概率习题课
- 格式:doc
- 大小:29.00 KB
- 文档页数:2
概率论与数理统计第一章习题课1. 掷3枚硬币, 求出现3个正面的概率. 解: 设事件A ={出现3个正面}基本事件总数n =23, 有利于A 的基本事件数n A =1, 即A 为一基本事件,则125.08121)(3====n n A P A .2. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率. 解: 设事件A ={能打开门}, 则A 为不能打开门基本事件总数210C n =, 有利于A 的基本事件数27C n A =, 467.0157910212167)(21027==⨯⨯⋅⨯⨯==C C A P因此, 533.0467.01)(1)(=-=-=A P A P .3. 100个产品中有3个次品,任取5个, 求其次品数分别为0,1,2,3的概率.解: 设A i 为取到i 个次品, i =0,1,2,3,基本事件总数5100C n =, 有利于A i 的基本事件数为3,2,1,0,5973==-i C C n i i i则138.09833209495432194959697396979899100543213)(856.0334920314719969798991009394959697)(510049711510059700=⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯=⨯===⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C n n A P00006.09833512196979697989910054321)(006.0983359532195969739697989910054321)(51002973351003972322=⨯⨯==⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯=⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C C n n A P4. 一个袋内有5个红球, 3个白球, 2个黑球, 计算任取3个球恰为一红, 一白, 一黑的概率.解: 设A 为任取三个球恰为一红一白一黑的事件,则基本事件总数310C n =, 有利于A 的基本事件数为121315C C C n A =, 则25.0412358910321)(310121315==⨯⨯⨯⨯⨯⨯⨯===C C C C n n A P A5. 两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解: 设A 为前两个邮筒没有信的事件, B 为第一个邮筒内只有一封信的事件,则基本事件总数1644=⨯=n , 有利于A 的基本事件数422=⨯=A n , 有利于B 的基本事件数632=⨯=B n , 则25.041164)(====n n A P A 375.083166)(====n n B P B . 6. 为防止意外, 在矿内同时设有两种报警系统A 与B , 每种系统单独使用时, 其有效的概率系统A 为0.92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85, 求(1) 发生意外时, 这两个报警系统至少有一个有效的概率 (2) B 失灵的条件下, A 有效的概率解: 设A 为系统A 有效, B 为系统B 有效, 则根据题意有P (A )=0.92, P (B )=0.93, 85.0)|(=A B P(1) 两个系统至少一个有效的事件为A ∪B , 其对立事件为两个系统都失效, 即B A B A = , 而15.085.01)|(1)|(=-=-=A B P A B P , 则988.0012.01)(1)(012.015.008.015.0)92.01()|()()(=-=-==⨯=⨯-==B A P B A P A B P A P B A P(2) B 失灵条件下A 有效的概率为)|(B A P , 则829.093.01012.01)()(1)|(1)|(=--=-=-=B P B A P B A P B A P 7. 用3个机床加工同一种零件, 零件由各机床加工的概率分别为0.5, 0.3, 0.2, 各机床加工的零件为合格品的概率分别等于0.94, 0.9, 0.95, 求全部产品中的合格率.解: 设A 1,A 2,A 3零件由第1,2,3个机床加工, B 为产品合格,A 1,A 2,A 3构成完备事件组.则根据题意有P (A 1)=0.5, P (A 2)=0.3, P (A 3)=0.2, P (B |A 1)=0.94, P (B |A 2)=0.9, P (B |A 3)=0.95,由全概率公式得全部产品的合格率P (B )为93.095.02.09.03.094.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P8. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率.解: 设A 0,A 1,A 2,A 3为第一次比赛取到了0,1,2,3个新球, A 0,A 1,A 2,A 3构成完备事件组.设B 为第二次取到的3个球中有2个新球. 则有22962156101112321)|(,552132101112789321)(,442152167101112321)|(,55272101112389321)(,552842178101112321)|(,2202710111239321)(,552732189101112321)|(,2201101112321)(312162633123933121527231213292312142813122319131213290312330=⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯==C C C A B P C C A P C C C A B P C C C A P C C C A B P C C C A P C C C A B P C C A P根据全概率公式有455.01562.02341.00625.00022.022955214421552755282202755272201)|()()(30=+++=⋅+⋅+⋅+⋅==∑=i i i A B P A P B P9. 某商店收进甲厂生产的产品30箱, 乙厂生产的同种产品20箱, 甲厂每箱100个, 废品率为0.06, 乙厂每箱装120个, 废品率是0.05, 求:(1)任取一箱, 从中任取一个为废品的概率;(2)若将所有产品开箱混放, 求任取一个为废品的概率. 解: (1) 设B 为任取一箱, 从中任取一个为废品的事件. 设A 为取到甲厂的箱, 则A 与A 构成完备事件组4.05020)(,6.05030)(====A P A P 05.0)|(,06.0)|(==AB P A B P 056.005.04.006.06.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P(2) 设B 为开箱混放后任取一个为废品的事件.则甲厂产品的总数为30×100=3000个, 其中废品总数为3000×0.06=180个,乙厂产品的总数为20×120=2400个, 其中废品总数为2400×0.05=120个, 因此...055555555.0540030024003000120180)(==++=B P10. 有两个口袋, 甲袋中盛有两个白球, 一个黑球, 乙袋中盛有一个白球两个黑球. 由甲袋中任取一个球放入乙袋, 再从乙袋中取出一个球, 求取到白球的概率.解: 设事件A 为从甲袋中取出的是白球, 则A 为从甲袋中取出的是黑球, A 与A 构成完备事件组. 设事件B 为从乙袋中取到的是白球. 则P (A )=2/3, P (A )=1/3, P (B |A )=2/4=1/2, P (B |A )=1/4, 则根据全概率公式有417.012541312132)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P11. 上题中若发现从乙袋中取出的是白球, 问从甲袋中取出放入乙袋的球, 黑白哪种颜色可能性大?解: 事件假设如上题, 而现在要求的是在事件B 已经发生条件下, 事件A 和A 发生的条件概率P (A |B )和P (A |B )哪个大, 可以套用贝叶斯公式进行计算, 而计算时分母为P (B )已上题算出为0.417, 因此2.0417.04131)()|()()|(8.0417.02132)()|()()|(=⨯===⨯==B P A B P A P B A P B P A B P A P B A PP (A |B )>P (A |B ), 因此在乙袋取出的是白球的情况下, 甲袋放入乙袋的球是白球的可能性大.12. 假设有3箱同种型号的零件, 里面分别装有50件, 30件和40件, 而一等品分别有20件, 12件及24件. 现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回). 试求先取出的零件是一等品的概率; 并计算两次都取出一等品的概率.解: 称这三箱分别为甲,乙,丙箱, 假设A 1,A 2,A 3分别为取到甲,乙,丙箱的事件, 则A 1,A 2,A 3构成完备事件组. 易知P (A 1)=P (A 2)=P (A 3)=1/3. 设B 为先取出的是一等品的事件. 则6.04024)|(,4.03012)|(,4.05020)|(321======A B P A B P A B P 根据全概率公式有467.036.04.04.0)|()()(31=++==∑=i i i A B P A P B P 设C 为两次都取到一等品的事件, 则38.039402324)|(1517.029301112)|(1551.049501920)|(240224323021222502201=⨯⨯===⨯⨯===⨯⨯==C C A C P C C A C P C C A C P根据全概率公式有22.033538.01517.01551.0)|()()(31=++==∑=i i i A C P A P C P13. 发报台分别以概率0.6和0.4发出信号“·”和“—”。
第一次习题课一、填空题1.设A 、B 、C 是3个随机事件,则“3个事件中恰有一个事件发生”用A 、B 、C 表示为。
2.设31)(=A P ,21)(=B P ,分别在下列条件下求)(A B P : (1)若A B ⊂时,则=)(A B P ,(2)若A B 、互斥,则=)(A B P ,(3)若81)(=AB P ,则=)(A B P , 又()P AB =,=)(B A P 。
3.设A 、B 为随机事件,已知P (A )=0.5,P (B )=0.6,P (B |A )=0.5,则P (A ⋃B )=。
4.有两批零件,其合格率分别为0.9和0.8,在每批零件中随机取一件,则至少有一个是合格品的概率为;而恰好有一件是合格品的概率为。
5.从一副扑克牌的13张黑桃中,一张接一张有放回地抽取3张,没有同号的概率为;有同号的概率为。
二、选择题1.A 、B 为两个概率不为零的不相容事件,则下列结论肯定正确的是。
A .A 和B 不相容; B .A 和B 相容;C .P (AB )=P (A )P (B );D .P (A -B )=P (A )。
2.设当A 、B 同时发生时,事件C 必发生,则下列式子中正确的是。
A .P (C )≤P (A )+P (B )-1; B .P (C )≥P (A )+P (B )-1;C .P (C )=P (AB );D .P (C )=P (A ⋃B )。
3.设A 、B 、C 三个事件两两独立,则A 、B 、C 相互独立的充要条件是。
A .A 与BC 独立;B .AB 与A ⋃C 独立;C .AB 与AC 独立;D .A ⋃B 与A ⋃C 独立。
4.设甲、乙两人进行象棋比赛,考虑事件A =“乙胜甲负”,则A 为。
A .“乙负甲胜”; B .“甲乙平局”;C .“乙负”;D .“乙负或平局”。
5.设8.0)(=A P ,7.0)(=B P ,8.0)(=B A P ,则下列结论正确的是。
[学业水平训练]1.(2014·太原检测)将一枚硬币任意抛掷两次,记事件A =“第一次出现正面”,事件B =“第二次出现正面”,则P (B |A )等于( )A .1 B.12C.14D.18解析:选B.两次抛掷硬币的结果共有(正,正),(正,反),(反,正),(反,反)∴P (A )=24=12,P (AB )=14. 由概率公式得P (B |A )=P (AB )P (A )=12. 2.(2014·开封高二检测)将3颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个3点”,则概率P (A |B )等于( )A.91216B.518C.6091D.12解析:选C.事件B 发生的基本事件个数是n (B )=6×6×6-5×5×5=91,事件A ,B 同时发生的基本事件个数为n (AB )=3×5×4=60.∴P (A |B )=n (AB )n (B )=6091. 3.一个袋中装有6个红球和4个白球(这10个球各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次摸到红球的概率为( )A.35B.25C.110D.59解析:选D.第一次摸出红球的情况下袋中有5个红球4个白球,第二次摸到红球的概率为59. 4.抛掷一枚骰子两次,在第一次掷得的点数是偶数的条件下,第二次掷得的点数也是偶数的概率为( )A.14B.13C.12D.23解析:选C.设“第一次掷得的点数是偶数”为事件A ,“第二次掷得的点数是偶数”为事件B ,在第一次掷得的点数是偶数的条件下,第二次掷得的点数也是偶数的概率为P (B |A )=P (AB )P (A )=36×3636=12. 5.下列说法正确的是( )A .P (B |A )=P (AB )B .P (B |A )=P (B )P (A )是可能的 C .0<P (B |A )<1D .P (A |A )=0解析:选B.∵P (B |A )=P (AB )P (A ),1P (A )≥1,∴P (B |A )≥P (AB ),则A 不正确;当P (A )=1时,P (B )=P (AB ),则P (B |A )=P (B )=P (B )P (A ),所以B 正确;而0≤P (B |A )≤1,P (A |A )=1,∴C 、D 不正确.6.由长期统计资料可知,某地区在4月份下雨(记为事件A )的概率为415,刮五级以上风(记为事件B )的概率为715,既刮五级以上风又下雨的概率为110,则P (A |B )=________,P (B |A )=________.解析:P (A |B )=P (AB )P (B )=110715=314, P (B |A )=P (AB )P (A )=110415=38. 答案:314 387.5个乒乓球,其中有3个新的、2个旧的,每次取一个,不放回地取两次,则在第一次取到新球的条件下,第二次取到新球的概率为________.解析:设A =“第一次取到新球”,B =“第二次取到新球”,则在第一次取到新球的条件下,第二次取到新球即为事件A 发生的条件下事件B 也发生.因第一次取到了新球,所以第二次抽取时除去“已抽取”的1个新球,还有2个新球、2个旧球供选取,所以P (B |A )=24=12. 答案:128.从编号为1,2,…,10的10个大小相同的球中任取4个,已知选出4号球的条件下,选出球的最大号码为6的概率为________.解析:令事件A ={选出的4个球中含4号球},B ={选出的4个球中最大号码为6}.依题意知n (A )=C 39=84,n (AB )=C 24=6,∴P (B |A )=n (AB )n (A )=684=114. 答案:1149.把一副扑克的52张(去掉大、小王)随机均分给赵、钱、孙、李四家,A ={赵家得到6张草花},B ={孙家得到3张草花}.(1)计算P (B |A );(2)计算P (AB ).解:(1)四家各有13张牌,已知A 发生后,A 的13张牌已固定,余下的39张牌中恰有7张草花,将这39张牌随机分给钱、孙、李三家,求孙家得到3张草花的概率,于是P (B |A )=C 37C 1039-7C 1339≈0.278. (2)在52张牌中任选13张牌有C 1352种不同的等可能的结果.于是Ω中元素数为C 1352,A 中元素数为C 613C 739,利用条件概率公式得到P (AB )=P (A )P (B |A )=C 613C 739C 1352×0.278≈0.012. 10.抛掷红、蓝两颗骰子,记事件A 为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”.(1)求P (A ),P (B ),P (AB );(2)当已知蓝色骰子的点数为3或6时,问两颗骰子的点数之和大于8的概率为多少? 解:(1)掷两颗骰子共有36种不同的情况,它们是等可能的.故P (A )=26=13, P (B )=1036=518, P (AB )=536. (2)P (B |A )=P (AB )P (A )=53613=512. [高考水平训练]1.(2014·高考课标全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45解析:选A.已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8. 2.(2014·海口高二检测)抛掷骰子2次,每次结果用(x 1,x 2)表示,其中x 1、x 2分别表示第一、二次骰子的点数.若设A ={(x 1,x 2)|x 1+x 2=10},B ={(x 1,x 2)|x 1>x 2},则P (B |A )=________.解析:P (A )=336=112,P (AB )=136, ∴P (B |A )=P (AB )P (A )=136112=13. 答案:133.一只口袋内装有2个白球和2个黑球,那么(1)先摸出1个白球不放回,再摸出1个白球的概率是多少?(2)先摸出1个白球后放回,再摸出1个白球的概率是多少?解:(1)设“先摸出1个白球不放回”为事件A ,“再摸出1个白球”为事件B ,则“先后两次摸到白球”为AB ,先摸一球不放回,再摸一球共有4×3种结果.故P (A )=2×34×3=12,P (AB )=2×14×3=16. 因此,P (B |A )=P (AB )P (A )=1612=13, 即先摸出1个白球不放回,再摸出1个白球的概率为13. (2)设“先摸出一个白球放回”为事件A 1,“再摸出一个白球”为事件B 1,两次都摸到白球为事件A 1B 1.P (A 1)=2×44×4=12,P (A 1B 1)=2×24×4=14,故P (B 1|A 1)=P (A 1B 1)P (A 1)=1412=12, 即先摸出1个白球后放回,再摸出1个白球的概率为12. 4.现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.解:设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB .(1)从6个节目中不放回地依次抽取2个的事件数为n (Ω)=A 26=30,根据分步计数原理n (A )=A 14A 15=20,于是P (A )=n (A )n (Ω)=2030=23. (2)因为n (AB )=A 24=12,于是P (AB )=n (AB )n (Ω)=1230=25. (3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P (B |A )=P (AB )P (A )=2523=35. 法二:因为n (AB )=12,n (A )=20,所以P (B |A )=n (AB )n (A )=1220=35.。
概率统计习题课⼀随机事件及其概率1. ,,A B C 为三个随机事件,事件“,,A B C 不同时发⽣”可表⽰为,事件“,,A B C 都不发⽣”可表⽰为,事件“,,A B C ⾄少发⽣两件”可表⽰为。
2.从1,2,3,4中随机取出两个数,则组成的两位数是奇数的概率是,事件“其中⼀个数是另⼀个数的两倍”的概率是。
3. 有r 个球,随机地放在n 个盒⼦中(r n ≤),则某指定的r 个盒⼦中各有⼀球的概率为_ __ __。
4.把3个球随机放⼊编号为1,2,3的三个盒⼦(每个盒⼦能容纳多个球),则三个盒⼦各放⼊⼀球的概率是___________。
5. 设,A B 为随机事件,()0.7P A =, ()0.3P A B -=,则()P A B =__ ___。
6.事件A 发⽣必然导致事件B 发⽣,且()0.1,()0.2,P A P B ==,则()P A B =____。
7. 盒中有6个⼤⼩相同的球,4个⿊球2个⽩球,甲⼄丙三⼈先后从盒中各任取⼀球,取后不放回,则⾄少有⼀⼈取到⽩球的概率为___________。
8. 甲⼄两个盒⼦,甲盒中有2个⽩球1个⿊球,⼄盒中有1个⽩球2个⿊球,从甲盒中任取⼀球放⼊⼄盒,再从⼄盒中任取⼀球,取出⽩球的概率是。
9.某球员进⾏投篮练习,设各次进球与否相互独⽴,且每次进球的概率相同,已知他三次投篮⾄少投中⼀次的概率是,则他的投篮命中率是。
10. 将⼀枚硬币抛掷3次,观察出现正⾯(记为H )还是反⾯(记为T ),事件A ={恰有⼀次出现正⾯},B ={⾄少有⼀次出现正⾯},以集合的形式写出试验的样本空间Ω和事件,A B ,并求(),(),()P A P B P A B11. 已知()0.1,()0.2P A P B ==,在下列两种情况下分别计算()P A B 和()P A B :(1) 如果事件,A B 互不相容; (2) 如果事件,A B 相互独⽴。
12. 盒中有3个⿊球7个⽩球,从中任取⼀球,不放回,再任取⼀球,(1)若第⼀次取出的是⽩球,求第⼆次取出⽩球的概率 (2)两次都取出⽩球的概率 (3) 第⼆次取出⽩球的概率 (4) 若第⼆次取出的是⽩球,求第⼀次取出⽩球的概率。
概率习题课
一、加法原理和乘法原理在概率中的运用
1.随机地将15名新生平均分配到三个班级中区,这15名新生中有3名优秀生。
问(1)
每个班级分配到1名优秀生的概率是多少?(2)3名优秀生分在同一班级里的概率是多少?
2.10把钥匙有3把能打开门,今任取两把,求能打开门的概率。
二、摸球模型的计算
1.(有放回且记序)有一袋子内装有编号为1-5的5个球,从袋内有放回的任取3个球,
问3个球编号组成奇数的概率。
2.(无放回且记序)袋中有1,2,…,N号球各一只,采用(1)无放回;(2)有放回两种
方式摸球,试求在第k次摸球时首次摸到1号球的概率。
3.(无放回不记序)100个产品中有3个次品,任取5个,求其次品数分别为0,1,2,3的概
率。
4.袋中有a只白球和b只黑球,采用(1)有放回;(2)无放回两种方式从中取出n个球,
问恰好有k个黑球的概率各为多少?
三、随机取数模型的计算
1.(有放回随机取数)从1,2,…,10共10个数中任取一数,设每个数以1/10的概率
区中,取后放回,先后取7个数,求下列事件的概率:(1)A1={7个数全不相同};(2)A2={不含1和10};(3)A3={10恰好出现两次};(4)A4={10至少出现1次}。
2.(无放回随机取数)在十个数字0,1,2,…,9中不重复地任取四个,能排成一个四位偶
数的概率是多少?
四、古典概率的间接计算
1.事件A,B互不相容,且P(A)=0.3,P(B)=0.7,求P(AB)。
2.若事件A,B相互独立,且P(A)=0.3,P(B)=0.5,求P(A-B)。
3.设A,B为两个事件,且P(A)=0.7,P(A-B)=0.3,求P(AB)。
五、独立事件、条件概率及贝叶斯公式
1.为防止意外,在矿内同时装有两种报警系统(I)和(II),每种系统单独使用时,系统(I)
和(II)有效的概率分别为0.92和0.93,在系统(I)失灵的条件下,系统(II)仍有效的概率为0.85,(1)计算两个报警系统至少有一个有效的概率;(2)在(II)失灵的条件下,(I)有效的概率。
2.三个人独立地破译一种密码,他们能译出的概率分别为1/5,1/3,1/4,问将此密码译出的
概率。
3.假设一批产品中一、二、三等品各占60%、30%、10%,从中随意取出一件,结果不是
三等品,则取到的是一等品的概率为多少?
六、概率分布
1.某人花2元钱买彩票,他抽中100元奖的概率是0.1%,抽中10元奖的概率是1%,抽
中1元奖的概率是20%,假设各种奖不能同时抽中,试求(1)此人收益的概率分布;
(2)此人收益的期望值。
2.设随机变量X的概率密度为:
3
3
3
(),0
x
f x xθ
θ
=<<,已知P(X>1)=7/8。
(1)求θ的
值;(2)求X的分布函数;(3)求X的数学期望与方差。
3.一张考卷上5道题目,每道题有4个备选答案,其中有1个答案是正确的。
某学生凭猜
测能答对至少4道题的概率是多少?
4.设随机变量X服从参数为λ的泊松分布,且已知P(X=1)=P(X=2),求P(X=4)。
5.设X~N(3,4),试求:(1)P(-2<X<2);(2)P(X>3)。
6.一工厂生产的电子管寿命X(以小时计算)服从期望值为160的正态分布,若要求
P(120<X<200)≥0.08,允许标准差最大为多少?
7.一本书出版以后一校时出现错误处数X服从正态分布N(200,400),求:(1)出现错误
处数不超过230个的概率;(2)出现错误处数在190~210个的概率。
.。