八年级上册数学 轴对称填空选择单元复习练习(Word版 含答案)
- 格式:doc
- 大小:1.09 MB
- 文档页数:31
八年级上册数学轴对称填空选择单元复习练习(Word版含答案)
一、八年级数学全等三角形填空题(难)
1.将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN 分别交AB、AC于点E、F.则下列四个结论:
①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四边形AEDF=1
4
BC2.其中正确结论
是_____(填序号).
【答案】①②
【解析】
分析:根据等腰直角三角形的性质可得AD=CD=BD,∠CAD=∠B=45°,故①正确;根据同角的余角相等求出∠CDF=∠ADE,然后利用“ASA”证明△ADE≌△CDF,判断出②,根据全等三角形的对应边相等,可得DE=DF=AF=AE,利用三角形的任意两边之和大于第三边,可得BE+CF>EF,判断出③,根据全等三角形的面积相等,可得S△ADF=S△BDE,从而求出四边形AEDF的面积,判断出④.
详解:∵∠B=45°,AB=AC
∴点D为BC的中点,
∴AD=CD=BD
故①正确;
由AD⊥BC,∠BAD=45°
可得∠EAD=∠C
∵∠MDN是直角
∴∠ADF+∠ADE=∠CDF+∠ADF=∠ADC=90°
∴∠ADE=∠CDF
∴△ADE≌△CDF(ASA)
故②正确;
∴DE=DF,AE=CF,
∴AF=BE
∴BE+AE=AF+AE
∴AE+AF>EF
故③不正确;
由△ADE≌△CDF可得S△ADF=S△BDE
∴S 四边形AEDF =S
△ACD =
12×AD×CD=12×12BC×12BC=18
BC 2, 故④不正确.
故答案为①②. 点睛:此题主要查了等腰三角形的性质和全等三角形的判定与性质,以及三角形的三边关系,关键是灵活利用等腰直角三角形的边角关系和三线合一的性质.
2.如图,已知点I 是△ABC 的角平分线的交点.若AB +BI =AC ,设∠BAC =α,则∠AIB =______(用含α的式子表示)
【答案】1206
α︒-
【解析】
【分析】 在AC 上截取AD=AB ,易证△ABI ≌△ADI ,所以BI=DI ,由AB +BI =AC ,可得DI=DC ,
设∠DCI=β,则∠ADI=∠ABI=2β,然后用三角形内角和可推出β与α的关系,进而求得∠AIB.
【详解】
解:如图所示,在AC 上截取AD=AB ,连接DI ,
点I 是△ABC 的角平分线的交点
所以有∠BAI=∠DAI ,∠ABI=∠CBI ,∠ACI=∠BCI ,
在△ABI 和△ADI 中,
AB=AD BAI=DAI AI=AI ⎧⎪∠∠⎨⎪⎩
∴△ABI ≌△ADI (SAS )
∴DI=BI
又∵AB +BI =AC ,AB+DC=AC
∴DI=DC ∴∠DCI=∠DIC
设∠DCI=∠DIC=β
则∠ABI=∠ADI=2∠DCI=2β
在△ABC 中,
∠BAC+2∠ABI+2∠DCI=180°,即42180ββ︒++=a ,
∴180=3066
β︒︒=--a a 在△ABI 中,180︒∠=-∠-∠AIB BAI ABI
121802
αβ︒=-- 1=23160028αα︒︒⎛⎫--- ⎪⎝
⎭ =1206α
︒-
【点睛】
本题考查全等三角形的判定和性质,以及三角形角度计算,利用截长补短构造全等三角形是解题的关键.
3.如图,已知点(,0)A a 在x 轴正半轴上,点(0,)B b 在y 轴的正半轴上,ABC ∆为等腰直角三角形,D 为斜边BC 上的中点.若2OD =,则a b +=________.
【答案】2
【解析】
【分析】
根据等腰直角三角形的性质,可得AP 与BC 的关系,根据垂线的性质,可得答案
【详解】
如图:作CP ⊥x 轴于点P ,由余角的性质,得∠OBA=∠PAC ,
在Rt
△OBA 和Rt △PAC 中,
OBA PAC AOB CPA BA AC ∠∠⎧⎪∠∠⎨⎪⎩
===,
Rt △OBA ≌Rt △PAC (AAS ),
∴AP=OB=b ,PC=OA=a .
由线段的和差,得OP=OA+AP=a+b ,即C 点坐标是(a+b ,a ),
由B (0,b ),C (a+b ,a ),D 是BC 的中点,得D (
2a b +,2a b +), ∴OD=2a b +() ∴22
a b +()=2, ∴a+b=2.
故答案为2.
【点睛】
本题解题主要①利用了等腰直角三角形的性质;②利用了全等三角形的判定与性质;③利用了线段中点的性质.
4.如图,平面直角坐标系中,A (0,3),B (4,0),BC ∥y 轴,且BC <OA ,第一象限内有一点P (a ,2a -3),若使△ACP 是以AC 斜边的等腰直角三角形,则点P 的坐标为_______________.
【答案】(103,113
).
【解析】
【详解】
解:∵点P的坐标为(a,2a-3),
∴点P在直线y=2x-3上,
如图所示,当点P在AC的上方时,过P作y轴的垂线,垂足为D,交BC的延长线于E,
则∠E=∠ADP=90°,
∵△ACP是以AC为斜边的等腰直角三角形,
∴AP=PC,∠APD=∠PCE,
∴△APD≌△PCE,
∴PE=AD,
又∵OD=2a-3,AO=3,
∴AD=2a-6=PE,
∵DE=OB=4,DP=a,
又∵DP+PE=DE,
∴a+(2a-6)=4,
解得a=10 3
∴2a-3=11 3
,
∴P(10
3
,
11
3
);
当点P在AC下方时,过P作y轴的垂线,垂足为D,交BC于E,a=2,
此时,CE=2,BE=2,
即BC=2+2=4>AO,不合题意;
综上所述,点P的坐标为P(10
3
,
11
3
)
故答案为P(10
3
,
11
3
).
5.在△ABC 和△DEF 中,AC=DF ,BC=EF ,∠B=∠E ,且∠B 、∠E 都是锐角,∠C <90°,若∠B 满足条件:______________,则△ABC ≌△DEF .
【答案】∠B≥∠A .
【解析】
【分析】
虽然题目中∠B 为锐角,但是需要对∠B 进行分类探究会理解更深入:可按“∠B 是直角、钝角、锐角”三种情况进行,最后得出∠B 、∠E 都是锐角时两三角形全等的条件.
【详解】
解:需分三种情况讨论:
第一种情况:当∠B 是直角时:
如图①,在△ABC 和△DEF ,AC=DF ,BC=EF ,∠B=∠E=90°,可知:△ABC 与△DEF 一定全等,依据的判定方法是HL ;
第二种情况:当∠B 是钝角时:如图②,过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作DH ⊥DE 交DE 的延长线于H .
∵∠B=∠E ,且∠B 、∠E 都是钝角.
∴180°-∠B=180°-∠E ,
即∠CBG=∠FEH .
在△CBG 和△FEH 中,
CBG FEH G H
BC EF ∠∠⎧⎪∠∠⎨⎪⎩
=== ∴△CBG ≌△FEH (AAS ),
∴CG=FH ,
在Rt △ACG 和Rt △DFH 中,
AC DF CG FH
⎧⎨⎩=,= ∴Rt △ACG ≌Rt △DFH (HL ),
∴∠A=∠D , 在△ABC 和△DEF 中,
A D
B E
AC DF ∠∠⎧⎪∠∠⎨⎪⎩==,=
∴△ABC ≌△DEF (AAS );
第三种情况:当∠B 是锐角时:
在△ABC 和△DEF 中,AC=DF ,BC=EF ,∠B=∠E ,且∠B 、∠E 都是锐角,小明在△ABC 中(如图③)以点C 为圆心,以AC 长为半径画弧交AB 于点D ,假设E 与B 重合,F 与C 重合,得到△DEF 与△ABC 符号已知条件,但是△AEF 与△ABC 一定不全等,
所以有两边和其中一边的对角对应相等的两个三角形不一定全等;
由图③可知,∠A=∠CDA=∠B+∠BCD,
∴∠A>∠B,
∴当∠B≥∠A时,△ABC就唯一确定了,
则△ABC≌△DEF.
故答案为:∠B≥∠A.
【点
睛】
本题是三角形综合题,考查全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键.
6.已知在△ABC 中,两边AB、AC的中垂线,分别交BC于E、G.若BC=12,EG=2,则△AEG的周长是________.
【答案】16或12.
【解析】
【分析】
根据线段垂直平分线性质得出AE=BE,CG=AG,分两种情况讨论:①DE和FG的交点在
△ABC内,②DE和FG的交点在△ABC外.
【详解】
∵DE,FG分别是△ABC的AB,AC边的垂直平分线,∴AE=BE,CG=AG.分两种情况讨论:①当DE和FG的交点在△ABC内时,如图1.
∵BC=12,GE=2,∴AE+AG=BE+CG=12+2=14,△AGE的周长是AG+AE+EG=14+2=16.
②当DE和FG的交点在△ABC外时,如图2,△AGE的周长是AG+AE+EG= BE+CG
+EG=BC=12.
故答案为:16或12.
【点睛】
本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相
等.
7.如图,Rt△ABC中,∠C=90°.E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是______.
【答案】16
【解析】
四边形FBCD周长=BC+AC+DF;当DF BC
时,四边形FBCD周长最小为5+6+5=16
8.如图,在△ABC中,AC=AB,∠BAC=90°,D是AC边上一点,连接BD,AF⊥BD于点F,点E在BF上,连接AE,∠EAF=45°,连接CE,AK⊥CE于点K,交DE于点H,
∠DEC=30°,HF=3
2
,则EC=______
【答案】6
【解析】
【分析】
延长AF交CE于P,证得△ABH≌△APC得出AH=CP,证得△AHF≌△EPF得出AH=EP,得出EC=2AH,解30°的直角三角形AFH求得AH,即可求得EC的长.
【详解】
如图,延长AF交CE于P,
∵∠ABH+∠ADB=90°,∠PAC+∠ADB=90°,
∴∠ABH=∠PAC ,
∵AK ⊥CE ,AF ⊥BD ,∠EHK=∠AHF ,
∴∠HEK=∠FAH ,
∵∠FAH+∠AHF=90°,∠HEK+∠EPF=90°,
∴∠AHF=∠EPF ,
∴∠AHB=∠APC ,
在△ABH 与△APC 中,
ABE PAC AB AC
AHB APC ∠∠⎧⎪⎨⎪∠∠⎩
===, ∴△ABH ≌△APC (ASA ),
∴AH=CP ,
在△AHF 与△EPF 中,
90AHF EPF AFH EFP AF EF ∠∠⎧⎪∠∠︒⎨⎪⎩
====,
∴△AHF ≌△EPF (AAS ),
∴AH=EP ,∠CED=∠HAF ,
∴EC=2AH ,
∵∠DEC=30°,
∴∠HAF=30°,
∴AH=2FH=2×32
=3, ∴EC=2AH=6.
【点睛】
本题考查了三角形全等的判定和性质,等腰直角三角形的判定和性质,作出辅助线根据全等三角形是解题的关键.
9.如图,在△ABC 中,∠ABC =50°,∠ACB =60°,点E 在BC 的延长线上,∠ABC 的平分线BD 与∠ACE 的平分线CD 相交于点D ,连接AD ,以下结论:
①∠BAC =70°;②∠DOC =90°;③∠BDC =35°;④∠DAC =55°,其中正确的是
__________.(填写序号)
【答案】①③④
【解析】
【分析】
根据三角形内角和定理、角平分线的定义、三角形外角的性质、角平分线的性质解答即可.
【详解】
解:∵∠ABC =50°,∠ACB =60°,∴∠BAC =180°﹣50°﹣60°=70°,①正确;
∵BD 是∠ABC 的平分线,∴∠DBC =
12
∠ABC =25°,∴∠DOC =25°+60°=85°,②错误; ∠BDC =60°﹣25°=35°,③正确;
∵∠ABC 的平分线BD 与∠ACE 的平分线CD 相交于点D ,∴AD 是∠BAC 的外角平分线,∴∠DAC =55°,④正确.
故答案为①③④.
【点睛】
本题考查的是角平分线的定义和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
10.如图,在△ABC 中, ∠BAC=90°, AB=AC=22,点D ,E 均在边BC 上,且∠DAE=45°,若BD=1,则DE=__________.
【答案】
53
【解析】 分析:根据等腰直角三角形的性质得45B ACB ∠=∠=,把△ABD 绕点A 逆时针旋转90得到△ACF ,连接,EF 如图,根据旋转的性质得
,,AD AF BAD CAF =∠=∠45,ABD ACF ∠=∠=接着证明45,EAF ∠=然后根据“SAS”可判断△ADE ≌△AFE ,得到DE =FE ,由于90ECF ACB ACF ∠=∠+∠=,根据勾股定
理得222CE CF EF +=,设,DE EF x == 则3CE x =-,
则()2
2231,x x -+=由此即可解决问题.
详解:90BAC AB AC ∠==,, ∴45B ACB ∠=∠=,
把△ABD 绕点A 逆时针旋转90得到△ACF ,连接,EF 如图,则
△ABD ≌△ACF ,
,,45,AD AF BAD CAF ABD ACF =∠=∠∠=∠=
∵45DAE ∠=,
∴45BAD CAE ∠+∠=,
∴45,CAF CAE ∠+∠=
即45,EAF ∠=
∴∠EAD =∠EAF ,
在△ADE 和△AFE 中
AE AE EAD EAF AD AF =⎧⎪∠=∠⎨⎪=⎩
, ∴△ADE ≌△AFE ,
∴DE =FE ,
∵90ECF ACB ACF ∠=∠+∠=,
∴222CE CF EF +=,
Rt △ABC 中,∵22AB AC ==, ∴224BC AB AC +=,
∵1BD =,
设,DE EF x == 则3CE x =-,
则有()22231,x x -+=
解得:5.3x =
∴5.3
DE = 故答案为5
.3
点睛:本题属于全等三角形的综合题,涉及三角形旋转,全等三角形的判定与性质,勾股定理等知识点,综合性较强,难度较大.
二、八年级数学全等三角形选择题(难)
11.如图,△ABC 中,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD =AB ,则下列结论不正确的是
A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC
【答案】B
【解析】
【分析】
根据余角的性质得到∠C=∠ABE,∠EBC=∠BAC.根据SAS推出△ABF≌△ADF,根据全等三角形的性质得到BF=DF,故A正确;由全等三角形的性质得到∠ABE=∠ADF,等量代换得到∠ADF=∠C,根据平行线的判定得到DF∥BC,故D正确;根据直角三角形的性质得到DF >EF,等量代换得到BF>EF;故C正确;根据平行线的性质得到
∠EFD=∠EBC=∠BAC=2∠1,故B错误.
【详解】
∵AB⊥BC,BE⊥AC,∴∠C+∠BAC=∠ABE+∠BAC=90°,∴∠C=∠ABE.同
理:∠EBC=∠BAC.
在△ABF与△ADF中,∵12
AD AB
AF AF
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△ABF≌△ADF,∴BF=DF,故A正确,
∵△ABF≌△ADF,∴∠ABE=∠ADF,∴∠ADF=∠C,∴DF∥BC,故D正确;
∵∠FED=90°,∴DF>EF,∴BF>EF;故C正确;
∵DF∥BC,∴∠EFD=∠EBC.∵∠EBC=∠BAC=∠BAC=2∠1,∴∠EFD=2∠1,故B错误.
故选B.
【点睛】
本题考查了全等三角形的判定和性质,平行线的判定和性质,证得△ABF≌△ADF是解题的关键.
12.如图,已知等腰Rt△ABC和等腰Rt△ADE,AB=AC=4,∠BAC=∠EAD=90°,D是射线BC 上任意一点,连接EC.下列结论:①△AEC△ADB;②EC⊥BC ;③以A、C、D、E为顶点的四边形面积为8;④当BD=时,四边形AECB的周长为10524
++;⑤当BD=
3
2
B时,ED=5AB;其中正确的有()
A .5个
B .4个
C .3 个
D .2个 【答案】B 【解析】解:∵∠BAC =∠EAD =90°,∴∠BAD =∠CA
E ,∵AB =AC ,AD =AE ,∴△AEC ≌△ADB ,故①正确; ∵△AEC ≌△ADB ,∴∠ACE =∠ABD =45°,∵∠ACB =45°,∴J IAO ECB =90°,∴EC ⊥BC ,故②正确;
∵四边形ADCE 的面积=△ADC 的面积+△ACE 的面积=△ADC 的面积+△ABD 的面积=△ABC 的面积=4×4÷2=8.故③正确;
∵BD =2,∴EC =2,DC =BC -BD =422-=32,∴DE 2=DC 2+EC 2,=()()22322+=20,∴DE =25,∴AD =AE =
252=10.∴AECB 的周长=AB +DC +CE +AE =442210+++=45210++,故④正确;
当BD =32BC 时,CD =12BC ,∴DE =22
1322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭
=102BC =52AB .故⑤错误. 故选B .
点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.
13.如图,Rt ABC ∆中,90C =∠,3,4,5,AC BC AB ===AD 平分BAC ∠.则:ACD ABD S S ∆∆=( )
A .3:4
B .3:5
C .4:5
D .2:3
【答案】B
【解析】 如图,过点D 作DE ⊥AB 于点E ,由角平分线的性质可得出DE=CD ,由全等三角形的判定定理HL 得出△ADC ≌△ADE ,故可得出AE=AC=3,由AB=5求出BE=2,设CD=x ,则DE=x ,BD=4﹣x ,再根据勾股定理知DE 2+BE 2=BD 2,即x 2+22=(4﹣x )2,求出x=32,进而根据等高三角形的面积,可得出:S △ACD :S △ABD =CD :BD=
12×32×3:12×32
×5=3:5.
故选:B .
点睛:本题考查的是角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键.
14.如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③BP=QP;
④QP∥AB.其中一定正确的是( )
A.①②③B.①③④C.①②④D.②③④
【答案】C
【解析】
试题解析:∵PR⊥AB于点R,PS⊥AC于点S,且PR=PS,
∴点P在∠BAC的平分线上,
即AP平分∠BAC,故①正确;
∴∠PAR=∠PAQ,
∵AQ=PQ,
∴∠APQ=∠PAQ,
∴∠APQ=∠PAR,
QP AB
∴,故④正确;
在△APR与△APS中,
AP AP PR PS
=
⎧
⎨
=
⎩,
(HL)
APR APS
∴≌,∴AR=AS,故②正确;
△BPR和△QSP只能知道PR=PS,∠BRP=∠QSP=90∘,其他条件不容易得到,所以,不一定全等.故③错误.
故选C.
15.已知OD平分∠MON,点A、B、C分别在OM、OD、ON上(点A、B、C都不与点O重合),
且AB=BC, 则∠OAB与∠BCO的数量关系为()
A.∠OAB+∠BCO=180°B.∠OAB=∠BCO
C.∠OAB+∠BCO=180°或∠OAB=∠BCO D.无法确定
【答案】C
【解析】
根据题意画图,可知当C处在C1的位置时,两三角形全等,可知∠OAB=∠BCO;当点C处在C2的位置时,根据等腰三角形的性质和三角形的外角的性质,∠OAB+∠BCO=180°.
故选C.
16.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()
A.2 B.3 C.4 D.5
【答案】C
【解析】
【分析】
可延长DE至F,使EF=BC,利用SAS可证明△ABC≌△AEF,连AC,AD,AF,再利用SSS证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求解即可.
【详解】
延长DE至F,使EF=BC,连AC,AD,AF,
在△ABC与△AEF中,
=90
AB AE
ABC AEF
BC EF
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△ABC≌△AEF(SAS),
∴AC=AF,
∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,
∴CD=EF+DE=DF,
在△ACD与△AFD中,
AC AF
CD DF
AD AD
⎧
⎪
⎨
⎪
⎩
=
=
=
,
∴△ACD≌△AFD(SSS),
∴五边形ABCDE的面积是:S=2S△ADF=2×
1
2
•DF•AE=2×
1
2
×2×2=4.
故选C.
【点睛】
本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE的面积转化为两个△ADF的面积是解决问题的关键.
17.如图,等腰直角△ABC中,∠BAC=90︒,AD⊥BC于D,∠ABC的平分线分别交AC、AD 于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:
①AE=AF;②AM⊥EF;③AF=DF;④DF=DN,其中正确的结论有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
试题解析:∵∠BAC=90°,AC=AB,AD⊥BC,
∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD,
∵BE平分∠ABC,
∴∠ABE=∠CBE=
1
2
∠ABC=22.5°,
∴∠BFD=∠AEB=90°-22.5°=67.5°,
∴∠AFE=∠BFD=∠AEB=67.5°,
∴AF=AE,故①正确;
∵M为EF的中点,
∴AM⊥EF,故②正确;
过点F作FH⊥AB于点H,
∵BE平分∠ABC,且AD⊥BC,
∴FD=FH<FA,故③错误;
∵AM⊥EF,
∴∠AMF=∠AME=90°,
∴∠DAN=90°-67.5°=22.5°=∠MBN,
在△FBD和△NAD中
{
FBD DAN
BD AD
BDF ADN
∠∠
∠∠
=
=
=
∴△FBD≌△NAD,
∴DF=DN
,故④正确;
故选C.
18.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,如图,那么下列各条件中,不能使Rt△AB C≌Rt△A′B′C′的是( )
A.AB=A′B′=5,BC=B′C′=3
B.AB=B′C′=5,∠A=∠B′=40°
C.AC=A′C′=5,BC=B′C′=3
D.AC=A′C′=5,∠A=∠A′=40°
【答案】B
【解析】
∵在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°
A选项:AB=A′B′=5,BC=B′C′=3,
符合直角三角形全等的判定条件HL,
∴A选项能使Rt△ABC≌Rt△A′B′C′;
B选项:AB=B′C′=5,∠A=∠B′=40°,
不符合符合直角三角形全等的判定条件,
∴B选项不能使Rt△ABC≌Rt△A′B′C′;
C选项符合Rt△ABC和Rt△A′B′C全等的判定条件SAS;
∴C选项能使Rt△ABC≌Rt△A′B′C′;
D选项符合Rt△ABC和Rt△A′B′C全等的判定条件ASA,
∴D选项能使Rt△ABC≌Rt△A′B′C′;
故选:B.
点睛:此题主要考查学生对直角三角全等的判定的理解和掌握,解答此题不仅仅是掌握直角三角形全等的判定,还要熟练掌握其它判定三角形全等的方法,才能尽快选出此题的正确答案.
19.如图, AB=AC,AD=AE, BE、CD交于点O,则图中全等三角形共有()
A.五对B.四对C.三对D.二对
【答案】A
【解析】
如图,由已知条件可证:①△ABE≌△ACD;②△DBC≌△ECB;③△BDO≌△ECO;
④△ABO≌△ACO;⑤△ADO≌△AEO;
∴图中共有5对全等三角形.故选A.
20.如图,与都是等边三角形,,下列结论中,正确的个数是
( )①;②;③;④若,且,则.
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
利用全等三角形的判定和性质一一判断即可.
【详解】
解:∵与都是等边三角形
∴AD=AB,AC=AE,∠DAB=∠EAC=60°
∴∠DAB+∠BAC=∠EAC +∠BAC
即∠DAC=∠EAB
∴
∴,①正确;
∵
∴∠ADO=∠ABO
∴∠BOD=∠DAB=60°,②正确
∵∠BDA=∠CEA=60°,∠ADC≠∠AEB
∴∠BDA-∠ADC≠∠CEA-∠AEB
∴,③错误
∵
∴∠DAC+∠BCA=180°
∵∠DAB=60°,
∴∠BCA=180°-∠DAB-∠BAC=30°
∵∠ACE=60°
∴∠BCE=∠ACE+∠BCA=60°+30°=90°
∴④正确
故由①②④三个正确,
故选:C
【点睛】
本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
21.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:
①BD=CD;②AD+CF=BD;③CE=1
2
BF;④AE=BG.其中正确的是
A.①②B.①③C.①②③D.①②③④
【答案】C
【解析】
【分析】
根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出
CE=AE=1
2
AC,又因为BF=AC所以CE=
1
2
AC=
1
2
BF,连接CG.因为△BCD是等腰直角三角
形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.
【详解】
解:∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD.故①正确;
在Rt△DFB和Rt△DAC中,
∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
又∵∠BDF=∠CDA=90°,BD=CD,
∴△DFB≌△DAC.
∴BF=AC;DF=AD.
∵CD=CF+DF,
∴AD+CF=BD;故②正确;
在Rt△BEA和Rt△BEC中.
∵BE平分∠ABC,
∴∠ABE=∠CBE.
又∵BE=BE,∠BEA=∠BEC=90°,
∴Rt△BEA≌Rt△BEC.
∴CE=AE=1
2 AC.
又由(1),知BF=AC,
∴CE=1
2
AC=
1
2
BF;故③正确;
连接CG.
∵△BCD是等腰直角三角形,∴BD=CD.
又DH⊥BC,
∴DH垂直平分BC.∴BG=CG.在Rt△CEG中,
∵CG是斜边,CE是直角边,∴CE<CG.
∵CE=AE,
∴AE<BG.故④错误.
故选C.
【点睛】
本题考查了等腰直角三角形、等腰三角形的判定与性质、全等三角形的判定与性质.此类问题涉及知识点较多,需要对相关知识点有很高的熟悉度.
22.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正确结论的个数为()
A.2个B.3个C.4个D.5个
【答案】C
【解析】
【分析】
①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;
②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;
③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由
∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;
④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;
⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是
∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;
【详解】
①∵△ABC和△CDE为等边三角形
∴AC=BC,CD=CE,∠BCA=∠DCB=60°
∴∠ACD=∠BCE
∴△ACD≌△BCE(SAS)
∴AD=BE,故①正确;
由(1)中的全等得∠CBE=∠DAC,且BC=AC,∠ACB=∠BCQ=60°
∴△CQB≌△CPA(ASA),
∴AP=BQ,故②正确;
∵△CQB≌△CPA,
∴PC=PQ,且∠PCQ=60°
∴△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE,故③正确,
∵∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,
∴PD≠CD,
∴DE≠DP,故④DE=DP错误;
∵BC∥DE,
∴∠CBE=∠BED,
∵∠CBE=∠DAE,
∴∠AOB=∠OAE+∠AEO=60°,
∴∠AOE=120°,故⑤正确,
故选C.
【点睛】
本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.
23.如图,在△ABC中,∠ABC=45°, BC=4,以AC为直角边,点A为直角顶点向△ABC
的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .
A.8 B.10 C.2D.2
【答案】A
【解析】
【分析】
将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质得到AE=AB,∠BAE=∠DOC=90°,过D点作DF⊥BC,证△EBC≌BFD,可得DF=BC=4,再用三角形面积公式即可得出答案.
【详解】
解:如下图所示,将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,
根据旋转的性质可知EC=BD,AE=AB,∠BAE=∠DOC=90°,
∴△ABE是等腰直角三角形,
∴∠ABE=45°,
又∵∠ABC=45°,
∴∠EBC=90°,
∵∠BDF+∠DBF=90°,∠ECB+∠DBF=90°,
∴∠BDF=∠ECB
在△EBC和△BFD中
EBC=BFD=90
ECB=BDF
EC=BD
⎧∠∠
⎪
∠∠
⎨
⎪
⎩
∴△EBC≌△BFD(AAS)
∴DF=BC=4
∴△DBC的面积=
11
BC DF=44=8
22
⋅⨯⨯
故选A.
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定,是一道综合性较强的题,难度较大,关键是正确的作出辅助线构造全等三角形.
24.如图,AOB
∆的外角,
CAB DBA
∠∠的平分线,
AP BP相交于点P,PE OC
⊥于E,PF OD
⊥于F,下列结论:(1)PE PF
=;(2)点P在COD
∠的平分线上;(3)90
APB O
∠=︒-∠,其中正确的有()
A.0个B.1个C.2个D.3个
【答案】C
【解析】
【分析】
过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正
确;由12APB EPF ∠=
∠,180EPF O ∠+∠=︒,得到1902
APB O ∠=︒-∠,可判断(3)错误;即可得到答案.
【详解】
解:过点P 作PG ⊥AB ,如图:
∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,
∴PE PG PF ==;故(1)正确;
∴点P 在COD ∠的平分线上;故(2)正确;
∵12
APB APG BPG EPF ∠=∠+∠=
∠, 又180EPF O ∠+∠=︒, ∴11(180)9022
APB O O ∠=
⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;
故选:C .
【点睛】 本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.
25.如图,ABC ∆中,45ABC ∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论正确的有( )个
①BF AC =;②12
AE BF =;③67.5A ∠=;④DGF ∆是等腰三角形;⑤ADGE GHCE S S =四边形四边形.
A .5个
B .4个
C .3个
D .2个
【答案】B
【解析】
【分析】 只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF =∠DFG =67.5°,即可判断①②③④正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断⑤错误.
【详解】
∵CD ⊥AB ,BE ⊥AC ,
∴∠BDC =∠ADC =∠AEB =90°,
∴∠A +∠ABE =90°,∠ABE +∠DFB =90°,
∴∠A =∠DFB ,
∵∠ABC =45°,∠BDC =90°,
∴∠DCB =90°−45°=45°=∠DBC ,
∴BD =DC ,
在△BDF 和△CDA 中
BDF CDA A DFB
BD CD ∠∠⎧⎪∠∠⎨⎪⎩
===, ∴△BDF ≌△CDA (AAS ),
∴BF =AC ,故①正确.
∵∠ABE =∠EBC =22.5°,BE ⊥AC ,
∴∠A =∠BCA =67.5°,故③正确,
∴BA =BC ,
∵BE ⊥AC ,
∴AE =EC =
12AC =12
BF ,故②正确, ∵BE 平分∠ABC ,∠ABC =45°,
∴∠ABE =∠CBE =22.5°,
∵∠BDF =∠BHG =90°,
∴∠BGH =∠BFD =67.5°,
∴∠DGF =∠DFG =67.5°,
∴DG =DF ,故④正确.
作GM⊥AB于M.
∵∠GBM=∠GBH,GH⊥BC,
∴GH=GM<DG,
∴S△DGB>S△GHB,
∵S△ABE=S△BCE,
∴S四边形ADGE
<S四边形GHCE.故⑤错误,
∴①②③④正确,
故选:B.
【点睛】
此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.
26.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()
A.4个B.3个C.2个D.1个
【答案】A
【解析】
试题解析:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,
在△CDE与△DBF中,{
C CBF
CD BD
EDC BDF
∠=∠
=
∠=∠
,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正
确;
∵AE=2BF,∴AC=3BF,故④正确.
故选A .
考点:1.全等三角形的判定与性质;2.角平分线的性质;3.相似三角形的判定与性质.
27.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )
A .150°
B .180°
C .210°
D .225°
【答案】B
【解析】
【分析】 根据SAS 可证得ABC ≌EDC ,可得出BAC DEC ∠∠=,继而可得出答案,再根据邻补角的定义求解. 【详解】
由题意得:AB ED =,BC DC =,D B 90∠∠==,
ABC ∴≌EDC ,
BAC DEC ∠∠∴=,
12180∠∠+=.
故选B .
【点睛】
本题考查全等图形的知识,比较简单,解答本题的关键是判断出ABC ≌EDC ..
28.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,给出以下五个结论:
①△PFA ≌△PEB ,②EF=AP ,③△PEF 是等腰直角三角形,④当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A ,B 重合),S 四边形AEPF =12
S △ABC ,上述结论中始终正确有 ( )
A.1个B.2个C.3个D.4个【答案】C
【解析】
∵AB=AC,∠BAC=90°,P是BC中点,
∴AP⊥BC,AP=PB,
∠B=∠CAP=45°,
∵∠APF+∠FPA=90°,
∠ APF+∠BPE=90°,
∴∠APF=∠BPE,
在△BPE和△APF中,
∠B=∠CAP, BP=AP,∠BPE =∠APF,
∴△PFA≌△PEB;故①正确;
∵△ABC是等腰直角三角形点P是BC的中点,
∴AP=1
2 BC,
又∵EF不一定是△ABC的中位线,
∴EF≠AP,故结论②错误;
∵△PFA≌△PEB,
∴PE=PF,
又∵∠EPF=90°,
∴△PEF是等腰直角三角形,故③正确;∵△PFA≌△PEB,
∴S△PFA =S△PEB,
∴S四边形AEPF=S△APE+S△APF=S△APE+S△BPE=S△APB=1
2
S△ABC,故结论④正确;
综上,当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),始终正确的有3个结论.
故选:C.
点睛:本题意旋转为背景考查了全等三角形的判定和性质,解题时需要运用等腰直角三角形的判定和性质,综合性较强,根据题意得出△PFA≌△PEB是解答此题的关键.
29.如图所示,设甲、乙、丙、丁分别表示△ABC,△ACD,△EFG,△EGH.已知∠ACB=∠CAD=∠EFG=∠EGH=70°,∠BAC=∠ACD=∠EGF=∠EHG=50°,则叙述正确的是()
A .甲、乙全等,丙、丁全等
B .甲、乙全等,丙、丁不全等
C .甲、乙不全等,丙、丁全等
D .甲、乙不全等,丙、丁不全等
【答案】B
【解析】
【分析】 根据题意即是判断甲、乙是否全等,丙丁是否全等.运用判定定理解答.
【详解】
解:∵∠ACB=CAD=70°,∠BAC=∠ACD=50°,AC 为公共边,
∴△ABC ≌△ACD ,即甲、乙全等;
△EHG 中,∠EGH=70°≠∠EHG=50°,即EH≠EG ,
虽∠EFG=∠EGH=70°,∠EGF=∠EHG=50°,
∴△EFG 不全等于△EGH ,即丙、丁不全等.
综上所述甲、乙全等,丙、丁不全等,B 正确,
故选:B .
【点睛】
本题考查的是全等三角形的判定,但考生需要有空间想象能力.判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、HL .找着∠EGH=70°≠∠EHG=50°,即EH≠EG 是正确解决本题的关键.
30.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =,连接DE 、DF 、EF 在此运动变化的过程中,下列结论:(1)DEF 是等腰直角三角形;(2)四边形CDFE 不可能为正方形,(3)DE 长度的最小值为4;(4)连接CF ,CF 恰好把四边形CDFE 的面积分成1:2两部分,则CE =13或143
其中正确的结论个数是
A .1个
B .2个
C .3个
D .4个
【答案】A
【解析】
【分析】
连接CF,证明△ADF≌△CEF,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④.
【详解】
连接CF,
∵△ABC是等腰直角三角形,
∴∠FCB=∠A=45,CF=AF=FB;
∵AD=CE,
∴△ADF≌△CEF(SAS);
∴EF=DF,∠CFE=∠AFD;
∵∠AFD+∠CFD=90∘,
∴∠CFE+∠CFD=∠EFD=90∘,
又∵EF=DF
∴△EDF是等腰直角三角形(故(1)正确).
当D. E分别为AC、BC中点时,四边形CDFE是正方形(故(2)错误).
由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;
即当DF⊥AC时,DE最小,此时
1
4
2
DF BC
== .
∴242
DE DF=故(3)错误).
∵△ADF≌△CEF,
∴S△CEF=S△ADF
∴S四边形CDFE=S△AFC,
∵CF恰好把四边形CDFE的面积分成1:2两部分∴S△CEF:S△CDF=1:2 或S△CEF:S△CDF=2:1
即S△ADF:S△CDF=1:2 或S△ADF:S△CDF=2:1
当S△ADF:S△CDF=1:2时,S△ADF=1
3
S△ACF=
1116
84
323
⨯⨯⨯=
又∵S△ADF=1
42
2
AD AD ⨯⨯=
∴2AD=16 3
∴AD=8
3
(故(4)错误).
故选:A.
【点睛】
本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.。