第七章 参数估计
- 格式:pdf
- 大小:426.92 KB
- 文档页数:46
第七章参数估计对给定的统计问题,在建立了统计模型以后,我们的任务就是依据样本对未知总体进行各种推断,参数估计是统计推断的重要内容之一。
本章主要介绍进行参数估计的方法及其评价等。
7.1 点估计方法参数估计,就是要从样本出发去构造一个统计量作为总体中某未知参数的一个估计量。
若总体X的分布函数的形式为已知,但它的一个或多个参数未知,则由总体X的一个样本去估计总体未知参数的值的问题就是参数的点估计问题。
例如,某钢筋厂日生产某种型号钢筋10000根,为了要得知这批钢筋的强度,质量检察员从中抽取50跟进行检查。
如何从抽查的50根钢筋强度的数据去估计整批钢筋强度的平均值?这就是参数估计要解决的问题。
在实际问题中,我们常常以统计量作为总体X的期望值的估计量。
设总体X的分布函数为F (x,θ ),其中θ 为未知参数。
X1,X2, (X)为总体X的一个样本。
点估计的问题就是由样本构造一个统计量作为未知参数θ 的一个估计量。
若x1,x2,…,xn是样本观察值,则代入估计量中即可以得到一个关于参数θ 的估计值。
在不致混淆的情况下,我们把估计量或估计值简称为估计。
构造估计的方法很多,下面介绍三中常用的方法。
7.1.1 频率替换法假定在n次实验中,事件A发生了n A次,(n A / n)为A发生的频率,设P (A ) = p (0< p<1),则由概率论的大数定律:频率(n A / n)依概率收敛于事件A 发生的概率p,即对任意ε >0,成立,于是,当n较大时,(n A / n)与p非常接近,自然地取(n A / n)作为p的估计,.这种由频率估计相应的概率而得到的估计量的方法称为频率替换法。
例1 估计一批产品的次品率p。
设产品只区分正品与次品,分别以X取0和1表示产品为正品和次品,所以总体X服从参数为p的(0-1)分布,即p为未知的待估参数。
令事件A表示“产品为次品”,则p = P (A) = P (X=1)。
第七章 参数估计参数估计是指由样本指标值(统计量)估计总体指标值(参数),即当总体的分布性质已知,但其所含参数真值未知时,根据一组样本的观察值12,,,n X X X ,来估计总体中未知参数θ或θ的某函数。
对于总体参数作出估计的样本统计量称为估计量。
常用的参数估计方法有两种:点估计和区间估计。
第一节 总体参数的点估计与优良性一、参数的点估计参数的点估计就是用样本统计量直接作为总体参数的估计值,如用X 估计相应的μ。
定义7-1 设总体X 的分布函数(;)F x θ形式为已知,θ是待估参数,12,,,n X X X 是X 的一个样本,12,,,n x x x 是相应的一个样本值。
所谓点估计问题就是要构建一个适当的统计量θ(12,,,n X X X ),用其观察值θ(12,,,n x x x )作为未知参数θ的近似值来估计未知参数θ,称θ(12,,,n X X X )为θ的估计量,θ(12,,,n x x x )为θ的估计值。
在不致混淆情况下统称估计量和估计值为估计,并都简记为θ,这类对于参数值的估计称为点估计。
参数点估计的方法有:矩估计法、最大似然估计法、顺序统计量法和最小二乘法等,现在只介绍最常用的矩估计法。
二、矩估计法定义7-2 矩是描述随机变量最简单的数字特征,是以均值为基础的数字特征,均值是一阶矩,方差是二阶中心矩。
在一定条件下,一个随机变量的分布可由它的矩完全确定。
在大数定律中规定,样本的矩依概率收敛与总体矩,样本矩的连续函数依概率收敛于总体矩的连续函数,即以样本矩作为相应的总体矩的估计、以样本矩的函数作为相应总体矩的同一函数的估计而求得的未知参数的估计量称为矩估计法。
它的实质是采用样本的经验分布和样本矩去替换总体的分布和总体的原则,即替换原则。
从而可知,总体中期望值(均值)μ、总体方差σ2与总体标准差σ的矩估计量分别是2__12__1221)(11ˆ)(11ˆ1ˆX X n S X X n S X n X ni i n i i n i i --==--====∑∑∑===σσμ 例7-1 对糖尿病患者随机选取10名经检验空腹血糖水平的测定值(mmol/L)为5.47,6.17,6.42,6.56,6.62,6.81,7.12,7.20,8.41,8.53。