云南省昆明市2017届高三上学期摸底调研统测数学(文)试题(扫描版)(附答案)
- 格式:doc
- 大小:3.07 MB
- 文档页数:14
昆明市第一中学2017届摸底考试 参考答案(文科数学)命题、审题组教师 杨昆华、顾先成、刘皖明、易效荣、李文清、张宇甜、莫利琴、蔺书琴 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CDBBDACCAACA1. 解析:集合{}|41A x x =-≤≤,{}|1B x x =>-,所以{}|11A B x x -<≤=I ,选C .2. 解析:因为1i z =-,选D .3. 解析:由茎叶图可知,茎为8时,甲班学生成绩对应数据只能是80,80x +,85,因为甲班学生成绩众数是85,所以85出现的次数最多,可知5x =.由茎叶图可知,乙班学生成绩为76,81,81,80y +,91,91,96,由乙班学生成绩的中位数是83,可知3y =.所以8x y +=.选B .4. 解析:函数1sin2y x =的周期为4π,所以将函数1sin 2y x =的图象向右平移116个周期,所得图象对应的函数解析式为11sin sin 2428y x x ππ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,选B . 5. 解析:因为1><e e e yx,,所以y x <,且,x y ∈R ,选D .6. 解析:由Δ1PQF 的周长为8和椭圆的定义可知48a =,得2a =,又因为12c a =, 所以22,1,3a c b ===,选A .7. 解析:因为cos50sin 40sin35c ==>ooo,所以c a >;又sin 40tan 40sin 40cos 40b ==>o ooo,所以b c >,选 C .8. 解析:由三视图可看出,此几何体的体积为2127=363+33=54+44V ππ⨯⨯⨯⨯⨯,选C .9. 解析:函数)(x f 为奇函数,排除D C ,,当21=x 时,0)(<x f ,选A . 10. 解析:执行该程序可知40,31,4x y n ===时,输出n ,选A . 11. 解析:依题意,2=ω且)(k 2232Z k ∈+=+⨯,ππϕπ,2πϕ<,所以6πϕ=-,由已知可得)6)(2sin()(π-+=m x x g ,)(x g 为偶函数,所以Z k km k m ∈+=+=-,23,262πππππ,所以3π=m ,选C .12. 解析:依题意,当球与三棱锥的四个面都相切时,球的体积V 最大.该三棱锥侧面的斜高221323(2)1323h '=⨯⨯+=,123322323S =⨯⨯⨯=侧,23234S =⨯=底,所以三棱锥的表面积23333S =+=表.设三棱锥的内切球半径为r ,则三棱锥的体积11133V S r S =⋅=⋅三棱锥表底,即333r =,所以13r =,故3max 44381V r ππ==.选A . 二、填空题13. 解析:由()a b a ⊥+,得20a a b +⋅=r r r ,由已知1,12a b ==r r ,得:1cos ,2a b <>=-rr ,所以a 与b的夹角为︒120. 14. 解析:因为tan 24πα⎛⎫+=- ⎪⎝⎭,所以tan tan 344ππαα⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦, 所以2224cos 22cos 111tan 5ααα=-=-=-+. 15. 解析:由题设知CAB ∆是等腰直角三角形,腰长为2,所以点C 到直线l 的距离为2,即22221a a -=+,解得23a =±.16. 解析:由已知可得⎪⎪⎩⎪⎪⎨⎧>>∈∈≤+≤+0,0,1141023y x Z y Z x y x y x ,画出可行域,使得利润最大时的整数解为()2,2,即2,2x y ==.三、解答题17. 解:(Ⅰ)因为233,13a S ==,所以121113,13,a q a a q a q =⎧⎨++=⎩解得19,1,3a q =⎧⎪⎨=⎪⎩(舍去)或11,3,a q =⎧⎨=⎩ 所以13n n a -=; …………5分 证明:(Ⅱ)因为31log n n b a n +==, 所以2111111n n b b n n n n +==-++ ; …………8分 所以111111(1)()()1122311n T n n n =-+-+⋅⋅⋅+-=-<++. ………10分18. 解:(Ⅰ)由正弦定理,得2sin sin cos sin cos B C CA A+=-, 所以错误!未找到引用源。
(新课标)云南省昆明市2017届高三数学月考卷(七)文(扫描版)参考答案(文科数学)来1. 解析:集合(1,)A =+∞, [0,)B =+∞,所以()=1,A B +∞,选B .2. 解析:1(2)210a b ⋅=⨯-+⨯=,所以选B .3. 解析:因为1z =-,所以z =C .4.解析:从1、2、3、4这四个数中选择两个数,有如下情况:()1,2,()1,3,()1,4,()2,1,()2,3,()2,4,()3,1,()3,2,()3,4,()4,1,()4,2,()4,3,两个数中至少有一个偶数的有10种,根据古典概型可得所求的概率为105126P ==,选C . 5. 解析:由双曲线的定义得122157a PF PF =-=-,4a =,又2105c c =⇒=,54c e a ==,选A .6. 解析:对于A ,C 和D ,m 与β可能平行、相交,也可能m β⊂;而对于B ,由于n β⊥,//m n ,所以m β⊥,选B .7. 解析:设该女子第一天织布x 尺,则5(12)512x -=-,得531x =,由前n 天织布的总尺数5(12)315012n -≥-得2311n ≥,则该女子至少需要9天,选C . 8. 解析:由函数图象得3111341264T =-=,所以21T πω==,故2ωπ=,又111111()cos(2)122122f πϕ=⋅+=,所以11226k πϕππ+=+,即26k πϕπ=+,因为2πϕ<,所以6πϕ=, 选A .9. 解析:由框图知,()()()221<1T=||1111x x x x x x ⎧---⎪-≤≤⎨⎪+>⎩,所以=5+1+0+152S -+=, 选D .10. 解析:由三视图可知,该几何体是一个棱长为2的正方体挖去一个圆锥,所以它的表面积为2216212241)2S πππ=⨯-⨯+⨯+,选D .11. 解析:当02x ≤<时,2()2log (2)f x x =--+,由2022log (2)2x x ≤<⎧⎪⎨--+≤⎪⎩解得01x ≤≤;当20x -<<时,2()2()log (2)f x f x x =--=+,解不等式组220log (2)2x x -<<⎧⎪⎨+≤⎪⎩得704x -≤<.综上()2f x ≤的解集为714x x ⎧⎫-≤≤⎨⎬⎩⎭,选D .12. 解析:32()(3)x f x e x a x '=-+,因为()f x 在()3,0-单调递减,所以()0f x '≤在()3,0-成立,即3230x a x -+≤在()3,0-成立,所以323a x x ≥+,令32()3,()3(2)g x x x g x x x '=+=+,可知()g x 在()(),2,0,-∞-+∞单调递增,在()2,0-单调递减,所以max ()(2)4g x g =-=,所以4a ≥,选C . 二、填空题13. 解析:依题意得数列2{}n a 为等差数列,且公差22215d a a =-=,所以21045(101)49a =+⨯-=,由于数列{}n a 的各项均为正数,所以107a =. 14. 解析:因为(1)f a =,所以切点坐标为()1,a ,()ln 1f x x '=+,所以在该点处的切线的斜率为(1)1k f '==,切线方程为1,y x a =+-所以1,1a b a b -=-=.15. 解析:如图做出可行域,yx的几何意义为可行域内的点到坐标原点()0,0组成的直线的斜率,得min 1()2y x =.16. 解析:过点P 作抛物线C 的准线的垂线,垂足是1P ,设PF =k ,由抛物线的定义得1P F P P =k =,则QF =3k ,4QP k =,在直角1Q P P∆中,111c o s 4PP QPP QP∠==,所以11sin tan QPP QPP ∠=⇒∠=得直线l的斜率是 三、解答题17. 解:(Ⅰ)由已知得222a b c ab +-=,所以2221cos 22a b c C ab +-==,故3C π=. ………4分(Ⅱ)依题意得ADC BDE ∆≅∆,所以AC BE =;同理,AE BC =,所以四边形AEBC 为平行四边形 ………6分在ACE ∆中,由正弦定理得22sin sin()sin 33ACAE a ππα==-,所以AE α=,sin()3AC πα=-, ………8分所以162sin sin sin()sin333S AE AC EAC ππαα=⋅⋅∠=-1sin )2ααα=-1cos 22)4αα-=-2cos 21)2sin(2)16πααα⎤=+-=+-⎥⎣⎦因为03πα<<,所以52666πππα<+<, 所以262ππα+=当,即6πα=时, 四边形AEBC 的面积S.………12分18. 解析:(Ⅰ)作出茎叶图如下: (4)分(Ⅱ)派甲参赛比较合适.理由如下:()1=702+804+902+8+9+1+2+4+8+3+5=858X ⨯⨯⨯甲; ()1=701+804+905+5+0+0+3+5+0+2+5=858X ⨯⨯⨯乙; ()()()()()()()()2222222221=7885798581858285848588859385958535.58S ⎡⎤-+-+-+-+-+-+-+-=⎣⎦甲()()()()()()()()222222221=75858085808583858585908592859585418S ⎡⎤-+-+-+-+-+-+-+-=⎣⎦乙因为=X X 甲乙,22S S <乙甲,所以甲的成绩较稳定,派甲参赛比较合适. ………9分0 0 3 5(Ⅲ)记“甲同学在数学测试中成绩高于80分”为事件A ,得()6384P A ==. ………12分19. 解:(Ⅰ)证明:连接BD 交AC 于O ,连接OE ,因为四边形ABCD 是菱形,所以O 为BD 的中点.又因为2PE ED =,F 为PE 的中点,所以E 为DF 的中点,所以//OE BF , 又因为BF ⊄平面ACE ,OE ⊂平面ACE ,所以//BF 平面ACE . ………5分(Ⅱ)连接PO ,因为PA PC =,所以PO AC ⊥,因为PB PD =,所以PO BD ⊥,而AC BD O =,所以PO ⊥平面ABCD .因为在菱形ABCD 中,60ABC ︒∠=,所以ACD ∆是等边三角形. 设AB a =,则OD a =,222214a PO PC OC =-=-,在Rt POD ∆中,由222PO OD PD +=得2231244a a -+=,解得a =所以12PO PD ===,所以30PDO ︒∠=,又OD =DE =,在ODE ∆中由余弦定理得OE =,所以12ACE S AC OE ∆=⋅=,13P ACD ACD V S PO -∆=⋅=,1133E ACD ACD V S PO -∆=⋅.所以P ACE P ACD E ACDV V V ---=-=P 到平面ACE 的距离为h ,则1133P ACE ACE V S h -∆=⋅==h =.所以点P 到平面ACE. ………12分20. 解:(Ⅰ)圆22:(1)16A x y ++=,圆心(1A -,0),由已知得NM NB =,又4N M N B+=,所以42NA NB AB +=>=,所以由椭圆的定义知点N 的轨迹是以A ,B 为焦点的椭圆,设其标准方程:C 22221x y a b+=,则24a =,22c =,所以24a =,23b =,所以曲线:C 22143x y += ………4分(Ⅱ)设存在点(,0)R t 满足题设,联立直线(1)y k x =-与椭圆方程22143x y +=消y 得 2222(43)8(412)0k x k x k +-+-=,设1(P x ,1)y , 2(Q x ,2)y ,则由韦达定理得2122843k x x k +=+ ①,212241243k x x k -=+ ②,由题设知OR 平分PRQ ∠⇔直线RP 与直RQ 的倾斜角互补,即直线RP 与直线RQ 的斜率之和为零,即12120y yx t x t+=-- ………8分 即122112()0x y x y t y y +-+=,即12122(1)()20kx x t k x x tk -+++= ③,把①、②代入③并化简得2(4)043t kk -=+,即(4)t k -0= ④,所以当k 变化时④成立,只要4t =即可,所以存在定点(4R ,0)满足题设. ………12分21. 解:(Ⅰ)函数()f x 的定义域为(0,)+∞, 111()222f x x f x ⎛⎫''=-+ ⎪⎝⎭………2分 则11121222f f ⎛⎫⎛⎫''=-+⎪ ⎪⎝⎭⎝⎭,解得122f ⎛⎫'= ⎪⎝⎭,所以2()l n 2f x x x x =-++.此时,2121()21x x f x x x x-++'=-+=,由()0f x '>得01x <<,()0f x '<得 1x >,所以函数()f x 的单调增区间为()0,1,单调减区间为()1,+∞. ………5分(Ⅱ)不等式21(1)()2e 2xx x f x ++<等价于22e ()112x f x x x <++, ………7分由(Ⅰ)()f x 在()0,+∞上的最大值为max ()(1)2f x f ==, 所以(f x ≤ ①,………8分令21()e (1)(0)2x g x x x x =-++>,所以()e 1xg x x '=--,()()e 1x g x ''=-,所以,当0x >时,()()0g x ''>,所以()g x '在(0,)+∞ 上单调递增,所以()(0)0g x g ''>=,所以()g x在(0,)+∞ 上单调递增,所以()(0)0g x g >=,即21e (1)02x x x -++>,因为0x >,所以2e 1112x x x >++, ………11分所以,0x >时,21(1)()2e 2xx x f x ++<. ………12分第22、23题中任选一题做答,如果多做,则按所做的第一题记分.22.解:(Ⅰ) 设曲线1C 上一点()11P x y ,与曲线2C 上一点()Q x y ,,由题知:11==2x x y y ⎧⎪⎨⎪⎩,所以2cos sin x y θθ=⎧⎨=⎩(θ为参数),………5分 (Ⅱ) 由题知可得:直线l2+=0y m +, ………6分 设曲线2C 上一点()2cos sin B θθ,到直线l 的距离为d ,则d = ………7分 当>0m时,max d =10m , 当<0m时,max d =10m -,综上所述:=10m ±. ………10分23.解:(Ⅰ) 由144x x +--≥得:① 154x <-⎧⇒∅⎨-≥⎩ 或 ②14742342x x x x -≤≤⎧⎧⎫⇒≤≤⎨⎨⎬-≥⎩⎭⎩ 或 ③ {}4454x x x >⎧⇒>⎨≥⎩, ………4分综上所述()4f x ≥的解集为11 7,+2⎡⎫∞⎪⎢⎣⎭. ………5分(Ⅱ) x ∀∈R ,()2f x ≤恒成立,可转化为()max 2f x ≤分类讨论①当=4a 时,()02f x =≤显然恒成立.②当<4a 时,()()()4<()244+4>4a x a f x x a a x a x -⎧⎪=--≤≤⎨⎪-⎩③当>4a 时,()()()4<4()2++44+4>a x f x x a x a a x a -⎧⎪=-≤≤⎨⎪-⎩由②③知,()max =42f x a -≤,解得26a ≤≤且4a ≠.综上所述:a 的取值范围为[]26,. ………10分。
昆明市第一中学2017届高中新课标高三第六次考前基础强化文科数学试卷一选择题:本大题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}2,1,0,1,0,1,A B =--=-则AB =A 。
{}2-B 。
{}1,0- C. {}1,0,1- D 。
{}2,1,0,1-- 2。
若复数z 满足()325i z i +⋅=-,则z = A. 1 B.2C 。
2 D.223.已知点()()3,0,0,2A B -在椭圆22221x y m n+=上,则椭圆的标准方程为A 。
22132x y += B 。
2213x y += C 。
22194x y += D 。
22154x y += 4。
在一个袋中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是 A.310B. 15 C 。
110D.1125。
向量()()2,1,,1a b x =-=,若2a b +与b 共线,则x = A 。
2 B. -2 C 。
25-+D 。
25--6.在等差数列{}na 中,已知36102,20aa a =+=,则数列{}na 的前10项和10S 的值为A 。
120 B 。
100 C 。
66D.607。
右边程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中""aMODb 表示a 除以b 的余数),若输入的,a b 分别为595,245,则输出的a = A.490B. 210C. 105 D 。
358.已知数列{}na 是等比数列,若2511,8aa ==,则()12231n n a a a a a a n N *++++∈的取值范围是A 。
2,23⎛⎤ ⎥⎝⎦B.81,3⎡⎫⎪⎢⎣⎭C 。
82,3⎡⎫⎪⎢⎣⎭D 。
数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1。
已知集合2{|560}A x x x =--=,则*A N =( )A .φB . {1}-C .{1}D .{6}2。
51ii-=-( )A .32i +B .22i +C .23i +D .22i -- 3。
若数列{}na 满足*120()n n aa n N ++=∈且32a =-,则8a 的值为( )A . -64B . —32C .164D . 644.在ABC ∆中,“sin sin A B =”是“A B =”的( )A .充分不必要条件B .必要不充分条件C 。
充要条件D .既不充分也不必要条件 5. 向量13(,22b =,12a b •=,则向量a 在向量b 方向上的投影为()A .12B .32C .1D 36. 执行如图所示的程序框图,如果输入6,2a b ==,则输出的S =( )A .30B . 120C 。
360D .720 7.设实数,x y 满足约束条件21021050x y x y x y --≥⎧⎪-+≤⎨⎪+-≤⎩,则当(0,0)z ax by a b =+>>取得最小值2时,a =( )A .12- B .12C 。
1D .28。
若一个圆柱的正视图与其侧面展开图是相似矩形,则这个圆柱的全面积与侧面积之比为( ) A .1π+B .11π+C 。
112π+D .112π+9。
如图所示,PA 垂直于圆O 所在平面,AB 是圆O 的直径,C 是圆O 上一点,点A 在,PB PC 上的射影分别为,E F ,则以下结论错误的是( )A .PB AF ⊥ B .PB EF ⊥ C. AF BC ⊥D .AE BC ⊥10. 已知抛物线2:4C yx =的焦点为F,过点F 且倾斜角为3π的直线与抛物线C 相交于,P Q 两点,则弦PQ 的长为( )A . 3B . 4C 。
云南省昆明市2017届高三模拟试卷(文科数学)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|y=lg(x﹣1)},B={x|2<1},则A∩B=()A.{x|x>1} B.{x|x>0} C.{x|0<x<2} D.{x|1<x<2}2.已知复数z满足z•(i﹣1)=1+i,则z的共轭复数的虚部是()A.1 B.﹣i C.i D.﹣13.已知向量=(1,2),=(x,﹣2),若+与﹣垂直,则实数x的值是()A.±1 B.1 C.﹣1 D.﹣44.设a,b∈R,则“(a﹣b)a2<0”是“a<b”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.已知m,n是两条不同的直线,α是平面,则下列命题中是真命题的是()A.若m∥α,m∥n,则n∥αB.若m⊥α,n⊥α,则m∥nC.若m∥α,m⊥n,则n∥αD.若m⊥α,n⊥m,则n∥α6.已知等比数列{a n}为递增数列,若a1>0,且2(a n+2﹣a n)=3a n+1,则数列{a n}的公比q=()A.2或B.2 C.D.﹣27.若α∈(,π),则3cos2α=cos(+α),则sin2α的值为()A.B.﹣C.D.﹣8.图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b,i的值分别为8,10,0,则输出的a和i和值分别为()A.2,5 B.2,4 C.0,4 D.0,59.函数f(x)=xe x﹣x﹣2的零点的个数为()A.0 B.1 C.2 D.310.某四棱锥的三视图如图所示,该四棱锥外接球的表面积是()A.4πB.3πC.12π D.8π11.已知函数f(x)=若|f(x)|+a≥ax,则a的取值范围是()A.[﹣2,0)B.[0,1] C.(0,1] D.[﹣2,0]12.已知P是椭圆+=1(a1>b1>0)和双曲线﹣=1(a2>0,b2>0)的一个交点,F1,F2是椭圆和双曲线的公共焦点,∠F1PF2=,则的值是()A.3 B.﹣3 C.﹣D.二、填空题(本大题共4小题,每小题5分,共20分)13.若实数x,y满足不等式组目标函数z=2x+y的最大值为.14.已知指数函数f(x)=a x(a>0且a≠1)的图象过点P(2,4),则在(0,10]内任取一个实数x,使得f(x)>16的概率为.15.O为△ABC内一点,且2++=0,△ABC和△OBC的面积分别是S△ABC和S△OBC,则的比值是.16.已知数列{a n}中,a n>0,a1=1,a n+2=,a6=a2,则a2016+a3= .三、解答题(共70分)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos2A+1=4sin(+A)•sin(﹣A)(Ⅰ)求角A的值;(Ⅱ)若a=,且b≥a,求b﹣c的取值范围.18.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?附:K2=n=a+b+c+d19.如图,在底面是菱形的四棱柱ABCD﹣A1B1C1D1中,∠ABC=60°,AA1=AC=2,A1B=A1D=2,点E在A1D上,且E为A1D的中点⊥平面ABCD;(Ⅰ)求证:AA(Ⅱ)求三棱锥D﹣ACE的体积V D﹣ACE.20.已知椭圆E: +=1(a>b>0)的离心率为,点F1,F2是椭圆E的左、右焦点,P是椭圆上一点,∠F1PF2=且△F1PF2的面积为3.(Ⅰ)求椭圆E的标准方程;(Ⅱ)动点M在椭圆E上,动点N在直线l:y=2上,若OM⊥ON,求证:原点O到直线MN的距离是定值.21.若f(x)=x﹣1﹣alnx(a∈R),g(x)=(1)当a=时,求函数f(x)的最值;(2)当a<0时,且对任意的x1,x2∈[4,5](x1≠x2),|f(x1)﹣f(x2)|<|g(x1)﹣g(x2)|恒成立,求实数a的取值范围.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的极坐标方程ρ=2sin(θ+).倾斜角为,且经过定点P(0,1)的直线l与曲线C交于M,N两点(Ⅰ)写出直线l的参数方程的标准形式,并求曲线C的直角坐标方程;(Ⅱ)求+的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+|x﹣2|,x∈R(Ⅰ)若关于x的不等式f(x)≤a在R上有解,求实数a的最小值M;(Ⅱ)在(Ⅰ)的条件下,已知正实数m,n,p满足m+2n+3p=M,求++的最小值.云南省昆明市2017届高三模拟试卷(文科数学)参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|y=lg(x﹣1)},B={x|2<1},则A∩B=()A.{x|x>1} B.{x|x>0} C.{x|0<x<2} D.{x|1<x<2}【考点】交集及其运算.【分析】先分别求出集合A和B,由此利用交集定义能求出A∩B.【解答】解:∵集合A={x|y=lg(x﹣1)}={x|x>1},B={x|2<1}={x|0<x<2},∴A∩B={x|1<x<2}.故选:D.2.已知复数z满足z•(i﹣1)=1+i,则z的共轭复数的虚部是()A.1 B.﹣i C.i D.﹣1【考点】复数代数形式的乘除运算.【分析】把已知等式变形,然后复数代数形式的乘除运算化简复数z,求出,则答案可求.【解答】解:由z•(i﹣1)=1+i,得=.则z的共轭复数=i,虚部是:1.故选:A.3.已知向量=(1,2),=(x,﹣2),若+与﹣垂直,则实数x的值是()A.±1 B.1 C.﹣1 D.﹣4【考点】数量积判断两个平面向量的垂直关系.【分析】利用平面向量坐标运算法则分别求出+,﹣,再由+与﹣垂直,能求出实数x的值.【解答】解:∵向量=(1,2),=(x,﹣2),∴+=(1+x,0),﹣=(1﹣x,4),∵+与﹣垂直,∴()()=(1+x)(1﹣x)+0=0,解得x=±1.故选:A.4.设a,b∈R,则“(a﹣b)a2<0”是“a<b”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件定义判断,结合不等式求解.【解答】解:∵a,b∈R,则(a﹣b)a2<0,∴a<b成立,由a<b,则a﹣b<0,“(a﹣b)a2≤0,所以根据充分必要条件的定义可的判断:a,b∈R,则“(a﹣b)a2<0”是a<b的充分不必要条件,故选:A5.已知m,n是两条不同的直线,α是平面,则下列命题中是真命题的是()A.若m∥α,m∥n,则n∥αB.若m⊥α,n⊥α,则m∥nC.若m∥α,m⊥n,则n∥αD.若m⊥α,n⊥m,则n∥α【考点】命题的真假判断与应用.【分析】根据空间直线与平面,直线与直线判定定理及性质定理,以及几何特征,我们逐一对题目中的四个命题进行判断,即可得到答案.【解答】解:对于A,若m∥α,m∥n,则n∥α或n⊂α,假命题;对于B,若m⊥α,n⊥α,根据线面垂直的性质,可得m∥n,真命题;对于C,若m∥α,m⊥n,则n与α位置关系不确定,假命题;对于D,若m⊥α,n⊥m,则n∥α或n⊂α,假命题,故选:B.6.已知等比数列{a n}为递增数列,若a1>0,且2(a n+2﹣a n)=3a n+1,则数列{a n}的公比q=()A.2或B.2 C.D.﹣2【考点】数列递推式.【分析】根据题意,设等比数列{a n}的公比为q,由2(a n+2﹣a n)=3a n+1,可得2(q2﹣1)=3q,解可得q的值,又由{a n}为递增数列,分析可得q>1,即可得q的值.【解答】解:根据题意,设等比数列{a n}的公比为q,若2(a n+2﹣a n)=3a n+1,则有2(a n×q2﹣a n)=3a n×q,即2(q2﹣1)=3q,解可得q=2或q=,又由{a n}为递增数列且a1>0, =q>1,即q>1;则q=2;故选:B.7.若α∈(,π),则3cos2α=cos(+α),则sin2α的值为()A.B.﹣C.D.﹣【考点】两角和与差的余弦函数;二倍角的正弦.【分析】由已知利用二倍角的余弦函数公式,两角和的余弦函数公式化简可得3(cosα+sinα)(cosα﹣sinα)=(cosα﹣sinα),由范围α∈(,π),可得:cosα﹣sinα≠0,从而可求cosα+sinα=,两边平方,利用同角三角函数基本关系式,二倍角的正弦函数公式即可计算得解.【解答】解:∵3cos2α=cos(+α),∴3(cosα+sinα)(cosα﹣sinα)=(cosα﹣sinα),∵α∈(,π),可得:cosα﹣sinα≠0,∴cosα+sinα=,∴两边平方可得:1+sin2α=,解得:sin2α=﹣.故选:D.8.图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b,i的值分别为8,10,0,则输出的a和i和值分别为()A.2,5 B.2,4 C.0,4 D.0,5【考点】程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b,i的值,即可得到结论.【解答】解:模拟执行程序框图,可得:a=8,b=10,i=0,i=1,不满足a>b,不满足a=b,b=10﹣8=2,i=2满足a>b,a=8﹣2=6,i=3,满足a>b,a=6﹣2=4,i=4,满足a>b,a=4﹣2=2,i=5,不满足a>b,满足a=b,输出a的值为2,i的值为5.故选:A.9.函数f(x)=xe x﹣x﹣2的零点的个数为()A.0 B.1 C.2 D.3【考点】根的存在性及根的个数判断.【分析】求出函数的导数,得到函数f(x)的单调区间,从而求出函数的零点个数即可.【解答】解:f′(x)=(x+1)e x﹣1,f″(x)=(x+2)e x,令f″(x)>0,解得:x>﹣2,令f″(x)<0,解得:x<﹣2,故f′(x)在(﹣∞,﹣2)递减,在(﹣2,+∞)递增,故f′(x)min=f′(﹣2)=﹣﹣1<0,而f′(0)=0,x→﹣∞时,f′(x)→﹣∞,故x<0时,f′(x)<0,f(x)递减,x>0时,f′(x)>0,f(x)递增,故f(x)的最小值是f(0)=﹣2,故函数f(x)的零点个数是2个,故选:C.10.某四棱锥的三视图如图所示,该四棱锥外接球的表面积是()A.4πB.3πC.12π D.8π【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知中的三视图可得:该几何体的外接球相当于棱长为1的正方体的外接球,进而可得答案.【解答】解:由已知中的三视图可得:该几何体的外接球相当于棱长为1的正方体的外接球,故2R=,故该四棱锥外接球的表面积S=4πR2=3π,故选:B.11.已知函数f(x)=若|f(x)|+a≥ax,则a的取值范围是()A.[﹣2,0)B.[0,1] C.(0,1] D.[﹣2,0]【考点】分段函数的应用.【分析】①当x≤1时,f(x)|+a≥ax,化简为x2﹣4x+3+a≥ax,分离参数a,利用恒成立思想可求得a≥﹣2;②当x>1时,|f(x)|+a≥ax化简为lnx≥a(x﹣1),作图,由函数图象可知a≤0,从而可得答案.【解答】解:①当x≤1时,f(x)=﹣x2+4x﹣3=﹣(x﹣2)2+1≤0,所以|f(x)|+a≥ax,化简为x2﹣4x+3+a≥ax,即a(x﹣1)≤x2﹣4x+3=(x﹣1)2﹣2(x﹣1),因为x≤1,所以a≥x﹣1﹣2恒成立,所以a≥﹣2;②当x>1时,f(x)=lnx>0,所以|f(x)|+a≥ax化简为lnx≥a(x﹣1)恒成立,如图:由函数图象可知a≤0,综上,当﹣2≤a≤0时,不等式|f(x)|+a≥ax恒成立故选:D12.已知P是椭圆+=1(a1>b1>0)和双曲线﹣=1(a2>0,b2>0)的一个交点,F1,F2是椭圆和双曲线的公共焦点,∠F1PF2=,则的值是()A.3 B.﹣3 C.﹣D.【考点】双曲线的简单性质;椭圆的简单性质.【分析】设P为第一象限的交点,|PF1|=m,|PF2|=n,运用椭圆和双曲线的定义,求得m=a1+a2,n=a1﹣a2,再由余弦定理和椭圆与双曲线的基本量之间的关系,化简整理即可得到所求值.【解答】解:设P为第一象限的交点,|PF1|=m,|PF2|=n,由椭圆的定义可得,m+n=2a1,由双曲线的定义可得,m﹣n=2a2,解得m=a1+a2,n=a1﹣a2,在△F1PF2中,由余弦定理可得cos∠F1PF2==,即为m2+n2﹣mn=4c2,即有2a12+2a22﹣a12+a22=4c2,即a12+3a22=4c2,又a12﹣b12=c2,a22+b22=c2,可得b12+c2+3c2﹣3b22=4c2,则b12=3b22,可得=.故选:D.二、填空题(本大题共4小题,每小题5分,共20分)13.若实数x,y满足不等式组目标函数z=2x+y的最大值为16 .【考点】简单线性规划.【分析】画出约束条件表示的可行域,判断目标函数z=2x+y的位置,求出最大值.【解答】解:作出约束条件不等式组的可行域如图:目标函数z=2x+y在的交点A(5,6)处取最大值为z=2×5+6=16.故答案为:16.14.已知指数函数f(x)=a x(a>0且a≠1)的图象过点P(2,4),则在(0,10]内任取一个实数x,使得f(x)>16的概率为.【考点】几何概型;指数函数的单调性与特殊点.【分析】设函数f(x)=a x,a>0 且a≠1,把点(2,4),求得a的值,可得函数的解析式,进而结合几何概型可得到答案.【解答】解:指数函数f(x)=a x(a>0且a≠1)的图象过点P(2,4),代入可得 a2=4,解得a=2,∴f(x)=2x.又∵x∈(0,10],若f(x)>16,则x∈(4,10],∴f(x)>16的概率P==,故答案为.15.O为△ABC内一点,且2++=0,△ABC和△OBC的面积分别是S△ABC和S△OBC,则的比值是.【考点】向量在几何中的应用.【分析】可取AB的中点D,AC的中点E,然后画出图形,根据便可得到,从而得出D,O,E三点共线,这样即可求出的值.【解答】解:如图,取AB中点D,AC中点E,则:===;∴;∴D,O,E三点共线,DE为△ABC的中位线;∴;∴.故答案为:.16.已知数列{a n}中,a n>0,a1=1,a n+2=,a6=a2,则a2016+a3= .【考点】数列递推式.【分析】根据数列递推公式求出a3,再由a6=a2,求出a2=a6=,而a2016=a503×4+6=a6,问题得以解决.【解答】解:a n>0,a1=1,a n+2=,∴a3==,∵a6=a2,∴a6=,a4=,∴a6==a2,∵a n>0,解得a2=a6=∴a2016=a503×4+6=a6=,∴a2016+a3=,故答案为:三、解答题(共70分)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos2A+1=4sin(+A)•sin(﹣A)(Ⅰ)求角A的值;(Ⅱ)若a=,且b≥a,求b﹣c的取值范围.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由三角函数恒等变换的应用化简已知可得sin2A=1,结合范围2A∈(0,2π),可求A的值.(Ⅱ)利用正弦定理可得b=2sinB,c=2sinC,利用三角函数恒等变换的应用化简可得b﹣c=2sin(B﹣),结合范围0≤B﹣<,利用正弦函数的性质即可得解.【解答】(本题满分为12分)解:(Ⅰ)∵cos2A+1=4sin(+A)•si n(﹣A)=2sin(﹣2A),∴cos2A+1=2sin(﹣2A)=cos2A+sin2A,可得:sin2A=1,∵A∈(0,π),2A∈(0,2π),∴2A=,可得:A=.…6分(Ⅱ)∵A=,a=,∴由=2,得b=2sinB,c=2sinC,∴b﹣c=2sinB﹣2sinC=2sinB﹣2sin(﹣B)=2sin(B﹣).∵b≥a,∴≤B<,即0≤B﹣<,∴b﹣c=2sin(B﹣)∈[0,2).…12分18.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?附:K2=n=a+b+c+d【考点】独立性检验.【分析】(1)利用频率分布直方图,直接求出x,然后求解读书迷人数.(2)利用频率分布直方图,写出表格数据,利用个数求出K2,判断即可.【解答】解:(1)由已知可得:(0.01+0.02+0.03+x+0.015)*10=1,可得x=0.025,…因为( 0.025+0.015)*10=0.4,将频率视为概率,由此可以估算出全校3000名学生中读书迷大概有1200人;…(2)完成下面的2×2列联表如下…≈8.249,…VB8.249>6.635,故有99%的把握认为“读书迷”与性别有关.…19.如图,在底面是菱形的四棱柱ABCD﹣A1B1C1D1中,∠ABC=60°,AA1=AC=2,A1B=A1D=2,点E在A1D上,且E为A1D的中点(Ⅰ)求证:AA1⊥平面ABCD;(Ⅱ)求三棱锥D﹣ACE的体积V D﹣ACE.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(I)使用菱形的性质和勾股定理的逆定理证明AA1⊥AB,AA1⊥AD,从而得出AA1⊥平面ABCD;(II)设AD的中点为F,连接EF,利用体积公式求三棱锥D﹣ACE的体积V D﹣ACE.【解答】(Ⅰ)证明:∵底面ABCD是菱形,∠ABC=60°,∴AB=AD=AC=2,∵AA1=2,∴AA12+AB2=A1B2,∴AA1⊥AB.同理,AA1⊥AD,又∵AB⊂平面ABCD,AD⊂平面ABCD,AB∩AD=A,∴AA1⊥平面ABCD.(Ⅱ)解:设AD的中点为F,连接EF,则EF∥AA1,∴EF⊥平面ACD,且EF=1.∴V D﹣ACE=V E﹣ACD==.20.已知椭圆E: +=1(a>b>0)的离心率为,点F1,F2是椭圆E的左、右焦点,P是椭圆上一点,∠F1PF2=且△F1PF2的面积为3.(Ⅰ)求椭圆E的标准方程;(Ⅱ)动点M在椭圆E上,动点N在直线l:y=2上,若OM⊥ON,求证:原点O到直线MN的距离是定值.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(Ⅰ)利用椭圆的离心率a=2c,利用勾股定理,三角形的面积公式及椭圆的定义,即可求得a和c 的值,则b2=a2﹣c2,即可求得椭圆E的标准方程;(Ⅱ)当直线ON斜率不存在时,由d==,当直线OM斜率存在时,将直线OM的方程代入椭圆方程,求得M点坐标,则直线ON的斜率﹣,将y=2,求得N点坐标,则d2==3,原点O到直线MN的距离是定值.【解答】解:(Ⅰ)椭圆的离心率e==,a=2c,①△F1PF2的面积为3,则丨PF1丨丨PF2丨=3,则丨PF1丨丨PF2丨=6,由丨PF1丨+丨PF2丨=2a,丨PF1丨2+丨PF2丨2=(2c)2.则a2﹣c2=3,②解得:a=2,c=1,b2=a2﹣c2=3,∴椭圆E的标准方程为;(Ⅱ)证明:①当直线ON斜率不存在时,即点N在y轴上时,丨ON丨=2,丨OM丨=2,丨MN丨=4,设原点O到直线MN的距离为d,由比例关系可得d==,②当直线OM斜率存在时,设直线OM方程为:y=kx,,解得:x2=,y2=,由OM⊥ON,则直线ON方程为:y=﹣x,代入y=2,可得x=﹣2k,则N(﹣2k,2),则丨MN丨2=丨ON丨2+丨OM丨2=(﹣2k)2+(2)2++=,则由比例关系可得d=,d2==3,∴d=,综上所述,原点O到直线MN的距离为定值.21.若f(x)=x﹣1﹣alnx(a∈R),g(x)=(1)当a=时,求函数f(x)的最值;(2)当a<0时,且对任意的x1,x2∈[4,5](x1≠x2),|f(x1)﹣f(x2)|<|g(x1)﹣g(x2)|恒成立,求实数a的取值范围.【考点】导数在最大值、最小值问题中的应用.【分析】(1)求出f(x)的导数,求出单调区间,可得极小值且为最小值,无最大值;(2)当a<0时,f′(x)=1﹣>0在x∈[4,5]上恒成立,可得函数f(x)在x∈[4,5]上单调递增.利用g′(x)>0在x∈[4,5]上恒成立,可得g(x)在x∈[4,5]上为增函数.不妨设x2>x1,则|f(x1)﹣f(x2)|<|g(x1)﹣g(x2)|恒成立|恒成立⇔f(x2)﹣f(x1)<g(x2)﹣g(x1)恒成立,即f(x2)﹣g(x2)<f(x1)﹣g(x1)在x∈[4,5]上恒成立.设F(x)=f(x)﹣g(x)=x﹣alnx﹣1﹣.则F (x)在x∈[4,5]上为减函数.分离参数利用导数进一步研究即可得出.【解答】解:(1)当a=时,函数f(x)=x﹣1﹣lnx(x>0),导数为f′(x)=1﹣=,当x>时,f′(x)>0,f(x)递增;当0<x<时,f′(x)<0,f(x)递减.可得f(x)在x=处f(x)取得极小值,且为最小值﹣1+1=,无最大值;(2)当a<0时,f′(x)=1﹣>0在x∈[4,5]上恒成立,∴函数f(x)在x∈[4,5]上单调递增,g(x)=,∵g′(x)=>0在x∈[4,5]上恒成立,∴g(x)在[4,5]上为增函数.当a<0时,且对任意的x1,x2∈[4,5](x1≠x2),|f(x1)﹣f(x2)|<|g(x1)﹣g(x2)|恒成立,即f(x2)﹣g(x2)<f(x1)﹣g(x1)在x∈[4,5]上恒成立.设F(x)=f(x)﹣g(x)=x﹣alnx﹣1﹣.则F(x)在x∈[4,5]上为减函数.F′(x)=1﹣﹣≤0在x∈[4,5]上恒成立,化为a≥x﹣e x+恒成立.设H (x )=x ﹣e x+,∵H′(x )=1﹣e x+=1﹣e x(1﹣+)=1﹣e x [(﹣)2+],x ∈[4,5].∴e x [(﹣)2+]>e 3>1,x ∈[4,5].∴H′(x )<0在x ∈[4,5]上恒成立,即H (x )为减函数.∴H (x )在x ∈[4,5]上的最大值为H (4)=4﹣e 4+e 4=4﹣e 4.∴4﹣e 4≤a <0.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线C 的极坐标方程ρ=2sin (θ+).倾斜角为,且经过定点P (0,1)的直线l 与曲线C 交于M ,N 两点(Ⅰ)写出直线l 的参数方程的标准形式,并求曲线C 的直角坐标方程;(Ⅱ)求+的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I )由倾斜角为,且经过定点P (0,1)的直线l 的参数方程为:.曲线C 的极坐标方程ρ=2sin (θ+),展开:ρ2=2×(sin θ+cos θ),利用互化公式可得直角坐标方程.(II )把直线l 的参数方程代入圆C 的方程为:t 2﹣t ﹣1=0,可得+=+==即可得出.【解答】解:(I )由倾斜角为,且经过定点P (0,1)的直线l 的参数方程为:,化为:.曲线C的极坐标方程ρ=2sin(θ+),展开:ρ2=2×(sinθ+cosθ),可得直角坐标方程:x2+y2=2x+2y.(II)把直线l的参数方程代入圆C的方程为:t2﹣t﹣1=0,t1+t2=1,t1t2=﹣1.∴+=+====.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+|x﹣2|,x∈R(Ⅰ)若关于x的不等式f(x)≤a在R上有解,求实数a的最小值M;(Ⅱ)在(Ⅰ)的条件下,已知正实数m,n,p满足m+2n+3p=M,求++的最小值.【考点】柯西不等式在函数极值中的应用;绝对值不等式的解法.【分析】(Ⅰ)关于x的不等式f(x)≤a在R上有解,求出f(x)的最小值,即可求实数a的最小值M;(Ⅱ)利用柯西不等式,即可求++的最小值.【解答】解:(Ⅰ)f(x)=|x﹣a|+|x﹣2|≥|a﹣2|,∵关于x的不等式f(x)≤a在R上有解,∴|a﹣2|≤a,∴a≥1,∴实数a的最小值M=1;(Ⅱ)m+2n+3p=1, ++=(++)(m+2n+3p)≥(+2+)2=16+8,∴++的最小值为16+8.。
2017年云南省高中学业水平考试模拟考(一)文科数学试卷一、选择题(共12小题,每小题5.0分,共60分)1. 设不等式组表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.B.C.D.【答案】D【解析】试题分析:阴影部分的面积为:,正方形的面积为:,故选D.考点:1、几何概型的计算,面积比【方法点晴】本题主要考查的是几何概型,属于中等题,由题作出所对应的图像,可得平面区域为如图所示的正方形区域,而区域内的任意点到原点的距离大于的区域为图中的阴影部分,由几何概型的公式可知概率即为面积之比,易得答案.2. 某化工厂单位要在600名员工中抽取60名员工调查职工身体健康状况,其中青年员工300名,中年员工200名,老年员工100名,下列说法错误的是()A. 老年人应作为重点调查对象,故老年人应该抽超过30名B. 每个人被抽到的概率相同且为C. 应使用分层抽样抽取样本调查D. 抽出的样本能在一定程度上反应总体的健康状况【答案】A【解析】试题分析:本题的抽样方法为分层抽样抽取样本调查,又由于要在600名员工中抽取60名员工调查,故抽取比例为,而老年员工100名,故老年人应该抽10名.考点:分成抽样.3. 下列两个变量之间的关系是相关关系的是()A. 正方体的棱长和体积B. 单位圆中角的度数和所对弧长C. 单产为常数时,土地面积和总产量D. 日照时间与水稻的亩产量【答案】D故选D.考点:相关关系4. 已知20名学生某次数学考试成绩(单位:分)的频率分布直方图如下图所示.则成绩落在[50,60)与[60,70)中的学生人数分别为()A. 2,3B. 2,4C. 3,2D. 4,2【答案】A【解析】根据频率分布直方图,得:,解得。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x 2+x ﹣12≤0},N={y|y=3x ,x ≤1},则集合{x|x ∈M 且x ∉N}为( ) A .(0,3] B .[﹣4,3]C .[﹣4,0)D .[﹣4,0]2.向量,,在正方形网格中的位置如图所示,若=λ+μ(λ,μ∈R ),则=( )A .2B .4C .D .3.已知,则f[f (1﹣i )]等于( )A .3B .1C .2﹣iD .3+i4.如图的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为16,28,则输出的a=( )A .0B .2C .4D .145.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则等于( )A .11B .5C .﹣8D .﹣116.某一简单几何体的三视图如所示,该几何体的外接球的表面积是( )A.13πB.16πC.25πD.27π7.已知直线m和平面α,β,则下列四个命题中正确的是()A.若α⊥β,m⊂β,则m⊥αB.若α∥β,m∥α,则m∥βC.若α∥β,m⊥α,则m⊥βD.若m∥α,m∥β,则α∥β8.已知tanx=,则sin2(+x)=()A.B.C.D.9.已知m,n是满足m+n=1,且使取得最小值的正实数.若曲线y=xα过点P(m, n),则α的值为()A.﹣1 B.C.2 D.310.△ABC的三内角A,B,C所对边长分别是a,b,c,若=,则角B的大小为()A.B.C.D.11.设点P是双曲线﹣=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,F1、F2分别是双曲线的左、右焦点,且|PF1|=3|PF2|,则双曲线的离心率()A.B. C.D.12.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x,f(x))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=,则g()+g()+…+g()=()A.2016 B.2015 C.4030 D.1008二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知实数x,y满足:,z=2x﹣2y﹣1,则z的取值范围是.14.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为.15.已知O是坐标原点,A,B分别是函数y=sinπx以O为起点的一个周期内的最大值点和最小值点.则tan∠OAB= .16.已知函数f(x)=kx,,若f(x)与g(x)的图象上分别存在点M,N,使得MN关于直线y=e对称,则实数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{an }为公差不为零的等差数列,其前n项和为Sn,满足S5﹣2a2=25,且a1,a4,a 13恰为等比数列{bn}的前三项(Ⅰ)求数列{an },{bn}的通项公式;(Ⅱ)设Tn 是数列{}的前n项和,是否存在k∈N*,使得等式1﹣2Tk=成立,若存在,求出k的值;若不存在,说明理由.18.今年我校高二文科班学生共有800人参加了数学与地理的学业水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001,002,…800进行编号:(1)如果从第8行第7列的数开始向右读,请你依次写出最先检测的三个人的编号:(下面摘取了第7行至第9行)(2)抽出100人的数学与地理的水平测试成绩如表:成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩良好的共有20+18+4=42人,若在该样本中,数学成绩优秀率是30%,求a、b的值;(3)在地理成绩为及格的学生中,已知a≥10,b≥8,求数学成绩为优秀的人数比及格的人数少的概率.19.如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在平面和圆O所在的平面互相垂直.已知AB=2,EF=1.(Ⅰ)求证:平面DAF⊥平面CBF;(Ⅱ)设几何体F﹣ABCD、F﹣BCE的体积分别为V1、V2,求V1:V2的值.20.已知函数f(x)=+nlnx(m,n为常数)的图象在x=1处的切线方程为x+y﹣2=0(1)判断函数f(x)的单调性;(2)已知p∈(0,1),且f(p)=2,若对任意x∈(p,1),任意t∈[,2],f(x)≥t3﹣t2﹣2at+2与f(x)≤t3﹣t2﹣2at+2中恰有一个恒成立,求实数a的取值范围.21.已知椭圆的离心率,过椭圆的左焦点F 且倾斜角为30°的直线与圆x 2+y 2=b 2相交所得弦的长度为1. (I )求椭圆E 的方程;(Ⅱ)若动直线l 交椭圆E 于不同两点M (x 1,y 1),N (x 2,y 2),设=(bx 1,ay 1),=((bx 2,ay 2),O 为坐标原点.当以线段PQ 为直径的圆恰好过点O 时,求证:△MON 的面积为定值,并求出该定值.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,圆C 1和C 2的参数方程分别是(ϕ为参数)和(β为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 1和C 2的极坐标方程;(2)射线OM :θ=α与圆C 1的交点分别为O 、P ,与圆C 2的交点分别为O 、Q ,求|OP|•|OQ|的最大值.[选修4-5:不等式选讲]23.(Ⅰ)若关于x 的不等式|x+1|﹣|x ﹣2|>|a ﹣3|的解集是空集,求实数a 的取值范围;(Ⅱ)对任意正实数x ,y ,不等式+<k恒成立,求实数k 的取值范围.2017届高三数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x2+x﹣12≤0},N={y|y=3x,x≤1},则集合{x|x∈M且x∉N}为()A.(0,3] B.[﹣4,3] C.[﹣4,0)D.[﹣4,0]【考点】集合的表示法.【分析】集合M为不等式的解集,集合N为指数函数的值域,分别求出,再根据新定义求集合{x|x∈M且x∉N}B即可.【解答】解:M={x|x2+x﹣12≤0}=[﹣4,3],N={y|y=3x,x≤1}=(0,3],所以集合{x|x∈M且x∉N}=[﹣4,0).故选:C.2.向量,,在正方形网格中的位置如图所示,若=λ+μ(λ,μ∈R),则=()A.2 B.4 C.D.【考点】平面向量的基本定理及其意义.【分析】如图所示,建立直角坐标系.利用向量的坐标运算性质、向量相等即可得出.【解答】解:以向量,的公共点为坐标原点,建立如图直角坐标系可得=(﹣1,1),=(6,2),=(﹣1,﹣3)∵=λ+μ(λ,μ∈R),∴,解之得λ=﹣2且μ=﹣,因此,则=4故选:B.3.已知,则f[f(1﹣i)]等于()A.3 B.1 C.2﹣i D.3+i【考点】函数的值.【分析】根据f(x)中的范围带值计算即可.【解答】解:∵1﹣i∉R∴f(1﹣i)=(1+i)(1﹣i)=2.那么:f[f(1﹣i)]=f(2)=1+2=3.故选A.4.如图的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为16,28,则输出的a=()A.0 B.2 C.4 D.14【考点】程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=16,b=28,不满足a>b,则b变为28﹣16=12,由b <a ,则a 变为16﹣12=4, 由a <b ,则,b=12﹣4=8, 由a <b ,则,b=8﹣4=4, 由a=b=4, 则输出的a=4. 故选:C .5.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则等于( )A .11B .5C .﹣8D .﹣11【考点】等比数列的性质.【分析】由题意可得数列的公比q ,代入求和公式化简可得. 【解答】解:设等比数列{a n }的公比为q ,(q ≠0) 由题意可得8a 2+a 5=8a 1q+a 1q 4=0,解得q=﹣2,故====﹣11故选D6.某一简单几何体的三视图如所示,该几何体的外接球的表面积是( )A .13πB .16πC .25πD .27π【考点】由三视图求面积、体积.【分析】几何体为底面为正方形的长方体,底面对角线为4,高为3.则长方体的对角线为外接球的直径.【解答】解:几何体为底面为正方形的长方体,底面对角线为4,高为3,∴长方体底面边长为2.则长方体外接球半径为r,则2r==5.∴r=.∴长方体外接球的表面积S=4πr2=25π.故选C.7.已知直线m和平面α,β,则下列四个命题中正确的是()A.若α⊥β,m⊂β,则m⊥αB.若α∥β,m∥α,则m∥βC.若α∥β,m⊥α,则m⊥βD.若m∥α,m∥β,则α∥β【考点】空间中直线与平面之间的位置关系.【分析】利用面面垂直、面面平行、线面平行的判定定理和性质定理分别分析解答.【解答】解:对于选项A,若α⊥β,m⊂β,则m与α可能平行或者斜交;故A错误;对于选项B,若α∥β,m∥α,则m∥β或者m⊂α;故B 错误;对于选项C,若α∥β,m⊥α,则由面面平行的性质定理可得m⊥β;故C正确;对于选项D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.8.已知tanx=,则sin2(+x)=()A.B.C.D.【考点】二倍角的正弦.【分析】由条件利用半角公式、同角三角函数的基本关系,求得要求式子的值.【解答】解:tanx=,则sin2(+x)===+=+=+=,故选:D.9.已知m,n是满足m+n=1,且使取得最小值的正实数.若曲线y=xα过点P(m, n),则α的值为()A.﹣1 B.C.2 D.3【考点】基本不等式.【分析】由基本不等式易得m=且n=时取到最小值,可得=,解方程可得.【解答】解:∵正实数m,n是满足m+n=1,∴=()(m+n)=10++≥10+2=16,当且仅当=即m=且n=时取到最小值,∴曲线y=xα过点P(,),∴=,解得α=故选:B10.△ABC的三内角A,B,C所对边长分别是a,b,c,若=,则角B的大小为()A.B.C.D.【考点】余弦定理;正弦定理.【分析】利用正弦定理化简已知可得c2+a2﹣b2=﹣ac,由余弦定理可得cosB=﹣,结合范围B∈(0,π),即可解得B的值.【解答】解:在△ABC中,由正弦定理,可得:sinB=,sinA=,sinC=,∵=,可得: =,整理可得:c2+a2﹣b2=﹣ac,∴由余弦定理可得:cosB==﹣,∵B∈(0,π),∴B=.故选:B.11.设点P是双曲线﹣=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,F1、F2分别是双曲线的左、右焦点,且|PF1|=3|PF2|,则双曲线的离心率()A.B. C.D.【考点】双曲线的简单性质.【分析】先由双曲线定义和已知求出两个焦半径的长,再由已知圆的半径为半焦距,知焦点三角形为直角三角形,从而由勾股定理得关于a、c的等式,求得离心率【解答】解:依据双曲线的定义:|PF1|﹣|PF2|=2a,又∵|PF1|=3|PF2|,∴|PF1|=3a,|PF2|=a,∵圆x2+y2=a2+b2的半径=c,∴F1F2是圆的直径,∴∠F1PF2=90°在直角三角形F1PF2中由(3a)2+a2=(2c)2,得故选 D12.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x,f(x))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=,则g()+g()+…+g()=()A.2016 B.2015 C.4030 D.1008【考点】利用导数研究函数的极值.【分析】由题意对已知函数求两次导数可得图象关于点(,1)对称,即f(x)+f(1﹣x)=2,即可得到结论.【解答】解:函数g(x)=,函数的导数g′(x)=x2﹣x+3,g″(x)=2x﹣1,由g″(x0)=0得2x﹣1=0解得x=,而g()=1,故函数g(x)关于点(,1)对称,∴g(x)+g(1﹣x)=2,故设g()+g()+…+g()=m,则g()+g()+…+g()=m,两式相加得2×2015=2m,则m=2015.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知实数x,y满足:,z=2x﹣2y﹣1,则z的取值范围是[﹣,5).【考点】简单线性规划.【分析】根据画出不等式组表示的平面区域,利用数形结合结合目标函数的意义,利用平移即可得到结论.【解答】解:不等式对应的平面区域如图:(阴影部分).由z=2x﹣2y﹣1得y=x﹣,平移直线y=x﹣,由平移可知当直线y=x﹣,经过点C时,直线y=x﹣的截距最小,此时z取得最大值,由,解得,即C(2,﹣1),此时z=2x﹣2y﹣1=4+2﹣1=5,可知当直线y=x﹣,经过点A时,直线y=y=x﹣的截距最大,此时z取得最小值,由,得,即A(,)代入z=2x﹣2y﹣1得z=2×﹣2×﹣1=﹣,故z∈[﹣,5).故答案为:[﹣,5).14.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为 2 .【考点】抛物线的简单性质.【分析】由抛物线方程求出抛物线的焦点坐标和准线方程,结合抛物线的定义得答案.【解答】解:抛物线y2=4x的焦点坐标为F(1,0),准线方程为x=﹣1,∵抛物线y2=4x上的一点P到焦点的距离为5,由抛物线定义可知,点P到准线x=﹣1的距离是5,则点P到x轴的距离是4,∴△PFO的面积为=2,故答案为:2.15.已知O是坐标原点,A,B分别是函数y=sinπx以O为起点的一个周期内的最大值点和最小值点.则tan∠OAB= .【考点】正弦函数的图象.【分析】根据题意画出图形,结合图形,利用函数y=sinπx的对称性得出∠OAB=2∠OAC,结合二倍角公式求出tan∠OAB的值.【解答】解:如图所示;O是坐标原点,A,B分别是函数y=sinπx以O为起点的一个周期内的最大值点和最小值点,∴AB过点D,且∠OAB=2∠OAC;又A(,1),∴tan∠OAC=,∴tan∠OAB===.故答案为:.16.已知函数f(x)=kx,,若f(x)与g(x)的图象上分别存在点M,N,使得MN关于直线y=e对称,则实数k的取值范围是[﹣,2e] .【考点】函数的图象.【分析】设M(x,kx),则N(x,2e﹣kx),推导出k=﹣lnx,由此利用导数性质能求出实数k的取值范围.【解答】解:∵函数f(x)=kx,g(x)=2lnx+2e(≤x≤e2),f (x )与g (x )的图象上分别存在点M ,N ,使得M ,N 关于直线y=e 对称, ∴设M (x ,kx ),则N (x ,2e ﹣kx ),∴2e ﹣kx=2lnx+2e ,∴k=﹣lnx ,k′=,由k′=0,得x=e ,∵≤x ≤e 2,∴x ∈[,e )时,k′<0,k=﹣lnx 是减函数;x ∈(e ,e 2]时,k′>0,k=﹣lnx 是增函数,∴x=e 时,k=﹣lne=﹣;x=e 2时,k=﹣lne 2=﹣;x=时,k=﹣ln =2e ,∴k min =﹣,k max =2e .∴实数k 的取值范围是[﹣,2e].故答案为:三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列{a n }为公差不为零的等差数列,其前n 项和为S n ,满足S 5﹣2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项(Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)设T n 是数列{}的前n 项和,是否存在k ∈N *,使得等式1﹣2T k =成立,若存在,求出k 的值;若不存在,说明理由. 【考点】数列的求和;数列递推式.【分析】(I )利用等差数列与等比数列的通项公式及其前n 项和公式即可得出; (II )利用“裂项求和”与数列的单调性即可得出. 【解答】解:(Ⅰ)设等差数列{a n }的公差为d (d ≠0),∴,解得a 1=3,d=2, ∵b 1=a 1=3,b 2=a 4=9,∴.(Ⅱ)由(I)可知:a=3+2(n﹣1)=2n+1.n,∴=,∴,单调递减,得,而,所以不存在k∈N*,使得等式成立.18.今年我校高二文科班学生共有800人参加了数学与地理的学业水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001,002,…800进行编号:(1)如果从第8行第7列的数开始向右读,请你依次写出最先检测的三个人的编号:(下面摘取了第7行至第9行)(2)抽出100人的数学与地理的水平测试成绩如表:成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩良好的共有20+18+4=42人,若在该样本中,数学成绩优秀率是30%,求a、b的值;(3)在地理成绩为及格的学生中,已知a≥10,b≥8,求数学成绩为优秀的人数比及格的人数少的概率.【考点】古典概型及其概率计算公式.【分析】(1)利用随机数表法能求出最先检测的3个人的编号.(2)由,能求出a、b的值.(3)由题意,知a+b=31,且a≥10,b≥8,满足条件的(a,b)有14组,其中数学成绩为优秀的人数比及格的人数少有6组,由此能求出数学成绩为优秀的人数比及格的人数少的概率.【解答】解:(1)依题意,最先检测的3个人的编号依次为785,667,199.…(2)由,得a=14,…∵7+9+a+20+18+4+5+6+b=100,∴b=17.…(3)由题意,知a+b=31,且a≥10,b≥8,∴满足条件的(a,b)有:(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8)共14组,且每组出现的可能性相同.….…其中数学成绩为优秀的人数比及格的人数少有:(10,21),(11,20),(12,19),(13,18),(14,17),(15,16)共6组.…∴数学成绩为优秀的人数比及格的人数少的概率为.…19.如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在平面和圆O所在的平面互相垂直.已知AB=2,EF=1.(Ⅰ)求证:平面DAF⊥平面CBF;(Ⅱ)设几何体F﹣ABCD、F﹣BCE的体积分别为V1、V2,求V1:V2的值.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(1)由面面垂直可得AD ⊥平面ABEF ,从而得到AD ⊥BF ,由直径的性质得BF ⊥AF ,故得出BF ⊥平面ADF ,从而得出平面DAF ⊥平面CBF ;(2)V F ﹣BCE =V C ﹣BEF ,设AD=a ,则可用a 表示出V 1,V 2.从而得出体积比.【解答】证明:(1)∵平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF=AB ,AD ⊥AB ,AD ⊂平面ABCD ,∴AD ⊥平面ABEF ,∵BF ⊂平面ABE , ∴AD ⊥BF ,∵AB 是圆O 的直径,∴BF ⊥AF ,又AD ⊂平面ADF ,AF ⊂平面ADF ,AD ∩AF=A , ∴BF ⊥平面ADF ,∵BF ⊂平面BCF , ∴平面DAF ⊥平面CBF .(2).连结OE ,OF ,则OE=OF=EF=1, ∴△AOF ,△OEF ,△BOE 是等边三角形,过F 作FM ⊥AB 于M ,则FM=,FM ⊥平面ABCD ,设AD=BC=a ,则V 1=V F ﹣ABCD ==.V 2=V F ﹣BCE =V C ﹣BEF ===.∴V 1:V 2=:=4:1.20.已知函数f(x)=+nlnx(m,n为常数)的图象在x=1处的切线方程为x+y﹣2=0(1)判断函数f(x)的单调性;(2)已知p∈(0,1),且f(p)=2,若对任意x∈(p,1),任意t∈[,2],f(x)≥t3﹣t2﹣2at+2与f(x)≤t3﹣t2﹣2at+2中恰有一个恒成立,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)利用导数的意义求得m,进而求出单调区间;(2)f(x)在[p,1]上的最小值为f(1)=1,最小值f(p)=2,只需2a≥t2﹣t+对t∈[,2]恒成立或2a≤t2﹣t对t∈[,2]恒成立,利用导数求出函数的单调性,列出不等式,即可求得结论;【解答】解:(1)由f(x)=+nlnx(m,n为常数)的定义域为(0,+∞),∴f′(x)=﹣+,∴f′(1)=﹣+n=﹣1,把x=1代入x+y﹣2=0得y=1,∴f(1)==1,∴m=2,n=﹣,∴f(x)=﹣lnx,f′(x)=﹣﹣,∵x>0,∴f′(x)<0,∴f(x)的单调递减区间为(0,+∞),没有递增区间.(2)由(1)可得,f(x)在[p,1]上单调递减,∴f(x)在[p,1]上的最小值是f(1)=1,最大值是f(p)=2,∴只需t3﹣t2﹣2at+2≤1或≥2,即2a ≥t 2﹣t+对t ∈[,2]恒成立或2a ≤t 2﹣t 对t ∈[,2]恒成立,令g (t )=t 2﹣t+,则g′(t )=,令g′(t )=0,解得:t=1,而2t 2+t+1>0恒成立,∴≤t <1时,g′(t )<0,g (t )递减,1<t ≤2时,g′(t )>0,g (t )递增,∴g (t )的最大值是max{g (),g (2)},而g ()=<g (2)=,∴g (t )在[,2]的最大值是g (2)=,又t 2﹣t ∈[﹣,2],∴2a ≥或2a ≤﹣,解得:a ≥或a ≤﹣,故a 的范围是(﹣∞,﹣]∪[,+∞).21.已知椭圆的离心率,过椭圆的左焦点F 且倾斜角为30°的直线与圆x 2+y 2=b 2相交所得弦的长度为1. (I )求椭圆E 的方程;(Ⅱ)若动直线l 交椭圆E 于不同两点M (x 1,y 1),N (x 2,y 2),设=(bx 1,ay 1),=((bx 2,ay 2),O 为坐标原点.当以线段PQ 为直径的圆恰好过点O 时,求证:△MON 的面积为定值,并求出该定值.【考点】椭圆的简单性质.【分析】(I )运用离心率公式和直线与圆相交的弦长公式,结合a ,b ,c 的关系,解方程可得a ,b ,进而得到椭圆方程;(Ⅱ)讨论直线MN 的斜率存在和不存在,以线段PQ 为直径的圆恰好过点O ,可得⊥,运用向量的数量积为0,联立直线方程和椭圆方程,运用韦达定理,化简整理,由三角形的面积公式,计算即可得到定值.【解答】解:(I )由题意可得e==,过椭圆的左焦点F (﹣c ,0)且倾斜角为30°的直线方程为:y=(x+c ),由直线与圆x 2+y 2=b 2相交所得弦的长度为1,可得2=2=1,又a 2﹣b 2=c 2,解方程可得a=2,b=1,c=,即有椭圆的方程为+y 2=1;(Ⅱ)证明:(1)当MN 的斜率不存在时,x 1=x 2,y 1=﹣y 2,以线段PQ 为直径的圆恰好过点O ,可得⊥,即有•=0,即有b 2x 1x 2+a 2y 1y 2=0,即有x 1x 2+4y 1y 2=0,即x 12﹣4y 12=0, 又(x 1,y 1)在椭圆上,x 12+4y 12=4,可得x 12=2,|y 1|=,S △OMN =|x 1|•|y 1﹣y 2|=••=1;(2)当MN 的斜率存在,设MN 的方程为y=kx+t , 代入椭圆方程(1+4k 2)x 2+8ktx+4t 2﹣4=0, △=64k 2t 2﹣4(1+4k 2)(4t 2﹣4)=4k 2﹣t 2+1>0,x 1+x 2=﹣,x 1x 2=,又•=0,即有x 1x 2+4y 1y 2=0,y 1=kx 1+t ,y 2=kx 2+t ,(1+k 2)x 1x 2+4kt (x 1+x 2)+4t 2=0, 代入整理,可得2t 2=1+4k 2,即有|MN|=•=•=•,又O 到直线的距离为d=,S △OMN =d•|MN|=|t|•=|t|•=1.故△MON 的面积为定值1.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,圆C 1和C 2的参数方程分别是(ϕ为参数)和(β为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 1和C 2的极坐标方程;(2)射线OM :θ=α与圆C 1的交点分别为O 、P ,与圆C 2的交点分别为O 、Q ,求|OP|•|OQ|的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程. 【分析】(1)先分别求出普通方程,再写出极坐标方程; (2)利用极径的意义,即可得出结论. 【解答】解:(1)圆C 1和C 2的参数方程分别是(ϕ为参数)和(β为参数),普通方程分别为(x ﹣2)2+y 2=4,x 2+(y ﹣1)2=1,极坐标方程分别为ρ=4cos θ,ρ=2sin θ;(2)设P ,Q 对应的极径分别为ρ1,ρ2,则|OP|•|OQ|=ρ1ρ2=4sin2α, ∴sin2α=1,|OP|•|OQ|的最大值为4.[选修4-5:不等式选讲]23.(Ⅰ)若关于x 的不等式|x+1|﹣|x ﹣2|>|a ﹣3|的解集是空集,求实数a 的取值范围;(Ⅱ)对任意正实数x ,y ,不等式+<k恒成立,求实数k 的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)利用绝对值不等式,结合关于x的不等式|x+1|﹣|x﹣2|>|a﹣3|的解集是空集,即可求实数a的取值范围;(Ⅱ)利用柯西不等式,结合对任意正实数x,y,不等式+<k恒成立,求实数k的取值范围.【解答】解:(Ⅰ)∵||x+1|﹣|x﹣2||≤|(x+1)﹣(x﹣2)|=3,∴﹣3≤|x+1|﹣|x﹣2|≤3,∵关于x的不等式|x+1|﹣|x﹣2|>|a﹣3|的解集是空集∴|a﹣3|≥3,∴a≥6或a≤0;(Ⅱ)由柯西不等式可得(+)(8x+6y)≥()2,∴≤,∵对任意正实数x,y,不等式+<k恒成立,∴k>,即实数k的取值范围是(,+∞).。
2017年云南省高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合A={x|﹣x2﹣x+2<0},B={x|2x﹣5>0},则集合A 与B的关系是()A.B⊆A B.B⊇A C.B∈A D.A∈B2.设复数z满足z(2+i)=5i,则|z﹣1|=( )A.1 B.2 C.D.53.已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为()A.32 B.33 C.34 D.354.设a=60。
7,b=log70.6,c=log0。
60.7,则()A.c>b>a B.b>c>a C.c>a>b D.a>c>b5.在△ABC中,角A,B,C所对的边分别为a,b,c,若B=,a=,sin2B=2sinAsinC,则△ABC的面积S△ABC=()A.B.3 C.D.66.执行如图所示的程序框图,如果输入N=30,则输出S=()A.26 B.57 C.225 D.2567.函数f(x)=sin(ωx+φ),(|φ|<)的部分图象如图所示,则f(x)的单调递增区间为()A.(﹣1+4kπ,1+4kπ),k∈Z B.(﹣3+8kπ,1+8kπ),k∈Z C.(﹣1+4k,1+4k),k∈Z D.(﹣3+8k,1+8k),k∈Z 8.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,BC=1,BB1=1,P是AB的中点,则异面直线BC1与PD所成角等于()A.30°B.45°C.60°D.90°9.在平行四边形ABCD中,||=8,||=6,N为DC的中点,=2,则•=()A.48 B.36 C.24 D.1210.已知函数f(x)=,则不等式f(x﹣1)≤0的解集为()A.{x|0≤x≤2} B.{x|0≤x≤3} C.{x|1≤x≤2} D.{x|1≤x ≤3}11.某几何体的三视图如图所示,若这个几何体的顶点都在球O的表面上,则球O的表面积是()A.2πB.4πC.5πD.20π12.以双曲线C:﹣=1(a>0,b>0)上一点M为圆心作圆,该圆与x轴相切于C的一个焦点F,与y轴交于P,Q两点,若△MPQ 为正三角形,则C的离心率等于()A.B.C.2 D.二、填空题:本大题共4小题,每小题5分,共20分)。
2017年云南省高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设集合A={x|﹣x2﹣x+2<0},B={x|2x﹣5>0},则集合A与B的关系是()A.B⊆A B.B⊇A C.B∈A D.A∈B2.(5分)设复数z满足z(2+i)=5i,则|z﹣1|=()A.1B.2C.D.53.(5分)已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为()A.32B.33C.34D.354.(5分)设a=60.7,b=log70.6,c=log0.60.7,则()A.c>b>a B.b>c>a C.c>a>b D.a>c>b 5.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若B=,a=,sin2B=2sin A sin C,则△ABC的面积S△ABC=()A.B.3C.D.66.(5分)执行如图所示的程序框图,如果输入N=30,则输出S=()A.26B.57C.225D.2567.(5分)函数f(x)=sin(ωx+φ),(|φ|<)的部分图象如图所示,则f(x)的单调递增区间为()A.(﹣1+4kπ,1+4kπ),k∈Z B.(﹣3+8kπ,1+8kπ),k∈ZC.(﹣1+4k,1+4k),k∈Z D.(﹣3+8k,1+8k),k∈Z8.(5分)如图,在长方体ABCD﹣A1B1C1D1中,AB=2,BC=1,BB1=1,P 是AB的中点,则异面直线BC1与PD所成角等于()A.30°B.45°C.60°D.90°9.(5分)在平行四边形ABCD中,||=8,||=6,N为DC的中点,=2,则•=()A.48B.36C.24D.1210.(5分)已知函数f(x)=,则不等式f(x﹣1)≤0的解集为()A.{x|0≤x≤2}B.{x|0≤x≤3}C.{x|1≤x≤2}D.{x|1≤x≤3} 11.(5分)某几何体的三视图如图所示,若这个几何体的顶点都在球O的表面上,则球O的表面积是()A.2πB.4πC.5πD.20π12.(5分)以双曲线C:﹣=1(a>0,b>0)上一点M为圆心作圆,该圆与x轴相切于C的一个焦点F,与y轴交于P,Q两点,若△MPQ为正三角形,则C的离心率等于()A.B.C.2D.二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)若实数x,y满足约束条件,则z=2x﹣y的最大值为.14.(5分)已知函数f(x)=axlnx+b(a,b∈R),若f(x)的图象在x=1处的切线方程为2x﹣y=0,则a+b=.15.(5分)设P,Q分别为圆x2+y2﹣8x+15=0和抛物线y2=4x上的点.则P,Q两点间的最小距离是.16.(5分)已知y=f(x)是R上的偶函数,对于任意的x∈R,均有f(x)=f (2﹣x),当x∈[0,1]时,f(x)=(x﹣1)2,则函数g(x)=f(x)﹣log2017|x ﹣1|的所有零点之和为.三、解答题:本大题共5小题,共48分.解答写出文字说明、证明过程或演算过程.17.(12分)已知数列{a n}中,a n2+2a n﹣n2+2n=0(n∈N+)(Ⅰ)求数列{a n}的通项公式(Ⅱ)求数列{a n}的前n项和S n.18.(12分)某校开展“翻转合作学习法”教学实验,经过一年的实践后,对“翻转班”和“对照班”的全部220名学生的数学学习情况进行测试,按照大于或等于120分为“成绩优秀”,120分以下为“成绩一般”统计,得到如下的2×2列联表.(Ⅰ)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“成绩优秀与翻转合作学习法”有关;(Ⅱ)为了交流学习方法,从这次测试数学成绩优秀的学生中,用分层抽样方法抽出6名学生,再从这6名学生中抽3名出来交流学习方法,求至少抽到一名“对照班”学生交流的概率.附:K2=:19.(12分)如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,底面ABCD是平行四边形,AB=BC=2a,AC=2a,E的P A的中点.(Ⅰ)求证:平面BED⊥平面P AC;(Ⅱ)求点E到平面PBC的距离.20.(12分)在圆x2+y2=9上任取一点P,过点P作x轴的垂线段PD,D为垂足,点M在线段DP上,满足=,当点P在圆上运动时,设点M的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)若直线y=m(x+5)上存在点Q,使过点Q作曲线C的两条切线互相垂直,求实数m的取值范围.21.(12分)设函数f(x)=e2x+ae x,a∈R.(Ⅰ)当a=﹣4时,求f(x)的单调区间;(Ⅱ)若对x∈R,f(x)≥a2x恒成立,求实数a的取值范围.[选修4-4:坐标系与参数方程选讲]22.(10分)已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|P A|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.2017年云南省高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设集合A={x|﹣x2﹣x+2<0},B={x|2x﹣5>0},则集合A与B的关系是()A.B⊆A B.B⊇A C.B∈A D.A∈B【解答】解:集合A={x|﹣x2﹣x+2<0}={x|x>1或x<﹣2},B={x|2x﹣5>0}={x|x>2.5}.∴B⊆A,故选:A.2.(5分)设复数z满足z(2+i)=5i,则|z﹣1|=()A.1B.2C.D.5【解答】解:∵z(2+i)=5i,∴,则|z﹣1|=|2i|=2.故选:B.3.(5分)已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为()A.32B.33C.34D.35【解答】解:由乙的数据是:21,32,34,36得中位数是33,故m=3,故=(27+33+36)=32,故选:A.4.(5分)设a=60.7,b=log70.6,c=log0.60.7,则()A.c>b>a B.b>c>a C.c>a>b D.a>c>b【解答】解:∵a=60.7>1,b=log70.6<0,c=log0.60.7∈(0,1),∴a>c>b,故选:D.5.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若B=,a=,sin2B=2sin A sin C,则△ABC的面积S△ABC=()A.B.3C.D.6【解答】解:在△ABC中,∵B=,a=,∴b2=a2+c2,∵sin2B=2sin A sin C,∴由正弦定理可得:b2=2ac,∴a2+c2=2ac,可得:a=c=,=ac sin B==3.∴S△ABC故选:B.6.(5分)执行如图所示的程序框图,如果输入N=30,则输出S=()A.26B.57C.225D.256【解答】解:模拟程序的运行,可得N=30,n=1,S=0S=1不满足条件n>30,执行循环体,n=3,S=4不满足条件n>30,执行循环体,n=7,S=11不满足条件n>30,执行循环体,n=15,S=26不满足条件n>30,执行循环体,n=31,S=57满足条件n>30,退出循环,输出S的值为57.故选:B.7.(5分)函数f(x)=sin(ωx+φ),(|φ|<)的部分图象如图所示,则f(x)的单调递增区间为()A.(﹣1+4kπ,1+4kπ),k∈Z B.(﹣3+8kπ,1+8kπ),k∈ZC.(﹣1+4k,1+4k),k∈Z D.(﹣3+8k,1+8k),k∈Z【解答】解:根据函数f(x)=sin(ωx+φ),(|φ|<)的部分图象,可得=3﹣1=2,求得ω=,再根据五点法作图可得•1+φ=,∴φ=,∴f(x)=sin(x+).令2kπ﹣≤x+≤2kπ+,求得8k﹣3≤x≤8k+1,故函数的增区间为[﹣3+8k,1+8k],k∈Z,故选:D.8.(5分)如图,在长方体ABCD﹣A1B1C1D1中,AB=2,BC=1,BB1=1,P 是AB的中点,则异面直线BC1与PD所成角等于()A.30°B.45°C.60°D.90°【解答】解:长方体ABCD﹣A1B1C1D1中,AB=2,BC=1,BB1=1,取CD的中点Q,连接BQ,C1Q,∵P是AB的中点,∴BQ∥PD,∴∠C1BQ是异面直线BC1与PD所成角,如图所示;△C1BQ中,C1B=BQ=C1Q=,∴∠C1BQ=60°,即异面直线BC1与PD所成角等于60°.故选:C.9.(5分)在平行四边形ABCD中,||=8,||=6,N为DC的中点,=2,则•=()A.48B.36C.24D.12【解答】解:如图,,∴;∴=,=;∴===24.故选:C.10.(5分)已知函数f(x)=,则不等式f(x﹣1)≤0的解集为()A.{x|0≤x≤2}B.{x|0≤x≤3}C.{x|1≤x≤2}D.{x|1≤x≤3}【解答】解:当x﹣1≥1,即x≥2时,f(x﹣1)≤0⇔2x﹣2﹣2≤0,解得x≤3,∴2≤x≤3;当x﹣1<1,即x<2时,f(x﹣1)≤0⇔22﹣x﹣2≤0,解得x≥1,∴1≤x<2.综上,不等式f(x﹣1)≤0的解集为{x|1≤x≤3}.故选:D.11.(5分)某几何体的三视图如图所示,若这个几何体的顶点都在球O的表面上,则球O的表面积是()A.2πB.4πC.5πD.20π【解答】解:由已知中的三视图可得:该几何体为三棱锥,其外接球相当于以俯视图为底面,高为1的三棱柱的外接球,底面的外接圆半径r=1,球心到底面的距离d=,故几何体的外接球半径,故几何体的外接球表面积为:S=4πR2=5π,故选:C.12.(5分)以双曲线C:﹣=1(a>0,b>0)上一点M为圆心作圆,该圆与x轴相切于C的一个焦点F,与y轴交于P,Q两点,若△MPQ为正三角形,则C的离心率等于()A.B.C.2D.【解答】解:由题意可设F(c,0),MF⊥x轴,可设M(c,n),n>0,设x=c,代入双曲线的方程可得y=b=,即有M(c,),可得圆的圆心为M,半径为,即有M到y轴的距离为c,可得|PQ|=2,由△MPQ为等边三角形,可得c=•2,化简可得3b4=4a2c2,由c2=a2+b2,可得3c4﹣10c2a2+3a4=0,由e=,可得3e4﹣10e2+3=0,解得e2=3(舍去),即有e=.故选:B.二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)若实数x,y满足约束条件,则z=2x﹣y的最大值为2.【解答】解:作出,所对应可行域(如图△ABC),变形目标函数z=2x﹣y可得y=2x﹣z,平移直线y=2x可得当直线经过点A(1,0)时,直线的截距最小,z取最大值,代值计算可得最大值为:2.故答案为:2.14.(5分)已知函数f(x)=axlnx+b(a,b∈R),若f(x)的图象在x=1处的切线方程为2x﹣y=0,则a+b=4.【解答】解:f(x)=axlnx+b的导数为f′(x)=a(1+lnx),由f(x)的图象在x=1处的切线方程为2x﹣y=0,易知f(1)=2,即b=2,f′(1)=2,即a=2,则a+b=4.故答案为:4.15.(5分)设P,Q分别为圆x2+y2﹣8x+15=0和抛物线y2=4x上的点.则P,Q两点间的最小距离是2﹣1.【解答】解:∵圆x2+y2﹣8x+15=0可化为(x﹣4)2+y2=1,∴圆的圆心为(4,0),半径为1,设P(x0,y0)为抛物线y2=4x上的任意一点,∴y02=4x0,∴P与(4,0)的距离d==,∴由二次函数可知当x0=2时,d取最小值2,∴所求最小值为:2﹣1.故答案为:2﹣1.16.(5分)已知y=f(x)是R上的偶函数,对于任意的x∈R,均有f(x)=f (2﹣x),当x∈[0,1]时,f(x)=(x﹣1)2,则函数g(x)=f(x)﹣log2017|x ﹣1|的所有零点之和为4032.【解答】解:由题意可得函数f(x)是R上的偶函数,可得f(﹣x)=f(x),f (2﹣x)=f(x),故可得f(﹣x)=f(2﹣x),即f(x)=f(x﹣2),即函数的周期是2,y=log2017|x﹣1|在(1,+∞)上单调递增函数,当x=2018时,log2017|x﹣1|=1,∴当x>2018时,y=log2017|x﹣1|>1,此时与函数y=f(x)无交点.根据周期性,利用y=log5|x﹣1|的图象和f(x)的图象都关于直线x=1对称,可以求得x=1左右两侧各有2016个零点,根据对称性对应的每一组零点和为2,则函数g(x)=f(x)﹣log2017|x﹣1|的所有零点之和2016×2=4032,故答案为:4032.三、解答题:本大题共5小题,共48分.解答写出文字说明、证明过程或演算过程.17.(12分)已知数列{a n}中,a n2+2a n﹣n2+2n=0(n∈N+)(Ⅰ)求数列{a n}的通项公式(Ⅱ)求数列{a n}的前n项和S n.【解答】解:(I)∵a n2+2a n﹣n2+2n=0(n∈N+),∴(a n+n)(a n﹣n+2)=0.∴a n=﹣n,或a n=n﹣2.(II)a n=﹣n时,S n=﹣.a n=n﹣2时,S n==.18.(12分)某校开展“翻转合作学习法”教学实验,经过一年的实践后,对“翻转班”和“对照班”的全部220名学生的数学学习情况进行测试,按照大于或等于120分为“成绩优秀”,120分以下为“成绩一般”统计,得到如下的2×2列联表.(Ⅰ)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“成绩优秀与翻转合作学习法”有关;(Ⅱ)为了交流学习方法,从这次测试数学成绩优秀的学生中,用分层抽样方法抽出6名学生,再从这6名学生中抽3名出来交流学习方法,求至少抽到一名“对照班”学生交流的概率.附:K2=:【解答】解:(Ⅰ)根据列联表中的数据,计算K2=≈9.167<10.828,对照临界值表知,不能在犯错误的概率不超过0.001的前提下认为“成绩优秀与翻转合作学习法”有关;(Ⅱ)这次测试数学成绩优秀的学生中,对照班有20人,翻转班有40人,用分层抽样方法抽出6人,对照班抽2人,记为A、B,翻转班抽4人记为c、d、e、f;再从这6人中抽3人,基本事件是ABc、ABd、ABe、ABf、Acd、Ace、Acf、Ade、Adf、Aef、Bcd、Bce、Bcf、Bde、Bdf、Bef、cde、cdf、cef、def共20种不同取法;至少抽到一名“对照班”学生的基本事件是ABc、ABd、ABe、ABf、Acd、Ace、Acf、Ade、Adf、Aef、Bcd、Bce、Bcf、Bde、Bdf、Bef共16种,故所求的概率为P==.19.(12分)如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,底面ABCD是平行四边形,AB=BC=2a,AC=2a,E的P A的中点.(Ⅰ)求证:平面BED⊥平面P AC;(Ⅱ)求点E到平面PBC的距离.【解答】(Ⅰ)证明:设AC∩BD=O,则EO∥AC,AC⊥BD,∵PC⊥平面ABCD,∴EO⊥平面ABCD,∵AC⊥平面ABCD,∴AC⊥EO,∵BD∩EO=O,∴AC⊥平面BED,∵AC⊂平面P AC,∴平面BED⊥平面P AC;(Ⅱ)解:点E到平面PBC的距离=点O到平面PBC的距离,作OF⊥BC,垂足为F,∵PC⊥平面ABCD,OF⊂平面ABCD,∴PC⊥OF,∵BC∩PC=C,∴OF⊥平面PBC∵AB=BC=2a,AC=2a,∴∠ABC=120°,∴O到BC的距离为OF=a,即点E到平面PBC的距离为a.20.(12分)在圆x2+y2=9上任取一点P,过点P作x轴的垂线段PD,D为垂足,点M在线段DP上,满足=,当点P在圆上运动时,设点M的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)若直线y=m(x+5)上存在点Q,使过点Q作曲线C的两条切线互相垂直,求实数m的取值范围.【解答】解:(Ⅰ)设P(x0,y0),M(x,y),D(x0,0),∵点M在线段PD上,且满足满足=,∴x0=x,y0=y,又P在圆x2+y2=9上,∴x02+y02=9,∴x2+y2=9,曲线C的方程为:.(2)假设在直线y=m(x+5)上存在点Q(x0,y0),设过点Q(x0,y0)的椭圆的切线方程为y﹣y0=k(x﹣x0),即y=kx﹣kx0+y0.由y=kx﹣kx0+y0,,整理得:(4+9k2)x2+18k(﹣kx0+y0)x+9(﹣kx0+y0)2﹣36=0,由△=324k2(﹣kx0+y0)2﹣36(4+9k2)[(﹣kx0+y0)2﹣4]=0,整理得:(9﹣)k2+2kx0y0+4﹣=0.故过点Q(x0,y0)的椭圆的两条切线斜率k1,k2分别是:(9﹣)k2+2kx0y0+4﹣=0的两解故k1k2=⇒,∴点Q是圆x2+y2=9与y=m(x+5)的公共点,∴O(0,0)到直线y=m(x+5)的距离d即可.解得12m2≤13,即﹣,实数m的取值范围:[].21.(12分)设函数f(x)=e2x+ae x,a∈R.(Ⅰ)当a=﹣4时,求f(x)的单调区间;(Ⅱ)若对x∈R,f(x)≥a2x恒成立,求实数a的取值范围.【解答】解:(I)当a=﹣4时,函数f(x)=e2x﹣4e x,f′(x)=2e2x﹣4e x=2e x(e x﹣2),令f′(x)=0,解得x=ln2.当x∈(ln2,+∞)时,f′(x)>0,此时函数f(x)单调递增;当x∈(﹣∞,ln2)时,f′(x)<0,此时函数f(x)单调递减.∴函数f(x)的单调递增区间为:[ln2,+∞)时,单调递减区间为(﹣∞,ln2).(Ⅱ)对x∈R,f(x)≥a2x恒成立⇔e2x+ae x﹣a2x≥0,令g(x)=e2x+ae x﹣a2x,则f(x)≥a2x恒成立⇔g(x)min≥0.g′(x)=2e2x+ae x﹣a2=2[e x﹣(﹣a)],①a=0时,g′(x)=2e2x>0,此时函数g(x)在R上单调递增,g(x)=e2x>0恒成立,满足条件.②a>0时,令g′(x)=0,解得x=ln,则x>ln时,g′(x)>0,此时函数g(x)在R上单调递增;x<ln时,g′(x)<0,此时函数g(x)在R上单调递减.∴当x=ln时,函数g(x)取得极小值即最小值,则g(ln)=a2(﹣ln)≥0,解得0<a≤.③a<0时,令g′(x)=0,解得x=ln(﹣a),则x>ln(﹣a)时,g′(x)>0,此时函数g(x)在R上单调递增;x<ln(﹣a)时,g′(x)<0,此时函数g(x)在R上单调递减.∴当x=ln(﹣a)时,函数g(x)取得极小值即最小值,则g(ln(﹣a))=﹣a2ln(﹣a)≥0,解得﹣1≤a<0.综上可得:a的求值范围是[﹣1,2].[选修4-4:坐标系与参数方程选讲]22.(10分)已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|P A|的最大值.【解答】解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y ﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|P A|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|P A|取得最大值,最大值为.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.【解答】解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].。
(新课标)云南省昆明市2017届高三数学月考卷(六)文(扫描版)昆明市2017届摸底考试 参考答案(文科数学)命题、审题组教师 杨昆华 顾先成 刘皖明 易孝荣 李文清 张宇甜 莫利琴 蔺书琴一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BBCABDDCAAAC1. 解析:AB ={}1,0-,选B .2. 解析:因为5i1i 32iz -==-+,所以2z =,选B . 3. 解析:依题意得29m =,24n =,选C .4. 解析:从分别标注数字1,2,3,4,5的五个小球中随机取出2个小球的基本事件为:123+=,134+=,145+=,156+=,235+=,246+=,257+=,347+=,358+=,459+=,共10种不同情形;而其和为3或6的共3种情形,故取出的小球标注的数字之和为3或6的概率为310,选A . 5. 解析:由已知可得2(4,1)a b x +=+-,因为2a b +与b 共线,所以40x x ++=,解得2x =-,选B .6. 解析:依题意,有61082a a a +=,所以810a =,所以110103810()5()602a a S a a +==+=,选D . 7. 解析:辗转相除法是求两个正整数之最大公约数的算法,所以35a =,选D . 8. 解析:由已知得数列{}n a 的公比满足35218a q a ==,所以12q =, 所以12a =,312a =,故数列{1}n n a a +是以122a a =为首项,公比为231214a a a a =的等比数列,则12231121481113414n n n n a a a a a a +⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦++⋅⋅⋅+==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 因为()1()14nf n n *∈⎛⎫=- ⎪⎝⎭N 是增函数,且104n⎛⎫> ⎪⎝⎭,所以()12231n n a a a a a a n *+∈++⋅⋅⋅+N 的取值范围是82, 3⎡⎫⎪⎢⎣⎭,选C .9. 解析:由三视图可知,该几何体是一个三棱锥,底面是腰长为1的等腰直角三角形,高为1,所以它的体积111111326V =⨯⨯⨯⨯=,选A .DCBA10. 解析:因为()f x 为R 上的增函数,所以()22()24f a a f a a ->-,等价于2224a a a a ->-,解得03a <<,选A . 11. 解析:因为1sin 32ABC S AB AC A ∆=⋅⋅=,所以1333AEF ABC S S ∆∆==,设,AE x AF y ==,则13sin 23AEF S xy A ∆=⋅=,所以43xy =,又在AEF ∆中,222222cos60EF x y xy x y xy =+-=+-43xy ≥=,当且仅当x y =时等号成立,所以233EF =,选A .12. 解析:设PA t =,依题意可将三棱锥补成长方体(如图),设长方体的长、宽、高分别为a ,b ,c ,则22222222525a b b c t c a ⎧+=⎪+=⎨⎪+=⎩2222502t a b c +⇒++=,由于球的表面积为34π,可得22234a b c ++=,所以250342t +=,解得32t =,选C . 二、填空题13. 解析:由21010x x ⎧-≥⎨->⎩,解得1x >,定义域为(1,)+∞.14. 解析:画出可行域如图所示,目标函数在点A 处取得最大值,而()5,2A --,故3z x y =-的最大值为1.15. 解析:由题设知圆2C 的直径为12F F ,连结1PF ,则122F PF π∠=,又213PF F π∠=,所以126F F P π∠=,所以13PF c =,2PF c =,由双曲线的定义得1PF -2PF 2a =,即(31)2c a -=,所以3131e ==+-. 16. 解析:因为11 nnn n a a a a n *N ,所以1111 nn n a a *N ,即11 n nb b n *N ,所以n b 为等差数列,所以123101104565b b b b b ,所以12b ,所以11nnb na ,所以11n a n .三、解答题17. 解:(Ⅰ)因为BD 是AC 边上的中线,所以ABD ∆的面积与CBD ∆的面积相等,baABPC即11sin sin 22AB BD ABD BC BD CBD ⋅⋅⋅∠=⋅⋅⋅∠, 所以sin 3sin ABD BCCBD AB∠==∠. (6)分(Ⅱ)在ABC ∆中,因为1AB =, 3BC =,利用余弦定理,2222cos AB AC AB AC A BC +-⋅⋅⋅∠=,解得2AC =-(舍)或1AC =,又因为D 是AC 的中点,所以12AD =, 在ABD ∆中,2222cos BD AB AD AB AD A =+-⋅⋅⋅∠, 所以72BD =. ………12分 18. 解析:(Ⅰ)2345 3.54x +++==,18273235284y +++==.41218327432535420i ii x y==⨯+⨯+⨯+⨯=∑,4222221234554ii x==+++=∑,41422214420435284203925.654435544ˆ94i ii ii x y x ybxx ==--⨯⨯-====-⨯--∑∑... ………6分28ˆˆ 5.6 3.58.4ay bx =-=-⨯=, 故所求线性回归方程为5.6.4ˆ8yx =+. ………8分 (Ⅱ)当10x =时, 5.6108. 4.ˆ464y =⨯+=(万元). ………10分故预测该公司产品研发费用支出10万元时,所获得的利润约为64.4万元. ………12分19. 解:(Ⅰ)证明:因为点E ,F 分别是AB ,AC 的中点,所以//EF BC .又因为BC ⊄平面DEF ,EF ⊂平面DEF ,所以//BC 平面DEF . ………5分(Ⅱ)依题意,AD BD ⊥,AD CD ⊥,且BD DC D =,所以AD ⊥平面BCD ,又因为二面角B AD C --为直二面角,所以BD CD ⊥,所以1113113332BCD A BCD V S AD ∆-=⋅=⨯⨯⨯⨯=三棱锥, 11111133132322224ADE F ADE V S CD ∆-=⋅=⨯⨯⨯⨯⨯=三棱锥,所以3336248D BCFE A BCDF ADE V V V ---=-=-=三棱锥三棱锥. ………12分20. 解析:(Ⅰ)联立抛物线方程与直线方程消x 得2220y py p -+=,因为直线与抛物线相切,所以2480p p ∆=-=2p ⇒=,所以抛物线C的方程是24y x =. ………4分(Ⅱ)依题意可设直线AB :(0)y kx m k =+≠,并联立方程24y x =消x 得2440ky y m -+=,因为01mk ∆>⇒< ① ,且124y y k += ② 124m y y k= ③ 又1212()242y y k x x m k m +=++=+, 并且结合 ② 得 22m k k=- ④ ,把④代入①得212k >,⑤ ………6分 设线段AB 的中点为M ,则M (2,2)k ,直线l :12(2)y x k k=--+, 令04(4y x Q =⇒=⇒,0),………8分 设直线AB与x轴相交于点D则(mD k-,0),所以12142ABQ m S y y k ∆=+-=2121214()42m y y y y k++- ⑥把②③④代入⑥并化简得ABQ S ∆22114(12k k =+- ………10分设212k -t =,由⑤知 0t >,且 2212t k=-,ABQ S ∆3124t t =-,令()f t 3124t t =-,2()121212(1)(1)f t t t t '=-=-+,当01t <<时,()f t '0>,当1t >时,()f t '0<,所以,当1t =时,此时1k =±,函数()f t 取最大值(1)8f =,因此ABQ ∆的面积的最大值为8,直线l 的方程为y x =±. ………12分21. 解: (Ⅰ)函数()f x 定义域为(,)-∞+∞,()e (e )x x f x x ax x a '=+=+, ………2分⑴ 0a ≥,当0x <时,()0f x '<;当 0x >时,()0f x '> , 所以函数()f x 在(),0-∞上单调递减,在()0,+∞单调递增. ………3分⑵ 若0a <,令()0f x '=得0x =或ln()x a =-,①当1a =-时,()(e 1)0x f x x '=-≥,所以函数()f x 在(),-∞+∞上单调递增;②当10a -<<时,ln()0a -<,当ln()x a <-或0x >时,()0f x '>,当ln()0a x -<<时,()0f x '<,所以函数()f x 在(),ln()a -∞-,()0,+∞上单调递增,在()ln(),0a -单调递减;③当1a <-时,ln()0a ->,当ln()x a >-或0x <时,()0f x '>,当0ln()x a <<-时,()0f x '<,所以函数()f x 在(),0-∞,()ln(),a -+∞上单调递增,在()0,ln()a -单调递减; ………6分(Ⅱ)当0a =时,函数()(1)e x f x x =-只有一个零点1x =; ………7分当10a -≤<时,由(Ⅰ)得函数()f x 在()0,+∞单调递增,且(0)1f =-,22(2)e 2e 20f a =+≥->,而0x <时,()0f x <,所以函数()f x 只有一个零点. ………9分当e 1a -≤<-时,由(Ⅰ)得函数()f x 在()0,ln()a -单调递减,在()ln(),a -+∞上单调递增,且(ln())(0)10f a f -<=-<,22(2)e 2e 2e 0f a =+≥->,而0x <时,()0f x <,所以函数()f x 只有一个零点.所以,当[]e ,0a ∈-时,函数()f x 只有一个零点. ………12分第22、23题中任选一题做答,如果多做,则按所做的第一题记分.22. 解:(Ⅰ)曲线C 的极坐标方程是2cos 4sin 0ρθθ--=,化为直角坐标方程为22240x y x y +--=,直线l 的普通方程为330x y -+=. ………5分(Ⅱ)将l 的参数方程代入曲线C 的直角坐标方程,得()23130t t -+-=,点M 对应的参数0t =,设点A 、B 对应的参数分别为1t 、2t , 则1231t t +=+,123t t ⋅=-, 所以EA EB +()21212121241623t t t t t t t t =+=-=+-⋅=+()21623MA MB +=+. ………10分23. 解:(Ⅰ)由已知不等式()()2x f x f x ⋅>-,得11x x x +>-,所以显然0x >,11x x x +>-⇔201210x x x <≤⎧⎨+->⎩ 或 211x x >⎧⎨>-⎩,解得:211x -<≤或1x >, 所以不等式()()2x f x f x ⋅>-的解集为()21,-+∞. ………5分(Ⅱ)要函数()()lg 3y f x f x a =-++⎡⎤⎣⎦的值域为R ,只要()21g x x x a =-+++能取到所有的正数,所以只需()g x 的最小值小于或等于0, 又()|2||1||21|3g x x x a x x a a =-+++≥---+=+,所以只需30a +≤,即3a ≤-, 所以实数a 的取值范围是(],3-∞-. ………10分。
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知复数z 满足()25i z -=,则z =( ) A .2i + B . 2i -C .2i --D .2i -+【答案】A 【解析】试题分析:因为()25i z -=, 所以()()()()5252522225i i z i i i i ++====+--+,故选A.考点:复数的基本运算。
2。
设集合(){}{}|30,|1A x x x B x x =-≥=<,则AB =()A .(][),03,-∞+∞B .()[),13,-∞+∞C .(),1-∞D .(],0-∞ 【答案】D考点:1、集合的表示方法;2、集合的交集. 3。
已知向量()(),3,3,3a x b ==-,若a b ⊥,则a =( ) A . 1 B 2C 3D .2【答案】D【解析】试题分析:因为()()a x b==-,且a b⊥,所以,,3,3,3+=,⋅=-==,a=132a b x x330,1故选D。
考点:1、向量垂直的性质;2、平面向量数量积公式。
4.执行如图所示的程序框图,如果输入的1,1==,那么输a b出的值等于( )A.21B.34C.55D.89【答案】C考点:1、程序框图;2、循环结构。
【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题。
解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序;(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 5.已知函数()f x 是奇函数, 当0x >时,()()2log 1f x x =+, 则()3f -=( )A . 2B . 2-C .1D . 1-【答案】B 【解析】试题分析:因为函数()f x 是奇函数且0x >时,()()2log 1f x x =+,所以()()()233log 312f f -=-=-+=-,故选B.考点:1、函数的奇偶性;2、函数的解析式及对数的性质.6。
云南省昆明市2017届高三上学期摸底调研统测数学(文)试题一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数z 满足()25i z -=,则z =( )A .2i +B . 2i -C . 2i --D .2i -+2.设集合(){}{}|30,|1A x x x B x x =-≥=<,则AB =( ) A .(][),03,-∞+∞ B .()[),13,-∞+∞C .(),1-∞D .(],0-∞3.已知向量()(),3,3,3a x b ==-,若a b ⊥,则a =( )A . 1B D .24.执行如图所示的程序框图,如果输入的1,1a b ==,那么输出的值等于( )A .21B .34C .55D .895.已知函数()f x 是奇函数, 当0x >时,()()2log 1f x x =+, 则()3f -=( )A . 2B . 2-C .1D . 1-6.如图,某几何体的三视图由半径相同的圆和扇形构成, 若府视图中扇形的面积为3π, 则该几何 体的体积等于( )A .8πB .163πC .4πD .43π 7.若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则2z x y =+的最大值为( )A . 3B . 6C .7D .88.为了得到函数sin cos y x x =+的图象,可以将函数4y x π⎛⎫=- ⎪⎝⎭的图象( ) A .向左平行移动4π个单位 B .向右平行移动4π个单位 C .向左平行移动2π个单位 D .向右平行移动2π个单位 9.如图,阴影部分是由四个全等的直角三角形组成的图形, 在大正方形内随机取一点, 这一点落 在小正方形内的概率为15, 若直角三角形的两条直角边的长分别为(),a b a b >,则b a=( )A .13 B .12 CD10.点,A F 分别是椭圆22:11612x y C +=的左顶点和右焦点, 点P 在椭圆C 上, 且PF AF ⊥,则 AFP ∆的面积为( )A . 6B .9C .12D .1811.如图, 在正方体1111ABCD A B C D -中,2AB =, 平面α经过11B D ,直线1AC α,则平面α截该正方体所得截面的面积为( )A . . 12.若存在实数a ,当1x ≤时,12x ax b -≤+ 恒成立, 则实数b 的取值范围是( )A . [)1,+∞B .[)2,+∞C .[)3,+∞D .[)4,+∞第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.已知数列{}n a 满足: )2111,1n a a +==+,则5a = . 14.在ABC ∆中,60ABC ∠=, 且5,7AB AC ==,则BC = .15.已知1,1a b >>,且()22ab a b +=+,则ab 的最小值为 .16.函数()21,1ln ,1x x f x x x ⎧-≤=⎨>⎩,若方程()13f x mx =-恰有四个不等的实数根, 则实数m 的取值范 围是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且211n n S a n ++=+. (1)求数列{}n a 的通项公式;(2)若2n an b =,求{}n b 的前n 项和n T .18.(本小题满分12分))如图, 四棱锥P ABCD -中, 平面PAD ⊥平面ABCD ,,,1,4,3,AB CD AB BC CD BC AB PA PD E ⊥=====为线段AB 上一点,1,2AE BE F =为PD 的中点.(1)证明:PE 平面ACF ;(2)求三棱锥B PCF -的体积.19.(本小题满分12分)某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200 元/次收费, 并注册成为会员, 对会员逐次消费给予相应优惠,标准如下:该公司从注册的会员中, 随机抽取了100位进行统计, 得到统计数据如下:假设汽车美容一次, 公司成本为150元, 根据所给数据, 解答下列问题:(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次, 求这两次消费中, 公司获得的平均利润;(3)设该公司从至少消费两次, 求这的顾客消费次数用分层抽样方法抽出8人, 再从这8人中抽出2人发 放纪念品, 求抽出2人中恰有1人消费两次的概率.20.(本小题满分12分)已知点F 是拋物线()2:20C y px p =>的焦点, 若点()0,1M x 在C 上, 且054x MF =. (1)求p 的值;(2)若直线l 经过点()3,1Q -且与C 交于,A B (异于M )两点, 证明: 直线AM 与直线BM 的斜率之积 为常数.21.(本小题满分12分)已知函数()x f x e ax =+,曲线()y f x =在点()()0,0f 处的切线方程为1y =. (1)求实数a 的值及函数()f x 的单调区间;(2)若()()0,1b f x b x c >≥-+,求2b c 的最大值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲如图, 在ABC ∆中,90BAC ∠=, 以AB 为直径的O 交BC 于点,D E 是边AC 上一点,BE 与O交于点F ,连接DF .(1)证明:,,,C D F E 四点共圆;(2)若3,5EF AE ==,求BD BC 的值.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是16cos 2sin 0ρθθρ-++=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴, 建立平面直角坐标系,在平面直角坐标系xOy 中, 直线l 经过点()3,3P ,倾斜角3πα=.(1)写出曲线C 直角坐标方程和直线l 的参数方程;(2)设l 与曲线C 相交于,A B 两点, 求AB 的值.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()1f x x m x m=++-,其中0m >. (1)当1m =时, 解不等式()4f x ≤;(2)若a R ∈,且0a ≠,证明:()14f a f a ⎛⎫-+≥ ⎪⎝⎭.:。