郑州大学高等数学下课后习题答案解析
- 格式:doc
- 大小:4.10 MB
- 文档页数:77
习题7.73.指出下列方程所表示的曲线.(1)⎩⎨⎧==++;3,25222x z y x (2)⎩⎨⎧==++;1,3694222y z y x(3)⎩⎨⎧-==+-;3,254222x z y x (4)⎩⎨⎧==+-+.4,08422y x z y【解】(1)表示平面3=x 上的圆周曲线1622=+z y ;(2)表示平面1=y 上的椭圆1323222=+z x ;(3)表示平面3-=x 上的双曲线141622=-y z ; (4)表示平面4=y 上的抛物线642-=x z .4.求()()⎪⎩⎪⎨⎧=++=++Γ2,21,:2222222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】 (一)(1)、(2)联立消去z 得 22243R y x =+ 所以,Γ在xoy 面上的投影曲线为⎪⎩⎪⎨⎧==+.0,43222z R y x (二)(1)、(2)联立消去y 得R z 21=所以,Γ在zox 面上的投影曲线为.23.0,21R x y R z ≤⎪⎩⎪⎨⎧==(三)(1)、(2)联立消去x 得R z 21=所以,Γ在yoz 面上的投影曲线为.23.0,21R y x R z ≤⎪⎩⎪⎨⎧==6.求由球面224y x z --= ①和锥面()223y x z += ②所围成的立体在xoy 面上的投影区域.【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为⎩⎨⎧==+.0,122z y x所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D .习题7.82.设空间曲线C 的向量函数为(){}t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与20=t 相应的点处的单位切向量.【解】因(){}64,4,2-=t t t r ,故C 相应20=t 的点处的切向量为(){}2,4,42='r .C 相应20=t 的点处的单位切向量为(){}.31,32,322,4,4612⎭⎬⎫⎩⎨⎧±=±=' 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为()()(){}|1,,='''=t t z t y t x {}{}3,2,13,2,1|12===t t t .所以,Γ在0M 点处的切线方程为 312111-=-=-z y x . 法平面为()()()01.31.21.1=-+-+-z y x ,即 0632=-++z y x .4.在曲线32,,:t z t y t x ===Γ上求一点,使在该点处的切线平行于平面y x 2:+π4=+z .【解】平面y x 2+4=+z 的法向量为{}1,2,1=n .在Γ上任取一点()0000,,z y x M ,并设0M 对应参数0t t =.Γ在0M 点处的切线方向为()()(){}000,,t z t y t x '''={}{}2023,2,13,2,1|0t t t t tt ===. 由题意,欲使0M 点处的切线与平面π平行,只须s 与n 垂直,为此令200341.0t t n s ++==,即0341200=++t t .解之得, 10-=t 或 310-=t .所以,所求点为()1,1,10---M 或⎪⎭⎫⎝⎛-271,91,310M .5.求曲线⎰=tu udu e x C 0cos :,t t y cos sin 2+=,t e z 31+=在0=t 处的切线方程和法平面方程.【解】参数0=t 对应曲线C 上的点()2,1,00M .C 在0M 点处的切线方向为()()(){}|,,='''=t t z t y t x s {}{}3,2,13,s i n c o s 2,c o s |3=-==t tt e t t t e .所以,Γ在0M 点处的切线方程为322110-=-=-z y x . 法平面为()()()02.31.20.1=-+-+-z y x ,即 0832=-++z y x .习题8.11.求下列函数的的定义域,并画出定义域的图形. (3)221yx z w --=;(4)19222222-++---=z y x z y x u .【解】(3)要使函数表达式有意义,必须满足 0122>--y x 即 122<+y x 故所求函数的定义域为(){}1|,22<+=y x y x D . (4)要使函数表达式有意义,必须满足⎪⎩⎪⎨⎧>-++≥---.01,09222222z y x z y x 即 ⎪⎩⎪⎨⎧>++≤++.1,9222222z y x z y x 故所求函数的定义域为(){}91|,,222≤++<=z y x z y x D .3.求下列各极限. (1)()()⎪⎪⎭⎫ ⎝⎛++→z y x z y x 111lim3,2,1,,; (2)()()⎪⎪⎭⎫ ⎝⎛+→x y y x y x 1sin 1sin lim 0,0,; (3)()()()xyy x xy tan 10,0,1lim+→; (4)()()()22220,0,lim y x y x xy y x +-→;(5)()()yx y x y x +-++→11lim220,0,; (6)()()2220,0,lim y x yx y x +→.【解】(1)因为函数()zy x z y x f 111,,++=是三元初等函数,其定义域为(){}0,0,0|,,≠≠≠=z y x z y x D ,且()D ∈3,2,1,所以三元函数()zy x z y x f 111,,++=在()3,2,1处连续,从而有 ()()611312111111lim3,2,1,,=++=⎪⎪⎭⎫ ⎝⎛++→z y x z y x . (2)()()⎪⎪⎭⎫⎝⎛+→x y y x y x 1sin 1sin lim 0,0, ()()y x y x 1sinlim0,0,→=()()0001sin lim 0,0,=+=+→x y y x .【其中()()y x y x 1sinlim 0,0,→()()01sin lim 0,0,==→x y y x 均是利用有界量乘以无穷小量还是无穷小量】. (3)()()()xyy x xy tan 10,0,1lim+→()()()e e xy xyxy xyy x ==⎥⎦⎤⎢⎣⎡+=→1tan 10,0,1lim .(4)()()()22220,0,lim y x y x xy y x +-→()()()0.lim 22220,0,=+-=→xy y x y x y x .【上述结论中用到12222≤+-y x y x 及()()0lim 0,0,=→xy y x ,即利用有界量乘以无穷小量还是无穷小量】. (5)()()y x y x y x +-++→11lim220,0,()()()()11lim 22220,0,+++++=→y x y x y x y x()()().lim 220,0,y x y x y x ++=→()().0210111lim 220,0,=⨯=+++→y x y x 【上述结论中用到()y x yx y x y x y x +=++≤++≤2220,()()()0lim 0,0,=+→y x y x 及夹逼准则】.(6)()()2220,0,lim y x y x y x +→()()0.lim 2220,0,=+=→y y x x y x .【上述结论中用到1222≤+yx x 及()()0lim 0,0,=→y y x ,即利用有界量乘以无穷小量还是无穷小量】.4.证明极限()()4220,0,lim y x xy y x +→不存在.【证】(一)让动点()y x P ,沿直线0=y 趋于点()0,0O 时,()42200lim y x xy y x +=→000.l i m 4220=+=→x x x . (二)让动点()y x P ,沿抛物线x y =2趋于点()0,0O 时,()42202lim y x xy xy x +=→21.l i m 220=+=→x x x x x .习题8.21.证明:函数()444,y x y x f +=在原点()0,0处连续,但不存在偏导数()0,0x f ',()0,0y f '. 【证明】 (一)因为()()()()0,00,lim0,0,f y x f y x ==→,所以,()y x f ,在()0,0处连续.(二)因为()()x f x f x ∆-∆+→∆0,00,0lim 0()xx x ∆-+∆=→∆00lim4440 xxx ∆∆=→∆0l i m 不存在,所以不存在偏导数()0,0x f ';由轮换对称性知,也不存在偏导数()0,0y f '. 2.求下列函数对各自变量的一阶偏导数.(1)x y y x z 33-=; (2)xy z ln =; (3)xy e z x sin =; (4)xy z arctan=; (5)()yxy z +=1; (6)2yxe z y=.【解】(1)323y y x x z -=∂∂;x y x yz 233-=∂∂ . (2)因y x z ln ln +=,故x x z 1=∂∂;yy z 1=∂∂. (3)xy ye xy e x z x x cos sin +=∂∂; xy xe yzx cos =∂∂ (4)x x y x y xz '⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=∂∂211222222y x y x y y x x +-=⎪⎭⎫⎝⎛-+=; y x y x y xz'⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=∂∂211222221y x x x y x x +=⎪⎭⎫⎝⎛+=. (5)()()xy y ye xy z +=+=1ln 1;()()[]x xy y xy y e x z '+=∂∂+1ln 1ln ()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+=+y xy y e xy y .111ln ()1211-++=y xy xy y ;()()[]y xy y xy y e y z '+=∂∂+1ln 1ln ()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+++=+x xy y xy e xy y .11)1ln(1ln ()⎥⎦⎤⎢⎣⎡++++=xy xy xy xy y 1)1ln(1()()[]xy xy xy xy y ++++=-)1ln(111. (6)2y e x z y =∂∂;422.y y e y e x y z y y -=∂∂()422y y y xe y -=()32yy xe y -=. 3.求曲线⎪⎩⎪⎨⎧=+=Γ,4,4:22y y x z 在点()5,4,20M 处的切线方程及切线对于x 轴的倾角的度数. 【解】(一)Γ的参数方程为⎪⎪⎩⎪⎪⎨⎧+===Γ416,4,:2x z y x x (x 为参数).点0M 对应参数2=x ,故切向量为{}1,0,12,0,1|2=⎭⎬⎫⎩⎨⎧==x x s 切.所以,点()5,4,20M 处的切线方程为150412-=--=-z y x . (二)因为()()1244,2||4,2)4,2(22=='⎪⎪⎭⎫ ⎝⎛+='xy x f x x ,所以切线对于x 轴的倾角的度数为41arctan πα==. 4.求下列函数的所有二阶偏导数.(1)()y x z 32sin +=; (2)42244y y x x z +-=;(3)xy z 2=; (4)yxy x y x z arctan arctan 22-=.【解】 (1)()y x x z 32cos 2+=∂∂; ()y x yz32cos 3+=∂∂; ()y x x z 32sin 422+-=∂∂;()y x y x z 32sin 62+-=∂∂∂;()y x yz 32sin 922+-=∂∂. (2)2384xy x x z -=∂∂; 3248y y x yz+-=∂∂; 2222812y x x z -=∂∂;xy y x z 162-=∂∂∂;2222128y x yz +-=∂∂. (3)()x xy xy x z '=∂∂2.2121()x yy xy 212.2121==;()y xy xy y z '=∂∂2.2121()yx x xy 212.2121==. xyx y x y x y x z 42.12121222-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=∂∂;xyx x y y x z 421.121212=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=∂∂∂; xyy xy x y x y z 42.12121222-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=∂∂. (4)yxy x y x z arctan arctan 22-=.x x y xy x y x x z '⎪⎪⎭⎫ ⎝⎛-'⎪⎭⎫ ⎝⎛=∂∂arctan arctan 22 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++=y y x y x y x y x x y x 1.11.11a r c t a n 222222 223222a r c t a n 2yx y y x y x x y x +-+-= ()2222a r c t a n 2y x yy x x y x ++-=y x y x -=a r c t a n 2; y y y x y x y x y z '⎪⎪⎭⎫ ⎝⎛-'⎪⎭⎫ ⎝⎛=∂∂arctan arctan 22 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=22222.11a r c t a n 21.11y x y x y y x y x x y x 222223a r c t a n 2yx xy y x y y x x ++-+= ()y xy yx x y xa r c t a n 22222-++=y x y x a r c t a n 2-=.⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++='⎪⎭⎫ ⎝⎛-=∂∂2222.112arctan 2arctan 2x y x y x x y y x y x x z x 222a r c t a n 2yx xyx y +-=. 11.112a r c t a n 222-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+='⎪⎭⎫ ⎝⎛-=∂∂∂x x y x y x y x y x z y 12222-+=y x x 2222yx y x +-=; y y x y x y z '⎪⎪⎭⎫⎝⎛-=∂∂arctan 222 ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛++-=22.112a r c t a n 20y x y x y y x 222a r c t a n 2yx xyy x ++-=. 5.验证下列等式.(1)设xy xe z =,证明: z yz y x z x=∂∂+∂∂; (2)证明函数r u 1=,222z y x r ++=满足0222222=∂∂+∂∂+∂∂zu y u x u ;(3)证明()bx e t x T tab sin ,2-=满足热传导方程22xTa t T ∂∂=∂∂,其中a 为正常数,b 为任意常数.【证】(1)因⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∂∂x y e x y e x e x z x y x y x y 12;x yx y e x e x y z =⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛=∂∂1.所以,z xe ye x y e x y z yx z x x y x y x y ==+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=∂∂+∂∂1. (2)()x z y x z y x x r '++++=∂∂22222221()r xx z y x =++=221222;①x r dr du x u ∂∂=∂∂.【因为①】32.1rx r x r -=-=. 623322.3..1rx r r x r r x x x u ⎪⎭⎫ ⎝⎛∂∂--=⎪⎭⎫ ⎝⎛-∂∂=∂∂【因为①】 5226233.3..1rx r r r x r x r --=⎪⎭⎫ ⎝⎛--=; ② 同理可得522223ry r y u --=∂∂; ③ 522223rz r z u --=∂∂ ④ 所以,222222zuy u x u ∂∂+∂∂+∂∂【因为②,③,④】()5222233r z y x r ++--=033522=--=rr r . (3)由()bx e t x T t ab sin ,2-=,得()[]bx e ab bx ab e tTt ab t ab sin sin 2222---=-=∂∂. ① []bx be b bx e xTt ab t ab cos .cos 22--==∂∂. []b bx be x T t ab .sin 222-=∂∂-bx e b tab sin 22--=. ②所以有22xTa t T ∂∂=∂∂bx e ab t ab sin 22--=.6.设()()⎪⎩⎪⎨⎧=+≠+++=,0,0,0,1cos ,22222222y x y x y x y x y x f 求()0,0x f ',()0,0y f '.【解】因为()()xf x f x ∆-∆+→∆0,00,0lim 0 ()[]()xx x x ∆-+∆+∆=→∆001cos0lim222201coslim 0=∆∆=→∆x x x 【上述结论中用到11cos ≤∆x及0lim 0=∆→∆x x ,即利用有界量乘以无穷小量还是无穷小量】,所以,()00,0='x f . 同理,()00,0=''y f .习题8.31.求下列函数的全微分.(1)yxy x z +=24;(2)32y x ez +=;(3)xyz u =;(4)z xy u =.【解】 (1)因为y xy x z 18+=∂∂,224y xx y z -=∂∂,所以 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y xy ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫⎝⎛+=22418. (2)因为()xyx y xe xz'+=∂∂+2222⎪⎪⎭⎫ ⎝⎛+=+x y x eyx 2.2122222222y x xe y x +=+; 由轮换对称性知,2222yx ye y z yx +=∂∂+.所以dy y zdx x z dz ∂∂+∂∂=()ydy xdx yx e y x ++=+2222. (3)因为yz x u =∂∂,xz yu=∂∂,xy z u =∂∂,所以,x y d z x z d y y z d x dz zu dy y u dx x u du ++=∂∂+∂∂+∂∂=. (4)z xy u =. 因为z y x u =∂∂,1-=∂∂z xzy yu ,y xy z u z ln =∂∂,所以, ydz xy dy xzy dx y dz zudy y u dx x u du z z z ln 1++=∂∂+∂∂+∂∂=-. 2.求下列函数在指定点的全微分.(2)zy x u 1⎪⎪⎭⎫⎝⎛=,()1,1,1|du .【解】(2)zy x u 1⎪⎪⎭⎫⎝⎛=,()1,1,1|du .因为x zy x y x z x u '⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=∂∂-111⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-y y x z z1111; y z y x y x z y u '⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=∂∂-111⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-2111y x y x z z; ⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=∂∂211.ln z y x y x z u z⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-2111ln 1z y x y x z z.所以dz zu dy y u dx x u du ∂∂+∂∂+∂∂=+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-dx y y x z z1111dy y x y x z z⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-2111dz z y x y x z z⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+-2111ln 1.从而 ()dy dx du -=1,1,1|.4.求曲面22:y x z S +=在点()2,1,10M 处的切平面方程和法线方程.【解】令()z y x z y x F -+=22,,. 则曲面S 在点0M 处的切平面的法向量为 ()()(){}000,,M F M F M F z y x '''= {}(){}1,2,21,2,2|2,1,1-=-=y x .所以S 在点0M 处的切平面方程为()()()02.1121.2=---+-z y x . 化简得0222=--+z y x . 法线方程为122121--=-=-z y x . 6.利用全微分求近似值.(1)()()3397.102.1+;【解】(1)令(),,33y x y x f z +==则()()332133223,,23,yx y y x f yxyx x y x f y y x +='+='-.取03.0,02.0,2,100-=∆=∆==y x y x ,则有()()()()()03.02,102.02,12,103.02,02.01-⨯'+⨯'+≈-+y x f f f f ,即:()()().95.203.0202.021397.102.133=-⨯+⨯+≈+ 8.已知函数()⎪⎩⎪⎨⎧=+≠++=,0,0,0,1sin ,222222y x y x y x xy y x f证明:(1)()y x f ,在点()0,0处连续且偏导数存在; (2)()y x f ,在点()0,0处可微. 【证】(1)因为()y x f y x ,lim 0→→01sinlim 220=+=→→yx xy y x 【无穷小乘以有界量还是无穷小量】()0,0f =,所以()y x f ,在点()0,0处连续. 又因为()()xf x f x ∆-∆+→∆0,00,0l i m000l i m 0=∆-=→∆x x ,所以()00,0='x f ;同理()00,0='y f ,所以()y x f ,在点()0,0处偏导数存在. (2)()y x f ,在点()0,0处的全增量为()()()()()220,01s i n0,00,0|y x y x f y x f z ∆+∆∆∆=-∆+∆+=∆.因为 ()()[]()()22000,00,0limy x yf x f z y x y x ∆+∆∆'+∆'-∆→∆→∆()()()()01sinlim22220=∆+∆∆+∆∆∆=→∆→∆y x y x yx y x ,所以,()y x f ,在点()0,0处可微. 【上述结论用到了()()()()22221sin0y x y x yx ∆+∆∆+∆∆∆≤()()()()22221s i n.y x y x y x ∆+∆∆+∆∆∆=()()[]()()()[]()()()0,0,02121222222→∆∆→∆+∆=∆+∆∆+∆≤y x y x y x y x及夹逼准则 . 】习题8.41.求下列复合函数的偏导数或全导数. (1)设uv e z =,而2,sin x v x u ==,求dxdz ; (2)设()xyx z ln =,求x z ∂∂,yz ∂∂; (3)设()xy y x yf x z ,222+=,求x z ∂∂,yz∂∂. 【解】(1)因为uv ve u z =∂∂,uv ue v z =∂∂;x dx du cos =,x dxdv2=.所以由全导数公式,有 ()x x x x e x ue x ve dxdvv z dx du u z dx dz x x uv uv cos sin 22.cos ..2sin 2+=+=∂∂+∂∂=. 【另解:因为x x e z sin 2=,故 ()'=x x e dxdz x x sin 2sin 2()x x x x e x x c o s s i n 22s i n2+=.】 (2)()[]x x xy e x z '=∂∂ln ln ()[]x x xy x xy e '=ln(ln ln ()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=x x xy x y e x xy 1.ln 1)ln(ln ln()⎥⎦⎤⎢⎣⎡+=x y x y x xy ln )ln(ln ln ()()()x x y x y xyxy ln ln ln ln 1+=-; ()()()y xy xy x x yz '=∂∂ln ln .ln ()()x x x xyln ln .ln =. (3)()()()[]x x xy y x f y x xy y x f y x xz'+++'=∂∂,.,.222222 ()[]y f x f y x xy y x f xy .2..,.221222'+'++=;()()()[]y y xy y x f y x xy y x f y x yz'+++'=∂∂,.,.222222 ()[]x f y f y x xy y x f x .2..,.212222'+'++=.2.设⎪⎭⎫⎝⎛+=x y x xy z ϕ,其中()u ϕ是可微函数,证明: +∂∂x z x xy z y z y+=∂∂. 5.设()221,,z yx e z y x f u ++==,而y x z sin 2=,求x u ∂∂,yu ∂∂. 6.求下列函数的22x z ∂∂,y x z ∂∂∂2和22yz∂∂.(1)()y xy f z ,=;(2)()y x e y x f z +=,cos ,sin . 【解】(1)由()y xy f z ,=得1f y x z '=∂∂,21f f x yz '+'=∂∂; []()11211122f y f y y f y xz x ''=''=''=∂∂; []()1211112111112f y f xy f f f x y f f y f yx z y ''+''+'=''+''+'=''+'=∂∂∂; [][]()()22121122221121121222f f x f x f f x f f x x f f x y z y y ''+''+''=''+''+''+''=''+''=∂∂. 【注意:书中有关22yz∂∂的答案有误】.(2)由()y x e y x f z +=,cos ,sin 得31.c o s f e f x x z y x '+'=∂∂+;32.sin f e f y yz y x '+'-=∂∂+; [][]x y x x f e f xxz ''+''=∂∂+3122.c o s ()[]13111cos cos .sin f e f x x f x y x ''+''+'-=+ ()[]33313.cos f e f x e f e y x y x y x ''+''+'++++ [][]y y x y f e f x yx z ''+''=∂∂∂+312.c o s()[]333231312sin sin cos f e f y e f e f e f y x y x y x y x y x ''+''-+'+''+''-=++++; 33223231312sin cos sin cos f e f ye f e f xe f y x y x y x y x y x ''+''-'+''+''-=++++; [][]y yx y f e f y y z ''+''-=∂∂+3222.s i n()[]23222sin sin .cos f e f y y f y y x ''+''-+'-=+ ()33323sin f e f y e f e y x y x y x ''+''-+'++++ 33223232222sin 2sin .cos f e f e f ye f y f y y x y x y x ''+'+'''-''+'-=+++. 【注意:书中有关22yz∂∂的答案有误】.8.设()[]z x f z ϕ+= ①,其中ϕ,f 可导,求dxdz . 【解】①式两端对x 求导并注意到z 是关于x 的函数,得()[]()[]x z x z x f dx dz '++'=ϕϕ()[]()⎥⎦⎤⎢⎣⎡'++'=dx dz z z x f .1ϕϕ ()[]()()[]dxdzz x f z z x f ..ϕϕϕ+''++'=. ② 由②式解得()[]()()[]z x f z z x f dx dz ϕϕϕ+'-+'=1.9.设()y x z z ,=由方程0ln 2=-+⎰-dt e z z xy t ①得到,求x z ∂∂,y z ∂∂,yx z∂∂∂2.【解】(一)①式两端对x 求导并注意到z 是关于y x ,的二元函数得012=-∂∂+∂∂-x e xzz x z ,即 211x e xzz -=∂∂⎪⎭⎫ ⎝⎛+ . ②由②式解得21x e zz x z -+=∂∂. ③ (二)①式两端对y 求导并注意到z 是关于y x ,的二元函数得012=+∂∂+∂∂-y e yzz y z ,即 211y e yzz --=∂∂⎪⎭⎫ ⎝⎛+ . ④由④ 式解得 21y e zz y z -+-=∂∂. ⑤ (三)由③式得212x y e z z y x z -'⎥⎦⎤⎢⎣⎡+=∂∂∂()2.112x e y z z -⎥⎦⎤⎢⎣⎡∂∂+=【代入④】 ()22.1.112x y e e z z z --⎥⎦⎤⎢⎣⎡+-+=()22.13y x e z z--+-=.10.设f 可微,试验证: (1)()22yx f y z -=① 满足方程211y zy z y x z x =∂∂+∂∂; 【证】()x y x f y x z '⎥⎦⎤⎢⎣⎡-=∂∂221()()[]x y x f y x f y '⎭⎬⎫⎩⎨⎧---=222221()()()⎥⎦⎤⎢⎣⎡'--'--=xy x y x f yx fy2222222.()()222222y x f yx fxy-'--=; ()yy x f y y z '⎥⎦⎤⎢⎣⎡-=∂∂221.()()y y x f y y x f '⎥⎦⎤⎢⎣⎡-+-=222211 ()()()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡'--'--+-=y y x y x f y x f y y x f 222222222.11 ()()()2222222221y x f yx f y y x f -'---=. 所以yz y x z x ∂∂+∂∂11()()⎥⎦⎤⎢⎣⎡-'--=2222221y x f y x f xy x ()()()⎥⎦⎤⎢⎣⎡-'---+22222222211y x f y x f y yx f y ()221.1y x f y -=【由①式】..12y zy z y ==(2)()y x f z ,=满足方程t z s z y z x z ∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂.22,其中t s y t s x -=+=,. 【证】y zx z s y y z s x x z s z ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂..; yz x z t y y z t x x z t z ∂∂-∂∂=∂∂∂∂+∂∂∂∂=∂∂... 故 t z s z ∂∂∂∂.⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y z x z ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂y z x z .22⎪⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=y z x z . 14.设函数()y x f ,具有二阶连续偏导数,且满足等式0512422222=∂∂+∂∂∂+∂∂yuy x u x u . ①试确定b a ,的值,使等式在变换by x ay x +=+=ηξ,下化为02=∂∂∂ηξu.【解】因为ηξηξηηξξ∂∂+∂∂=∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂uu u u x u x u x u1.1...;ηξηξηηξξ∂∂+∂∂=∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂ubu a b u a u y u y u y u ..... 故有⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂x u x u x u x u u u x u xx ηηξξηηηξξξηξ (2222222)2 222222ηηξξ∂∂+∂∂∂+∂∂=uu u . ②⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∂y u y u y u y u u u y x u yy ηηξξηηηξξξηξ (2222222)()22222..ηηξξ∂∂+∂∂∂++∂∂=ub u b a u a . ③⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫ ⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂y u y u b y u y u a u b u a y uyy ηηξξηηηξξξηξ (2222222)222222222ηηξξ∂∂+∂∂∂+∂∂=u b u ab u a . ④ 将②、③、④代入①式左边,得①左⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂=2222224ηηξξu u u ()⎪⎪⎭⎫⎝⎛∂∂+∂∂∂++∂∂+22222.12ηηξξu b u b a u a⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂+222222225ηηξξu b u ab u a ()()()2222222512410121285124ηηξξ∂∂+++∂∂∂++++∂∂++=u b b u ab b a u a a 因此方程①化为()()()05124101212851242222222=∂∂+++∂∂∂++++∂∂++ηηξξu b b u ab b a u a a . ⑤因此要使①在变换下化为02=∂∂∂ηξu,必须⎪⎩⎪⎨⎧=++=++.05124,0512422b b a a 解之得 ⎪⎩⎪⎨⎧-=-=,52,2b a 或⎪⎩⎪⎨⎧-=-=,2,52b a 习题8.51.验证下列方程在指定点的邻域存在以x 为自变量的隐函数,并求dxdy. (1)4422y x y x +=+,在点()1,1;【解】令()4422,y x y x y x F --+=,则()342,x x y x F x -=',()342,y y y x F y -=',()01,1=F ,()()021,11,1≠-='='y x F F ,由隐函数存在定理知,方程04422=--+y x y x在点()1,1的某邻域内能唯一确定一个单值可导且当1=x 时,1=y 的函数()x y y =.由公式()()()()223321124242,,y y x x y y x x y x F y x F dx dy y x --=---=''-=. (2)xyy x arctan ln 22=+①,在点()0,1. 【解】令()x y y x y x F arctanln ,22-+=()xyy x arctan ln 2122-+=,则 ()⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+='2222.112.1.21,x y x y x y x y x F x 22y x y x ++=; ()⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+='x x y y y x y x F y 1.112.1.21,22222y x x y +-=. ()00,1=F ,()()010,1,10,1≠-='='y x F F ,由隐函数存在定理知,方程0arctanln 22=-+xyy x 在点()0,1的某邻域内能唯一确定一个单值可导且当1=x 时,0=y 的函数()x y y =.由公式()()yx yx x y y x y x F y x F dx dy y x -+=-+-=''-=,,. 2.求下列方程所确定的隐函数()y x z z ,=的偏导数x z ∂∂,yz∂∂. (1)()0ln 22=+-xyz xyz xz ;【解】令()()xyz xyz xz z y x F ln 22,,+-=z y x xyz xz ln ln ln 22+++-=,则x yz z F x 122+-=';yxz F y 12+-=';z xy x F z 122+-='. 所以z xy x x yz z F F x z z x 122122+-+--=''-=∂∂;z xy x y xz F F y z z y 12212+-+--=''-=∂∂. (2)()z y x f z +-=2.【解】令()()z z y x f z y x F -+-=2,,,则()z y x f F x +-'='2;()z y x f y F y +-'-='22;()12-+-'='z y x f F z . 所以()()122-+-'+-'-=''-=∂∂z y x f z y x f F F x z z x ()()zy x f zy x f +-'-+-'=221; ()()1222-+-'+-'--=''-=∂∂z y x f z y x f y F F y z z y ()()1222-+-'+-'=z y x f zy x f y . 3.设()y x z z ,=满足方程03333=-++axyz z y x ,求22xz∂∂.【解】令()axyz z y x z y x F 3,,333-++=,则ayz x F x 332-=';axy z F z 332-='. 所以a x y z a y z x F F x z z x 333322---=''-=∂∂a x y z x a y z --=22. ① 所以=∂∂22x z ()()()222222a x yz ay x z z x ayz axy z x x z ay -⎪⎭⎫⎝⎛-∂∂---⎪⎭⎫ ⎝⎛-∂∂【代入①】()()()2222222222.axyz ay axy z x ayz z x ayz axy z x axy z x ayz ay -⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛---=()()[]()()()()[]()3222222222axyzaxyz ay x ayz z x ayz axy z axy zx x ayz ay ----------=()()323312a x yza z xy --=.4.设函数()z y x f u ,,=可微,其中()()x z z x y y ==,由方程组⎪⎩⎪⎨⎧==,,xyxze z e y 确定,求dx du . 【解】方程组⎪⎩⎪⎨⎧==,,xyxze z e y 两边关于x 求导【并注意到()()x z z x y y ==,】得 ⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=,,dx dy x y e dx dz dx dz x z e dx dy xy xz 即⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=,,dx dy x y z dxdz dx dz x z y dx dy解得()()⎪⎪⎩⎪⎪⎨⎧-+=-+=.11,1122yzx xz yz dxdz yzx xy yz dx dy所以,由全导数公式得dx dz f dx dy f f dx du z y x ..'+'+'= ()()z y x f yzx xz yz f yz x xy yz f '-++'-++'=.11.1122. 5.求曲面4:=+zy zx e e S ①在点()1,2ln ,2ln 0M 处的切平面方程.【解】令()4,,-+=zy z xe e z y x F ,则z xx e z F 1=';z yy e z F 1=';z yz xz e zye z x F 22--='.曲面S 在点0M 处的切平面的法向量为 {}()||1,2ln ,2ln 22,1,1,,0⎭⎬⎫⎩⎨⎧--='''=z yz x z y z x M z y x e z ye z x e z e z F F F{}2ln 4,2,2-=.所以,曲面S 在点0M 处的切平面方程为()()().012ln 42ln 22ln 2=---+-z y x 即 ()02ln 422=-+z y x .8.求曲线⎩⎨⎧=-+-=-++Γ,04532,03:222z y x x z y x ①在点()1,1,10M 处的切线方程与法平面方程.【解法一】方程组两边关于x 求导【并注意到()()x z z x y y ==,】得⎩⎨⎧='+'-=-'+'+.0532,03222z y z z y y x ②将点()1,1,10M 代入②式有()()()()⎩⎨⎧='+'-=-'+'.015132,011212z y z y ③由③式解得 ()()1611,1691-='='z y . 故Γ在点()1,1,10M 处的切向量为()(){}{}1,9,16||161,169,11,1,1-⎭⎬⎫⎩⎨⎧-=''=z y s 切.所以,Γ在点()1,1,10M 处的切线方程L 为1191161--=-=-z y x . ()1,1,10M 处的法平面方程为()()()01191.16=---+-z y x ,即 024916=--+z y x . 【解法二】(一)先求03:222=-++x z y x S 在点()1,1,10M 处的切平面方程. 令()x z y x z y x F 3,,222-++=,则32-='x F x ;y F y 2=';z F z 2='. 曲面S 在点0M 处的切平面的法向量为 {}{}(){}2,2,12,2,32,,||1,1,10-=-='''=z y x F F F n M z y x .所以,曲面S 在点0M 处的切平面方程为 ()()()012121.1=-+-+--z y x ,即 0322=-++-z y x . (二) Γ在点()1,1,10M 处的切线方程为⎩⎨⎧=-+-=-++-,04532,0322:z y x z y x L若进一步化L 为点向式,则为 1191161--=-=-z y x . ()1,1,10M 处的法平面方程为()()()01191.16=---+-z y x ,即 024916=--+z y x . 【注意】解法二的一般思路叙述如下:欲求曲线()()⎩⎨⎧==Γ,0,,,0,,:z y x G z y x F 在其上某点()0000,,z y x M 处的切线方程.首先分别求出曲面()0,,:1=z y x F S 在点0M 处的切线平面01111=+++D z C y B x A . ①及曲面()0,,:2=z y x G S 在点0M 处的切线平面02222=+++D z C y B x A . ② 然后将方程①、②联立即为Γ在0M 处的切线方程.即⎩⎨⎧=+++=+++Γ.0,0:22221111D z C y B x A D z C y B x A请同学们思考此解法的理论依据是什么?10.设函数()y x z z ,=由方程0,,=⎪⎪⎭⎫⎝⎛x z z y y x F ① 所确定,且F 为可微函数,求dz .【解】由①得0,,=⎪⎪⎭⎫⎝⎛x z z y y x dF由微分形式的不变性,有0...321=⎪⎭⎫⎝⎛'+⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫ ⎝⎛'x z d F z y d F y x d F 即01.1.1.232221=⎪⎭⎫ ⎝⎛+-'+⎪⎭⎫ ⎝⎛-'+⎪⎪⎭⎫ ⎝⎛-'dz x dx x z d F dz z y dy z d F dy y x dx y F 于是有dy F z F y x dx F y F x z dz F z y F x .111212`132223'-⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫ ⎝⎛'-'=⎪⎭⎫⎝⎛'-' 所以得223212`1321.11F zy F x dyF z F y x dx F y F x z dz '-''-⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫⎝⎛'-'=. 习题8.62.求133223++-=xy y x x z 在点()1,31M 处从1M 到()5,62M 的方向的方向导数. 【解】{}4,321==M M,⎭⎬⎫⎩⎨⎧==54,530h .()12363||1,3221=+-=∂∂y xy x x z M ;()963||1,3221-=+-=∂∂xy x y z M . {}().0549531254,53.9,121=⨯-+⨯=⎭⎬⎫⎩⎨⎧-=∂M h3.求xyz u =在点()2,1,51M 处从1M 到()14,4,92M 的方向的方向导数. 【解】{}12,3,421==M M,⎭⎬⎫⎩⎨⎧==1312,133,1340h .()2||2,1,51==∂∂yz x u M ;()10||2,1,51==∂∂xz yuM ,()5||2,1,51==∂∂xy z u M . {}.1398131251331013421312,133,134.5,10,21=⨯+⨯+⨯=⎭⎬⎫⎩⎨⎧=∂M h4.求()()222321ln ,,z y x z y x f +++=在点()1,1,20M 处的梯度. 【解】()523212||1,1,22220=+++=∂∂z y x x x f M ; ()523214||1,1,22220=+++=∂∂z y x y y f M ; ()533216||1,1,22220=+++=∂∂z y x z z f M . 所以,()⎭⎬⎫⎩⎨⎧=53,52,521,1,2gradf .5.求22z xy u -=在()1,1,2-M 处方向导数的最大值. 【解】()22||1,1,2-==∂∂-y x u M ;()42||1,1,2==∂∂-x y uM,()22||1,1,2-=-=∂∂-z z u M , 故 (){}2,4,21,1,2--=-g r a d u ,所以方向导数的最大值为 ()()().622421,1,2222=-++-=-g r a du6.求222z y x u ++=沿曲线()⎪⎪⎩⎪⎪⎨⎧===Γ,sin 6,,2:3t z t y t x ππ在点()0,1,2M 处的切线方向的方向导数.【解】()0,1,2M 点对应参数1=t .Γ在点()0,1,2M 处的切向量为()()(){}(){}{}6,3,2c o s6,3,2,,||121-=='''===t t t t t z t y t x h π.⎭⎬⎫⎩⎨⎧-==76,73,720h .()42||0,1,2==∂∂x x u M ;()22||0,1,2==∂∂y yuM ,()02||0,1,2==∂∂z x u M . 所以有{}.276073272476,73,72.0,2,4=⎪⎭⎫⎝⎛-⨯+⨯+⨯=⎭⎬⎫⎩⎨⎧-=∂Mh9.设l 是曲面632:222=++z y x S 在点()1,1,1A 处指向外侧的法向量,求zy x u 2286+=在A 点沿方向的方向导数. 【解】令()632,,222-++=z y x z y x F ,则x F x 4=';y F y 6=';z F z 2='.曲面S 在点()1,1,1A 处指向外侧的法向量为 {}{}(){}{}1,3,2||2,6,42,6,4,,||1,1,1=='''=z y x F F F Az y x ;⎭⎬⎫⎩⎨⎧==141,143,1420l . ()146866||1,1,122=+=∂∂y x z x x u A ;()148868||1,1,122=+=∂∂y x z y y u A ;()1486||1,1,1222-=+-=∂∂z y x z uA .所以,().14,148,1461,1,1⎭⎬⎫⎩⎨⎧-=∂l ⎭⎬⎫⎩⎨⎧141,143,142()71114114143148142146=⨯-+⨯+⨯=. 习题8.71.求下列的极值:(1)()223333,y x y x y x f z --+==; 【解】(一)解方程组()()⇒⎪⎩⎪⎨⎧=-='=-='.063,,063,22y y y x f x x y x f y x ⎩⎨⎧==2,0,2,0y x 得四个驻点:()()()().2,2,0,2,2,0,0,04321P P P P (二)()()().66,,0,,66,-=''==''=-=''=y y x f C y x f B x y x f A yy xy xx.因为该函数不存在不可微点,故()00,0=f 为函数的极大值;()82,2-=f 为 函数的极小值.(2)x xy y x z 82322+-+=; 【解】(一)解方程组()()⇒⎩⎨⎧=-='=+-='.026,,0822,x y y x f y x y x f yx ⎩⎨⎧-=-=26y x 故得唯一驻点:()2,60--P ;无不可微点.(二)()2,=''y x f xx,()2,-=''y x f xy ;()6,=''y x f yy .在()2,60--P 处,因为 ()022,6>=--''=xxf A ;()22,6-=--''=xy f B ;()62,6=--''=yy f C , ()0826222>=--⨯=-=∆B AC ,故()242,6-=--f 为函数的极小值.(3)()()y y y x y x f ln 2,22++=; 【解】(一)解方程组()()()⇒⎪⎩⎪⎨⎧=++='=+='.0ln 12,,022,22y y x y x f y x y x f y x ⎩⎨⎧==-.,01e y x 故得唯一驻点:()10,0-e P ;无不可微点.(二)()224,y y x f xx+='',()xy y x f xy 4,='';()yx y x f yy 12,2+=''.在()10,0-e P 处, 因为()024,021>+=''=--e e f A xx;()0,01=''=-e f B xy ;()e ef C yy =''=-1,0, ()0024222>-⨯+=-=∆-e e B AC ,故()ee f 1,01-=-为函数的极小值.(4)()y y x e z x 222++=. 【解】(一)解方程组()()()()⇒⎪⎩⎪⎨⎧=+='=+++='.022,,01422,222y e y x f y y x e y x f xyx x ⎪⎩⎪⎨⎧-==.1,21y x 故得唯一驻点:⎪⎭⎫⎝⎛-1,210P ;无不可微点.(二)()()124,22+++=''y y x e y x f x xx,()()44,2+=''y e y x f x xy ;()x yy e y x f 22,=''. 在⎪⎭⎫ ⎝⎛-1,210P 处,因为021,21>=⎪⎭⎫ ⎝⎛-''=e f A xx;01,21=⎪⎭⎫ ⎝⎛-''=xy f B ;⎪⎭⎫⎝⎛-''=1,21yy f C e 2=,002222>-⨯=-=∆e e B AC ,故21,21e f -=⎪⎭⎫⎝⎛-为函数的极小值.2.求下列的极值:(1)()22222,y x y x y x f -+=在区域(){}0,4|,22≥≤+=y y x y x D ; 【解】(一)内部 解方程组()()()()⇒⎪⎩⎪⎨⎧=-='=-='.022,,012,22x y y x f y x y x f yx ⎩⎨⎧==.0,0y x ;⎩⎨⎧-=-=.1,2y x (舍);⎩⎨⎧=-=.1,2y x ;⎩⎨⎧-==.1,2y x (舍); ⎩⎨⎧==.1,2y x .因此得区域D 内三驻点:()0,01P 、()1,22-P 、()1,23P .计算得()00,0=f ,()21,2=±f . (二)边界1.在区域D 的边界[]()2,0422∈=+y y x 上,由于。
高等数学郑州大学教材答案(本篇文章为一个关于高等数学的答案指南,为了方便观看和阅读体验,将按照题目和分小节论述的方式进行排版,不包含“小节一”、“小标题”等词语)一、题目:极限与连续1. 求以下极限:(1)lim(x→0) ((1+sin3x)^(1/2)-cos(x^2)) / x(2)lim(x→∞) (e^x - e^(-x)) / (e^x + e^(-x))答案:(1)根据泰勒展开式,可以得到:(1+sin3x)^(1/2) = 1 + (1/2)sin3x - (3/8)(sin3x)^2 + O((sin3x)^3)利用余弦的泰勒展开式cos(x^2) = 1 - (1/2)(x^2) + (1/24)(x^2)^2 +O((x^2)^3)将以上结果代入原式,得到:lim(x→0) ((1+sin3x)^(1/2)-cos(x^2)) / x= lim(x→0) [(1 + (1/2)sin3x - (3/8)(sin3x)^2 + O((sin3x)^3)) - (1 -(1/2)(x^2) + (1/24)(x^2)^2 + O((x^2)^3))] / x= lim(x→0) [(1/2)sin3x - (3/8)(sin3x)^2 + O((sin3x)^3) + (1/2)(x^2) - (1/24)(x^2)^2 - O((x^2)^3)] / x= lim(x→0) [((1/2)x^2 - (1/24)(x^2)^2) / x] + O(x^2)= lim(x→0) [(1/2)x - (1/24)x^2] + O(x^2)= 0(2)利用高中知识可以知道,当x→∞时,e^x增长得非常快,e^(-x)趋近于0。
根据这个性质,lim(x→∞) (e^x - e^(-x)) / (e^x + e^(-x))= lim(x→∞) [(1 - e^(-2x)) / (1 + e^(-2x))]= lim(x→∞) [(e^(2x) - 1) / (e^(2x) + 1)]令t = e^(2x),当x→∞时,t→∞。
习题3.11. 给定函数32()6116f x x x x =-+-.(1) 验证在区间[1,3]上满足罗尔定理条件,并求出罗尔定理结论中ξ的值;(2) 验证在区间[0,3]上满足拉格朗日中值定理的条件,并求出拉格朗日中值定理结论中ξ的值。
解:(1)()f x 为多项式函数,显然在(,)-∞+∞上可导,特别在[1,3]上连续,在(1,3)内可导,又(1)161160f =-+-=,32(3)3633360f =-+-= ,故有(1)(3)f f =,满足罗尔定理的条件。
2()312110f x x x '=-+=,可解得23x =±,都属于(1,3),故123ξ=+,223ξ=-。
(2)()f x 为多项式函数,显然在(,)-∞+∞上可导,特别在[0,3]上连续,在(0,3)内可导,满足满足拉格朗日中值定理的条件。
显然(0)6f =-,2(3)(0)()31211230f f f ξξξ-'=-+==-,易解得121,3x x ==,但是3(0,3)∉,故1ξ=。
2. 验证()sin f x x =,()cos g x x =在区间[0,]2π上满足柯西中值定理条件,并求出柯西中值定理结论中ξ的值。
解:显然()sin f x x =,()cos g x x =在区间[0,]2π上连续,在(0,)2π上可导,并且对任意(0,)2x π∈,()sin 0g x x '=-≠,故满足柯西中值定理条件。
()cos cot ()sin f g ξξξξξ'==-'-,()(0)102101()(0)2f fg g ππ--==---,可求得4πξ=。
3. 不用求出函数()(1)(2)(1)(2)f x x x x x x =--++的导数,说明方程()0f x '=有几个实根,并指出它们所在的区间。
解:由于()f x 为五次多项式,故可知()f x '为4次多项式,而4次多项式最多有4个实根,且()f x 和()f x '都在(,)-∞+∞上可导。
___《高等数学》第五版下册习题答案以下是练8-1的答案:1.对于第一题,我们可以使用分部积分法来求解。
具体来说,我们可以将被积函数拆分成两个部分,一部分是三角函数,另一部分是指数函数。
然后,我们可以分别对这两个部分进行积分,并利用分部积分公式将它们结合起来,最终得到原函数的表达式。
2.第二题是一个比较简单的求导题。
我们只需要利用链式法则和乘法法则,对给定的函数进行求导即可。
需要注意的是,有些项可能需要使用指数函数的求导公式来进行求导。
3.第三题是一个求极限的题目。
我们可以利用洛必达法则来求解。
具体来说,我们可以将被积函数化为一个分式,然后对分子和分母分别求导,最后利用洛必达法则求出极限的值。
4.第四题是一个求解微分方程的问题。
我们可以先将微分方程化为标准形式,然后利用分离变量法或者其他的求解方法来求解。
需要注意的是,有些微分方程可能需要使用变量代换或者其他的技巧来进行求解。
5.第五题是一个求解曲线长度的问题。
我们可以利用弧微分公式来求解。
具体来说,我们可以将曲线分成若干小段,然后对每一小段进行求解,最后将它们相加得到曲线的长度。
需要注意的是,有些曲线可能需要使用参数方程或者其他的表示方法来进行求解。
练9-2:本题要求证明一个三次方程的根的关系式。
先根据题目中给出的条件,将三次方程化为标准形式,然后利用___定理求出三个根的和、积,再利用___引理求出其中两个根的积的模,最后代入关系式中验证即可。
练9-3:本题要求证明一个函数的连续性。
先根据定义分别讨论左极限和右极限是否相等,若相等,则证明函数在该点处连续。
若不相等,则需要进一步讨论函数在该点处是否有间断点,若有,则证明函数在该点处不连续;若无,则证明函数在该点处跳跃,但仍是连续的。
练9-4:本题要求求出一个定积分的值。
首先根据积分的定义,将被积函数分解为正负两部分,然后利用线性性质将定积分分解为两个简单积分的和,再利用换元法或分部积分法求解即可得到最终结果。
高等数学下iCourse教材答案为了方便广大学生更好地学习高等数学,我们为大家准备了iCourse教材的答案。
以下是对iCourse高等数学下部分章节的习题答案,希望对学生们的学习有所帮助。
第一章:极限与连续1. 习题1.1:(1) f(x) = 2x - 3,f(4) = 5(2) g(x) = x^2 + 3x, g(-2) = 2(3) h(x) = 3/x, h(5) = 3/5...2. 习题1.2:(1) 设f(x) = 3x - 2,则f(2) = 4(2) 设g(x) = x^2 - 5,则g(-3) = 4(3) 设h(x) = 4/x^2,则h(2) = 1/4...第二章:导数与微分1. 习题2.1:(1) 设f(x) = 3x^2 + 2x,求f'(2)(2) 设g(x) = 2x^3 - 5x^2 + 3x,求g'(1)(3) 设h(x) = x^4 - 2/x,求h'(3)...2. 习题2.2:(1) 设f(x) = sin(x) + cos(x),求f'(π/4)(2) 设g(x) = ln(x) + e^x,求g'(2)(3) 设h(x) = x^2 * e^x,求h'(1)...第三章:数列与级数1. 习题3.1:(1) 设a1 = 1,an+1 = 2an + 1,求a3(2) 设b1 = 3,bn+1 = (2n+1)bn,求b4(3) 设c1 = 4,cn+1 = 3cn - 1,求c2 ...2. 习题3.2:(1) 设a1 = 2,an+1 = an + 1/n,求a5(2) 设b1 = 1,bn+1 = (n+1)bn,求b3(3) 设c1 = -1,cn+1 = cn^2,求c2...以上是iCourse高等数学下部分章节的部分习题和答案,希望能够对同学们的学习有所帮助。
学习高等数学需要不断练习,理解各个概念和定理,并能够熟练运用到解题过程中。
高等数学下册习题答案详解高等数学是大学数学的一门重要课程,它涵盖了微积分、线性代数、概率论等内容。
在学习过程中,习题是检验学生理解和掌握程度的重要方式。
下面将详细解答高等数学下册的一些典型习题,帮助读者更好地理解和应用数学知识。
1.微分方程习题解答微分方程是高等数学下册中的重要内容之一。
下面我们来解答一个经典的微分方程习题:已知微分方程dy/dx = 2x + 3,求其通解。
解答:首先将方程变形为dy = (2x + 3)dx,然后对两边同时积分,得到∫dy = ∫(2x + 3)dx。
对左边进行积分得到y = ∫dy = y + C1,其中C1为常数。
对右边进行积分得到∫(2x + 3)dx = x^2 + 3x + C2,其中C2为常数。
将上述结果代入原方程,得到y = x^2 + 3x + C2 - C1,即为微分方程的通解。
2.向量习题解答向量是高等数学下册中的另一个重要内容。
下面我们来解答一个向量习题:已知向量a = (1, 2, -3)和向量b = (4, -1, 2),求向量a和向量b的数量积和向量积。
解答:向量a和向量b的数量积为a·b = 1×4 + 2×(-1) + (-3)×2 = 4 - 2 - 6 = -4。
向量a和向量b的向量积为a×b = (2×2 - (-3)×(-1), (-3)×4 - 1×2, 1×(-1) - 2×4) = (7, -14, -9)。
3.级数习题解答级数是高等数学下册中的另一个重要内容。
下面我们来解答一个级数习题:已知级数∑(n=1)^(∞) 1/n^2 是收敛的,求级数∑(n=1)^(∞) 1/n^4 的和。
解答:由已知的级数∑(n=1)^(∞) 1/n^2 是收敛的可知,其和为π^2/6。
因为级数∑(n=1)^(∞) 1/n^4 是收敛的,所以存在一个常数S使得∑(n=1)^(∞) 1/n^4 = S。
高等数学下册习题答案高等数学是大学数学的一门重要课程,它是数学的一门基础性课程,也是培养学生数学思维和解决问题能力的重要途径。
在高等数学学习过程中,习题是必不可少的一部分,通过解答习题可以帮助学生巩固所学知识,提高解决实际问题的能力。
下面我将为大家提供一些高等数学下册习题的答案,希望对大家的学习有所帮助。
1. 求函数 f(x) = 2x^3 - 3x^2 - 12x + 5 的极值点和极值。
首先,我们需要求出函数的导数 f'(x)。
对于 f(x) = 2x^3 - 3x^2 - 12x + 5,求导得到 f'(x) = 6x^2 - 6x - 12。
接下来,我们将 f'(x) = 0,解得 x = -1 和 x = 2。
将这两个解代入 f(x) 中,得到f(-1) = 20 和 f(2) = -11。
因此,函数 f(x) 的极值点为 x = -1 和 x = 2,极小值为 f(-1) = 20,极大值为 f(2) = -11。
2. 求函数 f(x) = x^4 - 4x^3 + 6x^2 的拐点。
为了求出函数的拐点,我们需要求出函数的二阶导数 f''(x)。
对于 f(x) = x^4 -4x^3 + 6x^2,求导得到 f'(x) = 4x^3 - 12x^2 + 12x,再次求导得到 f''(x) =12x^2 - 24x + 12。
接下来,我们将 f''(x) = 0,解得 x = 1。
将这个解代入 f(x) 中,得到 f(1) = 3。
因此,函数 f(x) 的拐点为 x = 1,拐点坐标为 (1, 3)。
3. 求曲线 y = e^x 在点 (0, 1) 处的切线方程。
为了求出切线方程,我们需要求出曲线在点 (0, 1) 处的斜率。
对于曲线 y = e^x,求导得到 y' = e^x。
将 x = 0 代入 y',得到 y'(0) = e^0 = 1。
习题全解-第八章 多元函数微积分习题 8-11.在y 轴上求与点)7,3,1(-A 和点)5,7,5(-B 等距离的点。
解 设y 轴上有点)0,,0(y P 与A 和B 点等距离。
则PA ==PB ==由PA PB =得2=y即在y 轴上与点)7,3,1(-A 和点)5,7,5(-B 等距离的点为)0,2,0( 2.指出下列平面的特点,并画出草图:(1) 230x y -+=; (2) 350x -=; (3) 0x z -=; (4) 20x y +=; (5)0x y z --=; (6) 0z =. 解(1)方程中,0=C 平面平行于z 轴。
(2方程中,0==C B 平面平行于yoz 平面。
(3)方程中,0==D B 平面过y 轴。
(4)方程中,0==D C 平面过z 轴。
(5)方程中,0=D 平面过坐标原点。
(6)方程中,0===D B A 平面重合于xoy 平面。
3.指出下列方程所表示的曲面,并画出草图:(1) 2221x y z ++=; (2) 2240x y x +-=(3) 22194x y +=; (4) 2z y =; (5) 22244936x y z ++=; (6) 22214z x y +-=;(7) z =; (8) z =. 解 (1)表示球心在原点,半径为1的球面(2)表示母线平行于z 轴的圆柱面(3)表示母线平行于z 轴的椭圆柱面(4)表示母线平行于x 轴的抛物柱面(5)表示旋转椭球面(6)表示单叶双曲面(7)表示球心在坐标原点,半径为2的上半个球面(8)表示圆锥面4.写出下列旋转面的方程:(1) zOx 面上的直线2z x =分别绕x 轴、z 轴旋转而成的旋转面; (2) yOz 面上的抛物线23y z =绕z 轴旋转而成的旋转面; (3) yOz 面上的圆224y z +=绕y 轴旋转而成的旋转面; (4) xOy 面上的椭圆2244x y +=绕x 轴旋转而成的旋转面.解 (1)绕x 轴旋转:0)(4222=+-z y x ;绕y 轴旋转:0)(4222=+-y x z(2)0322=-+z y x (3)4222=++z y x(4)44222=++)(z y x 5.画出下列曲面所围立体的图形:(1)旋转抛物面228z x y =--与xOy 平面; (2)旋转抛物面22z x y =+与平面4z =; (3)圆柱面2216x y +=与平面4,0y z z +== (4)曲面22y x z +=与222y x z --=解 (1)(2)(3)(4)习题8-21.已知函数22),(xy y x y x f -=,试求)sin ,cos (y x y x f 解 22)sin (cos sin )cos ()sin ,cos (y x y x y x y x y x y x f -= y x y x y x y x 2222sin cos sin cos ⋅-⋅= )sin (cos sin cos 3y y y y x -= 2.已知函数vu vwu w v u f ++=),,(,试求),,(xy y x y x f -+解 x yx xy y x xy y x y x f 2)(),,(++=-+-3.求下列函数的定义域: (1))4ln(12222y x y x z --+-+=解 要使函数有意义,须使 ⎪⎩⎪⎨⎧>--≥-+04012222y x y x解得2214x y ≤+<所以函数的定义域为{}41),(22<+≤y x y x(2)x yy x f arcsin),(=解 要使函数有意义,须使⎪⎩⎪⎨⎧≠≤≤-011x x y解得0>x 时,x y x ≤≤-;0<x 时,x y x -≤≤所以函数的定义域为{}x y x x y x ≤≤->,0),(⋃{}x y x x y x -≤≤<,0),((3)yx z -=解 要使函数有意义,须使⎪⎩⎪⎨⎧≥≥-0y y x 解得yx y x ≥≥≥2,0,0所以函数的定义域为{}y x y x y x ≥≥≥2,0,0),((4)2229z y x u ---=解 要使函数有意义,须使09222≥---z y x解得9222≤++z y x所以函数的定义域为{}9),(222≤++z y x y x4.下列函数在哪些点间断?(1)2132--+=x y x z解 当2=x 时,函数间断所以函数有一条间断线为{}2),(=x y x(2)44y x e z xy+=解 当,0==y x 时,函数间断所以函数间断点为)0,0(习题8-31.求下列函数的偏导数和全微分 (1)123+-=xy y x z解 223y y x x z -=∂∂ xy x y z23-=∂∂ dy xy x dx y y x dz )2()3(322-+-=(2))ln(xy x z =解 1)ln()ln(+=+=∂∂xy xyy x xy x z y xxy x x y z ==∂∂ dy y x dx xy dz ++=)1(ln(3)xy yx z +-=1解 22222)1(1)1(1)1()1)(()1()(xy y xy y xy xy xy xy y x xy y x x z ++=++-+=+'+--+'-=∂∂2222)1(1)1()()1()1()1)(()1()(xy x xy x y x xy xy xy y x xy y x y z ++-=+--+-=+'+--+'-=∂∂ dy xy x dx xy y dz 2222)1(1)1(1++-++=(4)22arcsin y x z +=解 2222222212211y x y x x y x x y x x z +--=+⋅--=∂∂ 2222222212211y x y x y y x y y x y z +--=+⋅--=∂∂ dy yx y x y dx y x y x x dz 2222222211+--++--= (5)32sin xz x y u +=解 32cos z x y x u +=∂∂ x y usin =∂∂ 26xz z u =∂∂dz xz xdy dx z x y du 236sin )2cos (+++=(6)zxy u )1(-=解 ðuðx=−yz(1−xy)z−1ðuðy=−xz(1−xy)z−1ðuðz =(1−xy)z ⋅ln(1−xy)()()()dz xy xy dy xy xz dx xy yz du zz z --+----=--1ln 11)1(112.设函数)2(),(sin y x e y x f x +=,求)1,0(x f '和)1,0(y f '解 因为xx x e y x x e f sin sin )2(cos ++=' 所以3)1,0(='x f因为)2(sin +='x e f x y 所以2)1,0(='y f3.设222),,(zx yz xy z y x f ++=,求)1,2,0(x f ',)2,0,1(xzf '',)0,1,0(-''yzf ,)1,0,2(zzxf '''。
高等数学下册课后习题答案高等数学下册课后习题答案在学习高等数学下册的过程中,课后习题是非常重要的一部分。
通过解答习题,我们不仅可以巩固课堂知识,还可以提高自己的解题能力和思维能力。
然而,有时候我们会遇到一些难题,对于这些问题,我们需要有一个可以参考的答案。
下面,我将为大家提供一些高等数学下册课后习题的答案,希望对大家的学习有所帮助。
1. 题目:求函数 f(x) = x^3 - 3x^2 + 2x - 1 的极值点和极值。
解答:首先,我们需要求出函数的导数 f'(x)。
对 f(x) 进行求导,得到 f'(x) =3x^2 - 6x + 2。
然后,我们令 f'(x) = 0,解得 x = 1 或 x = 1/3。
接下来,我们需要判断这两个解是否为极值点。
为了判断,我们可以求出f''(x),即 f'(x) 的导数。
对 f'(x) 进行求导,得到 f''(x) = 6x - 6。
当 x = 1 时,f''(x) = 0,此时无法判断是否为极值点。
当 x = 1/3 时,f''(x) = -2,为负数,即 x = 1/3 为极大值点。
所以,函数 f(x) 的极大值点为 x = 1/3,极大值为 f(1/3) = -8/27。
2. 题目:证明数列 {an} 为等差数列,其中 a1 = 2,a2 = 5,a3 = 8。
解答:要证明数列 {an} 为等差数列,我们需要证明其通项公式为 an = a1 + (n - 1)d,其中 d 为公差。
首先,我们可以计算出公差 d。
根据已知条件,a2 - a1 = 5 - 2 = 3,a3 - a2 =8 - 5 = 3。
可以发现,a2 - a1 = a3 - a2,即这两个差值相等。
所以,公差 d = 3。
接下来,我们验证通项公式是否成立。
代入已知条件,an = a1 + (n - 1)d,即an = 2 + (n - 1)3 = 2 + 3n - 3 = 3n - 1。
第九章 重积分§ 1 二重积分的概念与性质 1、由二重积分的几何意义求二重积分的值dxdy y x I D⎰⎰+=22 其中D 为:422≤+y x( dxdy y x I D⎰⎰+=22=πππ3162.4..312.4.=-) 2、设D 为圆域,0,222>≤+a a y x 若积分dxdy y x a D⎰⎰--222=12π,求a 的值。
解:dxdy y x a D⎰⎰--222=3.34.21a π 81=a3、设D 由圆,2)1()2(22围成=-+-y x 求⎰⎰Ddxdy 3解:由于D 的面积为π2, 故⎰⎰Ddxdy 3=π64、设D :}10,53|),{(≤≤≤≤y x y x ,⎰⎰⎰⎰+=+=DDdxdy y x I dxdy y x I 221)][ln(,)ln(,比较1I , 与2I 的大小关系解:在D 上,)ln(y x +≤ 2)][ln(y x +,故1I ≤2I5、 设f(t)连续,则由平面 z=0,柱面 ,122=+y x 和曲面2)]([xy f z =所围的立体的体积,可用二重积分表示为⎰⎰≤+=1:222)]([y x D dxdy xy f V6、根据二重积分的性质估计下列积分的值⎰⎰Dydxdy x 22sin sin ππ≤≤≤≤y x D 0,0:(≤0⎰⎰Dydxdy x 22sin sin 2π≤) 7、设f(x,y)为有界闭区域D :222a y x ≤+上的连续函数,求 ⎰⎰→Da dxdy y x f a ),(1lim20π解:利用积分中值定理及连续性有)0,0(),(lim ),(1lim820f f dxdy y x f a a D a ==→→⎰⎰ηξπ§ 2 二重积分的计算法1、设⎰⎰+=Ddxdy y xI 1,其中D 是由抛物线12+=x y 与直线y=2x ,x=0所围成的区域,则I=( )A : 212ln 3ln 87+-- B : 212ln 3ln 89-+C : 212ln 3ln 89-- D : 412ln 3ln 89--2、设D 是由不等式1≤+y x 所确定的有界区域,则二重积分⎰⎰+Ddxdy y x )(为( )A :0B : 31C :32D : 13、设D 是由曲线xy=1与直线x=1,x=2及y=2所围成的区域,则二重积分 ⎰⎰Dxy dxdy ye 为( )A :e e e 212124--B :21242121e e e e -+-C :e e 21214+ D :2421e e -4、 设f(x,y)是连续函数,则二次积分dy y x f dx x x ⎰⎰++-2111),(为( )A dx y x f dy dx y x f dy y y ⎰⎰⎰⎰----+112111102),(),( B dx y x f dy y ⎰⎰--1110),(C dx y x f dy dx y x f dy y y ⎰⎰⎰⎰-----+112111102),(),( D dx y x f dy y ⎰⎰---11202),(5、设有界闭域D 1、D 2关于oy 轴对称,f 是域D=D 1+D 2上的连续函数,则二重积分⎰⎰Ddxdy y x f )(2为( )A ⎰⎰1),(22D dxdy y x f B ⎰⎰22),(4D dxdy y x fC ⎰⎰1),(42D dxdy y x f D⎰⎰22),(21D dxdy y x f 6、设D 1是由ox 轴、oy 轴及直线x+y=1所围成的有界闭域,f 是域D:|x|+|y|≤1上的连续函数,则二重积分⎰⎰Ddxdy y x f )(22为( )A ⎰⎰1),(222D dxdy y x f B ⎰⎰1),(422D dxdy y x fC ⎰⎰1),(822D dxdy y x f D⎰⎰1),(2122D dxdy y x f7、.设f(x,y)为连续函数,则⎰⎰a xdy y x f dx 0),(为( )A ⎰⎰a a ydx y x f dy 0),( B ⎰⎰a yadx y x f dy 0),(C ⎰⎰a y dx y x f dy 0),( D ⎰⎰a xdx y x f dy 0),(8、求 ⎰⎰=Ddxdy yx I 22 ,其中 :D 由x=2,y=x,xy=1所围成. (49)9、设I=⎰⎰31ln 0),(xdy y x f dx ,交换积分次序后I 为:I=⎰⎰31ln 0),(xdy y x f dx =⎰⎰3ln 03),(y edx y x f dy10、改变二次积分的次序: ⎰⎰⎰⎰-+4240200),(),(xxdy y x f dx dy y x f dx = ⎰⎰201221xxdx y dx x11、设 D={(x,y)|0≤x ≤1,0≤y ≤1} ,求⎰⎰+Dy x dxdy e 的值解:⎰⎰+Dyx dxdy e=⎰⎰⎰⎰-==+121101)1())((e dy e dx e dy edx y xl yx12设 I=⎰⎰--Ddxdy y x R 222,其中D 是由x 2+y 2=Rx 所围城的区域,求I (331R π)13、计算二重积分⎰⎰-+Ddxdy y x |4|22,其中D 是圆域922≤+y x解:⎰⎰-+Ddxdy y x |4|22==-+-⎰⎰⎰⎰rdr r d rdr r d ππθθ2032220202)4()4(241π 14、计算二重积分⎰⎰Dy x dxdy e},max{22,其中D={(x,y)| 0≤x ≤1,0≤y ≤1}解: ⎰⎰Dy xdxdy e }22,max{=1101022-=+⎰⎰⎰⎰e dx e d dy e dx yy xx y15、计算二重积分⎰⎰++Ddxdy yx yx 22,D :.1,122≥+≤+y x y x 解:⎰⎰++D dxdy yx y x 22=24)sin (cos 201sin cos 12πθθθπθθ-=+⎰⎰+rdr r r d§ 3 三重积分1、设Ω是由x=0,y=0,z=0及x+2y+z=1所围成的空间有界域,则⎰⎰⎰Ωxdxdydz 为( )A ⎰⎰⎰--12101y x y xdz d dx B ⎰⎰⎰---2102101y yx xdy dz dxC ⎰⎰⎰---2102101x yx xdz dy dx D ⎰⎰⎰10110xdz dy dx2、设Ω是由曲面x 2+y 2=2z,及z=2所围成的空间有界域,在柱面坐标系下将三重积分⎰⎰⎰Ωdxdydz z y x f ),,(表示为累次积分,I=( )A ⎰⎰⎰120202ρπθρθρρθz)dz ,sin ,cos f(d d B ⎰⎰⎰220202ρπρθρθρρθdz z),sin ,cos f(d dC ⎰⎰⎰2022202ρπρθρθρρθdz z),sin ,cos f(d d D ⎰⎰⎰20220dz z),sin ,cos f(d d ρθρθρρθπ3、设Ω是由1222≤++z y x 所确定的有界闭域,求三重积分⎰⎰⎰Ωdv e z ||解:⎰⎰⎰Ωdv e z ||=⎰⎰⎰--≤+111||222)(z y x z dz dxdy e =2⎰=-122)1(ππdz z e z 4、设Ω是由曲面z=xy, y=x, x=1 及z=0所围成的空间区域,求⎰⎰⎰Ωdxdydz z xy 32(1/364)5、设Ω是球域:1222≤++z y x ,求⎰⎰⎰Ω++++++dxdydz z y x z y x z 1)1ln(222222 (0) 6、计算⎰⎰⎰+Qdxdydz y x )(22 其中Ω为:平面z=2与曲面2222z y x =+所围成的区域 (π564) 7、计算⎰⎰⎰Qzdxdydz x 2其中Ω是由平面z=0,z=y,y=1以及y=x 2所围成的闭区域(2/27))8、设函数f(u)有连续导数,且f(0)=0,求dxdydz z y x f t tz y x t )(1lim 222222240⎰⎰⎰≤++→++π解:dxdydz z y x f tt z y x t ⎰⎰⎰≤++→++222222240(1lim π=)0(')(4limsin )(1lim 42022040f t drr f r dr r r f d d ttt tt ==⎰⎰⎰⎰→→ϕϕθπππ§4 重积分的应用1、(1)、由面积22y x +=2x, 22y x +=4x,y=x,y=0所围成的图形面积为( )A )2(41+πB )2(21+πC )2(43+π D 2+π(2) 、位于两圆θρsin 2=与θρsin 4=之间,质量分布均匀的薄板重心坐标是( )A (0,35)B (0,36)C (0,37) D (0,38)(3)、由抛物面x y z 422=+和平面x=2所围成的质量分布均匀的物体的重心坐标是 ( )A (0,0,34)B (0,0,35) C (0,0,45) D (0,0,47)(4)、 质量分布均匀(密度为μ)的立方体所占有空间区域:}10,10,10|),,{(≤≤≤≤≤≤=Ωz y x z y x ,该立方体到oz 轴的转动惯量I Z =( )A 31μB 32μC μD 34μ2、求均匀上半球体(半径为R)的质心解:显然质心在z 轴上,故x=y=0,z=⎰⎰⎰Ω=831Rzdv V 故质心为(0,0,R 38)4、 曲面2213y x z --=将球面25222=++z y x 分割成三部分,由上至下依次记 这三部分曲面的面积为 s 1, s 2, s 3, 求s 1:s 2:s 3解:π102559222=--=⎰⎰≤+dxdy y x y x 1S π2025516222=--=⎰⎰≤+dxdy y x y x 3Sπ70=2S5、求曲面xy Rz =包含在圆柱222R y x =+内部的那部分面积 解:3)122(2222222R dxdy R y x R R y x π-=++=⎰⎰≤+S6、求圆柱体Rx y x 222≤+包含在抛物面Rz y x 222=+和xoy 平面之间那部分立体的体积解:43)(2132222R dxdy y x R Rx y x π=+=⎰⎰≤+V 第九章 自测题一、选择题: (40分) 1、⎰⎰-x dy y x f dx 1010),(=( )A ⎰⎰-1010),(dx y x f dy x B ⎰⎰-xdx y x f dy 1010),( C ⎰⎰11),(dx y x f dy D ⎰⎰-ydx y x f dy 101),(.2、设D 为222a y x ≤+,当=a ( )时,π=--⎰⎰Ddxdy y x a 222. A 1 B 323 C 343 D 321 3、设⎰⎰+=Ddxdy y x I )(22,其中D 由222a y x =+所围成,则I =( B ).A 4220a rdr a d a πθπ=⎰⎰ B 422021a rdr r d aπθπ=⋅⎰⎰; C 3022032a dr r d a πθπ=⎰⎰ D 402202a adr a d a πθπ=⋅⎰⎰.4、设Ω是由三个坐标面与平面z y x -+2=1所围成的空间区域,则⎰⎰⎰Ωxdxdydz =( ).A481 B 481- C 241 D 241- .5 、设Ω是锥面,0(222222>+=a by a x c z )0,0>>c b 与平面c z y x ===,0,0所围成的空间区域在第一卦限的部分,则⎰⎰⎰Ωdxdydz z xy=( ).A c b a 22361B b b a 22361C a c b 22361D ab c 361.6、计算⎰⎰⎰Ω=zdv I ,1,222=+=Ωz y x z 为围成的立体,则正确的为( )和()A ⎰⎰⎰=101020zdz rdr d I πθB ⎰⎰⎰=11020rzdz rdr d I πθ C ⎰⎰⎰=11020rrdr dz d I πθ D ⎰⎰⎰=zzrdr d dz I 0201πθ.7、曲面22y x z +=包含在圆柱x y x 222=+内部的那部分面积=s ( )A π3B π2C π5D π22.8、由直线2,2,2===+y x y x 所围成的质量分布均匀(设面密度为μ)的平面薄板,关于x 轴的转动惯量x I =( ).A μ3B μ5C μ4D μ6二、计算下列二重积分:(20分)1、⎰⎰-Dd y x σ)(22,其中D 是闭区域:.0,sin 0π≤≤≤≤x x y (9402-π) 2、⎰⎰Dd xy σarctan ,其中D 是由直线0=y 及圆周1,42222=+=+y x y x ,x y =所围成的在第一象 限内的闭区域 . (2643π) 3、⎰⎰+-+Dd y x y σ)963(2,其中D 是闭区 域:222R y x ≤+ (2494R R ππ+)4、⎰⎰-+Dd y x σ222,其中D :322≤+y x . (.25π) 三、作出积分区域图形并交换下列二次积分的次序: (15分)1、⎰⎰⎰⎰-+yydx y x f dy dx y x f dy 30312010),(),( (⎰⎰-xxdy y x f dx 3220),()2、⎰⎰-+2111),(x xdy y x f dx (⎰⎰⎰⎰-+22202110),(),(y y y dx y x f dy dx y x f dy )3、⎰⎰θθθθ0)sin ,cos (rdr r r f d a (⎰⎰θθθθ0)sin ,cos (rdr r r f d a )四、计算下列三重积分:(15分)1、Ω+⎰⎰⎰Ω,)cos(dxdydz z x y :抛物柱面x y =2,,π=+==z x o z o y 及平面所围成的区域 (21162-π) 2、,)(22⎰⎰⎰Ω+dv z y 其中Ω是由xoy 平面上曲线x y 22=绕x 轴旋转而成的曲面与平面5=x 所围 (π3250) 五、(5分)求平面1=++czb y a x 被三坐标面所割出的有限部分的面积 .(22222221a c c b b a ++) 六、(5分)设)(x f 在]1,0[上连续,试证:310101])([61)()()(⎰⎰⎰⎰=dx x f dxdydz z f y f x f x y x 0)0(,)()()()(,)()(1==='=⎰⎰F dx x f t F x f x F dt t f x F x且则=⎰⎰⎰101)()()(x yx dxdydz z f y f x f =-⎰⎰dy x F y F y f dx x f x11)]()()[()(dx x F F x F x F F x f )}()1()()]()1((21){[(2122⎰+--=)1(21)1(61)1(21333F F F -+=)1(613F。
线性代数课后解析郑大邓俊强版引言《线性代数》是理工科专业的一门基础课程,它是研究向量空间、线性变换和线性方程组的科学。
《线性代数》的学习对理解和应用其他数学和工程学科都具有重要作用。
针对郑大邓俊强版《线性代数》这本教材,本文将对课后习题进行解析和讲解。
1. 第一章第一章是关于向量与线性方程组的内容。
在这一章中,我们学习了向量的基本概念和运算规则,以及如何求解线性方程组。
1.1 向量的概念与运算在郑大邓俊强版的《线性代数》中,向量被定义为一个有限维度的数列。
向量有多种表示方法,如行向量和列向量。
向量的加法和数乘运算遵循特定的规则,可通过坐标的加法和数乘来实现。
1.2 线性方程组线性方程组是指一组线性方程的集合。
我们学习了如何求解线性方程组,主要包括高斯消元法和矩阵法。
通过高斯消元法,我们可以将线性方程组转化为简化的阶梯形矩阵,从而快速求解未知数的值。
2. 第二章第二章主要介绍矩阵的相关知识,包括矩阵的定义、运算规则和特殊类型的矩阵。
2.1 矩阵的定义与运算郑大邓俊强版的《线性代数》中,矩阵被定义为一个按照规则排列的数的矩形阵列。
矩阵的加法和数乘运算与向量的运算类似,同样遵循特定的规则。
此外,我们还学习了矩阵的转置、矩阵乘法和矩阵的逆的概念与求解方法。
2.2 特殊类型的矩阵在《线性代数》中,有一些特殊类型的矩阵,如对称矩阵、反对称矩阵、单位矩阵等。
我们学习了这些特殊类型矩阵的性质和特点,并且了解了如何判断一个矩阵是否为特殊类型的矩阵。
3. 第三章第三章是关于向量空间的内容。
在这一章中,我们将学习向量空间的定义、运算规则以及线性相关与线性无关的概念。
3.1 向量空间的定义与运算规则向量空间是指由一组向量组成的集合,它具有特定的运算规则。
我们学习了向量空间的定义以及向量的加法和数乘在向量空间中的性质与规则。
3.2 线性相关与线性无关在向量空间中,存在一些向量之间可以线性表示为其他向量的线性组合。
我们将学习线性相关和线性无关的概念,并了解相关的定义和判断方法。
大一高等数学教材答案下册第一章:函数与极限1.1 函数的概念与性质1.1.1 函数的定义与表达式求值根据教材中给出的函数定义和表达式求值的相关知识,我们来解答下列问题:1. 将函数 f(x) = 2x + 3 在 x = 5 处求值得到的结果是多少?解答:将 x = 5 代入函数 f(x) = 2x + 3 中计算,得到 f(5) = 2 * 5 + 3 = 13。
2. 给定函数 g(x) = x^2 - 2x,求 g(-3) 的值为多少?解答:将 x = -3 代入函数 g(x) = x^2 - 2x 中计算,得到 g(-3) = (-3)^2 - 2 * (-3) = 15。
1.1.2 函数的性质与图像根据教材中给出的函数性质与图像的相关知识,我们来解答下列问题:1. 如果函数 f(x) 是一个奇函数,它的图像关于原点对称,那么函数f(x) 在 x = 0 处的值是多少?解答:由奇函数的性质可知,f(0) = -f(0)。
因此,f(0) = 0。
2. 若函数 g(x) 的图像关于 x 轴对称,那么 g(x) 在 x = 2 处的值是多少?解答:由函数图像关于 x 轴对称的性质可知,g(x) = g(-x)。
因此,g(2) = g(-2)。
1.2 极限的概念与性质1.2.1 极限的定义与运算法则根据教材中给出的极限定义与运算法则的相关知识,我们来解答下列问题:1. 设函数 f(x) = x^2 - 3x + 2,求当 x 趋于 2 时,f(x) 的极限为多少?解答:根据极限的定义可知,lim(x→2) f(x) = f(2)。
将 x = 2 代入函数 f(x) = x^2 - 3x + 2 中计算,得到 f(2) = 2。
因此,lim(x→2) f(x) = 2。
2. 如果lim(x→a) f(x) = 3,lim(x→a) g(x) = 4,那么lim(x→a) [f(x) + g(x)] 等于多少?解答:根据极限的运算法则可知,lim(x→a) [f(x) + g(x)] = lim(x→a)f(x) + lim(x→a) g(x) = 3 + 4 = 7。
高等数学下册教材答案解析本文将对高等数学下册教材中一些重要且具有难度的题目进行答案解析,以帮助学生更好地掌握数学知识和解题技巧。
以下是几个题目的答案解析:1. 题目:求函数 f(x) = x^2 + 2x + 1 的最小值。
解析:首先,我们可以通过求导数的方法来求取函数的最小值。
对 f(x) 求一阶导数,得到 f'(x) = 2x + 2。
然后,令 f'(x) = 0,解得 x = -1。
将 x = -1 带入原函数 f(x),得到f(-1) = 0。
因此,函数 f(x) 的最小值为 0,当 x = -1 时取得。
2. 题目:已知集合 A = {1, 2, 3, 4, 5},集合 B = {3, 4, 5, 6, 7},求 A 和 B 的交集和并集。
解析:集合的交集指的是两个集合中共有的元素,即A ∩ B。
根据给定的集合 A 和 B,可以得出A ∩ B = {3, 4, 5}。
集合的并集指的是两个集合中所有的元素,即 A ∪ B。
根据给定的集合 A 和 B,可以得出 A ∪ B = {1, 2, 3, 4, 5, 6, 7}。
3. 题目:已知函数 y = log(x),求 y 的导函数和二阶导函数。
解析:函数 y = log(x) 的导函数可以通过对函数进行求导得到。
根据导数的定义,导函数为 y' = 1/x。
对导函数 y' = 1/x 再次求导,得到二阶导函数 y'' = -1/x^2。
4. 题目:已知二次曲线的一般方程为 y = ax^2 + bx + c,其中a ≠ 0。
求该二次曲线的顶点坐标。
解析:二次曲线的顶点坐标可以通过求导数的方法得到。
首先,对一般方程求导,得到 y' = 2ax + b。
将 y' = 0,解得 x = -b/(2a)。
将 x 带入一般方程,得到 y = a(-b/(2a))^2 + b(-b/(2a)) + c。
2008级高等数学下册试题(985) 一、填空题(每小题3分,共 15分1微分方程250y y y '''++=的通解为________________. 2、设区域D 为221x y +≤,则()22____________.Dx y dxdy +=⎰⎰3.已知两直线的方程是1212321:,:,101211x y z x y zL L ---+-====- 则过1L 且平行于2L 的平面方程是________________.4、设S 是平面15x y z ++=被圆柱面221x y +=截出的限部分,则曲面积分_____________.Syds =⎰⎰5、设(){}222,,|1x y z xy z Ω=++≤,则2___.x d x d y d z Ω=⎰⎰⎰ 二、选择题(每小题3,共 15 1. 级数14n n n∞=∑的和为()A ()49A ; ()29B ; ()19C ; ()8.9D 2. 已知()(),f x f y 在区域(){},|1D x y x y =+≤上连续,且()()0,0.f x f y >> 则()()()()().Da f yb f x d x d y Bf x f y +=+⎰⎰ ()A a b -; ()B a b +; ()()2C a b +; ()()2.D a b -3. 曲线积分⎰+-Lyx xdyydx 22等于()A ,中L 为221x y +=,正向. ()2A π-; ()2B π; ()C π; ().D π4. 设曲线积分()()sin cos x L f x e ydx f x ydy ⎡⎤--⎣⎦⎰与路径无关,其中()f x 具有一阶连续导数,且()01,f =则()f x 等于()D()4x xe e A -+; ()4x xe e B --; ()2x xe e C --; ().2x xe e D -+ 5. 设()f x 在点0x =的某个邻域内二阶可导,且()30sin 1lim,2x x xf x x →+=则()()0.f C ''= ()1A ; ()0B ; ()43C ; ()2.3D 三、计算、证明题(每题10分,共 70分)1.证明:曲面 ()30xyz a a =>上任一点的切平面与三个坐标面所围成的四面体的体积为一定数.2. 叙述格林公式并计算曲线积分()()222210.LI xy y dx xy x x dy =---+-⎰其中L 是以()()()()0,0,1,0,1,1,0,1为顶点的正方形的正向边界曲线. 3.()()22x y dx ydyx y +++是否为某个二元函数(),u x y 的全微分?若是,求(),.u x y 4.计算曲面积分()dS y x S⎰⎰+22,其中曲面S 为锥面22y x z +=及平面1=z 所围成的区域的整个边界曲面. 5.求幂级数()n n x n n ∑∞=+111在()1,1-∈x 内的和函数.6.计算曲面积分⎰⎰∑+zdxdy y ydzdx x 22,∑是柱体(){}h z a y x z y x ≤≤≤+=Ω0,|,,222的外侧.7.(本题有两小题,周六课时的同学都做,周五课时的同学任选一题)(1)计算三重积分⎰⎰⎰Ω,2dxdydz z 其中区域Ω是由()⎩⎨⎧≤-++≤++2222222222,2z y x z y x 所确定. (2)设函数()u f 具有连续导数且(),00=f 求 ().1lim222222240dv z y xft t z y x t ⎰⎰⎰≤++→++π答案一、1、解:原微分方程对应的特征方程为2250r r ++= 得特征根为:12r i =-±, 故通解为:()12cos2sin2.x y e c x c x -=+ 2、解:()212220..2Dx y dxdy d r rdr ππθ+==⎰⎰⎰⎰3、3、解:可取所求平面的法向量为1013211i jkn i j k =-=-+.点法式方程为: ()()()1.132 1.30x y z ---+-=,即320.x y z -++= 4、解:由对称性知,显然0.Syds =⎰⎰5、解:由轮换对称性222.x dxdydz y dxdydz z dxdydz ΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰故()2122222200011sin .33x dxdydz x y z dxdydz d d d ππθϕϕρρρΩΩ=++=⎰⎰⎰⎰⎰⎰⎰⎰⎰ 4.15π= 二、ABADC1、解:令()()11,1,1.n n s x nx x ∞-==∈-∑则()011xnn x s x dx x x ∞===-∑⎰,()()21.11x s x x x '⎛⎫== ⎪-⎝⎭- 故 12111111114..4444449114n n n n n n s -∞∞==⎛⎫⎛⎫==== ⎪⎪⎝⎭⎝⎭⎛⎫- ⎪⎝⎭∑∑ 2、解:由对称性()()()()Daf y bf x I dxdy f x f y +=+⎰⎰=()()()()Daf x bf y dxdy f x f y ++⎰⎰相加得: ()()211.22D I a b dxdy a b a b =+=+=+⎰⎰3、解:⎰⎰-=-=-=+-L LA xdy ydx yx xdyydx .2222π(A 为L 所围成的区域的面积). 4、解:因为()()sin cos xL f x e ydx f x ydy ⎡⎤--⎣⎦⎰与路径无关,故 (){}()sin cos xf x e y f x y y x⎡⎤∂-∂-⎡⎤⎣⎦⎣⎦=∂∂, 化简,得 ()()xf x f x e'+= 由公式:()1121122dx dx x x x x x f x e e e dx c e e c e ce ---⎛⎫⎡⎤⎰⎰=+=+=+ ⎪⎢⎥⎣⎦⎝⎭⎰又代入()01,f =得:1.2c =所以,().2x x e e f x -+=5、解:()()3s i n 12x x f x x x α+=+, ()()221sin .2xf x x x x x α=-+()()()22001sin 0lim lim 12x x x f f x x o x x →→⎡⎤==-+=-⎢⎥⎣⎦()()()()22001sin 1020lim limx x x x o x f x f x f x x→→-++-'==3201s i n 2l i m x x x x x →-+=罗比塔)=0 ()()()22cos sin ''.2x x xf x x x x x x xαα-=-++ ()()()()()2200cos sin '.20''0"0lim limx x x x x x x x x x f x f x f x xαα→→--++--== 330cos sin lim x x x x xx→-+=(罗比塔)34=, 故 ()40.3f ''= 三、1、证:任取曲面3:0xyz a ∑-=上一点()0000,,M x y z令 ()3,,F x y z xyz a =-,则曲面在0M 点处的切平面的法向量为()()(){}{}00000000,,,,.x y zn F M F M F M y zx z x y'''==所以曲面在0M 点处的切平面为:3330000001.333x y za a a y z x z x y ++= ()()33399322300000000011333999 (32222)a a a a a V a y z x z x y x y z a ====2、解:格林公式的叙述这里略去.()()()()()222221022210LDxy x x xy y I xy y dx xy x x dy dxdy x y ⎡⎤∂-+-∂--⎢⎥=---+-=-∂∂⎢⎥⎣⎦⎰⎰⎰ ()()2210221010.DDy x y y dxdy dxdy =--+---==⎡⎤⎣⎦⎰⎰⎰⎰3、解:一)因为()y Py x y x Q ∂∂=+-=∂∂32在整个xoy 平面上除原点外恒成立,所以,()()22x y dx ydyx y +++是某一个函数()y x u ,的全微分 二)()()()()()⎰+++=y x y x ydy dx y x y x u ,0,122,=()()⎰⎰+++x y y x dx y x y ydy 02122.1ln y x y y x +-++=4、解:.21S S S +=其中,:221y x z S +=dxdy y z x z dS 221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=.=()();22.22201222221πθπ==+=+⎰⎰⎰⎰⎰⎰dr r r d dxdy y x dS y xxyD S ,1:2=z S .122d x d y d x d y y z x z dS =⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=,()();21.2010222221πθπ==+=+⎰⎰⎰⎰⎰⎰dr r r d dxdy y xdS y xxyD S所以()dS y xS⎰⎰+22()++=⎰⎰dS y x S 122()().2121122π+=+⎰⎰dS y xS 5、解:()nn x n n ∑∞=+111n n x n n ∑∞=⎪⎭⎫ ⎝⎛+-=1111-=∑∞=n n x n11nn x n ∑∞=+111 设()∑∞==11n n n x x s 则().111111x x n x x s n n n n -=='⎪⎪⎭⎫ ⎝⎛='∑∑∞=∞=- 所以, ()().1ln 110011x dx xs x s x --=-+=⎰ 即 x x n n n --=∑∞=1ln 11 设()∑∞=++=1121n n n x x s则().111112x x x n x x s n n nn -=='⎪⎪⎭⎫ ⎝⎛+='∑∑∞=∞=+ 则 ()().1ln 10022x x dx x x s x s x ---=-+=⎰ 故 n n x n ∑∞=+111().1ln 1111211x x x s x n x x n n ---==+=∑∞=+所以 ()nn x n n ∑∞=+111=x --1ln .1ln 1x x --- (-1,1)6、解:原式()()xdydz d z zy y y x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂=22()⎰⎰⎰Ω+=dxdydz y x 22==⎰⎰⎰dz r rdr d a h πθ202⎰⎰πθ203adr r d h .24ha π=7、解:(1)解法一:(先一后二)二重积分利作极坐标即为柱面坐标法:联立()⎩⎨⎧=-++=++,22,222222222z y x z y x 消z , xoy 坐标面上投影区域为.3:22≤+y x Ddz dxdy z⎰⎰⎰Ω2dr z r dz z rdr d r r r r ⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛==-----334423442220|22223.2πθπ ()()⎰⎥⎦⎤⎢⎣⎡----=3323242432dr rr r π(令t r sin 2=)4330042.32cos sin .32cos sin 33t tdt t tdt ππππ=-⎰⎰⎰+32sin cos 32.2ππtdt t ⎰-303sin cos 32.2ππtdt t 5915π=采用球面坐标计算:这时首先要把积分区域Ω分成两个子区域:.21Ω⋃Ω=Ω ⎪⎩⎪⎨⎧≤≤≤≤≤≤Ω,20,30,20:1ρπϕπθ 202,:,3204cos ,θπππϕρϕ≤≤⎧⎪⎪Ω≤≤⎨⎪≤≤⎪⎩则dz dxdy z ⎰⎰⎰Ω2=dz dxdy z ⎰⎰⎰Ω12dz dxdy z ⎰⎰⎰Ω+22 ρρϕρϕϕθππd d d ⎰⎰⎰=20302222.cos sin ρρϕρϕϕθπππϕd d d ⎰⎰⎰+2023cos 40222.cos⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰⎰204302cos .sin 2ρρϕϕϕππd d ⎪⎪⎭⎫ ⎝⎛+⎰⎰ϕππρρϕϕϕπcos 404232cos .sin 2d d ⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=||20530351cos 312ρϕππ⎪⎪⎭⎫ ⎝⎛+⎰237cos .sin 32.32512ππϕϕϕπd .1559π= (2)()()ρρρϕϕθππd f d d dv z y xft t z y x 220222sin 2222⎰⎰⎰⎰⎰⎰=++≤++ ().420ρρρπd f t⎰=,所以,()()420222404lim1lim2222t d f dv z y x f t tt t z y x t πρρρππ⎰⎰⎰⎰→≤++→=++(洛必达)()3204.4l i m tt t f t ππ→= ()t t f t 0l i m →=()()().000lim 0f t f t f t '=--=→。
大一高数下习题册答案解析大一高数下习题册答案解析大学的高等数学课程对于许多大一新生来说是一个巨大的挑战。
高数下学期的习题册更是让许多同学感到头疼。
为了帮助大家更好地理解和掌握高数下习题册中的问题,本文将对一些典型题目进行解析和讲解。
一、函数与极限在高数下学期的习题册中,函数与极限是一个重要的章节。
其中,极限的概念和性质是理解整个章节的关键。
在习题册中,经常会出现一些求极限的问题,下面我们就以一个典型的例子来进行解析。
例题:求极限lim(x→0) (sinx/x)。
解析:首先,我们可以观察到当x趋近于0时,分子sinx也趋近于0,而分母x 也趋近于0。
这个极限的形式是0/0型,我们可以利用洛必达法则来求解。
根据洛必达法则,我们可以对分子和分母同时求导。
对于分子sinx,它的导数是cosx;对于分母x,它的导数是1。
所以,原极限可以转化为求lim(x→0) (cosx/1)。
再次观察新的极限,我们可以发现当x趋近于0时,分子cosx也趋近于1,分母1保持不变。
所以最终的极限结果是1。
二、导数与微分导数与微分是高数下学期习题册中的另一个重要章节。
在这个章节中,我们需要掌握导数的定义和性质,以及一些常见函数的导数公式。
下面我们以一个例题来进行解析。
例题:求函数f(x) = 3x^2 - 2x + 1的导数。
解析:对于这个函数,我们可以使用导数的定义来求解。
导数的定义是函数在某一点的变化率,可以通过求函数的极限来得到。
对于函数f(x) = 3x^2 - 2x + 1,我们可以先求出它的变化率。
设x1和x2是两个不同的点,那么函数在这两个点的变化率为:Δy/Δx = [f(x2) - f(x1)] / (x2 - x1)将函数f(x) = 3x^2 - 2x + 1代入上式,我们可以得到:Δy/Δx = [3x2^2 - 2x2 + 1 - (3x1^2 - 2x1 + 1)] / (x2 - x1)化简上式,我们得到:Δy/Δx = 3(x2 + x1) - 2当Δx趋近于0时,上式的极限就是函数f(x)在点x处的导数。
习题7.73.指出下列方程所表示的曲线.(1)⎩⎨⎧==++;3,25222x z y x (2)⎩⎨⎧==++;1,3694222y z y x(3)⎩⎨⎧-==+-;3,254222x z y x (4)⎩⎨⎧==+-+.4,08422y x z y【解】(1)表示平面3=x 上的圆周曲线1622=+z y ;(2)表示平面1=y 上的椭圆19323222=+zx ;(3)表示平面3-=x 上的双曲线141622=-y z ; (4)表示平面4=y 上的抛物线642-=x z .4.求()()⎪⎩⎪⎨⎧=++=++Γ2,21,:2222222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】 (一)(1)、(2)联立消去z 得 22243R y x =+ 所以,Γ在xoy 面上的投影曲线为⎪⎩⎪⎨⎧==+.0,43222z R y x (二)(1)、(2)联立消去y 得R z 21=所以,Γ在zox 面上的投影曲线为 .23.0,21R x y R z ≤⎪⎩⎪⎨⎧==(三)(1)、(2)联立消去x 得R z 21=所以,Γ在yoz 面上的投影曲线为.23.0,21R y x R z ≤⎪⎩⎪⎨⎧==6.求由球面224y x z --= ①和锥面()223y x z += ②所围成的立体在xoy 面上的投影区域.【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为⎩⎨⎧==+.0,122z y x所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D .习题7.82.设空间曲线C 的向量函数为(){}t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与20=t 相应的点处的单位切向量.【解】因(){}64,4,2-=t t t r ,故C 相应20=t 的点处的切向量为(){}2,4,42='r .C 相应20=t 的点处的单位切向量为(){}.31,32,322,4,4612⎭⎬⎫⎩⎨⎧±=±=' 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为()()(){}|1,,='''=t t z t y t x {}{}3,2,13,2,1|12===t t t .所以,Γ在0M 点处的切线方程为 312111-=-=-z y x . 法平面为()()()01.31.21.1=-+-+-z y x ,即 0632=-++z y x .4.在曲线32,,:t z t y t x ===Γ上求一点,使在该点处的切线平行于平面y x 2:+π4=+z .【解】平面y x 2+4=+z 的法向量为{}1,2,1=n .在Γ上任取一点()0000,,z y x M ,并设0M 对应参数0t t =.Γ在0M 点处的切线方向为()()(){}000,,t z t y t x '''={}{}20023,2,13,2,1|0t t t t tt ===. 由题意,欲使0M 点处的切线与平面π平行,只须与垂直,为此令200341.0t t n s ++==,即0341200=++t t .解之得, 10-=t 或 310-=t .所以,所求点为()1,1,10---M 或⎪⎭⎫⎝⎛-271,91,310M .5.求曲线⎰=tu udu e x C 0cos :,t t y cos sin 2+=,t e z 31+=在0=t 处的切线方程和法平面方程.【解】参数0=t 对应曲线C 上的点()2,1,00M .C 在0M 点处的切线方向为()()(){}|,,='''=t t z t y t x s {}{}3,2,13,s i n c o s 2,c o s |3=-==t tt e t t t e .所以,Γ在0M 点处的切线方程为322110-=-=-z y x . 法平面为()()()02.31.20.1=-+-+-z y x ,即 0832=-++z y x .习题8.11.求下列函数的的定义域,并画出定义域的图形. (3)221yx z w --=;(4)19222222-++---=z y x z y x u .【解】(3)要使函数表达式有意义,必须满足 0122>--y x 即 122<+y x 故所求函数的定义域为(){}1|,22<+=y x y x D . (4)要使函数表达式有意义,必须满足⎪⎩⎪⎨⎧>-++≥---.01,09222222z y x z y x 即 ⎪⎩⎪⎨⎧>++≤++.1,9222222z y x z y x 故所求函数的定义域为(){}91|,,222≤++<=z y x z y x D .3.求下列各极限. (1)()()⎪⎪⎭⎫ ⎝⎛++→z y x z y x 111lim3,2,1,,; (2)()()⎪⎪⎭⎫ ⎝⎛+→x y y x y x 1sin 1sin lim 0,0,; (3)()()()xyy x xy tan 10,0,1lim+→; (4)()()()22220,0,lim y x y x xy y x +-→;(5)()()y x y x y x +-++→11lim220,0,; (6)()()2220,0,lim yx yx y x +→. 【解】(1)因为函数()zy x z y x f 111,,++=是三元初等函数,其定义域为(){}0,0,0|,,≠≠≠=z y x z y x D ,且()D ∈3,2,1,所以三元函数()zy x z y x f 111,,++=在()3,2,1处连续,从而有 ()()611312111111lim3,2,1,,=++=⎪⎪⎭⎫ ⎝⎛++→z y x z y x . (2)()()⎪⎪⎭⎫⎝⎛+→x y y x y x 1sin 1sin lim 0,0, ()()y x y x 1sinlim0,0,→=()()0001sin lim 0,0,=+=+→xy y x . 【其中()()y x y x 1sinlim 0,0,→()()01sin lim 0,0,==→xy y x 均是利用有界量乘以无穷小量还是无穷小量】. (3)()()()xyy x xy tan 10,0,1lim+→()()()e e xy xyxyxyy x ==⎥⎦⎤⎢⎣⎡+=→1tan 10,0,1lim.(4)()()()22220,0,lim y x y x xy y x +-→()()()0.lim 22220,0,=+-=→xy y x y x y x .【上述结论中用到12222≤+-y x y x 及()()0lim 0,0,=→xy y x ,即利用有界量乘以无穷小量还是无穷小量】. (5)()()y x y x y x +-++→11lim220,0,()()()()11lim 22220,0,+++++=→y x y x y x y x()()().lim 220,0,y x y x y x ++=→()().0210111lim220,0,=⨯=+++→y x y x 【上述结论中用到()y x yx y x y x y x +=++≤++≤2220,()()()0lim 0,0,=+→y x y x 及夹逼准则】.(6)()()2220,0,lim y x y x y x +→()()0.lim 2220,0,=+=→y y x x y x .【上述结论中用到1222≤+yx x 及()()0lim 0,0,=→y y x ,即利用有界量乘以无穷小量还是无穷小量】.4.证明极限()()4220,0,lim y x xy y x +→不存在.【证】(一)让动点()y x P ,沿直线0=y 趋于点()0,0O 时,()4220lim y x xy y x +=→000.lim 4220=+=→x x x . (二)让动点()y x P ,沿抛物线x y =2趋于点()0,0O 时,()42202lim y x xy xy x +=→21.l i m 220=+=→x x x x x .习题8.21.证明:函数()444,y x y x f +=在原点()0,0处连续,但不存在偏导数()0,0x f ',()0,0y f '.【证明】 (一)因为()()()()0,00,lim0,0,f y x f y x ==→,所以,()y x f ,在()0,0处连续.(二)因为()()x f x f x ∆-∆+→∆0,00,0lim 0()xx x ∆-+∆=→∆00lim4440 xx x ∆∆=→∆0l i m不存在,所以不存在偏导数()0,0x f ';由轮换对称性知,也不存在偏导数()0,0y f '. 2.求下列函数对各自变量的一阶偏导数.(1)x y y x z 33-=; (2)xy z ln =;(3)xy e z x sin =; (4)xyz arctan =;(5)()yxy z +=1; (6)2yxe z y=.【解】(1)323y y x xz-=∂∂;x y x y z 233-=∂∂ . (2)因y x z ln ln +=,故x x z 1=∂∂;yy z 1=∂∂. (3)xy ye xy e xzx x cos sin +=∂∂; xy xe y z x cos =∂∂ (4)x x y x y xz '⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=∂∂211222222y x y x y y x x +-=⎪⎭⎫⎝⎛-+=; yx y x y xz'⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+=∂∂211222221y x x x y x x +=⎪⎭⎫⎝⎛+=. (5)()()xy y ye xy z +=+=1ln 1;()()[]x xy y xy y e x z '+=∂∂+1ln 1ln ()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+=+y xy y e xy y .111ln ()1211-++=y xy xy y ;()()[]y xy y xy y e y z '+=∂∂+1ln 1ln ()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+++=+x xy y xy e xy y .11)1ln(1ln ()⎥⎦⎤⎢⎣⎡++++=xy xy xy xy y 1)1ln(1()()[]xy xy xy xy y ++++=-)1ln(111. (6)2y e x z y =∂∂;422.y y e y e x y z y y -=∂∂()422y y y xe y -=()32yy xe y -=. 3.求曲线⎪⎩⎪⎨⎧=+=Γ,4,4:22y y x z 在点()5,4,20M 处的切线方程及切线对于x 轴的倾角的度数. 【解】(一)Γ的参数方程为⎪⎪⎩⎪⎪⎨⎧+===Γ416,4,:2x z y x x (x 为参数).点0M 对应参数2=x ,故切向量为{}1,0,12,0,1|2=⎭⎬⎫⎩⎨⎧==x x s 切. 所以,点()5,4,20M 处的切线方程为150412-=--=-z y x . (二)因为()()1244,2||4,2)4,2(22=='⎪⎪⎭⎫ ⎝⎛+='xy x f x x ,所以切线对于x 轴的倾角的度数为41arctan πα==. 4.求下列函数的所有二阶偏导数.(1)()y x z 32sin +=; (2)42244y y x x z +-=; (3)xy z 2=; (4)yxy x y x z arctan arctan 22-=. 【解】 (1)()y x xz32cos 2+=∂∂; ()y x y z 32cos 3+=∂∂;()y x x z 32sin 422+-=∂∂;()y x y x z 32sin 62+-=∂∂∂;()y x yz32sin 922+-=∂∂. (2)2384xy x xz-=∂∂; 3248y y x y z +-=∂∂; 2222812y x x z -=∂∂;xy y x z 162-=∂∂∂;2222128y x yz +-=∂∂. (3)()x xy xy x z '=∂∂2.2121()x yy xy 212.2121==;()y xy xy y z '=∂∂2.2121()yx x xy 212.2121==. xyx y x y x y x z 42.12121222-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=∂∂;xyx x y y x z 421.121212=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=∂∂∂; xyy xy x y x y z 42.12121222-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=∂∂. (4)yx y x y x z arctan arctan22-=. x x y xy x y x x z '⎪⎪⎭⎫ ⎝⎛-'⎪⎭⎫ ⎝⎛=∂∂arctan arctan 22 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++=y y x y x y x y x x y x 1.11.11a r c t a n 222222 223222a r c t a n 2yx y y x y x x y x +-+-= ()2222a r c t a n 2y x yy x x y x ++-=y x y x -=a r c t a n 2; y y y x y x y x y z '⎪⎪⎭⎫ ⎝⎛-'⎪⎭⎫ ⎝⎛=∂∂arctan arctan 22 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=22222.11a r c t a n 21.11y x y x y y x y x x y x 222223a r c t a n 2yx xy y x y y x x ++-+= ()y xy yx x y xa r c t a n 22222-++=y x y x a r c t a n 2-=.⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛++='⎪⎭⎫ ⎝⎛-=∂∂2222.112arctan 2arctan 2x y x y x x y y x y x x z x 222a r c t a n 2yx xyx y +-=. 11.112a r c t a n 222-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+='⎪⎭⎫ ⎝⎛-=∂∂∂x x y x y x y x y x z y 12222-+=y x x 2222yx y x +-=; y y x y x y z '⎪⎪⎭⎫ ⎝⎛-=∂∂arctan 222 ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛++-=22.112a r c t a n 20y x y x y y x 222a r c t a n 2yx xyy x ++-=. 5.验证下列等式.(1)设xy xe z =,证明: z yz y x z x=∂∂+∂∂; (2)证明函数r u 1=,222z y x r ++=满足0222222=∂∂+∂∂+∂∂zu y u x u ;(3)证明()bx e t x T tab sin ,2-=满足热传导方程22xTa t T ∂∂=∂∂,其中a 为正常数,b 为任意常数.【证】(1)因⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∂∂x y e x y e x e x z x y x y x y 12;x yx y e x e x y z =⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛=∂∂1.所以,z xe ye x y e x y z y x z x x y x y x y ==+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=∂∂+∂∂1.(2)()x z y x z y x x r '++++=∂∂22222221()r xx z y x =++=221222;①x r dr du x u ∂∂=∂∂.【因为①】32.1rx r x r -=-=. 623322.3..1rx r r x r r x x x u ⎪⎭⎫ ⎝⎛∂∂--=⎪⎭⎫ ⎝⎛-∂∂=∂∂【因为①】 5226233.3..1rx r r r x r x r --=⎪⎭⎫ ⎝⎛--=; ② 同理可得522223ry r y u --=∂∂; ③ 522223r z r z u --=∂∂ ④所以,222222zuy u x u ∂∂+∂∂+∂∂【因为②,③,④】()5222233r z y x r ++--=033522=--=rr r . (3)由()bx e t x T t ab sin ,2-=,得()[]bx e ab bx ab e tTt ab t ab sin sin 2222---=-=∂∂. ① []bx be b bx e xTt ab t ab cos .cos 22--==∂∂.[]b bx be x T tab .sin 222-=∂∂-bx e b t ab sin 22--=. ② 所以有22xTa t T ∂∂=∂∂bx e ab t ab sin 22--=.6.设()()⎪⎩⎪⎨⎧=+≠+++=,0,0,0,1cos ,22222222y x y x y x y x y x f 求()0,0x f ',()0,0y f '.【解】因为()()xf x f x ∆-∆+→∆0,00,0lim 0 ()[]()xx x x ∆-+∆+∆=→∆001cos0lim222201coslim 0=∆∆=→∆x x x 【上述结论中用到11cos ≤∆x及0lim 0=∆→∆x x ,即利用有界量乘以无穷小量还是无穷小量】,所以,()00,0='x f . 同理,()00,0=''y f .习题8.31.求下列函数的全微分.(1)yxy x z +=24;(2)32y x ez +=;(3)xyz u =;(4)z xy u =.【解】 (1)因为y xy x z 18+=∂∂,224yx x y z -=∂∂,所以 dy y zdx x z dz ∂∂+∂∂=dy y x x dx y xy ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=22418. (2)因为()xyx y x e xz'+=∂∂+2222⎪⎪⎭⎫ ⎝⎛+=+x y x eyx 2.2122222222y x xe y x +=+; 由轮换对称性知,2222yx ye y z yx +=∂∂+.所以dy y zdx x z dz ∂∂+∂∂=()ydy xdx yx e y x ++=+2222. (3)因为yz x u =∂∂,xz y u =∂∂,xy zu=∂∂,所以,x y d z x z d y y z d x dz zu dy y u dx x u du ++=∂∂+∂∂+∂∂=. (4)z xy u =. 因为z y x u =∂∂,1-=∂∂z xzy y u ,y xy zuz ln =∂∂,所以, ydz xy dy xzy dx y dz zu dy y u dx x u du z z z ln 1++=∂∂+∂∂+∂∂=-. 2.求下列函数在指定点的全微分.(2)zy x u 1⎪⎪⎭⎫⎝⎛=,()1,1,1|du .【解】(2)zy x u 1⎪⎪⎭⎫⎝⎛=,()1,1,1|du .因为x zy x y x z x u '⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=∂∂-111⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-y y x z z1111; yz y x y x z y u '⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=∂∂-111⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-2111y x y x z z ; ⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=∂∂211.ln z y x y x z u z⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-2111ln 1z y x y x z z.所以dz zu dy y u dx x u du ∂∂+∂∂+∂∂=+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-dx y y x z z1111dy y x y x z z⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-2111dz z y x y x z z⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+-2111ln 1.从而 ()dy dx du -=1,1,1|.4.求曲面22:y x z S +=在点()2,1,10M 处的切平面方程和法线方程.【解】令()z y x z y x F -+=22,,. 则曲面S 在点0M 处的切平面的法向量为 ()()(){}000,,M F M F M F z y x '''= {}(){}1,2,21,2,2|2,1,1-=-=y x .所以S 在点0M 处的切平面方程为()()()02.1121.2=---+-z y x . 化简得0222=--+z y x . 法线方程为122121--=-=-z y x . 6.利用全微分求近似值. (1)()()3397.102.1+;【解】(1)令(),,33y x y x f z +==则()()332133223,,23,yx y y x f yxyx x y x f y y x +='+='-.取03.0,02.0,2,100-=∆=∆==y x y x ,则有()()()()()03.02,102.02,12,103.02,02.01-⨯'+⨯'+≈-+y x f f f f ,即:()()().95.203.0202.021397.102.133=-⨯+⨯+≈+8.已知函数()⎪⎩⎪⎨⎧=+≠++=,0,0,0,1sin ,222222y x y x y x xy y x f证明: (1)()y x f ,在点()0,0处连续且偏导数存在; (2)()y x f ,在点()0,0处可微. 【证】(1)因为()y x f y x ,lim 0→→01sinlim 220=+=→→yx xy y x 【无穷小乘以有界量还是无穷小量】()0,0f =,所以()y x f ,在点()0,0处连续. 又因为()()xf x f x ∆-∆+→∆0,00,0lim000lim 0=∆-=→∆x x ,所以()00,0='x f ;同理()00,0='y f ,所以()y x f ,在点()0,0处偏导数存在.(2)()y x f ,在点()0,0处的全增量为()()()()()220,01s i n0,00,0|y x y x f y x f z ∆+∆∆∆=-∆+∆+=∆.因为 ()()[]()()22000,00,0limy x yf x f z y x y x ∆+∆∆'+∆'-∆→∆→∆()()()()01sinlim22220=∆+∆∆+∆∆∆=→∆→∆y x y x yx y x ,所以,()y x f ,在点()0,0处可微. 【上述结论用到了()()()()22221sin0y x y x yx ∆+∆∆+∆∆∆≤()()()()22221s i n.y x y x y x ∆+∆∆+∆∆∆=()()[]()()()[]()()()0,0,02121222222→∆∆→∆+∆=∆+∆∆+∆≤y x y x y x y x及夹逼准则 . 】习题8.41.求下列复合函数的偏导数或全导数. (1)设uv e z =,而2,sin x v x u ==,求dxdz ; (2)设()xyx z ln =,求xz∂∂,y z ∂∂; (3)设()xy y x yf x z ,222+=,求xz∂∂,y z ∂∂. 【解】(1)因为uv ve u z =∂∂,uv ue v z =∂∂;x dx du cos =,x dxdv2=.所以由全导数公式,有 ()x x x x e x ue x ve dxdvv z dx du u z dx dz x x uv uv cos sin 22.cos ..2sin 2+=+=∂∂+∂∂=. 【另解:因为x x e z sin 2=,故 ()'=x x e dx dz x x sin 2sin 2()x x x x e x x c o s s i n 22s i n2+=.】 (2)()[]x x xy e x z '=∂∂ln ln ()[]x x xy x xy e '=ln(ln ln ()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=x x xy x y e x xy 1.ln 1)ln(ln ln()⎥⎦⎤⎢⎣⎡+=x y x y x xy ln )ln(ln ln ()()()x x y x y xy xy ln ln ln ln 1+=-; ()()()y xy xy x x yz '=∂∂ln ln .ln ()()x x x xy ln ln .ln =. (3)()()()[]x x xy y x f y x xy y x f y x xz'+++'=∂∂,.,.222222 ()[]y f x f y x xy y x f xy .2..,.221222'+'++=;()()()[]y y xy y x f y x xy y x f y x yz'+++'=∂∂,.,.222222 ()[]x f y f y x xy y x f x .2..,.212222'+'++=.2.设⎪⎭⎫⎝⎛+=x y x xy z ϕ,其中()u ϕ是可微函数,证明: +∂∂x z x xy z y z y +=∂∂. 5.设()221,,z yx e z y x f u ++==,而y x z sin 2=,求xu∂∂,y u ∂∂. 6.求下列函数的22xz ∂∂,y x z ∂∂∂2和22y z∂∂.(1)()y xy f z ,=;(2)()y x e y x f z +=,cos ,sin . 【解】(1)由()y xy f z ,=得1f y xz'=∂∂,21f f x y z '+'=∂∂; []()11211122f y f y y f y xz x ''=''=''=∂∂;[]()1211112111112f y f xy f f f x y f f y f yx z y ''+''+'=''+''+'=''+'=∂∂∂; [][]()()22121122221121121222f f x f x f f x f f x x f f x y z y y ''+''+''=''+''+''+''=''+''=∂∂. 【注意:书中有关22yz∂∂的答案有误】.(2)由()y x e y x f z +=,cos ,sin 得31.c o s f e f x xzy x '+'=∂∂+;32.sin f e f y y z y x '+'-=∂∂+; [][]x y x x f e f x xz ''+''=∂∂+3122.c o s()[]13111cos cos .sin f e f x x f x y x ''+''+'-=+ ()[]33313.cos f e f x e f e y x y x y x ''+''+'++++[][]y y x y f e f x yx z ''+''=∂∂∂+312.c o s ()[]333231312sin sin cos f e f y e f e f e f y x y x y x y x y x ''+''-+'+''+''-=++++; 33223231312sin cos sin cos f e f ye f e f xe f y x y x y x y x y x ''+''-'+''+''-=++++; [][]y yx y f e f y y z ''+''-=∂∂+3222.s i n()[]23222sin sin .cos f e f y y f y y x ''+''-+'-=+ ()33323sin f e f y e f e y x y x y x ''+''-+'++++ 33223232222sin 2sin .cos f e f e f ye f y f y y x y x y x ''+'+'''-''+'-=+++. 【注意:书中有关22yz∂∂的答案有误】.8.设()[]z x f z ϕ+= ①,其中ϕ,f 可导,求dxdz . 【解】①式两端对x 求导并注意到z 是关于x 的函数,得 ()[]()[]x z x z x f dx dz '++'=ϕϕ()[]()⎥⎦⎤⎢⎣⎡'++'=dx dz z z x f .1ϕϕ()[]()()[]dxdzz x f z z x f ..ϕϕϕ+''++'=. ② 由②式解得()[]()()[]z x f z z x f dx dz ϕϕϕ+'-+'=1.9.设()y x z z ,=由方程0ln 2=-+⎰-dt e z z xy t ①得到,求x z∂∂,yz ∂∂,y x z ∂∂∂2.【解】(一)①式两端对x 求导并注意到z 是关于y x ,的二元函数得012=-∂∂+∂∂-x e xzz x z ,即 211x e x zz -=∂∂⎪⎭⎫ ⎝⎛+ . ②由②式解得21x e zz x z -+=∂∂. ③ (二)①式两端对y 求导并注意到z 是关于y x ,的二元函数得012=+∂∂+∂∂-y e yzz y z ,即 211y e y z z --=∂∂⎪⎭⎫ ⎝⎛+ . ④ 由④ 式解得 21y e zz y z -+-=∂∂. ⑤ (三)由③式得212x y e z z y x z -'⎥⎦⎤⎢⎣⎡+=∂∂∂()2.112x e y z z -⎥⎦⎤⎢⎣⎡∂∂+=【代入④】 ()22.1.112x y e e z z z --⎥⎦⎤⎢⎣⎡+-+=()22.13y x e z z--+-=.10.设f 可微,试验证: (1)()22yx f y z -=① 满足方程211y zy z y x z x =∂∂+∂∂; 【证】()x y x f y x z '⎥⎦⎤⎢⎣⎡-=∂∂221()()[]x y x f y x f y '⎭⎬⎫⎩⎨⎧---=222221()()()⎥⎦⎤⎢⎣⎡'--'--=xy x y x f yx fy2222222.()()222222y x f yx fxy-'--=; ()yy x f y y z '⎥⎦⎤⎢⎣⎡-=∂∂221.()()y y x f y y x f '⎥⎦⎤⎢⎣⎡-+-=222211 ()()()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡'--'--+-=y y x y x f y x f y y x f 222222222.11()()()2222222221y x f yx f y y x f -'---=. 所以yz y x z x ∂∂+∂∂11()()⎥⎦⎤⎢⎣⎡-'--=2222221y x f y x f xy x ()()()⎥⎦⎤⎢⎣⎡-'---+22222222211y x f y x f y y x f y ()221.1y x f y -=【由①式】..12y z y z y == (2)()y x f z ,=满足方程t z s z y z x z ∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂.22,其中t s y t s x -=+=,. 【证】y zx z s y y z s x x z s z ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂..; yz x z t y y z t x x z t z ∂∂-∂∂=∂∂∂∂+∂∂∂∂=∂∂... 故 t z s z ∂∂∂∂.⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y z x z ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂y z x z .22⎪⎪⎭⎫⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=y z x z . 14.设函数()y x f ,具有二阶连续偏导数,且满足等式0512422222=∂∂+∂∂∂+∂∂yuy x u x u . ①试确定b a ,的值,使等式在变换by x ay x +=+=ηξ,下化为02=∂∂∂ηξu. 【解】因为ηξηξηηξξ∂∂+∂∂=∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂uu u u x u x u x u1.1...;ηξηξηηξξ∂∂+∂∂=∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u b u a b u a u y u y u y u ..... 故有⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂x u x u x u x u u u x u xx ηηξξηηηξξξηξ (2222222)2 222222ηηξξ∂∂+∂∂∂+∂∂=uu u . ② ⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∂y u y u y u y u u u y x u yy ηηξξηηηξξξηξ....2222222 ()22222..ηηξξ∂∂+∂∂∂++∂∂=ub u b a u a . ③⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫ ⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂y u y u b y u y u a u b u a y uyy ηηξξηηηξξξηξ (2222222)222222222ηηξξ∂∂+∂∂∂+∂∂=u b u ab u a . ④ 将②、③、④代入①式左边,得①左⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂=2222224ηηξξu u u ()⎪⎪⎭⎫⎝⎛∂∂+∂∂∂++∂∂+22222.12ηηξξu b u b a u a⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂+222222225ηηξξu b u ab u a ()()()2222222512410121285124ηηξξ∂∂+++∂∂∂++++∂∂++=u b b u ab b a u a a 因此方程①化为()()()05124101212851242222222=∂∂+++∂∂∂++++∂∂++ηηξξu b b u ab b a u a a . ⑤因此要使①在变换下化为02=∂∂∂ηξu,必须 ⎪⎩⎪⎨⎧=++=++.05124,0512422b b a a 解之得 ⎪⎩⎪⎨⎧-=-=,52,2b a 或⎪⎩⎪⎨⎧-=-=,2,52b a 习题8.51.验证下列方程在指定点的邻域存在以x 为自变量的隐函数,并求dxdy. (1)4422y x y x +=+,在点()1,1;【解】令()4422,y x y x y x F --+=,则()342,x x y x F x -=',()342,y y y x F y -=',()01,1=F ,()()021,11,1≠-='='y x F F ,由隐函数存在定理知,方程04422=--+y x y x在点()1,1的某邻域内能唯一确定一个单值可导且当1=x 时,1=y 的函数()x y y =.由公式()()()()223321124242,,y y x x y y x x y x F y x F dx dy y x --=---=''-=. (2)xyy x arctan ln 22=+①,在点()0,1.【解】令()x y y x y x F arctan ln ,22-+=()xyy x arctan ln 2122-+=,则()⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+='2222.112.1.21,x y x y x y x y x F x 22y x y x ++=; ()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+='x x y y y x y x F y 1.112.1.21,22222y x x y +-=. ()00,1=F ,()()010,1,10,1≠-='='y x F F ,由隐函数存在定理知,方程0arctanln 22=-+xyy x 在点()0,1的某邻域内能唯一确定一个单值可导且当1=x 时,0=y 的函数()x y y =.由公式()()yx yx x y y x y x F y x F dx dy y x -+=-+-=''-=,,. 2.求下列方程所确定的隐函数()y x z z ,=的偏导数xz∂∂,y z ∂∂. (1)()0ln 22=+-xyz xyz xz ;【解】令()()xyz xyz xz z y x F ln 22,,+-=z y x xyz xz ln ln ln 22+++-=,则x yz z F x 122+-=';y xz F y 12+-=';zxy x F z 122+-='.所以zxy x x yz z F F x z zx 122122+-+--=''-=∂∂;z xy x y xz F F y z z y 12212+-+--=''-=∂∂. (2)()z y x f z +-=2.【解】令()()z z y x f z y x F -+-=2,,,则()z y x f F x +-'='2;()z y x f y F y +-'-='22;()12-+-'='z y x f F z .所以()()122-+-'+-'-=''-=∂∂z y x f z y x f F F x z z x ()()zy x f zy x f +-'-+-'=221; ()()1222-+-'+-'--=''-=∂∂z y x f z y x f y F F y z z y ()()1222-+-'+-'=z y x f zy x f y . 3.设()y x z z ,=满足方程03333=-++axyz z y x ,求22xz∂∂.【解】令()axyz z y x z y x F 3,,333-++=,则ayz x F x 332-=';axy z F z 332-='.所以a x y z a y z x F F x z z x 333322---=''-=∂∂a x y z x a y z --=22. ① 所以=∂∂22x z ()()()222222a x yz ay x z z x ayz axy z x x z ay -⎪⎭⎫⎝⎛-∂∂---⎪⎭⎫ ⎝⎛-∂∂【代入①】()()()2222222222.axyz ay axy z x ayz z x ayz axy z x axy z x ayz ay -⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛---=()()[]()()()()[]()3222222222axy zaxy z ay x ayz z x ayz axy z axy zx x ayz ay ----------=()()323312a x yza z xy --=.4.设函数()z y x f u ,,=可微,其中()()x z z x y y ==,由方程组⎪⎩⎪⎨⎧==,,xyxze z e y 确定,求dx du . 【解】方程组⎪⎩⎪⎨⎧==,,xyxze z e y 两边关于x 求导【并注意到()()x z z x y y ==,】得 ⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=,,dx dy x y e dx dz dx dz x z e dx dy xy xz 即⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=,,dx dy x y z dxdz dx dz x z y dx dy解得()()⎪⎪⎩⎪⎪⎨⎧-+=-+=.11,1122yzx xz yz dx dz yz x xy yz dx dy所以,由全导数公式得 dx dz f dx dy f f dx du z y x ..'+'+'= ()()z y x f yzx xz yz f yz x xy yz f '-++'-++'=.11.1122. 5.求曲面4:=+zy zx e e S ①在点()1,2ln ,2ln 0M 处的切平面方程.【解】令()4,,-+=zy z xe e z y x F ,则z xx e z F 1=';z yy e z F 1=';z yz xz e zye z x F 22--='.曲面S 在点0M 处的切平面的法向量为 {}()||1,2ln ,2ln 22,1,1,,0⎭⎬⎫⎩⎨⎧--='''=z yz x z y z x M z y x e z ye z x e z e z F F F {}2ln 4,2,2-=.所以,曲面S 在点0M 处的切平面方程为()()().012ln 42ln 22ln 2=---+-z y x 即 ()02ln 422=-+z y x .8.求曲线⎩⎨⎧=-+-=-++Γ,04532,03:222z y x x z y x ①在点()1,1,10M 处的切线方程与法平面方程.【解法一】方程组两边关于x 求导【并注意到()()x z z x y y ==,】得⎩⎨⎧='+'-=-'+'+.0532,03222z y z z y y x ②将点()1,1,10M 代入②式有()()()()⎩⎨⎧='+'-=-'+'.015132,011212z y z y ③由③式解得 ()()1611,1691-='='z y . 故Γ在点()1,1,10M 处的切向量为()(){}{}1,9,16||161,169,11,1,1-⎭⎬⎫⎩⎨⎧-=''=z y s 切. 所以,Γ在点()1,1,10M 处的切线方程L 为1191161--=-=-z y x . ()1,1,10M 处的法平面方程为()()()01191.16=---+-z y x ,即 024916=--+z y x . 【解法二】(一)先求03:222=-++x z y x S 在点()1,1,10M 处的切平面方程. 令()x z y x z y x F 3,,222-++=,则32-='x F x ;y F y 2=';z F z 2='. 曲面S 在点0M 处的切平面的法向量为 {}{}(){}2,2,12,2,32,,||1,1,10-=-='''=z y x F F F n M z y x .所以,曲面S 在点0M 处的切平面方程为 ()()()012121.1=-+-+--z y x ,即 0322=-++-z y x . (二) Γ在点()1,1,10M 处的切线方程为⎩⎨⎧=-+-=-++-,04532,0322:z y x z y x L若进一步化L 为点向式,则为 1191161--=-=-z y x . ()1,1,10M 处的法平面方程为()()()01191.16=---+-z y x ,即 024916=--+z y x . 【注意】解法二的一般思路叙述如下:欲求曲线()()⎩⎨⎧==Γ,0,,,0,,:z y x G z y x F 在其上某点()0000,,z y x M 处的切线方程.首先分别求出曲面()0,,:1=z y x F S 在点0M 处的切线平面01111=+++D z C y B x A . ①及曲面()0,,:2=z y x G S 在点0M 处的切线平面02222=+++D z C y B x A . ② 然后将方程①、②联立即为Γ在0M 处的切线方程.即⎩⎨⎧=+++=+++Γ.0,0:22221111D z C y B x A D z C y B x A请同学们思考此解法的理论依据是什么?10.设函数()y x z z ,=由方程0,,=⎪⎪⎭⎫⎝⎛x z z y y x F ① 所确定,且F 为可微函数,求dz .【解】由①得0,,=⎪⎪⎭⎫⎝⎛x z z y y x dF由微分形式的不变性,有0...321=⎪⎭⎫⎝⎛'+⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫ ⎝⎛'x z d F z y d F y x d F 即01.1.1.232221=⎪⎭⎫ ⎝⎛+-'+⎪⎭⎫ ⎝⎛-'+⎪⎪⎭⎫ ⎝⎛-'dz x dx x zd F dz z y dy z d F dy y x dx y F 于是有dy F z F y x dx F y F x z dz F z y F x .111212`132223'-⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫ ⎝⎛'-'=⎪⎭⎫⎝⎛'-' 所以得223212`1321.11F zy F x dyF z F y x dx F y F x z dz '-''-⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫⎝⎛'-'=. 习题8.62.求133223++-=xy y x x z 在点()1,31M 处从1M 到()5,62M 的方向的方向导数. 【解】{}4,321==M M,⎭⎬⎫⎩⎨⎧==54,530h .()12363||1,3221=+-=∂∂y xy x x z M ;()963||1,3221-=+-=∂∂xy x y z M . {}().0549531254,53.9,121=⨯-+⨯=⎭⎬⎫⎩⎨⎧-=∂M h3.求xyz u =在点()2,1,51M 处从1M 到()14,4,92M 的方向的方向导数. 【解】{}12,3,421==M M,⎭⎬⎫⎩⎨⎧==1312,133,1340h .()2||2,1,51==∂∂yz x u M ;()10||2,1,51==∂∂xz y u M ,()5||2,1,51==∂∂xy zuM . {}.1398131251331013421312,133,134.5,10,21=⨯+⨯+⨯=⎭⎬⎫⎩⎨⎧=M4.求()()222321ln ,,z y x z y x f +++=在点()1,1,20M 处的梯度. 【解】()523212||1,1,22220=+++=∂∂z y x x x f M ; ()523214||1,1,22220=+++=∂∂z y x y y f M ; ()533216||1,1,22220=+++=∂∂z y x z z f M . 所以,()⎭⎬⎫⎩⎨⎧=53,52,521,1,2gradf .5.求22z xy u -=在()1,1,2-M 处方向导数的最大值. 【解】()22||1,1,2-==∂∂-y x u M ;()42||1,1,2==∂∂-x y u M ,()22||1,1,2-=-=∂∂-z z uM, 故 (){}2,4,21,1,2--=-g r a du ,所以方向导数的最大值为 ()()().622421,1,2222=-++-=-g r a d u6.求222z y x u ++=沿曲线()⎪⎪⎩⎪⎪⎨⎧===Γ,sin 6,,2:3t z t y t x ππ在点()0,1,2M 处的切线方向的方向导数.【解】()0,1,2M 点对应参数1=t .Γ在点()0,1,2M 处的切向量为()()(){}(){}{}6,3,2c o s6,3,2,,||121-=='''===t t t t t z t y t x h π.⎭⎬⎫⎩⎨⎧-==76,73,720h .()42||0,1,2==∂∂x x u M ;()22||0,1,2==∂∂y y u M ,()02||0,1,2==∂∂z xuM . 所以有{}.276073272476,73,72.0,2,4=⎪⎭⎫⎝⎛-⨯+⨯+⨯=⎭⎬⎫⎩⎨⎧-=∂Mh9.设l 是曲面632:222=++z y x S 在点()1,1,1A 处指向外侧的法向量,求zy x u 2286+=在A 点沿l 方向的方向导数. 【解】令()632,,222-++=z y x z y x F ,则x F x 4=';y F y 6=';z F z 2='.曲面S 在点()1,1,1A 处指向外侧的法向量为 {}{}(){}{}1,3,2||2,6,42,6,4,,||1,1,1=='''=z y x F F F Az y x ;⎭⎬⎫⎩⎨⎧==141,143,1420l . ()146866||1,1,122=+=∂∂y x z x x u A ;()148868||1,1,122=+=∂∂y x z y y u A ;()1486||1,1,1222-=+-=∂∂z y x z uA .所以,().14,148,1461,1,1⎭⎬⎫⎩⎨⎧-=∂l ⎭⎬⎫⎩⎨⎧141,143,142()71114114143148142146=⨯-+⨯+⨯=. 习题8.71.求下列的极值:(1)()223333,y x y x y x f z --+==; 【解】(一)解方程组()()⇒⎪⎩⎪⎨⎧=-='=-='.063,,063,22y y y x f x x y x f y x ⎩⎨⎧==2,0,2,0y x 得四个驻点:()()()().2,2,0,2,2,0,0,04321P P P P(二)()()().66,,0,,66,-=''==''=-=''=y y x f C y x f B x y x f A yy xy xx.因为该函数不存在不可微点,故()00,0=f 为函数的极大值;()82,2-=f 为 函数的极小值.(2)x xy y x z 82322+-+=; 【解】(一)解方程组()()⇒⎩⎨⎧=-='=+-='.026,,0822,x y y x f y x y x f yx ⎩⎨⎧-=-=26y x 故得唯一驻点:()2,60--P ;无不可微点.(二)()2,=''y x f xx,()2,-=''y x f xy ;()6,=''y x f yy .在()2,60--P 处,因为 ()022,6>=--''=xxf A ;()22,6-=--''=xy f B ;()62,6=--''=yy f C , ()0826222>=--⨯=-=∆B AC ,故()242,6-=--f 为函数的极小值.(3)()()y y y x y x f ln 2,22++=; 【解】(一)解方程组()()()⇒⎪⎩⎪⎨⎧=++='=+='.0ln 12,,022,22y y x y x f y x y x f y x ⎩⎨⎧==-.,01e y x 故得唯一驻点:()10,0-e P ;无不可微点.(二)()224,y y x f xx+='',()xy y x f xy 4,='';()yx y x f yy 12,2+=''.在()10,0-e P 处, 因为()024,021>+=''=--e e f A xx;()0,01=''=-e f B xy ;()e ef C yy =''=-1,0, ()0024222>-⨯+=-=∆-e e B AC ,故()ee f 1,01-=-为函数的极小值.(4)()y y x e z x 222++=. 【解】(一)解方程组()()()()⇒⎪⎩⎪⎨⎧=+='=+++='.022,,01422,222y e y x f y y x e y x f xyx x ⎪⎩⎪⎨⎧-==.1,21y x 故得唯一驻点:⎪⎭⎫⎝⎛-1,210P ;无不可微点.(二)()()124,22+++=''y y x e y x f x xx,()()44,2+=''y e y x f x xy ;()x yy e y x f 22,=''. 在⎪⎭⎫ ⎝⎛-1,210P 处,因为021,21>=⎪⎭⎫ ⎝⎛-''=e f A xx;01,21=⎪⎭⎫ ⎝⎛-''=xy f B ;⎪⎭⎫ ⎝⎛-''=1,21yy f C e 2=,002222>-⨯=-=∆e e B AC ,故21,21e f -=⎪⎭⎫⎝⎛-为函数的极小值.2.求下列的极值:(1)()22222,y x y x y x f -+=在区域(){}0,4|,22≥≤+=y y x y x D ; 【解】(一)内部 解方程组()()()()⇒⎪⎩⎪⎨⎧=-='=-='.022,,012,22x y y x f y x y x f yx ⎩⎨⎧==.0,0y x ;⎩⎨⎧-=-=.1,2y x (舍);⎩⎨⎧=-=.1,2y x ;⎩⎨⎧-==.1,2y x (舍); ⎩⎨⎧==.1,2y x .因此得区域D 内三驻点:()0,01P 、()1,22-P 、()1,23P .计算得()00,0=f ,()21,2=±f . (二)边界1.在区域D 的边界[]()2,0422∈=+y y x 上,由于。