与平行四边形的面积差,相当于求平行四边形的面积与平行四边形的面积差.如右上图,连接、.由于,所以.而,,所以(平方分米).8.右图中,和是两个正方形,和相交于,已知等于的三分之一,三角形的面积等于6平方厘米,求五边形的面积.【答案】49.5【解析】连接、,由于与平行,可知四边形构成一个梯形.由于面积为6平方厘米,且等于的三分之一,所以等于的,根据梯形蝴蝶定理或相似三角形性质,可知的面积为12平方厘米,的面积为6平方厘米,的面积为3平方厘米.那么正方形的面积为平方厘米,所以其边长为6厘米.又的面积为平方厘米,所以(厘米),即正方形的边长为3厘米.那么,五边形的面积为:(平方厘米).9.正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?【答案】50【解析】方法一:三角形BEF的面积,梯形EFDC的面积三角形BEF的面积,而四边形CEFH是它们的公共部分,所以,三角形DHF的面积三角形BCH的面积,进而可得,阴影面积三角形BDF的面积三角形BCD 的面积(平方厘米).方法二:连接CF,那么CF平行BD ,所以,阴影面积三角形BDF的面积三角形BCD的面积(平方厘米).10.如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是,,.那么图中阴影部分的面积是多少?【答案】97【解析】三角形的面积三角形的面积长方形面积阴影部分面积;又因为三角形的面积三角形的面积长方形面积,所以可得:阴影部分面积.11.如图,长方形的面积是2平方厘米,,是的中点.阴影部分的面积是多少平方厘米?【答案】平方厘米【解析】如下图,连接,、的面积相等,设为平方厘米;、的面积相等,设为平方厘米,那么的面积为平方厘米.,.所以有.比较②、①式,②式左边比①式左边多,②式右边比①式右边大0.5,有,即,.而阴影部分面积为平方厘米.12.如图,已知,,,,线段将图形分成两部分,左边部分面积是38,右边部分面积是65,求三角形的面积.【答案】40【解析】连接,.根据题意可知,;;所以,,,,,于是:;;可得.故三角形的面积是40.13.如图,如果长方形的面积是平方厘米,那么四边形的面积是多少平方厘米?【答案】32.5【解析】如图,过、、、分别作长方形的各边的平行线.易知交成中间的阴影正方形的边长为厘米,面积等于平方厘米.设、、、的面积之和为,四边形的面积等于,则,解得(平方厘米).14.如图,已知是梯形,∥,,,,求的面积.【答案】6【解析】本题是09年六年级试题,初看之下,是梯形这个条件似乎可以用到梯形蝴蝶定理,四边形内似乎也可以用到蝴蝶定理,然而经过试验可以发现这几个模型在这里都用不上,因为、这两个点的位置不明确.再看题目中的条件,,,这两个条件中的前一个可以根据差不变原理转化成与的面积差,则是与的面积差,两者都涉及到、以及有同一条底边的两个三角形,于是想到过、分别作梯形底边的平行线.如右图,分别过、作梯形底边的平行线,假设这两条直线之间的距离为.再过作的垂线.由于,所以,故.根据差不变原理,这个差等于与的面积之差.而与有一条公共的底边,两个三角形边上的高相差为,所以它们的面积差为,故.再看,它的面积等于是与的面积之差,这两个三角形也有一条公共的底边,边上的高也相差,所以这两个三角形的面积之差为,故.由于,所以,则,所以.15.长方形的面积为36,、、为各边中点,为边上任意一点,问阴影部分面积是多少?【答案】13.5【解析】解法一:寻找可利用的条件,连接、,如下图:可得:、、,而即;而,.所以阴影部分的面积是:解法二:特殊点法.找的特殊点,把点与点重合,那么图形就可变成右图:这样阴影部分的面积就是的面积,根据鸟头定理,则有:.16.一个长方形分成4个不同的三角形,绿色三角形面积占长方形面积的,黄色三角形面积是.问:长方形的面积是多少平方厘米?【答案】60【解析】黄色三角形与绿色三角形的底相等都等于长方形的长,高相加为长方形的宽,所以黄色三角形与绿色三角形的面积和为长方形面积的,而绿色三角形面积占长方形面积的,所以黄色三角形面积占长方形面积的.已知黄色三角形面积是,所以长方形面积等于().17.如右图,过平行四边形内的一点作边的平行线、,若的面积为8平方分米,求平行四边形的面积比平行四边形的面积大多少平方分米?【答案】16【解析】根据差不变原理,要求平行四边形的面积与平行四边形的面积差,相当于求平行四边形的面积与平行四边形的面积差.如右上图,连接、.由于,所以.而,,所以(平方分米).18.如右图,正方形的面积是,正三角形的面积是,求阴影的面积.【答案】2【解析】连接交于点,并连接.如右上图所示,可得,所以与面积相等(同底等高),所以有:,因为,所以.19.如图所示,正方形的边长为厘米,长方形的长为厘米,那么长方形的宽为几厘米?【答案】6.4【解析】本题主要是让学生会运用等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形).三角形面积等于与它等底等高的平行四边形面积的一半.证明:连接.(我们通过把这两个长方形和正方形联系在一起).∵在正方形中,边上的高,∴(三角形面积等于与它等底等高的平行四边形面积的一半)同理,.∴正方形与长方形面积相等.长方形的宽(厘米).20.如右图,在平行四边形中,直线交于,交延长线于,若,求的面积.【答案】1【解析】本题主要是让学生并会运用等底等高的两个三角形面积相等(或夹在一组平行线之间的三角形面积相等)和等量代换的思想.连接.∵∥,∴同理∥,∴又,,∴,即.。
小学六年级(组合图形)试题训练
求阴影部分面积
1、求下列组合图形阴影部分的面积。
B .
BN
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求
三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S 阴。
部分12平方厘米,求阴影部分面积。
3、求下列图形的体积。
(单位:厘米)。
六年级数学组合图形面积经典习题乡镇:学校:姓名:得分:
1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)
部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S阴。
部分12平方厘米,求阴影部分面积。
小学六年级(组合图形)试题训练
求阴影部分面积
1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求
三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S 阴。
部分12平方厘米,求阴影部分面积。
3、求下列图形的体积。
(单位:厘米)。
小学六年级(组合图形)试题训练
求阴影部分面积
1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求
三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S 阴。
部分12平方厘米,求阴影部分面积。
3、求下列图形的体积。
(单位:厘米)。
1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)
部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S阴。
部分12平方厘米,求阴影部分面积。