实验三 页面调度算法
- 格式:doc
- 大小:248.50 KB
- 文档页数:8
页面调度算法模拟实验中遇到的问题在页面调度算法模拟实验中,可能会遇到以下一些问题:
1、算法选择问题:不同的页面调度算法有不同的优势和适用场景,如FIFO、LRU、OPT等。
在实验中,选择合适的算法是一个挑战。
可能需要考虑内存大小、访问模式、页面访问频率等因素,以确定使用哪种算法进行模拟实验。
2、数据集选择问题:在模拟实验中,需要使用真实或合成的数据集来模拟页面访问的情况。
选择合适的数据集是一个关键问题,需要考虑数据集的规模、访问模式的真实性以及数据集的可用性等因素。
3、实验结果的评估问题:页面调度算法的性能可以通过不同的指标进行评估,如缺页率、命中率、平均访问时间等。
在实验中,选择合适的评估指标以及评估方法是一个重要问题。
4、实验参数的设置问题:在模拟实验中,还需要考虑一些参数的设置,如内存大小、页面大小、进程数量等。
这些参数的选择可能会对实验结果产生影响,需要合理设置以保证实验的可靠性和有效性。
5、实验结果的可视化问题:实验结果的可视化是一个重要的环节,可以通过图表、曲线等形式展示实验结果,以便于对比不同算法的性能表现。
在实验中,实现合适的可视化方式可能会遇到一些技术上的挑战。
这些问题都需要在实验前进行充分的准备和规划,以确保实验的
可靠性和有效性。
同时,也需要注意实验过程中可能遇到的其他问题,并及时进行调整和解决。
操作系统调度算法实验报告摘要:本篇实验报告旨在研究和分析不同的操作系统调度算法对系统性能的影响。
通过实验,我们对先来先服务调度算法、短作业优先调度算法和时间片轮转调度算法进行了比较和评估。
实验结果表明,不同的调度算法对系统响应时间、吞吐量和公平性等方面都有不同的影响。
一、引言操作系统的调度算法是管理计算机资源的关键部分之一。
调度算法的好坏直接影响着系统的性能和用户体验。
本实验旨在通过模拟不同的调度算法,评估其对系统的影响,以便选择最适合特定环境的调度算法。
二、实验方法本实验使用了一个模拟的操作系统调度器,通过调度器模拟不同的进程到达和执行过程。
我们选择了三种常见的调度算法进行比较和评估。
1. 先来先服务(First-Come, First-Served)调度算法先来先服务调度算法按照进程到达的先后顺序进行调度。
当一个进程到达后,它将占用处理器直到该进程执行完毕。
我们记录了每个进程的到达时间、执行时间和完成时间,并计算了系统的平均等待时间和平均周转时间。
2. 短作业优先(Shortest Job First)调度算法短作业优先调度算法按照进程执行时间的长短进行调度。
当一个进程到达后,系统会选择执行剩余执行时间最短的进程。
我们同样记录了每个进程的到达时间、执行时间和完成时间,并计算了系统的平均等待时间和平均周转时间。
3. 时间片轮转(Round Robin)调度算法时间片轮转调度算法将处理器时间分成若干个时间片,每个进程只能占用一个时间片。
当一个进程用完一个时间片后,它排到队列的末尾等待下一个时间片。
我们选择了不同的时间片长度,并观察了系统的响应时间和吞吐量。
三、实验结果与分析我们通过多组实验数据对不同的调度算法进行了评估。
以下是实验结果的分析:1. 先来先服务调度算法根据实验数据,我们发现先来先服务调度算法对长作业具有较高的等待时间和周转时间。
这是因为当一个长作业到达后,其他短作业需要等待该作业执行完毕才能获得处理器资源。
操作系统调度算法实验报告
本实验旨在研究不同操作系统调度算法在实际应用中的表现和影响。
我们选择了三种常见的调度算法进行对比分析,分别是先来先服务(FCFS)、最短作业优先(SJF)和时间片轮转(RR)。
1. 实验准备
在开始实验之前,我们首先搭建了一个简单的模拟环境,包括一个CPU和多个进程。
每个进程具有不同的执行时间,以便模拟不同情况
下的调度效果。
2. 先来先服务(FCFS)
先来先服务是最简单的调度算法之一,即根据进程到达的顺序依次
执行。
实验结果显示,FCFS算法适用于处理大量长作业,但当出现短
作业时会导致平均等待时间较长。
3. 最短作业优先(SJF)
最短作业优先算法会优先执行执行时间最短的进程,以减少平均等
待时间。
在我们的实验中,SJF算法表现出色,尤其在短作业较多的情
况下,能够显著提高系统的响应速度。
4. 时间片轮转(RR)
时间片轮转算法将CPU时间分配给每个进程,每个进程执行一个
时间片后轮转到下一个进程。
然而,RR算法可能导致上下文切换频繁,
影响系统效率。
在实验中,我们发现RR算法在处理多任务时效果较好,但在处理长时间任务时表现一般。
5. 实验总结
通过对三种调度算法的实验比较,我们可以看出不同算法在不同情
况下有着不同的优势和劣势。
在实际应用中,需要根据具体情况选择
合适的调度算法,以提高系统的性能和效率。
希望本实验能为操作系
统调度算法的研究提供一定的参考价值。
操作系统实验报告——调度算法1. 实验目的本实验旨在探究操作系统中常用的调度算法,通过编写代码模拟不同的调度算法,了解它们的特点和应用场景。
2. 实验环境本次实验使用的操作系统环境为Linux,并采用C语言进行编码。
3. 实验内容3.1 调度算法1:先来先服务(FCFS)FCFS调度算法是一种简单且常见的调度算法。
该算法按照进程到达的先后顺序进行调度。
在本实验中,我们使用C语言编写代码模拟FCFS算法的调度过程,并记录每个进程的等待时间、周转时间和响应时间。
3.2 调度算法2:最短作业优先(SJF)SJF调度算法是一种非抢占式的调度算法,根据进程的执行时间来选择下一个要执行的进程。
在本实验中,我们使用C语言编写代码模拟SJF算法的调度过程,并计算每个进程的等待时间、周转时间和响应时间。
3.3 调度算法3:轮转调度(Round Robin)Round Robin调度算法是一种经典的时间片轮转算法,每个进程在给定的时间片内依次执行一定数量的时间。
如果进程的执行时间超过时间片,进程将被暂时挂起,等待下一次轮转。
在本实验中,我们使用C语言编写代码模拟Round Robin算法的调度过程,并计算每个进程的等待时间、周转时间和响应时间。
4. 实验结果分析通过对不同调度算法的模拟实验结果进行分析,可以得出以下结论:- FCFS算法适用于任务到达的先后顺序不重要的场景,但对于执行时间较长的进程可能会导致下一个进程需要等待较久。
- SJF算法适用于任务的执行时间差异较大的场景,能够提高整体执行效率。
- Round Robin算法适用于时间片相对较小的情况,能够公平地为每个进程提供执行时间。
5. 实验总结本次实验通过模拟不同调度算法的实际执行过程,深入了解了各种调度算法的原理、特点和适用场景。
通过对实验结果的分析,我们可以更好地选择合适的调度算法来满足实际应用的需求。
在后续的学习中,我们将进一步探索更多操作系统相关的实验和算法。
调度的调度算法实验报告调度的调度算法实验报告引言:调度是计算机科学中一个重要的概念,它涉及到任务分配、资源管理和优化等方面。
调度算法则是实现调度的关键,它决定了任务的执行顺序和资源的分配方式。
在本次实验中,我们将探讨几种常见的调度算法,并通过实验对其性能进行评估和比较。
一、先来先服务算法(FCFS)先来先服务算法是最简单的调度算法之一,它按照任务到达的先后顺序进行处理。
实验中,我们模拟了一个任务队列,每个任务有不同的执行时间。
通过实验结果可以看出,FCFS算法的优点是简单易懂,但当任务的执行时间差异较大时,会导致平均等待时间较长。
二、最短作业优先算法(SJF)最短作业优先算法是一种非抢占式调度算法,它根据任务的执行时间来进行排序。
实验中,我们将任务按照执行时间从短到长进行排序,并进行调度。
实验结果显示,SJF算法的优点是能够最大程度地减少平均等待时间,但当任务的执行时间无法预测时,该算法可能会导致长任务等待时间过长的问题。
三、时间片轮转算法(RR)时间片轮转算法是一种抢占式调度算法,它将任务分为多个时间片,并按照顺序进行调度。
实验中,我们设置了每个时间片的长度,并将任务按照到达顺序进行调度。
实验结果表明,RR算法的优点是能够公平地分配资源,但当任务的执行时间超过一个时间片时,会导致上下文切换频繁,影响系统的性能。
四、最高响应比优先算法(HRRN)最高响应比优先算法是一种动态调度算法,它根据任务的等待时间和执行时间来计算响应比,并选择响应比最高的任务进行调度。
实验中,我们根据任务的到达时间、执行时间和等待时间计算响应比,并进行调度。
实验结果显示,HRRN算法能够在一定程度上平衡长任务和短任务的等待时间,但当任务的执行时间过长时,会导致其他任务的等待时间过长。
五、多级反馈队列算法(MFQ)多级反馈队列算法是一种综合性的调度算法,它将任务分为多个队列,并根据任务的执行情况进行调度。
实验中,我们设置了多个队列,并根据任务的执行时间和等待时间进行调度。
一、实验内容(1)页面调度算法目前有许多页面调度算法,本实验主要涉及先进先出调度算法、最近最少调度算法、最近最不常用调度算法。
本实验使用页面调度算法时作如下假设,进程在创建时由操作系统为之分配一个固定数目物理页,执行过程中物理页的数目和位置不会改变。
也即进程进行页面调度时只能在分到的几个物理页中进行。
下面对各调度算法的思想作一介绍。
<1> 先进先出调度算法先进先出调度算法根据页面进入内存的时间先后选择淘汰页面,先进入内存的页面先淘汰,后进入内存的后淘汰。
本算法实现时需要将页面按进入内存的时间先后组成一个队列,每次调度队首页面予以淘汰。
<2>最近最少调度算法先进先出调度算法没有考虑页面的使用情况,大多数情况下性能不佳。
根据程序执行的局部性特点,程序一旦访问了某些代码和数据,则在一段时间内会经常访问他们,因此最近最少用调度在选择淘汰页面时会考虑页面最近的使用,总是选择在最近一段时间以来最少使用的页面予以淘汰。
算法实现时需要为每个页面设置数据结构记录页面自上次访问以来所经历的时间。
<3>最近最不常用调度算法由于程序设计中经常使用循环结构,根据程序执行的局部性特点,可以设想在一段时间内经常被访问的代码和数据在将来也会经常被访问,显然这样的页面不应该被淘汰。
最近最不常用调度算法总是根据一段时间内页面的访问次数来选择淘汰页面,每次淘汰访问次数最少的页面。
算法实现时需要为每个页面设置计数器,记录访问次数。
计数器由硬件或操作系统自动定时清零。
(2)缺页调度次数和缺页中断率、缺页置换率计算缺页中断次数是缺页时发出缺页中断的次数。
缺页中断率=缺页中断次数/总的页面引用次数*100%缺页调度次数是调入新页时需要进行页面调度的次数缺页置换率=缺页调度次数/总的页面引用次数*100%二、总体设计1、算法的原理说明FIFO 先进先出调度算法:当页面框满时,最早进来的页面调出;LRU 最近最少使用调度算法:当页面框满时,最近最少使用的页面调出LFU 最近最不常用调度算法:当页面框满时,最近最不常用的页面调出SECOND 二次机会调度算法:当页面框满时,页面调入时R=0,当被访问时R = 1。
实验三模拟进程调度算法先进先出算法算法总是把处理机分配给最先进入就绪队列的进程,一个进程一旦分得处理机,便一直执行下去,直到该进程完成或阻塞时,才释放处理机。
最高优先权(FPF)优先调度算法该算法总是把处理机分配给就绪队列中具有最高优先权的进程。
常用以下两种方法来确定进程的优先权:轮转法前几种算法主要用于批处理系统中,不能作为分时系统中的主调度算法,在分时系统中,都采用时间片轮转法。
简单轮转法:系统将所有就绪进程按FIFO规则排队,按一定的时间间隔把处理机分配给队列中的进程。
这样,就绪队列中所有进程均可获得一个时间片的处理机而运行。
多级队列方法:将系统中所有进程分成若干类,每类为一级。
多级反馈队列多级反馈队列方式是在系统中设置多个就绪队列,并赋予各队列以不同的优先权。
实验内容①本程序用两种算法对五个进程进行调度,每个进程可有三个状态,并假设初始状态为就绪状态。
②为了便于处理,程序中的某进程运行时间以时间片为单位计算。
各进程的优先数或轮转时间数以及进程需运行的时间片数的初始值均由用户给定。
③在优先数算法中,优先数可以先取值为98,进程每执行一次,优先数减3, CPU时间片数加1,进程还需要的时间片数减1。
在轮转算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了2个单位),这时, CPU时间片数加2,进程还需要的时间片数减2,并排列到就绪队列的尾上。
④对于遇到优先数一致的情况,采用FIFO策略解决。
实验的示例程序如下:#include<stdio.h>#include <dos.h>#include<stdlib.h>#include<conio.h>#include<iostream.h>#define P_NUM 5#define P_TIME 50#define clrscr()enum state{ready,execute,block,finish};/* 定义进程控制块PCB */ struct pcb{char name[4];int priority;int cputime;int needtime;int count;int round;state process;pcb * next;};pcb * get_process(); pcb * get_process(){pcb *q;pcb *t;pcb *p;int i=0;cout<<"input name and time"<<endl; while (i<P_NUM){q=(struct pcb *)malloc(sizeof(pcb)); cin>>q->name;cin>>q->needtime;q->cputime=0;q->priority=P_TIME-q->needtime;q->process=ready;q->next=NULL;if (i==0){p=q;t=q;}else{t->next=q;t=q;}} //whilereturn p;}/*建立进程显示函数*/void display(pcb *p){cout<<"name"<<" "<<"cputime"<<" "<<"needtime"<<" "<<"priority"<<" "<<"state"<<endl;while(p){cout<<p->name;cout<<" ";cout<<p->cputime;cout<<" ";cout<<p->needtime;cout<<" ";cout<<p->priority;cout<<" ";switch(p->process){case ready:cout<<"ready"<<endl;break; case execute:cout<<"execute"<<endl;break; case block:cout<<"block"<<endl;break; case finish:cout<<"finish"<<endl;break; }p=p->next;}}int process_finish(pcb *q){int bl=1;while(bl&&q){bl=bl&&q->needtime==0;q=q->next;}return bl;}void cpuexe(pcb *q){pcb *t=q;int tp=0;while(q){if (q->process!=finish){q->process=ready;if(q->needtime==0){q->process=finish;}}if(tp<q->priority&&q->process!=finish){ tp=q->priority;t=q;}q=q->next;}if(t->needtime!=0){t->priority-=3;t->needtime--;t->process=execute;t->cputime++;}}//计算优先权void priority_cal(){pcb * p;clrscr();p=get_process();int cpu=0;clrscr();while(!process_finish(p)){cpu++;cout<<"cputime:"<<cpu<<endl;cpuexe(p);display(p);sleep(2);clrscr();}printf("All processes have finished,press any key to exit"); getch();}void display_menu(){cout<<"CHOOSE THE ALGORITHM:"<<endl;cout<<"1 PRIORITY"<<endl;cout<<"2 ROUNDROBIN"<<endl;cout<<"3 EXIT"<<endl;}pcb * get_process_round(){pcb *q;pcb *t;pcb *p;int i=0;cout<<"input name and time"<<endl; while (i<P_NUM){q=(struct pcb *)malloc(sizeof(pcb)); cin>>q->name;cin>>q->needtime;q->cputime=0;q->round=0;q->count=0;q->process=ready;q->next=NULL;if (i==0){p=q;t=q;}else{t->next=q;t=q;}i++;} //whilereturn p;}void cpu_round(pcb *q){ q->cputime+=2;q->needtime-=2;if(q->needtime<0) {q->needtime=0;}q->count++;q->round++;q->process=execute;}pcb * get_next(pcb * k,pcb * head){pcb * t;t=k;do{t=t->next;}while (t && t->process==finish);if(t==NULL){t=head;while (t->next!=k && t->process==finish){ t=t->next;}}return t;}//设置进程状态void set_state(pcb *p){while(p){if (p->needtime==0){p->process=finish;}if (p->process==execute){p->process=ready;}p=p->next;}}void display_round(pcb *p){cout<<"NAME"<<" "<<"CPUTIME"<<" "<<"NEEDTIME"<<" "<<"COUNT"<<" "<<"ROUND"<<" "<<"STA TE"<<endl;while(p){cout<<p->name;cout<<" ";cout<<p->cputime;cout<<" ";cout<<p->needtime;cout<<" ";cout<<p->count;cout<<" ";cout<<p->round;cout<<" ";switch(p->process){case ready:cout<<"ready"<<endl;break; case execute:cout<<"execute"<<endl;break; case finish:cout<<"finish"<<endl;break; }p=p->next;}}void round_cal(){pcb * p;pcb * r;clrscr();p=get_process_round();int cpu=0;clrscr();r=p;while(!process_finish(p)){ cpu+=2;cpu_round(r);r=get_next(r,p);cout<<"cpu "<<cpu<<endl; display_round(p);set_state(p);sleep(5);clrscr();}}void main(){display_menu();int k;scanf("%d",&k);switch(k){case 1:priority_cal();break; case 2:round_cal();break; case 3:break;display_menu();scanf("%d",&k);}}。
计算机科学系实验报告书课程名:《操作系统》题目:虚拟存储器管理页面置换算法模拟实验班级:学号:姓名:一、实验目的与要求1.目的:请求页式虚存管理是常用的虚拟存储管理方案之一。
通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。
2.要求:本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。
其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。
要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。
程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。
二、实验说明1.设计中虚页和实页的表示本设计利用C语言的结构体来描述虚页和实页的结构。
在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。
pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。
time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。
在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。
pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。
next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。
2.关于缺页次数的统计为计算命中率,需要统计在20次的虚页访问中命中的次数。
为此,程序应设置一个计数器count,来统计虚页命中发生的次数。
每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内,此虚页被命中,count加1。
最终命中率=count/20*100%。
3.LRU算法中“最近最久未用”页面的确定为了能找到“最近最久未用”的虚页面,程序中可引入一个时间计数器countime,每当要访问一个虚页面时,countime的值加1,然后将所要访问的虚页的time项值设置为增值后的当前countime值,表示该虚页的最后一次被访问时间。
南通大学计算机科学与技术学院操作系统页面调度实验报告班级___________计091___________姓名__________ _ _______ _学号_____________ _指导教师戴树贵一、实验目的1.进一步理解页面调度算法的相关内容2.明白页面调度的主要内容3.通过编程掌握页面调度的主要算法二、实验要求页式虚拟存储器实现的一个难点是设计页面调度(置换)算法,即将新页面调入内存时,如果内存中所有的物理页都已经分配出去,就要按某种策略来废弃某个页面,将其所占据的物理页释放出来,供新页面使用。
本实验的目的是通过编程实现几种常见的页面调度(置换)算法,加深读者对页面思想的理解。
三、实验环境Microsoft Visual Basic 6.0 中文版四、实验内容1 先入先出法(FIFO)最简单的页面置换算法是先入先出(FIFO)法。
这种算法的实质是,总是选择在主存中停留时间最长(即最老)的一页置换,即先进入内存的页,先退出内存。
理由是:最早调入内存的页,其不再被使用的可能性比刚调入内存的可能性大。
建立一个FIFO队列,收容所有在内存中的页。
被置换页面总是在队列头上进行。
当一个页面被放入内存时,就把它插在队尾上。
这种算法只是在按线性顺序访问地址空间时才是理想的,否则效率不高。
因为那些常被访问的页,往往在主存中也停留得最久,结果它们因变“老”而不得不被置换出去。
FIFO的另一个缺点是,它有一种异常现象,即在增加存储块的情况下,反而使缺页中断率增加了。
当然,导致这种异常现象的页面走向实际上是很少见的。
2 最优置换算法(OPT)最优置换(Optimal Replacement)是在理论上提出的一种算法。
其实质是:当调入新的一页而必须预先置换某个老页时,所选择的老页应是将来不再被使用,或者是在最远的将来才被访问。
采用这种页面置换算法,保证有最少的缺页率。
但是最优页面置换算法的实现是困难的,因为它需要人们预先就知道一个进程整个运行过程中页面走向的全部情况。
进程调度算法实验报告
《进程调度算法实验报告》
一、实验目的
本实验旨在通过对进程调度算法的实验研究,探究不同调度算法对系统性能的影响,进一步加深对操作系统进程调度的理解。
二、实验内容
本次实验选择了三种常见的进程调度算法,包括先来先服务(FCFS)、最短作业优先(SJF)和轮转调度(RR),并通过模拟不同进程的到达时间和执行时间,分别对这三种算法进行实验比较。
三、实验步骤
1. 设计实验用例:确定不同进程的到达时间和执行时间,以及不同调度算法的时间片大小。
2. 模拟执行:根据设计的实验用例,使用模拟工具模拟不同调度算法的执行过程,并记录每个进程的执行情况和系统的运行情况。
3. 数据分析:根据实验结果,对比不同调度算法的平均等待时间、平均周转时间等指标,分析各算法的优缺点。
四、实验结果
通过实验比较,得出以下结论:
1. 先来先服务(FCFS)算法:适用于执行时间较短的进程,但容易导致长作业等待时间过长。
2. 最短作业优先(SJF)算法:能够最大程度地减少平均等待时间和平均周转时间,但无法处理长作业优先的情况。
3. 轮转调度(RR)算法:能够保证每个进程都能及时得到执行,但可能导致部分进程的等待时间过长。
五、实验结论
根据实验结果,不同的进程调度算法适用于不同的场景。
在实际应用中,需要根据系统的实际情况和需求选择合适的调度算法,以最大程度地提高系统的性能和效率。
六、实验总结
通过本次实验,加深了对进程调度算法的理解,同时也了解了不同算法在实际应用中的优缺点。
希望通过本次实验,能够为进程调度算法的研究和应用提供一定的参考和借鉴。
实验报告院(系):数学与计算机科学学院专业班级:学号:姓名:实验地点:实验日期:年月日一、实验目的及要求通过本实验可以加深理解有关虚拟存储器的工作原理,进一步体会和了解页面替换算法的具体实现方法。
二、实验环境PC /Windows系统/Visual C++6.0三、实验内容①实现三种算法:先进先出;OPT;LRU②页面序列从指定的文本文件(TXT文件)中取出③输出:第一行:每次淘汰的页面号,第二行:显示缺页的总次数/*全局变量*/int mSIZE; /*物理块数*/int pSIZE; /*页面号引用串个数*/static int memery[10]={0}; /*物理块中的页号*/static int page[100]={0}; /*页面号引用串*/static int temp[100][10]={0}; /*辅助数组*//*置换算法函数*/void FIFO();void LRU();void OPT();/*辅助函数*/void print(unsigned int t);void designBy();void download();void mDelay(unsigned int Delay);/*先进先出页面置换算法*/void FIFO(){int memery[10]={0};int time[10]={0}; /*记录进入物理块的时间*/int i,j,k,m;int max=0; /*记录换出页*/int count=0; /*记录置换次数*//*前mSIZE个数直接放入*/for(i=0;i<mSIZE;i++){memery[i]=page[i];time[i]=i;for(j=0;j<mSIZE;j++)temp[i][j]=memery[j];}for(i=mSIZE;i<pSIZE;i++){/*判断新页面号是否在物理块中*/for(j=0,k=0;j<mSIZE;j++){if(memery[j]!=page[i])k++;}if(k==mSIZE) /*如果不在物理块中*/{count++; /*计算换出页*/max=time[0]<time[1]?0:1;for(m=2;m<mSIZE;m++)if(time[m]<time[max])max=m;memery[max]=page[i];time[max]=i; /*记录该页进入物理块的时间*/ for(j=0;j<mSIZE;j++)temp[i][j]=memery[j];}else{for(j=0;j<mSIZE;j++)你temp[i][j]=memery[j];}}compute();print(count);}/*最近最久未使用置换算法*/void LRU(){int memery[10]={0};int flag[10]={0}; /*记录页面的访问时间*/int i,j,k,m;int max=0; /*记录换出页*/int count=0; /*记录置换次数*//*前mSIZE个数直接放入*/for(i=0;i<mSIZE;i++){memery[i]=page[i];flag[i]=i;for(j=0;j<mSIZE;j++)temp[i][j]=memery[j];}for(i=mSIZE;i<pSIZE;i++){/*判断新页面号是否在物理块中*/for(j=0,k=0;j<mSIZE;j++){if(memery[j]!=page[i])k++;elseflag[j]=i; /*刷新该页的访问时间*/ }if(k==mSIZE) /*如果不在物理块中*/{count++; /*计算换出页*/ max=flag[0]<flag[1]?0:1;for(m=2;m<mSIZE;m++)if(flag[m]<flag[max])max=m;memery[max]=page[i];flag[max]=i; /*记录该页的访问时间*/ for(j=0;j<mSIZE;j++)temp[i][j]=memery[j];}elsefor(j=0;j<mSIZE;j++)temp[i][j]=memery[j];}compute();print(count);}/*最佳置换算法*/void OPT(){int memery[10]={0};int next[10]={0}; /*记录下一次访问时间*/int i,j,k,l,m;int max; /*记录换出页*/int count=0; /*记录置换次数*//*前mSIZE个数直接放入*/for(i=0;i<mSIZE;i++){memery[i]=page[i];for(j=0;j<mSIZE;j++)temp[i][j]=memery[j];}for(i=mSIZE;i<pSIZE;i++){ /*判断新页面号是否在物理块中*/ for(j=0,k=0;j<mSIZE;j++){if(memery[j]!=page[i])k++;}if(k==mSIZE) /*如果不在物理块中*/{count++;/*得到物理快中各页下一次访问时间*/for(m=0;m<mSIZE;m++){for(l=i+1;l<pSIZE;l++)if(memery[m]==page[l])break;next[m]=l;}/*计算换出页*/max=next[0]>=next[1]?0:1;for(m=2;m<mSIZE;m++)if(next[m]>next[max])max=m;/*下一次访问时间都为pSIZE,则置换物理块中第一个*/ memery[max]=page[i];for(j=0;j<mSIZE;j++)temp[i][j]=memery[j];}elsefor(j=0;j<mSIZE;j++)temp[i][j]=memery[j];}compute();print(count);}四、实验步骤页面置换:在地址映射过程中,若在页面中发现所要访问的页面不在内存中,则产生缺页中断。
操作系统页面调度算法程序实验报告一、实验背景操作系统是计算机系统中最重要的组成部分之一,它负责管理计算机的资源、协调各个程序的运行和提供用户与计算机之间的接口。
而页面调度算法则是操作系统中非常重要的一个部分,它主要用于管理内存中的页面,以提高计算机系统的性能和效率。
二、实验目的本次实验旨在通过编写一个页面调度算法程序,深入理解操作系统中页面调度算法的原理和实现方法,并掌握如何使用C语言进行程序设计和开发。
三、实验原理1. 页面调度算法概述在操作系统中,为了提高内存利用率和进程执行效率,通常会将进程所需的数据或指令分割成多个大小相等的块(即“页面”),并将这些页面存储到内存中。
当进程需要访问某个页面时,如果该页面已经在内存中,则直接访问即可;如果该页面不在内存中,则需要进行“缺页处理”,将其从磁盘读入内存,并将其中一个已经在内存中但未被访问过一段时间的页面替换出去。
而为了确定应该替换哪个页面,就需要使用一种称为“页面调度算法”的技术来进行决策。
常见的页面调度算法有FIFO、LRU、LFU等。
2. FIFO算法FIFO(First In First Out)算法是最简单的页面调度算法之一,它的原理是将最先进入内存的页面替换出去。
具体来说,当一个新页面需要进入内存时,如果内存已经满了,则将最先进入内存的页面替换出去,并将新页面插入到队列末尾。
3. LRU算法LRU(Least Recently Used)算法是一种比较常用的页面调度算法,它的原理是根据页面最近被访问的时间来进行决策。
具体来说,当一个新页面需要进入内存时,如果内存已经满了,则将最近访问时间最早且未被修改过的页面替换出去,并将新页面插入到队列末尾。
4. LFU算法LFU(Least Frequently Used)算法是一种根据页面使用频率来进行决策的调度算法。
具体来说,当一个新页面需要进入内存时,如果内存已经满了,则将使用频率最低的那个页面替换出去,并将新页面插入到队列末尾。
实验三进程调度一. 实验目的加深理解并模拟实现进程(作业)调度算法。
1)熟悉常用的进程调度算法, 如FCFS、SPF、FPF、高响应比优先、时间片轮转;2)结合所学的数据结构及编程知识, 选择三种进程调度算法予以实现。
二. 实验属性该实验为设计性实验。
三. 实验仪器设备及器材普通PC386以上微机四. 实验要求本实验要求2学时完成。
1)本实验要求完成如下任务:2)编程实现单处理机系统中的进程调度, 要求从FCFS、SPF、FPF、高响应比优先、时间片轮转算法中至少选择三个;3)最后编写主函数对所做工作进行测试。
实验前应复习实验中所涉及的理论知识和算法, 针对实验要求完成基本代码编写并完成预习报告、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。
实验后认真书写符合规范格式的实验报告(参见附录A), 并要求用正规的实验报告纸和封面装订整齐, 按时上交。
五: 实验具体设计此程序模拟了两种调度算法, FCFS和SPF, 首先FCFS就是按照进程的创建顺序依次顺序进行, 流程图为:进程顺序执行SPF:每次都进行循环, 选出在该时间刻运行时间最短的进程优先执行。
1.程序代码具体详解:2.创建一结构体作为进程控制器typedef struct PCB{int ID;char state;int arrivetime;int starttime;int finishtime;int servicetime;struct PCB *next;}pcb;定义全局变量作为计时器int time;//计时器创建进程链表:从txt文件中读取数据, 构造一条不含头结点的单链表void Create_process(){ifstream inFile;inFile.open("test.txt");inFile>>n;inFile.get();int i=0;for (;i<n;i++){p=(pcb *)malloc(sizeof(pcb));inFile>>p->ID;inFile>>p->arrivetime;inFile>>p->servicetime;p->starttime=0;p->finishtime=0;p->state='F';p->next=NULL;if(head==NULL){head=p;q=p;time=p->arrivetime;}if(p->arrivetime < time)time=p->arrivetime;q->next=p;q=p;}若执行FCFS算法, 按顺序遍历链表void fcfs1(){int i;p=head;for(i=0;i<n;i++){if(p->state=='F')q=p;run_fcfs1(q);}p=p->next;}}void run_fcfs1(pcb *p1){time = p1->arrivetime > time? p1->arrivetime:time;p1->starttime=time;printf("\n现在时间: %d,开始运行作业%d\n",time,p1->ID);time+=p1->servicetime;p1->state='T';p1->finishtime=time;printf("ID号到达时间开始运行时间服务时间完成时间\n");printf("%d%10d%12d%12d%12d\n",p1->ID,p1->arrivetime,p1->starttime,p1->servicetime,p 1->finishtime);}若执行SPF算法, 每次都从链表头开始遍历链表, 找出arrivetime<=time并且运行时间最短的节点, 执行该节点进程, 最后再删除该节点。
进程调度算法实验报告(总13页)本次实验是关于进程调度算法的实验,通过实验我们可以更深入地了解进程调度算法对操作系统的影响,选择合适的算法可以提高操作系统的性能。
在本次实验中,我们实现了三种常见的进程调度算法,分别是先来先服务(FCFS)、优先级调度(Priority Scheduling)和时间片轮转(Round-Robin)。
实验环境本次实验在Ubuntu 20.04 LTS操作系统下进行。
实验原理先来先服务(FCFS)调度算法,也称为先进先出(FIFO)算法。
其原理是按照作业提交的先后顺序进行处理,在操作系统中,每个进程都有一个到达时间和一个运行时间,按照到达时间的先后顺序进行处理。
优先级调度(Priority Scheduling)调度算法是根据进程优先级的高低来确定进程的执行顺序。
每个进程都有一个优先级,并且系统的调度程序会选择优先级最高的进程进行执行。
如果有多个进程的优先级相同,则按照先来先服务的原则进行调度。
时间片轮转(Round-Robin)调度算法是为了解决短进程被长进程“挤掉”的问题而提出的一种算法。
它将等待队列中的进程按照先来先服务的原则排序,并且每个进程被分配一个相同的时间片,当时间片用完后,该进程就被放到等待队列的末尾,等待下次调度。
如果当前运行进程在时间片用完之前就执行完毕了,则当前进程会被直接退出,CPU会在就绪队列中选择下一个进程运行。
实验内容本次实验中,我们实现了一个简单的进程调度器,通过实现不同的调度算法来比较它们的性能差异。
需要实现的函数如下:1. void fcfs(vector<process> processes):实现先来先服务(FCFS)调度算法的函数。
实验流程1. 定义进程结构体为了方便处理进程,我们定义了一个process结构体,包含进程的ID、到达时间、运行时间、优先级等信息。
定义如下:struct process {int id; // 进程IDint arrival_time; // 到达时间int burst_time; // 运行时间int priority; // 优先级}2. 实现进程生成函数为了测试不同调度算法的性能,我们需要生成一些具有不同特征的进程。
实验报告院(系):专业班级:学号:姓名:实验地点:实验日期:课程名称实验项目名称实验学时实验类型计算机操作系统页面调度算法 2 验证型一、实验目的及要求通过本实验可以加深理解有关虚拟存储器的工作原理,进一步体会和了解页面替换算法的具体实现方法。
二、实验环境PC /Windows系统/Visual C++6.0三、实验内容①实现三种算法:先进先出;OPT;LRU②页面序列从指定的文本文件(TXT文件)中取出③输出:第一行:每次淘汰的页面号,第二行:显示缺页的总次数四、实验步骤1.先进先出(FIFO)置换算法的思路该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。
该算法实现简单,只需把一个进程已调入内存的页面,按照先后次序连接成一个队列,并设置一个替换指针,使它总指向最老的页面。
2.最近久未使用(LRU)置换算法的思路最近久未使用置换算法的替换规则,是根据页面调入内存后的使用情况来进行决策的。
该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间,当需淘汰一个页面的时候选择现有页面中其时间值最大的进行淘汰。
3.最佳(OPT)置换算法的思路其所选择的被淘汰的页面,将是以后不使用的,或者是在未来时间内不再被访问的页面,采用最佳算法,通常可保证获得最低的缺页率。
4、流程图如下图所示:五、调试过程 程序结构分析:程序共有以下九个部分:int findSpace(void);//查找是否有空闲内存int findExist(int curpage);//查找内存中是否有该页面开始 取一条指令取指令中访问的页号=>L查 页 表页标记=1?形成绝对地址是“存”指令?置L 页修改标记“1”输出绝对地址输出“*页号”有后继指令?取一条指令结 束J:=P[k]J 页的修改标记输出“OUTj ”输出“INL ”P[k]:=L k:=(k+1) mod m修改页面是否是 否否(产生缺页中断)是否int findReplace(void);//查找应予置换的页面void display(void);//显示void FIFO(void);//FIFO算法void LRU(void);//LRU算法void OPT(void);//OPT算法;void BlockClear(void);//BLOCK清空,以便用另一种方法重新演示int main() //主程序六、实验结果及分析程序源代码:#include <iostream.h>#define Bsize 3#define Psize 20struct pageInfor{int content;//页面号int timer;//被访问标记};class PRA{public:PRA(void);int findSpace(void);//查找是否有空闲内存int findExist(int curpage);//查找内存中是否有该页面int findReplace(void);//查找应予置换的页面void display(void);//显示void FIFO(void);//FIFO算法void LRU(void);//LRU算法void Optimal(void);//OPTIMAL算法void BlockClear(void);//BLOCK恢复pageInfor * block;//物理块pageInfor * page;//页面号串private:};PRA::PRA(void){int QString[20]={7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1};block = new pageInfor[Bsize];for(int i=0; i<Bsize; i++){block[i].content = -1;block[i].timer = 0;}page = new pageInfor[Psize];for(i=0; i<Psize; i++){page[i].content = QString[i];page[i].timer = 0;}}int PRA::findSpace(void){for(int i=0; i<Bsize; i++)if(block[i].content == -1)return i;//找到空闲内存,返回BLOCK中位置return -1;}int PRA::findExist(int curpage){for(int i=0; i<Bsize; i++)if(block[i].content == page[curpage].content)return i;//找到内存中有该页面,返回BLOCK中位置return -1;}int PRA::findReplace(void){int pos = 0;for(int i=0; i<Bsize; i++)if(block[i].timer >= block[pos].timer)pos = i;//找到应予置换页面,返回BLOCK中位置return pos;}void PRA::display(void){for(int i=0; i<Bsize; i++)if(block[i].content != -1)cout<<block[i].content<<" "; cout<<endl;}void PRA::Optimal(void){int exist,space,position ;for(int i=0; i<Psize; i++){exist = findExist(i);if(exist != -1){ cout<<"不缺页"<<endl; }else{space = findSpace();if(space != -1){block[space] = page[i];display();}else{for(int k=0; k<Bsize; k++)for(int j=i; j<Psize; j++){if(block[k].content != page[j].content){ block[k].timer = 1000; }//将来不会用,设置TIMER为一个很大数else{block[k].timer = j;break;}}position = findReplace();block[position] = page[i];display();}}}}void PRA::LRU(void){int exist,space,position ;for(int i=0; i<Psize; i++){exist = findExist(i);if(exist != -1){cout<<"不缺页"<<endl;block[exist].timer = -1;//恢复存在的并刚访问过的BLOCK中页面TIMER为-1}else{space = findSpace();if(space != -1){block[space] = page[i];display();}else{position = findReplace();block[position] = page[i];display();}}for(int j=0; j<Bsize; j++)block[j].timer++;}}void PRA::FIFO(void){int exist,space,position ;for(int i=0; i<Psize; i++){exist = findExist(i);if(exist != -1){cout<<"不缺页"<<endl;}else{space = findSpace();if(space != -1){block[space] = page[i];display();}else{position = findReplace();block[position] = page[i];display();}}for(int j=0; j<Bsize; j++)block[j].timer++;//BLOCK中所有页面TIMER++ }}void PRA::BlockClear(void){for(int i=0; i<Bsize; i++){block[i].content = -1;block[i].timer = 0;}}void main(void){cout<<"|----------页面置换算法----------|"<<endl;cout<<"|---power by kangyan(1318064008)---|"<<endl;cout<<"|-------------------------------------|"<<endl;cout<<"页面号引用串:7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1"<<endl; cout<<"----------------------------------------------------"<<endl;cout<<"选择<1>应用Optimal算法"<<endl;cout<<"选择<2>应用FIFO算法"<<endl;cout<<"选择<3>应用LRU算法"<<endl;cout<<"选择<0>退出"<<endl;int select;PRA test;while(select){cin>>select;switch(select){case 0:break;case 1:cout<<"Optimal算法结果如下:"<<endl;test.Optimal();test.BlockClear();cout<<"----------------------"<<endl;break;case 2:cout<<"FIFO算法结果如下:"<<endl;test.FIFO();test.BlockClear();cout<<"----------------------"<<endl;break;case 3:cout<<"LRU算法结果如下:"<<endl;test.LRU();test.BlockClear();cout<<"----------------------"<<endl;break;default:cout<<"请输入正确功能号"<<endl;break;}}}实验截图如下图所示:<—键入1选择运行LRU算法的置换<—初始化信息:3个页块,20个页面号引用串<—存入前三个页,有空闲内存,无需置换<—3,4页已经在内存中无需再写入<—因为3是最久的页面所以将其置换下面原理相同<—所有命中的页面数<—命中率0.5七、总结页面置换算法的思想可以说比较简单,易懂,但是在实现的时候,也遇到了很多的问题,比如说在找空闲物理块的时候,起初我是比较物理块是否等于0,若为0,则直接把页面放入,后来发现不论什么时候都是把0替换出去,才恍然大悟,既然页面标号有0,就不能用0来表示空闲物理块,后来就换成用-1来表示物理块空闲了。
实验三页面置换算法实验-CAL-FENGHAI.-(YICAI)-Company One1《操作系统原理》实验报告实验三页面置换算法实验专业:计算机科学与技术学号:030840204姓名:简郸实验日期:2010-5-22一、实验目的通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。
二、实验要求设计一个虚拟存储区和内存工作区,并使用下述算法计算访问命中率。
1.最佳淘汰算法(OPT)2.先进先出的算法(FIFO)3.最近最久未使用算法(LRU)三、实验方法内容1.算法设计思路1.假设分给一作业的内存块数为 4 ,每条指令占一个存储单元,每个页面中可存放 10 条指令;2.设计一个程序,模拟一作业的执行过程。
设该作业共有 160 条指令,即它的地址空间为16页,最初作业的所有页面都还未调入内存。
在模拟过程中,如果所访问的指令已经在内存,则显示其物理地址,并转下一条指令。
如果所访问的指令尚未装入内存,则发生缺页,此时需记录缺页的次数,并将相应页调入内存。
如果 4 个内存块中均已装入该作业的虚页面,则需进行页面置换;在所有 160条指令执行完毕后,请计算并显示作业运行过程中发生的缺页率。
3 .作业中指令的访问次序要求按下述原则生成:具体的实施办法是:(1)在[0,159]之间随机选取一条起始执行指令,其序号为 m ;(2)顺序执行两条指令,即序号为 m+1、m+2 的指令;(3)通过随机数,跳转到前地址部分[0,m-1]中的某条指令处,其序号为 m1 ;(4)顺序执行两条指令,即序号为 m1+1 ,m1+2的指令;(5)通过随机数,跳转到后地址部分 [m1+3,159] 中的某条指令处,其序号为 m2 ;(6)顺序执行两条指令,即序号为 m2+1,m2+2 的指令;若m2+2>159只执行一条指令;(7)重复“跳转到前地址部分、顺序执行、跳转到后地址部分、顺序执行”的过程,直至执行完全部160条指令2.算法流程图3.算法中用到的数据结构4.主要的常量变量5.主要模块四、实验代码#include<stdlib.h>#include<iostream.h>#include<time.h>#include<stdio.h>#define total_instruction 200 /*指令流长*/#define M 16 /*实际页数*/#define N 4 //可用页面数struct Pro{int num,time;};int a[total_instruction];int page[N];void Input(Pro p[total_instruction]){int m,i,m1,m2;srand( (unsigned int )time(NULL));m=rand( )%160; //for(i=0;i<total_instruction;) /*产生指令队列*/{if(m<0||m>159){printf("When i==%d,Error,m==%d\n",i,m);exit(0);}a[i]=m; /*任选一指令访问点m*/ a[i+1]=a[i]+1;a[i+2]=a[i]+2; /*顺序执行两条指令*/int m1=rand( )%m; /*执行前地址指令m1 */a[i+3]=m1;a[i+4]=m1+1;a[i+5]=m1 + 2;/*顺序执行两条指令*/// s=(158-a[i+5])*rand( )/32767/32767/2+a[i+5]+2; m2 = rand()%(157-m1)+m1+3;a[i+6]=m2;if( (m2+2) > 159 )a[i+7] = m2+1;i +=8;}else{a[i+7] = m2+1;a[i+8] = m2+2;i = i+9;}m = rand()%m2;}for (i=0;i<total_instruction;i++) /*将指令序列变换成页地址流*/ {p[i].num=a[i]/10;p[i].time = 0;}}void print(Pro *page1)//打印当前的页面{Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)cout<<page[i].num<<" ";cout<<endl;}int Search(int e,Pro *page1 ){Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)if(e==page[i].num)return i;return -1;}int Max(Pro *page1){Pro *page=new Pro[N];page=page1;int e=page[0].time,i=0;while(i<N)//找出离现在时间最长的页面{if(e<page[i].time)e=page[i].time;}for( i=0;i<N;i++)if(e==page[i].time)return i; return -1;}int Compfu(Pro *page1,int i,int t,Pro p[M]) {Pro *page=new Pro[N];page=page1;int count=0;for(int j=i;j<M;j++){if(page[t].num==p[j].num )break;else count++;}return count;}int main(){Pro p[total_instruction];Pro *page=new Pro[N];char c;int t=0;float n=0;Input(p);do{for(int i=0;i<N;i++)//初试化页面基本情况 {page[i].num=0;page[i].time=2-i;}i=0;cout<<"f:FIFO页面置换"<<endl;cout<<"l:LRU页面置换"<<endl;cout<<"o:OPT页面置换"<<endl;cout<<"按其它键结束"<<endl;cin>>c;if(c=='f')//FIFO页面置换n=0;cout<<"页面置换情况: "<<endl;while( i< total_instruction){if(Search(p[i].num,page)>=0)i++;//找到相同的页面else{if(t==N)t=0;else{n++;//page[t].num=p[i].num;print(page);t++;}}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/total_instruction<<endl; }if(c=='l')//LRU页面置换{n=0;cout<<"页面置换情况: "<<endl;while(i<total_instruction){int k;k=t=Search(p[i].num,page);if(t>=0)page[t].time=0;else{n++;t=Max(page);page[t].num=p[i].num;page[t].time=0;}if(t==0){page[t+1].time++;page[t+2].time++;}if(t==1){page[2].time++;page[0].time++;}if(t==2){page[1].time++;page[0].time++;}if(k==-1) print(page);i++;}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/total_instruction<<endl; }if(c=='o')//OPT页面置换{n=0;while(i<total_instruction){if(Search(p[i].num,page)>=0)i++;else{int temp=0,cn;for(t=0;t<N;t++){if(temp<Compfu(page,i,t,p)){temp=Compfu(page,i,t,p);cn=t;}}page[cn]=p[i];n++;print(page);i++;}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/total_instruction<<endl; }}while(c=='f'||c=='l'||c=='o');return 0;}五、实验结果1.执行结果。
一、实验目的本次实验旨在通过模拟操作系统中的反馈调度算法,加深对进程调度过程的理解,掌握不同调度算法的原理和实现方法,并分析其优缺点。
实验内容包括实现三种反馈调度算法:先来先服务(FCFS)、时间片轮转(RR)和多级反馈队列(MFQ)。
二、实验内容1. 数据结构设计本实验采用进程控制块(PCB)来表示进程,PCB包含以下信息:- 进程名- 到达时间- 需要运行时间- 已运行时间- 进程状态(就绪、运行、完成)2. 调度算法实现(1)先来先服务(FCFS)调度算法FCFS算法按照进程到达就绪队列的顺序进行调度,即先到达的进程先执行。
具体实现步骤如下:- 将所有进程按到达时间排序,形成就绪队列。
- 当CPU空闲时,从就绪队列中取出第一个进程执行,执行完毕后,再取出下一个进程执行。
(2)时间片轮转(RR)调度算法RR算法将CPU时间划分为时间片,每个进程轮流占用CPU执行一个时间片。
具体实现步骤如下:- 将所有进程按到达时间排序,形成就绪队列。
- 当CPU空闲时,从就绪队列中取出第一个进程执行,执行一个时间片。
- 如果进程执行完毕,则将其状态设置为完成;如果进程未执行完毕,则将其状态设置为就绪,并插入就绪队列末尾。
- 继续执行下一个进程,直到所有进程执行完毕。
(3)多级反馈队列(MFQ)调度算法MFQ算法将就绪队列分为多个优先级队列,每个队列具有不同的时间片长度。
具体实现步骤如下:- 将所有进程按到达时间排序,形成就绪队列。
- 将就绪队列分为多个优先级队列,优先级越高,时间片越短。
- 当CPU空闲时,从最高优先级队列中取出第一个进程执行,执行一个时间片。
- 如果进程执行完毕,则将其状态设置为完成;如果进程未执行完毕,则将其状态设置为就绪,并插入下一个优先级队列的末尾。
- 如果当前优先级队列中的所有进程都执行完毕,则降低优先级,继续执行下一个优先级队列的进程。
三、实验结果分析1. FCFS算法FCFS算法简单易实现,但存在“饥饿”现象,即低优先级进程可能长时间得不到调度。
处理机调度算法实验总结1. 引言处理机调度算法是操作系统中的重要组成部分,它决定了如何合理地分配处理机资源,以提高系统的性能和效率。
本次实验旨在通过实际操作和实验数据的分析,对不同的处理机调度算法进行比较和总结,以便更好地理解和应用这些算法。
2. 实验设计在本次实验中,我们选择了三种常见的处理机调度算法进行比较,分别是先来先服务(FCFS)、最短作业优先(SJF)和时间片轮转(RR)。
我们设计了以下实验方案:2.1 实验环境•操作系统:Windows 10•开发工具:C语言编译器2.2 实验步骤1.设计并实现三个处理机调度算法的代码;2.编写测试用例,包括不同作业的到达时间和服务时间;3.运行代码,记录每个作业的等待时间和周转时间;4.分析和比较三种算法的性能指标;5.总结实验结果。
3. 实验结果经过实验运行和数据记录,我们得到了以下实验结果:3.1 先来先服务(FCFS)•等待时间:1.作业1:02.作业2:103.作业3:15•周转时间:1.作业1:102.作业2:203.作业3:253.2 最短作业优先(SJF)•等待时间:1.作业1:02.作业2:53.作业3:10•周转时间:1.作业1:52.作业2:153.作业3:203.3 时间片轮转(RR)•等待时间:1.作业1:102.作业2:53.作业3:0•周转时间:1.作业1:202.作业2:153.作业3:104. 结果分析根据实验结果,我们可以得出以下结论:4.1 先来先服务(FCFS)•优点:简单易实现;•缺点:平均等待时间较长,不适用于长作业。
4.2 最短作业优先(SJF)•优点:平均等待时间最短;•缺点:无法预测作业的运行时间,可能导致长作业等待时间过长。
4.3 时间片轮转(RR)•优点:对长作业有较好的响应时间;•缺点:平均等待时间较长,不适用于短作业。
5. 实验总结通过本次实验,我们深入了解了三种常见的处理机调度算法,并通过实验数据对其进行了比较和分析。
实验报告
院(系):数学与计算机科学学院专业班级:
学号:
姓名:
实验地点:
实验日期:年月日
一、实验目的及要求
通过本实验可以加深理解有关虚拟存储器的工作原理,进一步体会和了解页面替换算法的具体实现方法。
二、实验环境
PC /Windows系统/Visual C++6.0
三、实验内容
①实现三种算法:先进先出;OPT;LRU
②页面序列从指定的文本文件(TXT文件)中取出
③输出:第一行:每次淘汰的页面号,第二行:显示缺页的总次数
/*全局变量*/
int mSIZE; /*物理块数*/
int pSIZE; /*页面号引用串个数*/
static int memery[10]={0}; /*物理块中的页号*/
static int page[100]={0}; /*页面号引用串*/
static int temp[100][10]={0}; /*辅助数组*/
/*置换算法函数*/
void FIFO();
void LRU();
void OPT();
/*辅助函数*/
void print(unsigned int t);
void designBy();
void download();
void mDelay(unsigned int Delay);
/*先进先出页面置换算法*/
void FIFO()
{
int memery[10]={0};
int time[10]={0}; /*记录进入物理块的时间*/
int i,j,k,m;
int max=0; /*记录换出页*/
int count=0; /*记录置换次数*/
/*前mSIZE个数直接放入*/
for(i=0;i<mSIZE;i++)
{
memery[i]=page[i];
time[i]=i;
for(j=0;j<mSIZE;j++)
temp[i][j]=memery[j];
}
for(i=mSIZE;i<pSIZE;i++)
{/*判断新页面号是否在物理块中*/
for(j=0,k=0;j<mSIZE;j++)
{
if(memery[j]!=page[i])
k++;
}
if(k==mSIZE) /*如果不在物理块中*/
{
count++; /*计算换出页*/
max=time[0]<time[1]?0:1;
for(m=2;m<mSIZE;m++)
if(time[m]<time[max])
max=m;
memery[max]=page[i];
time[max]=i; /*记录该页进入物理块的时间*/ for(j=0;j<mSIZE;j++)
temp[i][j]=memery[j];
}
else
{
for(j=0;j<mSIZE;j++)
你temp[i][j]=memery[j];
}
}
compute();
print(count);
}
/*最近最久未使用置换算法*/
void LRU()
{
int memery[10]={0};
int flag[10]={0}; /*记录页面的访问时间*/
int i,j,k,m;
int max=0; /*记录换出页*/
int count=0; /*记录置换次数*/
/*前mSIZE个数直接放入*/
for(i=0;i<mSIZE;i++)
{
memery[i]=page[i];
flag[i]=i;
for(j=0;j<mSIZE;j++)
temp[i][j]=memery[j];
}
for(i=mSIZE;i<pSIZE;i++)
{/*判断新页面号是否在物理块中*/
for(j=0,k=0;j<mSIZE;j++)
{
if(memery[j]!=page[i])
k++;
else
flag[j]=i; /*刷新该页的访问时间*/ }
if(k==mSIZE) /*如果不在物理块中*/
{
count++; /*计算换出页*/ max=flag[0]<flag[1]?0:1;
for(m=2;m<mSIZE;m++)
if(flag[m]<flag[max])
max=m;
memery[max]=page[i];
flag[max]=i; /*记录该页的访问时间*/ for(j=0;j<mSIZE;j++)
temp[i][j]=memery[j];
}
else
for(j=0;j<mSIZE;j++)
temp[i][j]=memery[j];
}
compute();
print(count);
}
/*最佳置换算法*/
void OPT()
{
int memery[10]={0};
int next[10]={0}; /*记录下一次访问时间*/
int i,j,k,l,m;
int max; /*记录换出页*/
int count=0; /*记录置换次数*/
/*前mSIZE个数直接放入*/
for(i=0;i<mSIZE;i++)
{
memery[i]=page[i];
for(j=0;j<mSIZE;j++)
temp[i][j]=memery[j];
}
for(i=mSIZE;i<pSIZE;i++)
{ /*判断新页面号是否在物理块中*/ for(j=0,k=0;j<mSIZE;j++)
{
if(memery[j]!=page[i])
k++;
}
if(k==mSIZE) /*如果不在物理块中*/
{
count++;/*得到物理快中各页下一次访问时间*/
for(m=0;m<mSIZE;m++)
{
for(l=i+1;l<pSIZE;l++)
if(memery[m]==page[l])
break;
next[m]=l;
}/*计算换出页*/
max=next[0]>=next[1]?0:1;
for(m=2;m<mSIZE;m++)
if(next[m]>next[max])
max=m;
/*下一次访问时间都为pSIZE,则置换物理块中第一个*/ memery[max]=page[i];
for(j=0;j<mSIZE;j++)
temp[i][j]=memery[j];
}
else
for(j=0;j<mSIZE;j++)
temp[i][j]=memery[j];
}
compute();
print(count);
}
四、实验步骤
页面置换:在地址映射过程中,若在页面中发现所要访问的页面不在内存中,则产生缺页中断。
当发生缺页中断时,如果操作系统内存中没有空闲页面,则操作系统必须在内存选择一个页面将其移出内存,以便为即将调入的页面让出空间。
而用来选择淘汰哪一页的规则叫做页面置换算法:
1.最佳置换算法(OPT)(理想置换算法):从主存中移出永远不再需要的页面;如无这样的页面存在,则选择最长时间不需要访问的页面。
于所选择的被淘汰页面将是以后永不使用的,或者是在最长时间内不再被访问的页面,这样可以保证获得最低的缺页率。
2.先进先出置换算法(FIFO):是最简单的页面置换算法。
这种算法的基本思想是:当需要淘汰一个页面时,总是选择驻留主存时间最长的页面进行淘汰,即先进入主存的页面先淘汰。
其理由是:最早调入主存的页面不再被使用的可能性最大。
3.最近最久未使用(LRU)算法:这种算法的基本思想是:利用局部性原理,根据一个作业在执行过程中过去的页面访问历史来推测未来的行为。
它认为过去一段时间里不曾被访问过的页面,在最近的将来可能也不会再被访问。
所以,这种算法的实质是:当需要淘汰一个页面时,总是选择在最近一段时间内最久不用的页面予以淘汰。
页面置换流程图如下所示:
五、总结
通过本次实验,我对页面置换算法的种类有了大概认识,页面置换算法可分为最佳置换算法、先进先出置换算法、最近最久未使用算法。
对三种算法的工作原理也有了更加深刻的理解,以及了解了三种算法各自的优缺点。