小学数学专项按规律填图例题和作业
- 格式:doc
- 大小:133.50 KB
- 文档页数:7
找规律填数的各种题型
稿子一:
嘿,亲爱的小伙伴们!今天咱们来聊聊找规律填数的那些有趣题型。
你看哈,有一种是递增型的。
比如说 1、3、5、7、(),这多简单呀,每次都多 2 嘛,所以括号里当然是 9 啦。
还有递减型的呢!像 10、8、6、4、(),每次都少 2 ,那括号里就得是 2 咯。
再说说这种间隔型的。
比如 2、5、2、8、2、11 ,你发现没,奇数位都是 2 ,偶数位依次加 3 ,那后面括号里该是 2 啦。
还有累加型的哟!像 1、2、4、7、11 、(),从第二个数开始,每次增加的数都比前一次多 1 ,所以括号里应该是 16 。
倍数型的也很常见呢!比如说 2、4、8、16 、(),每次都乘以 2 ,那就是 32 啦。
哎呀,找规律填数是不是还挺好玩的?多练练,咱们的小脑瓜会越来越聪明哟!
稿子二:
宝子们,咱们来唠唠找规律填数的各种题型哈。
先说说那种相邻两个数差值固定的,像 3、6、9、12 、(),每两个数之间都差 3 ,那括号里肯定是 15 呀。
有的是相邻两个数的比值固定。
比如说 2、4、8、16 、(),后面的数都是前面的 2 倍,那这里就得填 32 。
再有像这样的: 1、4、9、16 、(),这是平方数的规律,依次是 1 的平方,2 的平方,3 的平方,4 的平方,那括号里就是 25 啦。
怎么样,这些题型有没有让你觉得很有趣?多琢磨琢磨,咱们找规律填数的本领就会越来越强哒!。
第11讲找规律填数、填图
填数
一、找规律填空。
1.10、13、、、22、25
2.5,7,9,,,,17,19
3.
二.找规律涂一涂,画一画。
三、按图形的排列规律接着画。
四、找规律填数。
七、涂一涂
自己涂出有规律的颜色
1、★★☆★★☆☆☆☆☆☆☆
2、◇◇◆◇◇◆◇◇◆◇◇◇
3、○○●○○●○○○○○○
八、找规律,填一填。
(1)51015————————
(2)112131————————(3)3579——13
(4)8 11 14 ————
(5)35 30 25 —— 15 ——
(6)17 15 13
(7)1 2 4 7 11
八、找出规律不一样的一组数,打√。
填图
一、基础应用:
【例1】根据前面几幅图的规律,接下去该怎么画?
试一试:找规律,方框中应该画什么图形?
1 3 5 7 () 0 0 0 0 ()
2 5 8 11 ()0 2 4 6 ()
3 3 3 3 ()9 6 3 0 ()
9 7 5 3 ()8 8 8 8 ()19 16 13 10 ()
10 12 14 16 () 1 2 3 4 ()17 14 11 8 ()
【例2】观察下图的变化,想一想第四幅图应是画上怎样的图形.
试一试:想一想,接着画.
【例3】找出下列图形的变化规律,填出空缺的图.
试一试:仔细观察下面图形的变化规律,并在空白处填入合适的图形.
A D
B C
D C
A B
C B
D A
A B C D。
找规律填数小朋友们,在学习和生活中,我们经常会遇到许多按一定顺序排列起来的数。
在数学上,我们把这样的一组数叫做“数列”。
找规律填数,就是先通过对数列的观察,再经过严密的逻辑推理,然后发现数列中数的排列规律,并依据这个规律把所缺的数填写出来,从而达到解决问题的目的。
这一讲,就让我们一起来探讨数列中的奥秘吧!例1.找出下面各数的排列规律,在括号里填上合适的数。
〈1〉1,2,3,4,(),()〈2〉2,4,6,8,(),()〈3〉45,40,35,(),()点拨:〈1〉在这个数列中,通过观察可以发现,这一列数越来越大,而且后一个数都比前一个数多1,也就是说相邻两个数的差都是1,因此,括号里应按顺序填上5,6.〈2〉根据上题的方法,依次求出相邻两数的差,可以发现这列数的排列规律是:从第二个数起,后一个数都比前一个数多2,因此,括号里应按顺序填上10,12.〈3〉也可以用下面的计算过程来推算45 40 35 30 (25) (20)-5 -5 -5 -5 -5例2.找规律填数.〈1〉1,2,4,7,11,(),()〈2〉1,3,7,13.21,(),()〈3〉1,2,4,8,16,(),()点拨:〈1〉通过观察和计算我们发现,在这一列数中,数也在逐渐增加,但每次增加的数并不相同,具体变化如下:第一个数加1得到第二个数,第二个数加2得到第三个数,第三个数加3得到第四个数,第四个数加4得到第五个数,依次推算,第五个数应该加5得到第六个数是16,第六个数加6得到第七个数是22,也就是说,每次增加的数都比上次增加的数多1,也可以用下面的计算过程来推算:1 2 4 7 11 (16)(22)+1 +2 +3 +4 +5 +6〈2〉这一列数每次增加的数都比上次增加的数多2.1 3 7 13 21 (31) (43)+2 +4 +6 +8 +10 +12〈3〉这一列数每次增加的数都是它本身,第一个数是1,再加上1得到第二个数,第二个数是2,再加上2得到第三个数,第三个数是4,再加上4得到第四个数,第四个数是8,再加上8得到第五个数,依次推算,第五数是16,也应该加上16得到第六个数是32,第六个数是32,也应该加上32得到第七个数是64.可以用下面的计算过程来推算:1 2 4 8 16 (32)(64)+1 +2 +4 +8 +16 +32例3.寻找下面一列数的规律,在()填上合适的数.〈1〉1,3,1,5,1,7,(),()〈2〉17,2,14,2,11,2,(),()〈3〉25,6,20,7,15,8,(),()点拨:〈1〉通过观察可以发现,这一列数是间隔着变化的。
找规律填数知识导航找规律在奥数题目中属于常见题型,主要分为找规律填图和找规律填数。
在之前的课程里面我们已经接触过这一类型的题,这一讲我们继续加深对这一类型题目的认识和理解。
小朋友们,要认真观察、勇敢地去探索规律,相信你们都能找出空缺的数。
精典例题例1:找规律填数。
(1)1,3,5,7,(),()。
(2)65,60,55,50,(),()。
(3)1,10,100,1000,(),()。
(4)1,2,4,7,11,(),()。
(5)1,2,4,8,(),()。
(6)1,3,4,7,11,(),(),()。
思路点拨第(1)题,从左往右依次增加;第(2)题从左往右依次减少;第(3)题,从左往右依次在末尾添加一个,或者说依次乘;第(4)题从左往右,相邻两个数相差1,2,3,4……第(5)题中,1×2=2,2×2=4,4×2=8,所以,8×2=……第(6)题中,从第三个数开始,每个数都等于前面两个数的和。
模仿练习找规律填数。
(1)2,4,6,8,(),()。
(2)1,5,9,13,(),()。
(3)2,20,200,2000,(),()。
(4)1,2,2,4,3,6,4,8,(),()。
(5)49,42,35,(),(),()。
(6)4,6,9,13,(),24,()。
(7)100,81,64,(),36,25,(),9,4,1例2:仔细观察下列组图,在每一组的“?”处填上合适的数。
(1)(2)(3)(4)(5)思路点拨第(1)题中,3+4+8=15;第(2)题中,2×3+1=7;第(3)题中,3×4+5=17;第(4)题中4×5-5=20;第(5)题中,5+3+7=15,15+15=30。
模仿练习仔细观察每组图的规律,在空白处填合适的数。
(1)(2)例3:根据下表中的排列规律,在空格里填上适当的数。
思路点拨分析表格中的数可以发现,按行看,12+6=18,8+7=15,也就是说每一行中间的数等于两边的两个数的和。
小学六年级数学找规律专项练习题,孩子提高必备!经典例题例1:找规律填数。
(1)1,3,5,7,(),()。
(2)65,60,55,50,(),()。
(3)1,10,100,1000,(),()。
(4)1,2,4,7,11,(),()。
(5)1,2,4,8,(),()。
(6)1,3,4,7,11,(),(),()。
思路点拨第(1)题,从左往右依次增加;第(2)题从左往右依次减少;第(3)题,从左往右依次在末尾添加一个,或者说依次乘;第(4)题从左往右,相邻两个数相差1,2,3,4……第(5)题中,1×2=2,2×2=4,4×2=8,所以,8×2=……第(6)题中,从第三个数开始,每个数都等于前面两个数的和。
模仿练习找规律填数。
(1)2,4,6,8,(),()。
(2)1,5,9,13,(),()。
(3)2,20,200,2000,(),()。
(4)1,2,2,4,3,6,4,8,(),()。
(5)49,42,35,(),(),()。
(6)4,6,9,13,(),24,()。
(7)100,81,64,(),36,25,(),9,4,1例2:仔细观察下列组图,在每一组的“?”处填上合适的数。
(1)(2)(3)(4)(5)思路点拨第(1)题中,3+4+8=15;第(2)题中,2×3+1=7;第(3)题中,3×4+5=17;第(4)题中4×5-5=20;第(5)题中,5+3+7=15,15+15=30。
模仿练习仔细观察每组图的规律,在空白处填合适的数。
(1)(2)例3:根据下表中的排列规律,在空格里填上适当的数。
思路点拨分析表格中的数可以发现,按行看,12+6=18,8+7=15,也就是说每一行中间的数等于两边的两个数的和。
依此规律可以填出空格中的数。
找规律练习题1.按照下面所绘图形的排列规律,第25个图形是________.(画出草图)□△○△□△○△□△○△……2.仔细观察下面的图,想一想,第3幅图问号处应填什么图形?3.仔细观察下面的图形,想一想,第4幅图应画怎样的图形?4.根据下面前三幅图的变化规律,在第4幅图中画出阴影部分.5.想一想,方框内应有多少个小圆点?6.按照图形的变化规律,在“?”处画出相符的图形.7.观察图的排列规律,在“?”处填上恰当的图形.8.下面哪个图形和其他几个图形不一样,找出来,并打上“√”.9.观察下列黑白小球的排列规律,然后回答方框内有几个白球,几个黑球?10.四个小动物排座位,如下图:一开始,小老鼠坐在第1号,小猴子坐第2号,小兔坐第3号,小猫坐第4号.以后它们多次地交换位子:第一次上下两排交换,第二次(在第一次交换之后)左右两列交换,第三次上下两排交换,第四次左右两列交换,……这样换下去,问:第十次交换后,小兔子坐在第几号位子上?答案解析1.□提示:在这列图形中出现的图形有:正方形、三角形、圆,且三种图形出现的规律是:按照正方形→三角形→圆→三角形的顺序4个一组循环出现.因25÷4=6……1,所以横线上应填第一个图形,即正方形.2.☆△提示:观察前两组图形可知,第一、二组都是由□○☆△组成,但顺序不同.第一组中的左边两个,在第二组中变为右边两个,而另外三个按原来的顺序移到了最左边.按此规律,“?”处应分别填上“☆”“△”.3.提示:观察前三幅图,大圆内都是■○△◇组成的,第一幅图中的图形按逆时针方向旋转可得到第二幅图形,第二幅图形按逆时针方向旋转可得到第三幅图形,同理可推得第四幅图形.4.提示:第一幅图的阴影部分均按顺时针方向旋转一格便可得到第二幅图,第二幅图中的阴影部分均按顺时针方向旋转一格便可得到第三幅图,由此,第三幅图中的阴影部分均按顺时针方向旋转一格便可得到第四幅图.5.方框内应填25个圆点.6.提示:观察前三幅图可知,前一幅图按逆时针方向旋转一格便可得到下一幅图.7.△提示:通过观察可知,从上到下每一横行圆的个数逐次减少1,三角的个数逐次增加1,由此推得“?”处的图形.8.(1)提示:图中的几何图形的共同特点是在图形内部都有一个同一类型的图形.但1、3、4、5内部的图形都较小,只有2内部图形较大,且位置和其它几个图形不同.(2)提示:这五幅图形都是由相同的两个图形重叠而成的,但不同的是前四个图形都是下面的图形盖住了上面的图形,只有5不同,是上面的图形盖住了下面的图形.9.9个白球,3个黑球.提示:观察图形可知,黑、白小球按照2个黑球,1个白球,2个黑球,3个白球,2个黑球,5个白球……的规律排列,即每组都是先有2个黑球,白球的个数每次增加2.10.小兔坐在第2号位置上.提示:小兔子开始在第3号位置上,第四次交换后,小兔子又回到原位,因10÷4=2……2,所以小兔第十次交换后应与第二次交换后的位置相同.。
找规律填图形、数
(一)
1
、从方框中选择一个合适的填入虚线框内。
(1)
(3)
① ② ③ ④
(3)
①
② ③ ④
2、请根据规律画上合适的图形。
3、选一选,哪个图形填在“?”处比较合适。
①
② ③ ④ ⑤
(1
A B C D
(二)
一、根据规律画或写,哪一行的规律与其他三行不同?
(1
二、把左右卡片中规律相同的行用线连起来。
三、按规律填下去
找规律填图形、数(红色为答案)
(一)
1
、从方框中选择一个合适的填入虚线框内。
(1)②
(2)④
① ② ③ ④
(3)④
①
② ③
④
2、请根据规律画上合适的图形。
(隐形线三角形)
第二行圆形,第三行菱形
3A (1
① ② ③ ④ ⑤
A
D
(二)
一、根据规律画或写,哪一行的规律与其他三行不同?
(1
二、把左右卡片中规律相同的行用线连起来。
-2 +1
-3 +4
+5 -2
+1 -3
+4 +5
三、按规律填下去。
2011秋06找规律画图
一、 根据规律接着画:
二、 下面的图形都是按什么规律排列的,你能继续往下画吗?
三、 根据下面一串黑白珠子的排列规律,你能继续往下涂吗?
四、 画出方框里串的珠子。
五、 你能根据下面图形的规律,把空缺的部分补充完整吗?
六、 按规律把空缺的部分补充完整。
七、 下列图形的位置有什么变化,按规律画出空白处的图形。
八、 按图形的变化规律,在空白处画上所缺的图形。
九、 第四个图形应该画什么?
十、 按规律把第三个图画完整。
作业:
一、 根据规律接着画:
二、 接着再画出5颗珠子。
三、 “?”处应该填什么图形?
四、 找规律,画一画。
(2)
(1)
(3)
五、 这里有一些小动物,你能将一些小动物的位置交换(只准交换两次),使每
一行、每一列都有三只不同的动物吗? 狗 猫 狗 鸡 猫 猫 狗 鸡
鸡。
例1 按照规律把第四个图画出来。
1.找出下面图形的变化规律,画出第四个图和第五个图。
2.仔细观察下图,把第三个、第四个里画完整。
3.第一幅图应该怎样画?
例2 仔细观察,找出规律,看第四个图、第五个图应该怎样画?
1.按图形的变化规律接着画。
2.按规律接着画出第七个、第八个图。
3.请你画出第五层的图形。
例3 按图形变化规律接着画出空白处的图形。
1.找出变化规律,在“——”处补上一个图。
2.找出下图的变化规律,在“——”处补上一个图。
3.找出规律,画出第四个图。
例4 仔细观察下面的图形,第三组的“?”处应画什么图形?画出来。
1.根据下面图形的变化规律,“——”处应画什么图形?画出来。
2.根据下图的变化规律,在空白处画出合适的图形。
3.把第三行、第四行的每个方格内画上合适的图形。
练习卷
一、填空
1.在方框里画□,应该怎样画?
2.仔细观察,最后一个图中缺少什么?补画出来。
3.根据前三幅图的规律接着画
4.找出规律,再在空格里画图。
5.观察前几幅图的变化规律,再接着画。
6.认真观察,找出变化规律,把第四幅图补充完整。
二、选择。
1.用瓷砖铺一条路,第7块、第8块各应铺几号瓷砖?
2.选择下面的图形,填在空格里。
三、操作。
1.找出规律,应该把哪些珠子涂黑?
2.根据前面的图形的排列顺序,第(3)幅图的4个空格里应怎样画?。
5.找规律绘图
【礼拜一】
1.察看规律,在后边再画一个图。
(1)
(2)
2.先找一找方框里八个图形每行摆列的规律,再从右边精选一个适合的图形,把这个图形的号码填入空格内。
3.在下边空白的方格里填上几号图形才适合
4.
【礼拜二】
2.察看规律,在空格里画一个图。
3.察看规律,在后边再画一个图。
4.察看规律,选一个图画在空格里。
【礼拜三】
2.察看图形中的规律,填出最后一个。
3.察看以下的机器人面貌,找出
规律,填出最后一个。
4.想想每组图形中的摆列规律,从右边这些图中选择一个适合的图,并把这个图的号码填在这一组的空白图里。
【礼拜四】
1、请你依据前三个图形的变化规律,画出第四个图形来。
○○○○○○○○○○○●
○○○●○●
○●○●○●
○○●●○●●●●●●●
2、接下去该如何画
△△△△△△△△△△△△
△△△△△▲
△△△▲△△
△△△▲△△▲△△▲△△3.接着应当如何画请画在空格里。
※★★§§☆
☆§※☆★※
4、认真察看,第四幅图应画什么图形
○□□︱-↓
↑-○←□○5、想想,第四幅图该怎么填
■○○◇◇△
△◇■△○■
6、认真察看,想想第三幅图应当如何填
○□ □
□●●△○○○□ □●●△△○
△△●
○○△○
●●□
△△● ●○ ○
【礼拜五】
1、认真察看,第四幅图应画什么图形
2、想想,空白处应填什么图
3、认真察看,想想第四幅图应画什么
4.在空格里填上适合的图形。
知识要点:
小朋友,有些图形的变化比较复杂,不能一下看出它们的变化规律,我们必须仔细观察,从它们的大小、方向、位置、顺序、色彩等变化多角度的分析、比较、找出规律后,再按规律填出图形来。
例1 仔细观察,“?”处填什么图形?
这样思考:竖着看,左边的图形状相同只是颜色不同,依照这个规律右边的图形状也相同。
横着看第一排圆形的颜色相同,所以第二排圆形的颜色也相同。
答案
例2仔细观察,“?”处填什么图形?
这样思考:第一排箭头分别向左、向上、向右,第二排与第一排规律相同,所以第三排问号处箭头应向右。
答案
例3仔细观察,“?”处填什么图形?
这样思考:第一排都是三角形,第二排都是圆形,依此规律,第三排是正方形。
由于左边个数都是四个,那么右边的规律都是一个.
答案
例4 先看一看9个小雪人的排列规律,再将答案填入空白处。
这样思考:一共有三种颜色的小雪人,分别是黄色、紫色、绿色。
依此规律,第三排缺少绿色的小雪人。
答案
例5 仔细观察,寻找规律,在空白处填上合适的图形.
这样思考:一共有四种图形,分别是正方形、三角形、长方形、圆形,根据长方形第一排在第四个,第二排在第三个,第三排在第二个,第四排在第一个的这个规律,第二排空白处就是正方形。
第三排是圆和三角形,由于三角形已经排过第一和第二的位置,这次应在第三的位置,第四就是圆形。
第四排照此规律分别是正方形、圆形、最后是三角形。
答案。
《找规律》练习题一、数字游戏:请你观察数字,找一找规律,写一写。
⑴ 1、2 、3 、4、1、2、3 、4、1、2、3、4( ) ( ) ( ) ( )⑵ 12、14、16、18、20( ) ( ) ( )⑶ 80、75、70、65、60( ) ( ) ( )二、按规律写合适的数字⑴、 80 、70 、60、50、_______、_______、_______、_______⑵、 1、2、3、1、2 、3 、_______、_______、_______三、根据规律填数(1)1、2、4、5、7、8、10、( )、( )(2)15、10、13、10、11、10、( )、( )、 7、10四、按规律填数字(1)1、4、5、8、9、( )、( )(2)1、13、2、14、3、15、4、16、( )、( )、( )、( )五、根据规律填数(1)3、5、7、( )、11(2)5、10、15、20、( )、( )、( )、( )(3)20、18、16、14、12、( )、( )、( )、( )(4)1、5、5、1、1、5、5、1、( )、( )、( )、( )(5)1、2、3、2、1、1、2、3、2、1、( )、( )、( )、( )、( )(6)2、5、8、11、( )、( )、( )、( )(7)1、2、4、7、11、( )、( )、( )、( )(8)10、20、11、19、12、18、( )、( )、( )、( )六、根据规律填数七、选择4个数填在四个空格里,使横行、竖行三个数相加都是15。
参考答案一、数字游戏:请你观察数字,找一找规律,写一写。
⑴ 1、2 、3 、4、1、2、3 、4、1、2、3、4 (1)(2)(3)(4)⑵ 12、14、16、18、20 ( 22 ) ( 24 ) ( 26 )⑶ 80、75、70、65、60 ( 55 ) ( 50 ) ( 45 )二、按规律写合适的数字⑴、 80 、70 、60、50、__40__ 、__30__ 、__20__ 、__10__⑵、 1、2、3、1、2 、3 、__1__ 、__2__ 、__3__三、根据规律填数(1)1、2、4、5、7、8、10、(11)、(13)(2)15、10、13、10、11、10、(9)、(10)、7、10四、按规律填数字(1)1、4、5、8、9、(12)、(13)(2)1、13、2、14、3、15、4、16、(5)、(17)、(6)、(18)五、根据规律填数(1)3、5、7、(9)、11(2)5、10、15、20、(25)、(30)、(35)、(40)(3)20、18、16、14、12、(10)、(8)、(6)、(4)(4)1、5、5、1、1、5、5、1、(1)、(5)、(5)、(1)(5)1、2、3、2、1、1、2、3、2、1、(1)、(2)、(3)、(2)、(1)(6)2、5、8、11、(14)、(17)、(20)、(23)(7)1、2、4、7、11、(16)、(22)、(27)、(35)(8)10、20、11、19、12、18、(13)、(17)、(14)、(16)六、根据规律填数上方:18 下方:8七、选择4个数填在四个空格里,使横行、竖行三个数相加都是15。
按规律填数.1、15,5,12,5,9,5,( ),( )2、5,9,10,8,15,7,( ),( )3、25,4,20,4,15,4,( ),( )4、8,7,10,6,12,5,( ),( )5、( ),( ),7,34,7,36,7,386、( ),( ),5,4,9,6,13,87、16,3,8,9,4,( ),( )8、40,16,20,8,10,4,( ),( )9、0,1,2,3,6,7,( ),( ) 10、1,2,4,5,10,( ),( ) 11、3,6,5,10,9,( ),( ) 12、3,6,12,( ),( ) 13、30,15,14,7,6,( ),( ) 14、2,3,4,3,4,5,4,5,6,( )( )1.在空格里填上适当的数。
2.在空格里填上适当的数。
3.根据下左图内四个数字之间的关系,填出下右图空格内的数字。
4.按规律填图。
在空格中填入合适的数。
1.按规律填空。
2.按规律填空。
3.按规律填空。
.应用题(一)专题简析我们已经会解答一般计算的应用题了,如果改变条件的说法,由直接告诉的条件变为需要计算才知道的条件,那么一步应用题就变为两步应用题了。
解答两步应用题时,先要找出条件和所求问题,再根据已知条件,找到隐蔽的条件,最后解决题中的问题,两个量进行比较时,一定要弄清谁多谁少,是求多的数量,还是求少的数量,再确定正确的方法。
例题1二(1)班有59个同学,二(2)班有25个女生,26个男生,二(1)班比二(2)班多几个同学【思路导航】二(2)班女生有25个,男生有26个,可以求出二(2)班一共有25+26 =51(个)同学,而二(1)班有59个同学,二(2)班有51个同学。
59-51=8(个),这就是二(1)班比二(2)班多的同学的个数。
列式如下:59-(25+26)= 59-51= 8(个)答:二(1)班比二(2)班多8个同学练习一1.解放军某部长途行军,第一天走40千米,第二天上午走18千米,下午走15千米,比第二天多走几千米2.城中小学五月份用电1530度电,六月份上半月用电780度,下半月用电660度,城中小学五月份比六月份多用多少度电3.红星村去年栽果树350棵,今年,又栽了200棵杨树和170棵柳树,今年栽的树比去年栽的树多多少棵例题2王奶奶家养了45只鸭子、70只鸡,养的鹅的只数和鸭同样多,鸡、鸭、鹅共多少只【思路导航】因为鹅的只数和鸭同样多,鸭子45只,鹅因此也是45只。
图形找规律专项练习60 题(有答案)1.按如下方式摆放餐桌和椅子:填表中缺少可坐人数;.2.观察表中三角形个数的变化规律:图形横截线012⋯n条数三角形6??⋯?个数若三角形的横截线有0 条,则三角形的个数是6;若三角形的横截线有n 条,则三角形的个数是(用含n 的代数式表示).3.如图,在线段AB 上,画 1 个点,可得 3 条线段;画 2 个不同点,可得 6 条线段;画 3 个不同点,可得10条线段;⋯照此规律,画10个不同点,可得线段条.4.如图是由数字组成的三角形,除最顶端的 1 以外,以下出现的数字都按一定的规律排列.根据它的规律,则最下排数字中x 的值是,y的值是.5.下列图形都是由相同大小的单位正方形构成,依照图中规律,第六个图形中有个单位正方形.6.如图,用相同的火柴棒拼三角形,依此拼图规律,第7 个图形中共有根火柴棒.7.图 1是一个正方形,分别连接这个正方形的对边中点,得到图 2 ;分别连接图 2 中右下角的小正方形对边中点,得到图 3;再分别连接图 3 中右下角的小正方形对边中点,得到图4;按此方法继续下去,第n 个图的所有正方形个数是个.8.观察下列图案:它们是按照一定规律排列的,依照此规律,第 6 个图案中共有个三角形.9.如图,依次连接一个边长为 1 的正方形各边的中点,得到第二个正方形,再依次连接第二个正方形各边的中点,得到第三个正方形,按此方法继续下去,则第二个正方形的面积是;第六个正方形的面积是.10.下列各图形中的小正方形是按照一定规律排列的,根据图形所揭示的规律我们可以发现:第1个图形有 1 个小正方形,第 2 个图形有 3 个小正方形,第 3 个图形有 6 个小正方形,第 4 个图形有10个小正方形⋯,按照这样的规律,则第10 个图形有个小正方形.11.如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数为.12.为庆祝“六一”儿童节,幼儿园举行用火柴棒摆“金鱼”比赛,如图所示,则摆n 条“金鱼”需用火柴棒的根数为.13.如图,两条直线相交只有 1 个交点,三条直线相交最多有 3 个交点,四条直线相交最多有相交最多有 10 个交点,六条直线相交最多有个交点,二十条直线相交最多有6 个交点,五条直线个交点.14.用火柴棒按如图所示的方式搭图形,按照这样的规律搭下去,填写下表:图形编号( 1)(2)(3)火柴根数从左到右依次为___________________________⋯.n15.图( 1)是一个黑色的正三角形,顺次连接三边中点,得到如图( 2)所示的第的正三角形);在图( 2 )的每个黑色的正三角形中分别重复上述的作法,得到如图(2 个图形(它的中间为一个白色3 )所示的第 3 个图形.如此继续作下去,则在得到的第 5 个图形中,白色的正三角形的个数是.16.如图,一块圆形烙饼切一刀可以切成 2 块,若切两刀最多可以切成 4 块,切三刀最多可以切成7 块⋯通过观察、计算填下表(其中S 表示切 n 刀最多可以切成的块数)后,可探究一圆形烙饼切n 刀最多能切成块(结果用 n 的代数式表示).n012345⋯nS124717.如图,是用相同的等腰梯形拼成的等腰梯形图案.第(1)个图案只有1个等腰梯形,其两腰之和为4,上下底之和为 3,周长为 7;第( 2 )个图案由 3 个等腰梯形拼成,其周长为13;⋯第( n )个图案由( 2n﹣ 1)个等腰梯形拼成,其周长为.(用正整数n 表示)18.下列各图均是用有一定规律的点组成的图案,用S 表示第 n 个图案中点的总数,则S=(用含n的式子表示).19.如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有n (n≥ 3)盆花,每个图案中花盆总数为S,按照图中的规律可以推断S 与 n( n ≥3 )的关系是.20.用火柴棍象如图这样搭图形,搭第n 个图形需要根火柴棍.21.现有黑色三角形“”和白色三角形“”共有2011个,按照一定的规律排列如下:则黑色三角形有个.22.假设有足够多的黑白围棋子,按照一定的规律排成一行:○●●○○●○●●○○●○●●○○●○●●○○●⋯ 请问第 2011个棋子是黑的还是白的?答:.23.观察下列由等腰梯形组成的图形和所给表中数据的规律后填空:梯形的个数12345⋯图形的周长58111417⋯当梯形个数为2007 个时,这时图形的周长为_________24.如图,下面是一些小正方形组成的图案,第 4 个图案有个小正方形组成;第n 个图案有个小正方形组成.25.如图所示是由火柴棒按一定规律拼出的一系列图形:依照此规律,第7 个图形中火柴棒的根数是.26.图中的每个图形都是由若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n ( n≥ 2)个棋子,每个图案的棋子总数为s,按图的排列规律推断,s 与 n 之间的关系可用式子表示.27.观察下列图形,它是按一定规律排列的,那么第个图形中,十字星与五角星的个数和为27个.28. 2 条直线最多只有 1 个交点; 3 条直线最多只有 3 个交点; 4 条直线最多只有 6 个交点; 2000 条直线最多只有个交点.29.以下各图分别由一些边长为1 的小正方形组成,请填写图2、图 3 中的周长,并以此推断出图10的周长为.30.如图所示,第 1 个图案是由黑白两种颜色的正六边形地面砖组成,第 2 个,第 3 个图案可以看作是第 1 个图案经过平移而得,那么设第n 个图案中有白色地面砖m 块,则 m 与 n 的函数关系式是.31.用同样大小的黑色棋子按如图所示的规律摆放:(1)分别写出第 6 、7 两个图形各有多少颗黑色棋子?(2)写出第 n 个图形黑色棋子的颗数?(3)是否存在某个图形有 2012 颗黑色棋子?若存在,求出是第几个图形;若不存在,请说明理由.32.如图,给出四个点阵,s 表示每个点阵中点的个数,按照图形中的点的个数变化规律,( 1)猜想第n 个点阵中的点的个数s=.( 2)若已知点阵中点的个数为37,问这个点阵是第几个?33.用棋子摆出下列一组图形:( 1)填写下表:图形编号123456图中棋子数5811141720( 2)照这样的方式摆下去,写出摆第n 个图形所需棋子的枚数;( 3)其中某一图形可能共有2011枚棋子吗?若不可能,请说明理由;若可能,请你求出是第几个图形.34.观察图中四个顶点的数字规律:( 1)数字“ 30”在个正方形的;(2)请你用含有 n ( n ≥ 1 的整数)的式子表示正方形四个顶点的数字规律;(3)数字“ 2011”应标在什么位置.35.如图,各图表示若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n > 1)盆花,每个图案中花盆的总数为S.问:①当每条边有 2 盆花时,花盆的总数S 是多少?②当每条边有 3 盆花时,花盆的总数S 是多少?③当每条边有 4 盆花时,花盆的总数S 是多少?④当每条边有10盆花时,花盆的总数S 是多少?⑤按此规律推断,当每条边有n 盆花时,花盆的总数S 是多少?36.如下图是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:( 1)第④、第⑤个“上”字分别需用和枚棋子;( 2)第 n 个“上”字需用枚棋子;( 3)七( 3)班有 50 名同学,把每一位同学当做一枚棋子,能否让这字?若能,请计算最下一“横”的学生数;若不能,请说明理由.50 枚“棋子” 按照以上规律恰好站成一个“上”37.下列表格是一张对同一线段上的个数变化及线段总条数的探究统计.线段上点的个数线段的总条数11+2=31+2+3=6⋯⋯( 1)请你完成探究,并把探究结果填在相应的表格里;( 2)若在同一线段上有10个点,则线段的总条数为;若在同一线段上有n 个点,则有(用含 n 的式子表示)( 3)若你所在的班级有60 名学生, 20 年后参加同学聚会,见面时每两个同学之间握一次手,共握手38.如图是用棋子摆成的“H ”字.( 1)摆成第一个“ H”字需要个棋子;摆第x个“H”字需要的棋子数可用含x 的代数式表示为( 2)问第几个“H”字棋子数量正好是2012 个棋子?条线段次.;39.我们知道,两条直线相交只有一个交点.请你探究:( 1)三条直线两两相交,最多有个交点;( 2)四条直线两两相交,最多有个交点;( 3) n 条直线两两相交,最多有个交点(n 为正整数,且n≥ 2 ).40.如图所示,小王玩游戏:一张纸片,第一次将其撕成四小片,手中共有 4 张纸片,以后每次都将其中一片撕成更小的四片.如此进行下去,当小王撕到第n 次时,手张共有S 张纸片.根据上述情况:(1)用含 n 的代数式表示 S;(2)当小王撕到第几次时,他手中共有70 张小纸片?41.如图①是一张长方形餐桌,四周可坐 6 人, 2 张这样的桌子按图②方式拼接,四周可坐10 人.现将若干张这样的餐桌按图③方式拼接起来:( 1)三张餐桌按题中的拼接方式,四周可坐人;( 2) n 张餐桌按上面的方式拼接,四周可坐人(用含n 的代数式表示).若用餐人数为26 人,则这样的餐桌需要张.42.用棋子摆出下列一组图形:( 1)填写下表:图形编号123456图形中的棋子(2)照这样的方式摆下去,写出摆第n 个图形棋子的枚数;(用含 n 的代数式表示)(3)如果某一图形共有 99 枚棋子,你知道它是第几个图形吗?43.如图①,图②,图③,图④,⋯,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,( 1)第 5 个“广”字中的棋子个数是.( 2)第 n 个“广”字需要多少枚棋子?44.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察图形并解答有关问题:( 1)在第 n 个图中共有块黑瓷砖,块白瓷砖;( 2)是否存在黑瓷砖与白瓷砖块数相等的情形?你能通过计算说明吗?45.用火柴棒按如图的方式搭三角形.照这样搭下去:( 1)搭 4 个这样的三角形要用( 2)搭 n 个这样的三角形要用根火柴棒; 13 根火柴棒可以搭根火柴棒(用含n 的代数式表示).个这样的三角形;46.观察图中的棋子:( 1)按照这样的规律摆下去,第 4 个图形中的棋子个数是多少?(2)用含 n 的代数式表示第 n 个图形的棋子个数;(3)求第 20 个图形需棋子多少个?47.如图,用正方体石墩垒石梯,下图分别表示垒到一、二、三阶梯时的情况.那么照这样垒下去,请你观察规律,并完成下列问题.( 1)填出下表中未填的两个空格:阶梯级数一级二级三级石墩块数39( 2)当垒到第n 级阶梯时,共用正方体石墩多少块(用含多少块?四级n 的代数式表示)?并求当n=100 时,共用正方体石墩48.有一张厚度为0.05 毫米的纸,将它对折1次后,厚度为2×0.05 毫米.(1)对折 3 次后,厚度为多少毫米?(2)对折 n 次后,厚度为多少毫米?(3)对折 n 次后,可以得到多少条折痕?49.如图所示,用同样规格正方形瓷砖铺设矩形地面,请观察下图:按此规律,第 n 个图形,每一横行有按此规律,铺设了一矩形地面,共用瓷砖块瓷砖,每一竖列有块瓷砖(用含 n 的代数式表示) 506 块,请问这一矩形的每一横行有多少块瓷砖,每一竖列有多少瓷砖?50.找规律:观察下面的星阵图和相应的等式,探究其中的规律.( 1)在④、⑤和⑥后面的横线上分别写出相应的等式:①222 1=1② 1+3=2③ 1+3+5=3④;⑤;⑥;( 2)通过猜想,写出第n 个星阵图相对应的等式.51.将一张正方形纸片剪成四个大小一样的小正方形,然后将其中的一个正方形再剪成四个小正方形,如此循环下去,如图所示:( 1)完成下表:所剪次数 n12345正方形个数Sn4( 2)剪 n 次共有 S n个正方形,请用含n 的代数式表示S n=;( 3)若原正方形的边长为1,则第 n 次所剪得的正方形边长是(用含n的代数式表示).52.如图是用五角星摆成的三角形图案,每条边上有n(n> 1)个点(即五角星),每个图案的总点数(即五角星总数)用 S 表示.( 1)观察图案,当n=6 时, S=;( 2)分析上面的一些特例,你能得出怎样的规律?(用n 表示 S)(3)当 n=2008 时,求 S.53.用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点.观察图中每一个正方形(实线)四条边上的格点的个数,请回答下列问题:( 1)由里向外第 1 个正方形(实线)四条边上的格点个数共有个;由里向外第 2 个正方形(实线)四条边上的格点个数共有个;由里向外第 3 个正方形(实线)四条边上的格点个数共有个;( 2)由里向外第10 个正方形(实线)四条边上的格点个数共有个;( 3)由里向外第n 个正方形(实线)四条边上的格点个数共有个.54.下列各图是由若干花盆组成的形如正方形的图案,每条边(包括两个顶点)有n (n> 1)个花盆,每个图案花盆总数是S.( 1)按要求填表:n2345⋯S4812⋯( 2)写出当 n=10 时, S=.( 3)写出 S 与 n 的关系式: S=.( 4)用 42 个花盆能摆出类似的图案吗?55.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.( 1)在第 1 个图中,共有白色瓷砖块.( 2)在第 2 个图中,共有白色瓷砖块.( 3)在第 3 个图中,共有白色瓷砖块.( 4)在第 10 个图中,共有白色瓷砖块.( 5)在第 n 个图中,共有白色瓷砖块.56.淮北市为创建文明城市,各种颜色的菊花摆成如下三角形的图案,每条边(包括两个顶点)上有n ( n> 1)盆花,每个图案花盆的总数为S,当 n=2 时, S=3 ;n=3 时, S=6 ; n=4 时, S=10.( 1)当 n=6 时, S=( 2)你能得出怎样的规律?用;n=100 时, S=n 表示 S..57.下面是按照一定规律画出的一系列“树枝”经观察,图(图( 3)比图( 2 )多出 4 个“树枝”,图( 4)比图( 3)多出图( 5)比图( 4)多出个树枝;图( 6)比图( 5)多出个树枝;图( 8)比图( 7)多出个树枝;⋯图( n+1 )比图( n )多出个树枝.2 )比图( 1)多出 2 个“树枝”,8 个“树枝”,按此规律:58.如图是用棋子成的“要8 枚棋子,第三个“T ”字图案.从图案中可以出,第一个“T ”图案需要11枚棋子.T ”字图案需要 5 枚棋子,第二个“T ”字图案需(1)照此规律,摆成第八个图案需要几枚棋子?(2)摆成第 n 个图案需要几枚棋子?(3)摆成第 2010 个图案需要几枚棋子?59.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:( 1)当黑砖 n=1 时,白砖有( 2)第 n 个图案中,白色地砖共块,当黑砖块.n=2时,白砖有块,当黑砖n=3时,白砖有块.60.下列图案是晋商大院窗格的一部分.其中,“ o”代表窗纸上所贴的剪纸.探索并回答下列问题:( 1)第 6 个图案中所贴剪纸“o”的个数是;( 2)第 n 个图案中所贴剪纸“o”的个数是;( 3)是否存在一个图案,其上所贴剪纸“o”的个数为2012 个?若存在,指出是第几个;若不存在,请说明理由.图形找规律 60 题参考答案:1.结合图形和表格,不难发现:1张桌子座 6 人,多一张桌子多 2 人. 4 张桌子可以座10+2=12.即 n 张桌子时,共座6+2 ( n﹣ 1)=2n+4 .2.当横截线有 n 条时,在 6 个的基础上多了 n 个 6,即三角形的个数共有 6+6n=6 ( n+1 )个.故应填 6(n+1)或 6n+63.∵画 1个点,可得 3 条线段, 2+1=3 ;画2 个点,可得 6 条线段, 3+2+1=6 ;画3 个点,可得 10条线段, 4+3+2+1=10 ;⋯;画n 个点,则可得( 1+2+3+ ⋯ +n+n+1 )=条线段.所以画 10个点,可得=66 条线段;4.根据图形可以发现,第七排的第一个数和第二数与第八排的第二个数相等,而第八排的第二个数就是 x,所以 x=61.另外,由图形可知, x 右边的数是 2×61=122, y 左边的数是 2 ×61+56=178 ,所以 y=178+46=2245.根据题意分析可得:第 1 个图案中正方形的个数2个,第 2 个图案中正方形的个数比第 1 个图案中正方形的个数多 4 个,第 3 个图案中正方形的个数比第 2 个图案中正方形的个数多 6 个⋯,依照图中规律,第六个图形中有 2+4+6+8+10+12=42 个单位正方形6.图形从上到下可以分成几行,第n行中,斜放的火柴有 2n 根,下面横放的有n 根,因而图形中有 n 排三角形时,火柴的根数是:斜放的是2+4+ ⋯ +2n=2 ( 1+2+ ⋯+n )横放的是:1+2+3+ ⋯+n ,则每排放 n 根时总计有火柴数是:3(1+2+ ⋯ +n ) = 3n(n1)把n=7代入就可以求2出.故第 7 个图形中共有=84 根火柴棒7.图 1中,是 1 个正方形;图2 中,是 1+4=5 个正方形;图3 中,是 1+4×2=9 个正方形;依此类推,第n 个图的所有正方形个数是1+4( n ﹣ 1)=4n ﹣ 3.8.∵第 1 个图案中有2×2+2 ×1=6 个三角形;第2 个图案中有 2×3+2 ×2=10 个三角形;第3 个图案中有 2×4+2 ×3=14 个三角形;⋯∴第 6 个图案中有2×7+2 ×6=26 个三角形.故答案为269.∵正方形的边长是1,所以它的斜边长是:= ,所以第二个正方形的面积是:×=,第三个正方形的面积为=()2,以此类推,第 n 个正方形的面积为()n﹣ 1,6﹣ 1所以第六个正方形的面积是()=;故答案为:,.10.∵第一个有 1 个小正方形,第二个有 1+2 个,第三个有1+2+3 个,第四个有 1+2+3+4 ,第五个有 1+2+3+4+5 ,∴则第 10个图形有 1+2+3+4+5+6+7+8+9+10=55 个.故答案为: 5511.依题意得:( 1)摆第 1 个“小屋子”需要 5 个点;摆第 2 个“小屋子”需要 11个点;摆第 3 个“小屋子”需要17个点.当n=n 时,需要的点数为( 6n﹣ 1)个.故答案为 6n﹣ 112.由图形可知:第一个金鱼需用火柴棒的根数为:2+6=8 ;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20 ;⋯;第 n 个金鱼需用火柴棒的根数为:2+n ×6=2+6n .故答案为 2+6n13.6 条直线两两相交,最多有n( n ﹣ 1)= ×6×5=15,20 条直线两两相交,最多有n( n ﹣ 1)=×20×19=190.故答案为: 15, 190.14.如表格所示:图形编( 1)(2)(3)⋯n号火柴根 71217⋯5n+2数15.设白三角形 x 个,黑三角形 y 个,故答案为:白则: n=1 时, x=0 , y=1;23.依题意可求出梯形个数与图形周长的关系为3n+2= n=2 时, x=0+1=1 , y=3 ;周长,n=3 时, x=3+1=4 ,y=9 ;当梯形个数为2007 个时,这时图形的周长为3×n=4 时, x=4+9=13 , y=27 ;2007+2=6023 .当 n=5 时, x=13+27=40 ,故答案为: 6023 .所以白的正三角形个数为:40,24.观察图形知:故答案为: 40第一个图形有2个小正方形;16. n=1 时, S=1+1=2 ,1=1n=2 时, S=1+1+2=4 ,第二个图形有1+3=4=22 个小正方形;n=3 时, S=1+1+2+3=7 ,n=4 时, S=1+1+2+3+4=11 ,第三个图形有1+3+5=9=3 2 个小正方形;⋯所以当切 n 刀时, S=1+1+2+3+4+ ⋯ +n=1+n(n+1 )⋯2第 n 个图形共有 1+2+3+ ⋯ +( 2n ﹣ 1)=n 2 个小正方形,n+1.= n +22n2 +n+1当 n=4 时,有 n =4 =16 个小正方形.故答案为17.根据题意得:故答案为: 16,n2第( 1)个图案只有 1 个等腰梯形,周长为3×1+4=7;25.根据已知图形可以发现:第( 2 )个图案由 3 个等腰梯形拼成,其周长为 3×3+4=13 ;第 2 个图形中,火柴棒的根数是7;第( 3)个图案由 5 个等腰梯形拼成,其周长为 3×5+4=19;第 3 个图形中,火柴棒的根数是10;⋯第 4 个图形中,火柴棒的根数是13;第( n)个图案由( 2n ﹣ 1)个等腰梯形拼成,其周长为∵每增加一个正方形火柴棒数增加3,3( 2n﹣ 1) +4=6n+1 ;∴第 n 个图形中应有的火柴棒数为: 4+3( n ﹣1)=3n+1 .故答案为: 6n+1当 n=7 时, 4+3 ( n ﹣ 1) =4+3 ×6=22 ,18.观察发现:故答案为: 22第 1 个图形有 S=9 ×1+1=10个点,26.观察图形发现:第 2 个图形有 S=9 ×2+1=19 个点,当 n=2 时, s=4 ,第 3 个图形有 S=9 ×3+1=28 个点,当 n=3 时, s=9 ,⋯当 n=4 时, s=16,第 n 个图形有 S=9n+1 个点.当 n=5 时, s=25 ,故答案为: 9n+1⋯19. n=3 时, S=6=3 ×3﹣ 3=3 ,当 n=n 时, s=n 2 ,n=4 时, S=12=4 ×4﹣ 4,n=5 时, S=20=5 ×5﹣ 5,故答案为: s=n2⋯,依此类推,边数为 n 数, S=n ?n﹣n=n ( n ﹣ 1).27.∵第 1 个图形中,十字星与五角星的个数和为3×故答案为: n ( n ﹣ 1).2=6 ,20.结合图形,发现:搭第n 个三角形,需要 3+2 ( n第 2 个图形中,十字星与五角星的个数和为3×3=9 ,﹣ 1) =2n+1 (根).第 3 个图形中,十字星与五角星的个数和为3×4=12,故答案为 2n+1⋯21.因为 2011÷6=335 ⋯ 1.余下的 1 个根据顺序应是黑而 27=3 ×9,色三角形,所以共有 1+335×3=1006.∴第 8 个图形中,十字星与五角星的个数和=3 ×9=27 .故答案为: 1006故答案为: 822 .从所给的图中可以看出,每六个棋子为一个循环,28. 2 条直线最多的交点个数为1,∵ 2011÷6=335 ⋯ 1, 3 条直线最多的交点个数为1+2=3 ,∴第 2011个棋子是白的. 4 条直线最多的交点个数为1+2+3=6 ,5 条直线最多的交点个数为1+2+3+4=10 ,33.( 1)观察图形,得出枚数分别是,5, 8, 11,⋯,⋯每个比前一个多 3 个,所以图形编号为5,6 的棋字子所以 2000条直线最多的交点个数为1+2+3+4+ ⋯数分别为 17, 20.+1999==1999000.故答案为: 17和 20.( 2 )由( 1)得,图中棋子数是首项为5,公差为 3 的故答案为 1999000等差数列,29.∵小正方形的边长是1,所以摆第 n 个图形所需棋子的枚数为:5+3 ( n﹣ 1)∴图 1 的周长是: 1×4=4 ,=3n+2 .图 2 的周长是:2×4=8 ,( 3)不可能图 3 的周长是 3×4=12,由 3n+2=2010 ,⋯解得: n=669,第 n 个图的周长是 4n,∴图 10的周长是10×4=40;∵ n 为整数,故答案为:8, 12, 40∴ n=669 不合题意30.首先发现:第一个图案中,有白色的是6 个,后边是依次多 4 个.故其中某一图形不可能共有2011 枚棋子所以第 n 个图案中,是6+4 ( n ﹣ 1) =4n+2 .34.( 1)由图可知,每个正方形标 4 个数字,∴ m 与 n 的函数关系式是m=4n+2 .∵ 30÷4=7 ⋯ 2,故答案为: 4n+2 .∴数字 30 在第 8 个正方形的第 2个位置,即右上角;31.第一个图需棋子 6,故答案为: 8,右上角;第二个图需棋子9,( 2 )左下角是 4 的倍数,按照逆时针顺序依次减1,第三个图需棋子12,即正方形左下角顶点数字:4n,第四个图需棋子15,正方形左上角顶点数字:4n﹣ 1,第五个图需棋子18,正方形右上角顶点数字:4n﹣ 2,⋯正方形右下角顶点数字:4n﹣ 3;第 n 个图需棋子3( n+1)枚.( 3) 2011÷4=502 ⋯3 ,( 1)当 n=6 时, 3×(6+1) =21 ;所以,数字“ 2011”应标第503 个正方形的左上角顶点当 n=7 时, 3 ×(7+1) =24 ;处( 2)第 n 个图需棋子3( n+1 )枚.35.依题意得:① n=2 , S=3=3 ×2﹣ 3.( 3)设第 n 个图形有2012 颗黑色棋子,② n=3 , S=6=3 ×3﹣ 3.根据( 1)得 3( n+1)=2012③ n=4 ,S=9=3 ×4﹣ 3解得 n=,④ n=10, S=27=3 ×10﹣3 .⋯所以不存在某个图形有2012 颗黑色棋子⑤按此规律推断,当每条边有n 盆花时, S=3n ﹣ 3 32.( 1)由点阵图形可得它们的点的个数分别为:1,5,36.( 1)第①个图形中有 6 个棋子;9,13,⋯,并得出以下规律:第②个图形中有6+4=10 个棋子;第一个点数: 1=1+4×(1﹣ 1)第③个图形中有6+2 ×4=14 个棋子;第二个点数: 5=1+4 ×(2 ﹣1)∴第⑤个图形中有 6+3 ×4=18 个棋子;第三个点数: 9=1+4 ×(3﹣ 1)第⑥个图形中有6+4 ×4=22 个棋子.第四个点数: 13=1+4×(4﹣ 1)故答案为 18、 22;(3 分)⋯( 2 )第 n 个图形中有 6+ ( n ﹣1)×4=4n+2 .因此可得:故答案为 4n+2 .(3 分)第 n 个点数: 1+4×(n ﹣ 1) =4n ﹣3 .( 3) 4n+2=50 ,故答案为: 4n﹣ 3;解得 n=12 .( 2)设这个点阵是 x 个,根据(1)得:最下一横人数为2n+1=25 .( 4 分)1+4×(x﹣ 1) =3737.( 1) 5 个点时,线段的条数:1+2+3+4=10 ,解得: x=10. 6 个点时,线段的条数:1+2+3+4+5=15 ;答:这个点阵是10个( 2 )10个点时,线段的条数: 1+2+3+4+5+6+7+8+9=45,n 个点时,线段的条数:1+2+3+ ⋯ + (n﹣ 1)图形 6912151821=;中的棋子(3)60人握手次数 ==1770.( 2 )依题意可得当摆到第n 个图形时棋子的枚数应为:6+3 ( n ﹣1) =6+3n ﹣ 3=3n+3 ;故答案为:( 2) 45,;( 3) 1770.( 3)由上题可知此时3n+3=99 ,∴ n=32 .38.( 1)摆成第一个“ H ”字需要7 个棋子,答:第 32 个图形共有99 枚棋子第二个“ H”字需要棋子12 个;13.由题目得:第 1 个“广”字中的棋子个数是7;第三个“ H”字需要棋子17个;第 2 个“广”字中的棋子个数是7+ (2 ﹣ 1)×2=9 ;⋯第 3 个“广”字中的棋子个数是7+ ( 3﹣ 1)×2=11;第 x 个图中,有7+5 ( x﹣ 1) =5x+2 (个).第 4 个“广”字中的棋子个数是7+ (4﹣ 1)×2=13;( 2)当 5x+2=2012时,解得: x=402 ,发现第 5 个“广”字中的棋子个数是 7+( 5﹣ 1)×2=15⋯故第 402 个“ H”字棋子数量正好是2012 个棋子进一步发现规律:第n 个“广”字中的棋子个数是7+ 39.(1)如图( 1),可得三条直线两两相交,最多有3( n ﹣ 1)×2=2n+5 .个交点;故答案为: 15( 2)如图( 2),可得三条直线两两相交,最多有 6 个44.( 1)在第 n 个图形中,需用黑瓷砖4n+6块,白瓷交点;砖 n(n+1 )块;( 3)由( 1)得,=3 ,( 2 )根据题意得n (n+1 ) =4n+6 ,n2﹣ 3n ﹣6=0 ,由( 2)得,=6 ;此时没有整数解,∴可得, n 条直线两两相交,最多有个交点所以不存在.故答案为: 4n+6 ; n(n+1 )( n 为正整数,且n≥ 2 ).45.(1)结合图形,发现:后边每多一个三角形,则需故答案为3;6;.要多 2 根火柴.则搭 4 个这样的三角形要用3+2 ×3=9 根火柴棒;13根火柴棒可以搭( 13﹣ 3)÷2+1=6 个这样的三角形;( 2 )根据( 1)中的规律,得搭 n 个这样的三角形要用3+2( n ﹣1)=2n+1根火柴棒.故答案为9; 6; 2n+140.( 1)由题目中的“每次都将其中﹣片撕成更小的四46.( 1)第 4 个图形中的棋子个数是13;片”,( 2 )第 n 个图形的棋子个数是3n+1 ;可知:小王每撕一次,比上一次多增加 3 张小纸片.( 3)当 n=20 时, 3n+1=3 ×20+1=61∴ s=4+3 (n ﹣ 1)=3n+1 ;∴第 20 个图形需棋子61 个( 2)当 s=70 时,有 3n+1=70 ,n=23 .即小王撕纸 2347.( 1)第一级台阶中正方体石墩的块数为:次=3 ;41.( 1)结合图形,发现:每个图中,两端都是坐 2 人,剩下的两边则是每一张桌子是 4 人.第一级台阶中正方体石墩的块数为:=9 ;则三张餐桌按题中的拼接方式,四周可坐3×4+2=14(人);第一级台阶中正方体石墩的块数为:;( 2) n 张餐桌按上面的方式拼接,四周可坐(4n+2 )人;⋯若用餐人数为 26人,则 4n+2=26 ,依此类推,可以发现:第几级台阶中正方体石墩的块数解得 n=6 .为: 3 与几的乘积乘以几加1,然后除以 2.故答案为: 14;( 4n+2 ),6阶梯级数一级二级三级四级42.( 1)如图所示:石墩块数391830图形 123456编号( 2)按照( 1)中总结的规律可得:当垒到第n 级阶梯时,共用正方体石墩块;当n=100 时,∴当 n=100 时,共用正方体石墩15150块.答:当垒到第n 级阶梯时,共用正方体石墩块;当 n=100 时,共用正方体石墩15150块48.由题意可知:第一次对折后,纸的厚度为 2×0.05;可以得到折痕为 1 条;第二次对折后,纸的厚度为2×2×0.05=2 2×0.05;可以得到折痕为 3=2 2﹣ 1 条;第三次对折后,纸的厚度为 2 ×2×2×0.05=2 3×0.05;可以3得到折痕为7=2 ﹣ 1 条;第 n 次对折后,纸的厚度为2×2×2 ×2 ×⋯×2×0.05=2 n×0.05.可以得到折痕为 2 n﹣ 1 条.故:(1)对折 3 次后,厚度为 0.4 毫米;(2)对折 n 次后,厚度为 2 n×0.05 毫米;(3)对折 n 次后,可以得到 2n﹣1 条折痕49.由图形我们不难看出横行砖数量为n+3 ,竖行砖数2量为 n+2 ,总数量为n +5n+6 ;若用瓷砖506 块,可以求n2 +5n+6=506 ;所以答案为:( 1)n+3 , n+2 ;( 2)每一行有23 块,每一列有22 块50.等号左边是从 1 开始,连续奇数相加,等号右边是奇数个数也就是 n 的平方.(1)① 1+3+5+7=4 2;2②1+3+5+7+9=5 ;③ 1+3+5+7+9+11=6 2.251.( 1)依题意得:所剪次数 n12345正方形个数 Sn 47101316(2 )可知剪 n 次时, S n=3n+1 .(3) n=1 时,边长 = ;n=2 时,边长 =;n=3 时,边长 =;⋯;剪 n 次时,边长 =.52.(1) S=15(2 )∵ n=2 时, S=3 ×(2﹣ 1)=3 ;n=3 时, S=3 ×(3﹣1) =6 ;n=4 时, S=3 ×(4﹣1) =9 ;⋯∴S=3 ×(n ﹣ 1) =3n ﹣ 3.(3)当 n=2008 时, S=3 ×2008 ﹣ 3=6021.53.第 1 个正方形四条边上的格点共有 4 个第 2 个正方形四条边上的格点个数共有(4+4×1)个第 3 个正方形四条边上的格点个数共有(4+4×2 )个⋯第 10个正方形四条边上的格点个数共有(4+4 ×9) =40个第 n 个正方形四条边上的格点个数共有[4+4 ×(n﹣1)]=4n 个54.由图可知,每个图形为边长是n 的正方形,因此四条边的花盆数为 4n ,再减去重复的四个角的花盆数,即S=4n ﹣ 4;( 1)将 n=5 代入 S=4n ﹣ 4,得 S=16;(2 )将 n=10 入 S=4n ﹣ 4,得 S=36 ;(3) S=4n ﹣ 4;(4)将 S=42 代入 S=4n ﹣ 4 得,4n﹣4=42解得 n=11.5所以用 42 个花盆不能摆出类似的图案55.( 1)在第 1 个图中,共有白色瓷砖1×(1+1)=2 块,( 2 )在第 2 个图中,共有白色瓷砖2×(2+1) =6 块,( 3)在第 3 个图中,共有白色瓷砖3×(3+1) =12 块,( 4)在第10个图中,共有白色瓷砖10×(10+1) =110块,( 5)在第 n 个图中,共有白色瓷砖n ( n+1 )块56.( 1)由分析得:当n=6 时, s=1+2+3+4+5+6=21;当n=100 时, s=1+2+3+ ⋯ +99+100=5050 ;( 2 )用 n 表示 S 得: S=。
5.找规律画图
【星期一】
1.观察规律,在后面再画一个图。
(1)
(2)
2.先找一找方框里八个图形每行排列的规律,再从右面挑选一个合适的图形,把这个图形的号码填入空格内。
3.在下面空白的方格里填上几号图形才适当?
4.
1.观察规律,在后面再画一个图。
2.观察规律,在空格里画一个图。
3.观察规律,在后面再画一个图。
4.观察规律,选一个图画在空格里。
1.观察规律,在空格里画一个图。
2.观察图形中的规律,填出最后一个。
3.观察下列的机器人面孔,找出
规律,填出最后一个。
4.想想每组图形中的排列规律,从右面这些图中选择一个合适的图,并把这个图的号码填在这一组的空白图里。
【星期四】
1
2
3.接着应该怎样画?请画在空格里。
4
5、想一想,第四幅图该怎么填?
6
【星期五】
1、仔细观察,第四幅图应画什么图形?
2、想一想,空白处应填什么图?
3、仔细观察,想一想第四幅图应画什么?
4.在空格里填上适当的图形。
按规律填图找到图形位置上、顺序、形状、数量上的的规律,然后填上下一个图。
解题要点:(1)按图形位置填。
位置包括上、下、左右、里、外。
(2)按图形顺序填。
序填包括前、后顺时、针逆时针。
(3)按图形形状和数量填。
例1、○□◎◎ 、□◎◎○、◎◎○□根据规律下一组图形是例2、观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.例3、图中的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.例4、如图,○、△、□各表示一个两位数中的其中一个数字,观察下面图与数的关系,第4图形表示的两位数是多少?练习11、◎◎■□,◎■□◎,■□◎◎,根据规律,下组图形是:2.如图所示填出?3、找一下规律,下一个是什么图.4、选择虚线框中的图形.5、下面五个图形中与众不同的是那个?.练习21、观察图中的各图形与它下面的数之间的关系,写出“?”处的数.2、○、□、△各表示一个数字,下面的每一个图形都是由○、□、△中的两个构成的.观察各个图形,根据图下表示的数找出规律,画出表示32的图形.3、根据下列的图和字母的关系,将ad的图补上.4、5、找规律,画出CB的图练习3、1、找规律填文字.2、找规律填图3、根据图1的变化规律,画出图2变化后的形状.5、根据下面几幅图的排列规律,第四幅图是什么图6、根据甲图的变化规律给乙图的“?”选择一个恰当的图形是( )练习4、1、如图,原本是由9个小人排列成的方阵,但有一个人没有到位,请你根据图形的规律,在标有问号的位置画出你认为合适的小人.2、仔细观察,找出如图中的图形排列规律,并在空格内画上适当的图形.练习51.哥哥4个,姐姐有3个苹果,弟弟有8个苹果,哥哥给弟弟1个后,弟弟吃了3个,这时谁的苹果多?2、老师给9个三好生每人发一朵花,还多出1朵红花,老师共有多少朵红花?3、有5个同学投沙包,老师如果发给每人2个沙包就差1个,老师共有多少个沙包?4、春天来了,小明、小冬和小强到郊外捉蝴蝶,小明捉了3只,小冬捉了5只,他们一共捉了12只,小强捉了几只?5、小华和爸爸、妈妈为植树节义务植树,小华植了1棵,爸爸植了5棵,妈妈比爸爸少植2棵,妈妈植了多少棵,他们一共植了多少棵?。
知识要点:
小朋友,有些图形的变化比较复杂,不能一下看出它们的变化规律,我们必须仔细观察,从它们的大小、方向、位置、顺序、色彩等变化多角度的分析、比较、找出规律后,再按规律填出图形来。
例1 仔细观察,“?”处填什么图形?
这样思考:竖着看,左边的图形状相同只是颜色不同,依照这个规律右边的图形状也相同。
横着看第一排圆形的颜色相同,所以第二排圆形的颜色也相同。
答案
例2仔细观察,“?”处填什么图形?
这样思考:第一排箭头分别向左、向上、向右,第二排与第一排规律相同,所以第三排问号处箭头应向右。
答案
例3仔细观察,“?”处填什么图形?
这样思考:第一排都是三角形,第二排都是圆形,依此规律,第三排是正方形。
由于左边个数都是四个,那么右边的规律都是一个.
答案
例4 先看一看9个小雪人的排列规律,再将答案填入空白处。
这样思考:一共有三种颜色的小雪人,分别是黄色、紫色、绿色。
依此规律,第三排缺少绿色的小雪人。
答案
例5 仔细观察,寻找规律,在空白处填上合适的图形.
这样思考:一共有四种图形,分别是正方形、三角形、长方形、圆形,根据长方形第一排在第四个,第二排在第三个,第三排在第二个,第四排在第一个的这个规律,第二排空白处就是正方形。
第三排是圆和三角形,由于三角形已经排过第一和第二的位置,这次应在第三的位置,第四就是圆形。
第四排照此规律分别是正方形、圆形、最后是三角形。
答案
·题目1:观察下面图形的变化,找出图形变化的规律,然后按照这个规律在空格中画出应画的图形。
图1
A.A
B.B
如图看不清或变形,可以点击图片放大
·题目2:观察下面图形的变化,找出图形变化的规律,然后按照这个规律在空格中画出应画的图形。
图1
A.A
B.B
如图看不清或变形,可以点击图片放大
·题目3:观察下面图形的变化,找出图形变化的规律,然后按照这个规律在空格中画出应画的图形。
图1
A.A
B.B
如图看不清或变形,可以点击图片放大
·题目4:观察下面图形的变化,找出图形变化的规律,然后按照这个规律在问号处画出合适的图形。
图1
A.A
B.B
如图看不清或变形,可以点击图片放大
·题目5:观察下面图形的变化,找出图形变化的规律,然后按照这个规律在小树上画出合适的图形。
图1
A.A
B.B
如图看不清或变形,可以点击图片放大。