高三物理一轮复习第九章 电磁感应
- 格式:ppt
- 大小:5.94 MB
- 文档页数:214
课时1 法拉第电磁感应定律楞次定律自感涡流课时训练基础巩固1.下列四幅演示实验图中,实验现象能正确表述实验结论的是( B )A.图甲用磁铁靠近轻质铝环A,A会靠近磁铁B.图乙断开开关S,触点C不立即断开C.图丙闭合开关S时,电流表有示数,断开开关S时,电流表没有示数D.图丁铜盘靠惯性转动,手持磁铁靠近铜盘,铜盘转动加快解析:图甲用磁铁靠近轻质铝环A,由于A环中发生电磁感应现象,根据楞次定律可知,A将远离磁铁,故A错误;图乙断开开关S,由于B线圈中发生电磁感应现象阻碍电流的减小,因此线圈仍有磁性,触点C不立即断开,故B正确;图丙闭合开关S和断开开关S时均会发生电磁感应,因此电流表均有示数,故C错误;当转动铜盘时,磁铁靠近铜盘,导致铜盘切割磁感线,从而产生感应电流,出现安培力,由楞次定律可知,产生安培力导致铜盘转动受到阻碍,因此铜盘转动减慢,故 D 错误。
2.如图所示为感应式发电机,a,b,c,d是空间四个可用电刷与铜盘边缘接触的点,O1,O2是连接铜盘轴线导线的接线端,M,N是电流表的接线端。
现在将铜盘转动,能观察到感应电流的是( B )A.将电流表的接线端M,N分别连接a,c位置B.将电流表的接线端M,N分别连接O1,a位置C.将电流表的接线端M,N分别连接O1,O2位置D.将电流表的接线端M,N分别连接c,d位置解析:当铜盘转动时,其切割磁感线产生感应电动势,此时铜盘相当于电源,铜盘边缘和中心为电源的两个极,则要想观察到感应电流,M,N应分别连接电源的两个极,故B正确。
3.现代科学研究中常要用到高速电子,电子感应加速器就是电子加速的设备。
它的基本原理如图所示,上、下为电磁铁的两个磁极,磁极之间有一个环形真空室,电子在真空室中做圆周运动。
电磁铁线圈电流的大小、方向可以变化。
上图为侧视图,下图为真空室的俯视图,如果从上向下看,电子沿逆时针方向运动。
以下分析正确的是( A )C.当电磁铁线圈电流的方向与图示方向相反时,为使电子加速,电磁铁中的电流应该由小变大D.当电磁铁线圈电流的方向与图示方向一致时,为使电子加速,电磁铁中的电流应该由大变小解析:根据法拉第电磁感应定律可知,变化的磁场在真空室内形成感生电场,而电场能使电子加速,选项A正确;因洛伦兹力对电荷不做功,故选项B错误;当电磁铁线圈电流的方向与图示方向一致时,线圈中的电流增强,磁场就增大了,根据楞次定律,感生电场产生的磁场要阻碍它增大,所以感生电场为顺时针方向,即电流方向为顺时针,所以电子沿逆时针方向在电场力作用下加速运动,在洛伦兹力约束下做圆周运动,选项C,D错误。
实验11 探究电磁感应的产生条件实验12 探究感应电流方向的规律一、探究电磁感应的产生条件实验原理通过改变闭合回路中的磁通量,闭合电路中就可以产生感应电流,感应电流的有无可以通过连在电路中的电流表指针是否偏转来判定。
实验器材蹄形磁铁、条形磁铁、导体棒、线圈(正、副各一个)、灵敏电流计、直流电源、滑动变阻器、导线、开关。
实验过程1.观察导体棒在磁场中是否产生感应电流:如图1所示,导体棒静止、左右平动、前后运动、上下运动,观察电流表指针是否偏转,记录实验现象。
图12.观察条形磁铁在线圈中运动是否产生感应电流:如图2所示,N、S极分别向线圈中插入、静止、拔出,观察电流表指针是否偏转,记录实验现象。
图23.模仿法拉第的实验:如图3所示,观察开关闭合瞬间、开关断开瞬间、开关闭合滑动变阻器滑片不动、开关闭合滑动变阻器滑片迅速移动时,电流表指针是否偏转,记录实验现象。
图3注意事项1.注意区分两个回路:引起磁通量变化的电路和产生感应电流的电路。
2.开关应接在引起磁通量变化的电路中。
二、探究感应电流方向的规律实验原理楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
实验器材条形磁铁、灵敏电流计、线圈、导线、一节干电池(用来判明线圈中电流的流向与电流表指针偏转方向的关系)。
实验过程1.实验探究(1)选旧干电池用试触的方法明确电流方向与电流表指针偏转方向之间的关系。
(2)实验装置将螺线管与电流计组成闭合电路,如图4所示。
图4(3)实验记录分别将条形磁铁的N极、S极插入、抽出线圈,如图5所示,记录感应电流的方向如下。
图5(4)实验分析①线圈内磁通量增加时的情况(5当线圈内磁通量增加时,感应电流的磁场阻碍磁通量的增加;当线圈内磁通量减少时,感应电流的磁场阻碍磁通量的减少。
注意事项1.实验前应先查明线圈中电流的流向与电流表指针偏转方向之间的关系,电路如图6所示。
图62.电路中要保护灵敏电流计,接入变阻器,开关S采用瞬间接触,记录指针偏转情况。
高三物理一轮复习,应该如何快速掌握知识点,灵活运用物理公式呢?三好网小编整理出高三物理一轮复习,电磁感应知识点总结,希望能帮助高三生轻松应对一轮复习。
高中物理电磁感应知识点总结(一)电磁感应现象因磁通量变化而产生感应电动势的现象我们诚挚为电磁感应现象。
具体来说,闭合电路的一部分导体,做切割磁感线的运动时,就会产生电流,我们把这种现象叫电磁感应,导体中所产生的电流称为感应电流。
法拉第电磁感应定律概念基于电磁感应现象,大家开始探究感应电动势大小到底怎么计算?法拉第对此进行了总结并得到了结论。
感应电动势的大小由法拉第电磁感应定律确定,电路中感应电动势的大小,跟穿过这一电路的磁通变化率成正比。
公式:E= -n(dΦ)/(dt)。
对动生的情况,还可用E=BLV来求。
电动势的方向可以通过楞次定律来判定。
高中物理wuli.in楞次定律指出:感应电流的磁场要阻碍原磁通的变化。
对于动生电动势,同学们也可用右手定则判断感应电流的方向,也就找出了感应电动势的方向。
需要注意的是,楞次定律的应用更广,其核心在”阻碍”二字上。
感应电动势的大小计算公式(1)E=n*ΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ,Δt磁通量的变化率}(2)E=BLVsinA(切割磁感线运动) E=BLV中的v和L不可以和磁感线平行,但可以不和磁感线垂直,其中sinA为v或L与磁感线的夹角。
{L:有效长度(m)}(3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}(4)E=B(L^2)ω/2(导体一端固定以ω旋转切割)其中ω:角速度(rad/s),V:速度(m/s)电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系和转化,对其本质的深入研究所揭示的电、磁场之间的联系,对麦克斯韦电磁场理论的建立具有重大意义。
电磁感应现象在电工技术、电技术以及电磁测量等方面都有广泛的应用。
高考物理总复习电磁感应题型归纳一、电磁感应中的电路及图像问题类型一、根据B t -图像的规律,选择E t -图像、I t -图像电磁感应中线圈面积不变、磁感应强度均匀变化,产生的感应电动势为S B E n n nSk t t φ∆∆===∆∆,磁感应强度的变化率B k t∆=∆是定值,感应电动势是定值, 感应电流E I R r=+就是一个定值,在I t -图像上就是水平直线。
例1、矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B 随时间变化的规律如图所示。
若规定顺时针方向为感应电流I 的正方向,下列各图中正确的是( )【思路点拨】磁感应强度的变化率为定值,感应电动势电流即为定值。
应用楞次定律“增反减同”逐段判断电流的方向,同一个斜率电流方向、大小均相同。
【答案】D 【解析】根据法拉第电磁感应定律,S B E nn t t φ∆∆==∆∆,导线框面积不变,B t∆∆为一定值,感应电动势也为定值,感应电流也为定值,所以A 错误。
0-1s 磁感应强度随时间增大,根据楞次定律,感应电流的方向为逆时针,为负,C 错误。
1-3s 斜率相同即B t ∆∆相同为负,与第一段的B t∆∆大小相等,感应电动势、感应电流大小相等,方向相反,为顺时针方向,为正,所以B 错误,D 正确。
【总结升华】斜率是一个定值,要灵活应用法拉第电磁感应定律(这里定性分析)。
1-3s 可以分段分析判断感应电流的方向,速度太慢,这里充分应用1-2s 和2-3s 是同一个斜率, 感应电动势、感应电流大小相等方向相同,概念清晰,解题速度快。
类型二 选择E t -图像、U t -图像、I t -图像或E -x 图像、U -x 图像和I -x 图像例2、如图所示,一个菱形的导体线框沿着自己的对角线匀速运动,穿过具有一定宽度的匀强磁场区域,已知对角线AC 的长度为磁场宽度的两倍且与磁场边界垂直.下面对于线框中感应电流随时间变化的图象(电流以ABCD 顺序流向为正方向,从C 点进入磁场开始计时)正确的是 ( )【思路点拨】先根据楞次定律判断感应电流的方向,再结合切割产生的感应电动势公式判断感应电动势的变化,从而结合闭合电路欧姆定律判断感应电流的变化.解决本题的关键掌握楞次定律判断感应电流的方向,以及知道在切割产生的感应电动势公式E=BLv中,L为有效长度.【答案】B【解析】线圈在进磁场的过程中,根据楞次定律可知,感应电流的方向为ABCD方向,即为正值,在出磁场的过程中,根据楞次定律知,感应电流的方向为ADCBA,即为负值.在线圈进入磁场的前一半的过程中,切割的有效长度均匀增大,感应电动势均匀增大,则感应电流均匀增大,在线圈进入磁场的后一半过程中,切割的有效长度均匀减小,感应电动势均匀减小,则感应电流均匀减小;在线圈出磁场的前一半的过程中,切割的有效长度均匀增大,感应电流均匀增大,在线圈出磁场的后一半的过程中,切割的有效长度均匀减小,感应电流均匀减小.故B正确,A、C、D错误.故选:B.【变式】一正方形闭合导线框abcd ,边长L=0.1m ,各边电阻为1Ω,bc 边位于x 轴上,在x 轴原点O 右方有宽L=0.1m 、磁感应强度为1T 、方向垂直纸面向里的匀强磁场区域,如图所示,当线框以恒定速度4m/s 沿x 轴正方向穿越磁场区域过程中,下面4个图可正确表示线框进入到穿出磁场过程中,ab 边两端电势差ab U 随位置变化情况的是( )【答案】B 【解析】由题知ab 边进入磁场做切割磁感线运动时,据闭合电路知识,3330.344ab BLv U I R R BLv V R =⋅=⋅==,且a 点电势高于b 点电势,同理ab 边出磁场后cd 边进入磁场做切割磁感线运动,10.14ab U BLv V ==,a 点电势高于b 点电势,故B正确,A 、C 、D 错误。
高三物理知识点电磁感应的现象和规律高三物理知识点:电磁感应的现象和规律电磁感应是指当导体在磁场中运动时,会在导体中产生电场和电流的现象。
这个现象由法拉第电磁感应定律准确描述。
在高三物理学习中,电磁感应是一个重要的知识点,本文将介绍电磁感应的现象和规律。
一、电磁感应的现象1.1 引言电磁感应是一种重要的物理现象,它在我们日常生活和工业生产中都有广泛的应用。
例如,发电机、变压器、感应炉等都是基于电磁感应现象工作的。
1.2 感应电动势当导体相对于磁场运动,导体中就会产生感应电动势。
这是因为磁场会导致导体中的自由电子受到力的作用,从而引起电流。
1.3 磁感线剪切当导体与磁感应线垂直运动时,磁感应线会剪切导体,导体内部的自由电子将受到磁场的力推动,形成电流。
1.4 磁场变化引起电流当磁场的大小或方向发生变化时,导体内部会产生感应电流。
这是因为磁场的变化会改变导体中的磁通量,从而引发涡流的产生。
二、电磁感应的规律2.1 法拉第电磁感应定律法拉第电磁感应定律描述了导体中产生的感应电动势和外界磁场变化的关系。
该定律的数学表达式为:ε = -NΔΦ/Δt其中,ε 代表感应电动势,N 是线圈的匝数,ΔΦ 代表磁通量的变化量,Δt 代表时间的变化量。
这个定律说明,当磁通量的变化率发生改变时,感应电动势的大小和方向也会随之改变。
2.2 楞次定律楞次定律描述了电流的方向与其自感磁场的方向之间的关系。
根据楞次定律,电流会生成的磁场与外界磁感应的变化方向相反。
这个定律的实质是能量守恒定律的物理体现。
2.3 磁感应强度和感应电动势的关系感应电动势的大小与磁感应强度和导体长度的乘积成正比。
即:ε ∝ B l其中,ε 代表感应电动势,B 是磁感应强度,l 代表导体的长度。
这个关系表明,磁感应强度的增大会使感应电动势增大。
2.4 涡流涡流是一种由磁感应引起的环流。
当导体的形状改变或者导体与磁场的相对运动速度发生变化时,都会产生涡流。
⾼考物理⼀轮复习之《电磁感应》知识汇总第⼀节 电磁感应现象 楞次定律【基本概念、规律】⼀、磁通量1.定义:在磁感应强度为B的匀强磁场中,与磁场⽅向垂直的⾯积S和B的乘积.2.公式:Φ=B·S.3.单位:1 Wb=1_T·m2.4.标⽮性:磁通量是标量,但有正、负.⼆、电磁感应1.电磁感应现象当穿过闭合电路的磁通量发⽣变化时,电路中有电流产⽣,这种现象称为电磁感应现象.2.产⽣感应电流的条件(1)电路闭合;(2)磁通量变化.3.能量转化发⽣电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:⽆论回路是否闭合,只要穿过线圈平⾯的磁通量发⽣变化,线圈中就有感应电动势产⽣.三、感应电流⽅向的判断1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适⽤情况:所有的电磁感应现象.2.右⼿定则(1)内容:伸开右⼿,使拇指与其余四个⼿指垂直,并且都与⼿掌在同⼀个平⾯内,让磁感线从掌⼼进⼊,并使拇指指向导体运动的⽅向,这时四指所指的⽅向就是感应电流的⽅向.(2)适⽤情况:导体切割磁感线产⽣感应电流.【重要考点归纳】考点⼀ 电磁感应现象的判断1.判断电路中能否产⽣感应电流的⼀般流程:2.判断能否产⽣电磁感应现象,关键是看回路的磁通量是否发⽣了变化.磁通量的变化量ΔΦ=Φ2-Φ1有多种形式,主要有:(1)S、θ不变,B改变,这时ΔΦ=ΔB·S sin θ;(2)B、θ不变,S改变,这时ΔΦ=ΔS·B sin θ;(3)B、S不变,θ改变,这时ΔΦ=BS(sin θ2-sin θ1).考点⼆ 楞次定律的理解及应⽤1.楞次定律中“阻碍”的含义2.应⽤楞次定律判断感应电流⽅向的步骤考点三 “⼀定律三定则”的综合应⽤1.“三个定则与⼀个定律”的⽐较2.应⽤技巧⽆论是“安培⼒”还是“洛伦兹⼒”,只要是涉及磁⼒都⽤左⼿判断.“电⽣磁”或“磁⽣电”均⽤右⼿判断.【思想⽅法与技巧】楞次定律推论的应⽤楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产⽣感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈⾯积有扩⼤或缩⼩的趋势——“增缩减扩”;(4)阻碍原电流的变化(⾃感现象)——“增反减同”第⼆节 法拉第电磁感应定律 ⾃感 涡流【基本概念、规律】⼀、法拉第电磁感应定律1.感应电动势(1)感应电动势:在电磁感应现象中产⽣的电动势.产⽣感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I=E/(R+r)2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的⼤⼩,跟穿过这⼀电路的磁通量的变化率成正⽐.3.导体切割磁感线的情形(1)若B、l、v相互垂直,则E=Blv.(2)若B⊥l,l⊥v,v与B夹⾓为θ,则E=Blv sin_θ.⼆、⾃感与涡流1.⾃感现象(1)概念:由于导体本⾝的电流变化⽽产⽣的电磁感应现象称为⾃感,由于⾃感⽽产⽣的感应电动势叫做⾃感电动势.(3)⾃感系数L的影响因素:与线圈的⼤⼩、形状、匝数以及是否有铁芯有关.2.涡流当线圈中的电流发⽣变化时,在它附近的任何导体中都会产⽣像⽔的旋涡状的感应电流.(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培⼒,安培⼒的⽅向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产⽣感应电流,使导体受到安培⼒作⽤,安培⼒使导体运动起来.交流感应电动机就是利⽤电磁驱动的原理⼯作的.【重要考点归纳】考点⼀ 公式E=nΔΦ/Δt的应⽤1.感应电动势⼤⼩的决定因素(1)感应电动势的⼤⼩由穿过闭合电路的磁通量的变化率和线圈的匝数共同决定,⽽与磁通量Φ、磁通量的变化量ΔΦ的⼤⼩没有必然联系.3.应⽤电磁感应定律应注意的三个问题考点⼆ 公式E=Blv的应⽤1.使⽤条件本公式是在⼀定条件下得出的,除了磁场是匀强磁场外,还需B、l、v三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进⾏计算,公式可为E=Blv sin θ,θ为B与v⽅向间的夹⾓.2.使⽤范围3.有效性公式中的l为有效切割长度,即导体与v垂直的⽅向上的投影长度.例如,求下图中MN两点间的电动势时,有效长度分别为甲图:l=cd sin β.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.5.感应电动势两个公式的⽐较考点三 ⾃感现象的分析1.⾃感现象“阻碍”作⽤的理解(1)流过线圈的电流增加时,线圈中产⽣的⾃感电动势与电流⽅向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减⼩时,线圈中产⽣的⾃感电动势与电流⽅向相同,阻碍电流的减⼩,使其缓慢地减⼩.2.⾃感现象的四个特点(1)⾃感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发⽣突变,只能缓慢变化.(3)电流稳定时,⾃感线圈就相当于普通导体.(4)线圈的⾃感系数越⼤,⾃感现象越明显,⾃感电动势只是延缓了过程的进⾏,但它不能使过程停⽌,更不能使过程反向.3.⾃感现象中的能量转化通电⾃感中,电能转化为磁场能;断电⾃感中,磁场能转化为电能.4.分析⾃感现象的两点注意(1)通过⾃感线圈中的电流不能发⽣突变,即通电过程,线圈中电流逐渐变⼤,断电过程,线圈中电流逐渐变⼩,⽅向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电⾃感现象中灯泡是否“闪亮”问题的判断,在于对电流⼤⼩的分析,若断电后通过灯泡的电流⽐原来强,则灯泡先闪亮后再慢慢熄灭.第三节 电磁感应中的电路和图象问题【基本概念、规律】⼀、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发⽣变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压⼆、电磁感应中的图象问题1.图象类型(1)随时间t变化的图象如B-t图象、Φ-t图象、E-t图象和i-t图象.(2)随位移x变化的图象如E-x图象和i-x图象.2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量.(3)利⽤给出的图象判断或画出新的图象.【重要考点归纳】考点⼀ 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产⽣感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发⽣变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的⼀般思路:(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利⽤电路规律求解.主要应⽤欧姆定律及串、并联电路的基本性质等列⽅程求解.4.(1)对等效于电源的导体或线圈,两端的电压⼀般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的⽅向,电势逐渐升⾼.考点⼆ 电磁感应中的图象问题1.题型特点⼀般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量;(3)根据图象定量计算.2.解题关键弄清初始条件,正负⽅向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的⼀般步骤(1)明确图象的种类,即是B-t图象还是Φ-t图象,或者是E-t图象、I-t图象等;(2)分析电磁感应的具体过程;(3)⽤右⼿定则或楞次定律确定⽅向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、⽜顿运动定律等规律写出函数关系式;(5)根据函数关系式,进⾏数学分析,如分析斜率的变化、截距等;(6)画出图象或判断图象.4.解决图象类选择题的最简⽅法——分类排除法.⾸先对题中给出的四个图象根据⼤⼩或⽅向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增⼤还是减⼩)、变化快慢(均匀变化还是⾮均匀变化),特别是⽤物理量的⽅向,排除错误选项,此法最简捷、最有效.【思想⽅法与技巧】电磁感应电路与图象的综合问题解决电路与图象综合问题的思路(1)电路分析弄清电路结构,画出等效电路图,明确计算电动势的公式.(2)图象分析①弄清图象所揭⽰的物理规律或物理量间的函数关系;②挖掘图象中的隐含条件,明确有关图线所包围的⾯积、图线的斜率(或其绝对值)、截距所表⽰的物理意义.(3)定量计算运⽤有关物理概念、公式、定理和定律列式计算.第四节 电磁感应中的动⼒学和能量问题【基本概念、规律】⼀、电磁感应现象中的动⼒学问题1.安培⼒的⼤⼩2.安培⼒的⽅向(1)先⽤右⼿定则判定感应电流⽅向,再⽤左⼿定则判定安培⼒⽅向.(2)根据楞次定律,安培⼒的⽅向⼀定和导体切割磁感线运动⽅向相反.⼆、电磁感应中的能量转化1.过程分析(1)电磁感应现象中产⽣感应电流的过程,实质上是能量的转化过程.(2)感应电流在磁场中受安培⼒,若安培⼒做负功,则其他形式的能转化为电能;若安培⼒做正功,则电能转化为其他形式的能.(3)当感应电流通过⽤电器时,电能转化为其他形式的能.2.安培⼒做功和电能变化的对应关系“外⼒”克服安培⼒做多少功,就有多少其他形式的能转化为电能;安培⼒做多少功,就有多少电能转化为其他形式的能.【重要考点归纳】考点⼀ 电磁感应中的动⼒学问题分析1.导体的平衡态——静⽌状态或匀速直线运动状态.处理⽅法:根据平衡条件(合外⼒等于零)列式分析.2.导体的⾮平衡态——加速度不为零.处理⽅法:根据⽜顿第⼆定律进⾏动态分析或结合功能关系分析.3.分析电磁感应中的动⼒学问题的⼀般思路(1)先进⾏“源”的分析——分离出电路中由电磁感应所产⽣的电源,求出电源参数E和r;(2)再进⾏“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流⼤⼩,以便求解安培⼒;(3)然后是“⼒”的分析——分析研究对象(常是⾦属杆、导体线圈等)的受⼒情况,尤其注意其所受的安培⼒;(4)最后进⾏“运动”状态的分析——根据⼒和运动的关系,判断出正确的运动模型.考点⼆ 电磁感应中的能量问题1.电磁感应过程的实质是不同形式的能量转化的过程,⽽能量的转化是通过安培⼒做功的形式实现的,安培⼒做功的过程,是电能转化为其他形式能的过程,外⼒克服安培⼒做功,则是其他形式的能转化为电能的过程.2.能量转化及焦⽿热的求法(1)能量转化(2)求解焦⽿热Q的三种⽅法3. 在解决电磁感应中的能量问题时,⾸先进⾏受⼒分析,判断各⼒做功和能量转化情况,再利⽤功能关系或能量守恒定律列式求解.【思想⽅法与技巧】电磁感应中的“双杆”模型1.模型分类“双杆”模型分为两类:⼀类是“⼀动⼀静”,甲杆静⽌不动,⼄杆运动,其实质是单杆问题,不过要注意问题包含着⼀个条件:甲杆静⽌、受⼒平衡.另⼀种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产⽣的感应电动势是相加还是相减.2.分析⽅法通过受⼒分析,确定运动状态,⼀般会有收尾状态.对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、⽜顿运动定律和能量观点分析求解.3.分析“双杆”模型问题时,要注意双杆之间的制约关系,即“动杆”与“被动杆”之间的关系,需要注意的是,最终两杆的收尾状态的确定是分析该类问题的关键.电磁感应中的含容电路分析⼀、电磁感应回路中只有电容器元件1.这类问题的特点是电容器两端电压等于感应电动势,充电电流等于感应电流.(2)由本例可以看出:导体棒在恒定外⼒作⽤下,产⽣的电动势均匀增⼤,电流不变,所受安培阻⼒不变,导体棒做匀加速直线运动.⼆、电磁感应回路中电容器与电阻并联问题1.这⼀类问题的特点是电容器两端的电压等于与之并联的电阻两端的电压,充电过程中的电流只是感应电流的⼀⽀流.稳定后,充电电流为零.2.在这类问题中,导体棒在恒定外⼒作⽤下做变加速运动,最后做匀速运动.。
高三物理第九章知识点归纳总结高三物理第九章主要介绍了电磁感应、电磁场和电磁波等相关知识。
本章知识点归纳总结如下:一、电磁感应电磁感应是指在导体中或磁场中产生电动势的现象。
主要包括法拉第电磁感应定律和楞次定律。
1. 法拉第电磁感应定律法拉第电磁感应定律描述了导体中感应电动势的产生与变化。
定律表达式为:感应电动势的大小与导体中磁场的变化率成正比。
2. 楞次定律楞次定律描述了通过电磁感应产生的电流方向。
根据楞次定律,感应电动势的方向总是使通过电路的电流产生一个方向上的磁场,以阻碍磁场变化的方式。
二、电磁场电磁场是由带电粒子产生的电场和磁场组成的。
学习电磁场需要了解库仑定律、电场强度、电势能、真空中的光速等相关知识。
1. 库仑定律库仑定律描述了两个电荷之间的力与电荷之间的距离、大小和性质之间的关系。
定律表达式为:两个点电荷之间的相互作用力与它们的电荷量成正比,与它们之间的距离的平方成反比。
2. 电场强度电场强度是描述电场的物理量,定义为单位正电荷所受的力。
电场强度的大小与电荷量成正比,与距离的平方成反比。
3. 电势能电势能是电荷在电场中位置的一种衡量,定义为单位正电荷所具有的电势能。
电势能的大小与电荷量成正比,与距离成反比。
4. 真空中的光速真空中的光速是指电磁波在真空中传播的速度,约为3.00 x 10^8 m/s。
三、电磁波电磁波是由变化的电场和磁场相互作用而产生的能量传播现象。
本节重点学习电磁波的特性和电磁波谱。
1. 电磁波的特性电磁波有很多特性,包括振幅、波长、频率、传播速度等。
其中,波长和频率是互相关联的,与传播速度有一定的关系。
2. 电磁波谱电磁波谱是根据电磁波的不同波长和频率进行分类的。
按照波长从小到大的顺序,电磁波谱可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等七个区域。
总结:高三物理第九章主要介绍了电磁感应、电磁场和电磁波等知识点。
电磁感应涉及法拉第电磁感应定律和楞次定律,电磁场包括库仑定律、电场强度、电势能和真空中的光速等,电磁波涵盖电磁波的特性和电磁波谱。
课题:电磁感应类型:复习课电磁感应现象愣次定律一、电磁感应1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。
产生的电流叫做感应电流.2.产生感应电流的条件:只要闭合回路中磁通量发生变化即△Φ≠0,闭合电路中就有感应电流产生.3. 磁通量变化的常见情况(Φ改变的方式):①线圈所围面积发生变化,闭合电路中的局部导线做切割磁感线运动导致Φ变化;其实质也是 B 不变而 S增大或减小②线圈在磁场中转动导致Φ变化。
线圈面积与磁感应强度二者之间夹角发生变化。
如匀强磁场中转动的矩形线圈就是典型。
③B 随 t(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化(Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,假设线圈或线框是闭合的.那么在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件:无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那局部导体相当于电源.电磁感应现象的实质是产生感应电动势,如果回路闭合,那么有感应电流,如果回路不闭合,那么只能出现感应电动势,而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化二、感应电流方向的判定1.右手定那么:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即为感应电流方向(电源).用右手定那么时应注意:①主要用于闭合回路的一局部导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定,②右手定那么仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直.③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向.④假设形成闭合回路,四指指向感应电流方向;假设未形成闭合回路,四指指向高电势.⑤“因电而动〞用左手定那么.“因动而电〞用右手定那么.⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。