第九章 磁参数的测量
- 格式:ppt
- 大小:3.44 MB
- 文档页数:47
高二物理第九章总结知识点本文总结了高二物理第九章的重要知识点,旨在帮助同学们复习和回顾所学内容。
第九章主要涉及电磁感应、电磁场和电磁波三个方面的内容,并介绍了电磁振荡、交流电路和光的波动性等相关知识。
以下是本章的重点知识总结。
一、电磁感应1. 法拉第电磁感应定律:当导体相对于磁场运动或磁场发生变化时,导体中就会感应出感应电动势,其大小与导体运动速度、导体长度以及磁感应强度有关。
2. 楞次定律:感应电流的方向总是阻碍磁场发生变化的方式。
二、电磁场1. 电场和磁场:电场和磁场是相互关联的,当电场发生变化时,会产生磁场;当磁场发生变化时,会产生电场。
2. 磁场的性质:磁场有方向和大小之分,用磁感应强度表示,单位是特斯拉(T)。
3. 磁感线:磁感线是用来表示磁场方向的虚拟曲线,其方向是磁力线的方向。
三、电磁波1. 电磁波的概念:电磁波是通过自由空间以及一些介质传播的,由电场和磁场交替变化所产生的波动现象。
2. 光的电磁波性质:光既具有电磁波的特性,也具有粒子性质。
光的波长和频率之间有着确定的关系,即c=λν,其中c是光速。
3. 光的折射和反射:当光从一种介质射入另一种介质时,会发生折射现象;当光从一种介质射入另一种介质的界面上时,会发生反射现象。
四、电磁振荡和交流电路1. 电磁振荡:由于电容器和电感器之间的能量交换,电荷量和电流会周期性地发生变化。
这种周期性的变化称为电磁振荡,其频率由电容器和电感器的参数决定。
2. 交流电路:交流电路中的电压和电流大小和方向都周期性地变化,其频率通常为50Hz或60Hz,根据Ohm定律和功率公式可以计算电阻、电容和电感器上的电流和功率。
以上是本节内容的主要知识点总结。
通过对这些知识点的复习,同学们可以更好地理解和掌握高二物理第九章的内容,为进一步学习打下坚实的基础。
希望本文对同学们的学习有所帮助,祝大家学业进步!。
基础课1磁场的描述及磁场对电流的作用知识点一、磁场磁感线通电直导线和通电线圈周围磁场的方向1.磁场(1)基本特性:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用.(2)方向:小磁针的N极所受磁场力的方向。
2.磁感线在磁场中画出一些有方向的曲线,使曲线上各点的切线方向跟这点的磁感应强度方向一致.3.几种常见的磁场(1)常见磁体的磁场(如图1所示)图1(2)电流的磁场知识点二、磁感应强度1.磁感应强度(1)物理意义:描述磁场的强弱和方向。
(2)大小:B=错误!(通电导线垂直于磁场)。
(3)方向:小磁针静止时N极的指向。
(4)单位:特斯拉(T)。
2.匀强磁场(1)定义:磁感应强度的大小处处相等、方向处处相同的磁场称为匀强磁场.(2)特点:疏密程度相同、方向相同的平行直线.知识点三、安培力、安培力的方向匀强磁场中的安培力1.安培力的大小(1)磁场和电流垂直时:F=BIL。
(2)磁场和电流平行时:F=0。
2.安培力的方向图2左手定则判断:(1)伸出左手,让拇指与其余四指垂直,并且都在同一个平面内.(2)让磁感线从掌心进入,并使四指指向电流方向。
(3)拇指所指的方向就是通电导线在磁场中所受安培力的方向。
[思考判断](1)磁场中某点磁感应强度的大小,跟放在该点的试探电流元的强弱有关。
()(2)磁场中某点磁感应强度的方向,跟放在该点的试探电流元所受磁场力的方向一致。
()(3)在磁场中磁感线越密集的地方,磁感应强度越大。
() (4)相邻两条磁感线之间的空白区域磁感应强度为零。
()(5)将通电导线放入磁场中,若不受安培力,说明该处磁感应强度为零。
()(6)由定义式B=FIL可知,电流强度I越大,导线L越长,某点的磁感应强度就越小。
()(7)安培力可能做正功,也可能做负功.()答案(1)×(2)×(3)√(4)×(5)×(6)×(7)√磁场及安培定则的应用1.理解磁感应强度的三点注意(1)磁感应强度由磁场本身决定,因此不能根据定义式B=FIL认为B与F成正比,与IL成反比。
人教版高二物理必修第三册第九章电磁场及其应用全章知识点梳理1. 电磁场的概念和性质- 电磁场是由电荷静电场和电流产生的磁场相互作用形成的。
- 电磁场有电场强度、电场线、磁感应强度、磁感线等性质。
2. 静电场的描述和计算- 静电场的描述需要用到电势、电位能、电场强度等概念。
- 静电场的计算可以利用库仑定律、电场强度叠加原理等方法。
3. 静电场中电势的性质和计算方法- 静电场中的电势随距离的变化遵循电势线的分布。
- 计算静电场中的电势可以利用电势差和电势公式进行。
4. 静电场中的带电粒子的运动规律- 静电场中带电粒子会受到电场力的作用而产生运动。
- 带电粒子在静电场中的运动规律可以描述为受力分析和加速度公式。
5. 磁场的概念和性质- 磁场是由电流产生的磁感应强度和磁感线组成的。
- 磁场有磁感应强度、磁场线、磁感应力等性质。
6. 磁场中带电粒子的运动规律- 磁场中带电粒子会受到磁场力的作用而产生运动。
- 带电粒子在磁场中的运动规律可以描述为洛伦兹力和离心力。
7. 电磁感应现象和法拉第电磁感应定律- 电磁感应是指磁场变化或电流变化产生感应电动势的现象。
- 法拉第电磁感应定律描述了感应电动势与磁通量变化的关系。
8. 自感和互感- 自感是导体中电流自身的感应现象。
- 互感是导体中电流与相邻导体之间的感应现象。
9. 变压器的原理和应用- 变压器利用电磁感应原理实现输入输出电压的变化。
- 变压器广泛应用于电力传输和家用电器。
10. 电磁波的性质和产生- 电磁波是由变化的电场和磁场相互作用产生的。
- 电磁波有频率、波长、速度等性质。
11. 光的干涉和衍射现象- 光的干涉是指两个或多个光波相遇产生的共振和抵消现象。
- 光的衍射是指光通过物体边缘或孔隙产生的偏折现象。
12. 光的偏振现象- 光的偏振是指光波振动方向通过偏振器限制后变得单一方向的现象。
- 光的偏振有线偏振和圆偏振两种形式。
13. 光的多普勒效应- 光的多普勒效应是指光源或观察者相对运动时光的频率发生变化的现象。
第九章磁场Stationary Magnetic Field磁铁和电流周围存在着磁场,磁现象的本质就是电荷的运动, 磁场的基本特性是对位于其中的运动电荷有力的作用.1、磁感应强度的定义;2、毕奥-萨伐尔定律,安培环路定理;3、几种电流产生的磁感应强度的计算;4、磁场对运动电荷、载流导线、载流线圈的作用;5、磁场和磁介质之间的相互作用.第一节磁场磁感应强度磁现象永磁体——磁铁的性质S N(1)具有磁性(magnetism),能吸引铁、钴、镍等物质;(2)永磁体具有磁极(magnetic pole),磁北极和磁南极;(3)磁极之间存在相互作用,同性相斥,异性相吸;(4)磁极不能单独存在.奥斯特实验(1819年)NS I在载流导线附近的小磁针会发生偏转Hans ChristianOersted,1777~1851年丹麦物理学家1820年安培的发现SN F I 放在磁体附近的载流导线或线圈会受到力的作用而发生运动.安培分子电流假说(1822年)一切磁现象的根源是电流!磁性物质的分子中存在着“分子电流”,磁性取定于物质中分子电流的磁效应之和.一、磁场(Magnetic Field)电流~~~磁铁、电流~~~电流运动电荷~~~运动电荷、运动电荷~~~磁铁通过一种特殊物质的形式——磁场来传递的.磁铁周围存在磁场,运动电荷和载流导线周围也存在磁场.磁场对其中的运动电荷和载流导线有力的作用;磁力也能做功,具有能量.电流与电流之间的相互作用I I ++--II ++--磁场对运动电荷的作用S +电子束N运动电荷磁场运动电荷从运动的点电荷在磁场中所受的磁力来定义磁感应强度的大小和方向!B 方向:小磁针在磁场中,其磁北极N 的指向B 二、磁感应强度(Magnetic Induction)磁感应强度:描述磁场性质的物理量B点电荷在磁场中运动的实验+B v F max c 、电荷q 沿磁场方向运动时,F = 0;b 、F 大小随v 变化;d 、电荷q 沿垂直磁场方向运动时,F max .(2)在垂直磁场方向改变速率v ,改变点电荷电量q在磁场中同一点,F max /qv 为一恒量,而在不同的点上,F max /qv 的量值不同.(1)点电荷q 以不同运动v a 、受磁力,;F v磁感应强度的大小:qv F B m ax =单位:T 特斯拉(Tesla)G 高斯(Gauss)T10G 14-=磁感应强度的方向:max F vB a.由小磁针的N 极指向定,b.由到的右手螺旋法则定max F v三、磁感应线用磁感应线来形象地描写磁感应强度这一矢量场在空间的分布:曲线上某点处的切向表示该点的方向;曲线在某处的疏密表示该点的大小.B B 磁感应线的特点★任一条磁感应线是闭合的,或两端伸向无穷远;★磁感应线与载流回路互相套联;★任两条磁感应线不能相交.IB四、磁通量(Magnetic Flux)通过磁场中某给定面的磁感应线的总数.θcos d d m S B Φ=⎰⎰=⋅=S S m S B S B Φd cos d θ 单位:Wb ,1Wb=1T ﹒m 2磁通量:穿过磁场中任意闭合曲面的磁通量为零.磁场是无源场:其磁感应线闭合成环,无头无尾;同时也表示不存在磁单极,无单个的N 或S 极.The total magnetic flux through a closed surface is always zero.d 0S B S ⋅=⎰ 五、磁场的高斯定理(Gauss’s law for magnetism)寻找磁单极子1975 年:美国加州大学,休斯敦大学联合小组报告,用装有宇宙射线探测器气球在40 km 高空记录到电离性特强离子踪迹,认为是磁单极. 为一次虚报.1982年,美国斯坦福大学报告,用d = 5 cm 的超导线圈放入D =20 cm 超导铅筒. 由于迈斯纳效应屏蔽外磁场干扰,只有磁单极进入会引起磁通变化,运行151天,记录到一次磁通突变, 改变量与狄拉克理论相符. 但未能重复,为一悬案.人类对磁单极的探寻从未停止,一旦发现磁单极,将改写电磁理论.1820年实验得到:长直载流导线周围的磁感应强度与距离成反比与电流强度成正比. r I B Laplace 对此结果作了分析整理,得出了电流元产生的磁场的磁感应强度表达式.一、毕奥—萨伐尔定律(Law of Biot and Savart)I B r 第二节毕奥—萨伐尔定律d I l IBd l r d I l02d sin d 4I l B r μθπ=002d d 4I l r B r μπ⨯= μo 为真空中的磁导率:μo = 4 π⨯10-7 T·m·A -1. 整个载流导线在P 点产生的磁感应强度为:002d d 4L LI l r B B r μπ⨯==⎰⎰ P d I l θr d Bnqvs I =0024qv r B r μπ⨯= ++++++I S v d I l 导体中带电粒子的定向运动形成电流I ,并由此可分析得到运动电荷产生的磁场.+v r B ×-v r B·二、运动电荷的磁场圆电流轴线上的磁感应强度02d sin d 4I l B r μθπ=02d sin 90cos d cos 4x I l B B B r μααπ︒===⎰⎰22xR r +=22cos R R x α=+x x P R αr d B d I ld B x d B y 毕奥—萨伐尔定律的应用d I l r ⊥ 注意到,通过对称性分析,可知B y = 0,因此:()()2200323222220d 42RR l IR B R x R x πμμπ==++⎰方向:沿轴线与电流成右手螺旋关系.()2032222IRB R x μ=+定义圆电流磁矩:mp IS ISn == 在圆心处x = 0,B 大小:R IB 20μ=IS m p ()2322m 02x R P B += πμ圆电流轴线上磁场的另一种表达式:例:亥姆霍兹圈:两个完全相同的N 匝共轴密绕短线圈,其中心间距与半径R 相等,通有同向平行等大电流I . 求轴线上O 1、O 2之间的磁场.x I P1o 匝N R ⋅⋅R R 匝N o 2o I x o1o 2B 1B 2o 实验室用近似均匀磁场解20322222P NIR B R R x μ=+⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦20322222NIRR R x μ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦00.72O NIB Rμ=0120.68O O NIB B Rμ==θ2Oθ1Pa d xx载流长直导线的磁感应强度02d sin d 4I x B rμθπ=tan x a θ=-2d d sin a x θθ=θsin a r =2022sin d sin d 4sin I aB B aμθθθπθ==⎰⎰Iθrd B 210sin d 4I B a θθμθθπ=⎰()012cos cos 4I a μθθπ=-方向:对图中所在的P 点,磁感应强度垂直纸面向外.()012cos cos 4I B aμθθπ=-对无限长载流导线θ1= 0 , θ2= π:02I B aμπ=半无限长载流导线θ1= π/2 , θ2 = π:04I B aμπ=若P 点在导线延长线上:B =导线密绕,且长度远大于直径:=外B 实验可知:内部的磁感应强度只有平行于轴线的分量;并且平行于轴的任一直线上各点大小相等.︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BI单位长度上的匝数n载流长直螺线管内部的磁场︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BInIB 0μ=内部为均匀磁场,在长直螺线管的两端点处的磁场为中间的一半:012S B nIμ=0nIμ012nI μ通过对圆电流的磁感应强度的叠加积分,可以求得螺线管中间的磁感应强度大小为:方向由右手螺旋法则确定.恒定磁场是无源场,静电场是有源场;静电场是保守场,是无旋场;对静电场和恒定磁场作类比分析:1d SE S q ε⋅=∑⎰d 0LE l ⋅=⎰d 0SB S ⋅=⎰d ?LB l ⋅=⎰表达了恒定磁场的什么性质?第三节安培环路定理安培环路定理:0d LB l Iμ⋅=∑⎰L 磁场中任一闭合曲线—具有一定绕向的环路是环路上各点的磁感应强度,为空间所有电流产生,包括穿过L 的和不穿过的电流.:B:穿过以L 为边界的任意曲面的电流的代数和.I ∑------对L 包围的电流求代数和,并且规定:与L 绕向成右旋关系的电流I i >0,否则I i <0.以长直电流的磁场为例验证1) 路径选在垂直于长直载流导线的平面内,以导线与平面交点O 为圆心,半径为r 的圆周路径L ,其指向与电流成右手螺旋关系.BIr oL00200cos 0d d =d 22rL L I I B l l l r rIπμμππμ⋅=⋅=⎰⎰⎰BIr oL若电流反向:02000d d 2 =d 2cos L L rI I B l l r I l rππμπμμπ⋅=⋅-=-⎰⎰⎰2) 在垂直于导线平面内围绕电流的任意闭合路径Bθϕd ld rLI 02020000d 2 =d 2 d cos 2d L L I B l r I r r I I l ππμπμϕπμϕπμθ⋅=⋅==⎰⎰⎰⎰同理,在电流反向时------积分结果取负.3) 闭合路径不包围电流ϕ1L 2L I()()[]121200d d d =d d 2 02LL L L L B l B l B l I Iμϕϕπμϕϕπ⋅=⋅+⋅+=+-=⎰⎰⎰⎰⎰4) 空间存在多个长直电流时()12110in d d d d =L LLLiLB l B B l B l B l I μ⋅=++⋅=⋅+⋅+⎰⎰⎰⎰∑安培环路定理揭示磁场是非保守场,是涡旋场.l B L d ⋅⎰穿过的电流:对和均有贡献BL 不穿过的电流:对上各点有贡献;对无贡献BL l B Ld ⋅⎰L 0d LB l Iμ⋅=∑⎰可证对任意的稳恒电流和任意形式的闭合环路均成立.注意:练习:如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中那一个是正确的?⊗∙I 21L 2L 3L 4L I10 ( d )2A L B l I μ⋅=⎰ 20(B) d L B l I μ⋅=⎰30 d (C)L B l I μ⋅=-⎰40(D) d L B l I μ⋅=-⎰Br RB RrP IQ 长直圆柱形载流导线内外的磁场圆柱截面半径为R ,电流I 沿轴流动.过P 点(或Q 点)取半径为r 的磁感应线为积分回路,求出B 矢量的环流:0d 2LB l B r I πμ⋅=⋅=∑⎰r ≥R012I I I B r r μπ==∝∑,r< R20222I r IrI B r R Rπμππ==∝∑,方向沿圆周与电流成右手关系!or LL BoRrr1∝B r∝思考:无限长均匀载流直圆筒,B ~r 曲线?BoRr管外磁场为零.无限长直载流螺线管内磁场︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BI单位长度上的匝数n解密绕长螺线管,已知I , n ,计算管内的磁感应强度.dc ab 作矩形安培环路abcd 如图,绕行方向为逆时针.00d d 000=b c d a LabcdB l B l B dl B dl B dlBcd I ncdIμμ⋅=⋅+⋅+⋅+⋅=+++=⎰⎰⎰⎰⎰∑0B nIμ=无限长螺线管磁场为均匀.求螺线环内的磁感应强度I l B L∑=⋅⎰0d μ 02B r NIπμ⋅=rNI B πμ20=2N n rπ=nIB 0μ=Or 1r 2Pr 为平均半径, 考虑到对称性,环内磁场的磁感应线都是同心圆,选择通过管内某点P 的磁感应线L 作为积分环路:方向由电流方向通过右手法则判断.第四节磁场对运动电荷的作用一. 洛仑兹力磁场对运动电荷的作用f qv B=⨯ 大小:θsin qvB F =特点:不改变大小,只改变方向,不对做功.vq v vBf运动正电荷受力方向垂直于和构成的平面,成右手螺旋.v B1、运动方向与磁场方向平行sin F qvB θ=θ= 0 , F = 0带电粒子在均匀磁场中的运动匀速直线运动θBvq+f⊗θBvq-fB+v⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯B 2、运动方向与磁场方向垂直RvmqvB 2=qBmv R =v B f qvB⊥⇒=R22R m T v qBππ==匀速圆周运动周期f+v半径托克马克装置3、沿任意方向方向运动匀速圆周运动与匀速直线运动的合成——轨迹为螺旋线qBmv R θsin =qBm T π2=螺距//2cos m h v T v qBπθ==h +B ⊥v //v θv例有一均匀磁场,B = 1.5 T ,水平方向由南向北. 有一5.0 兆电子伏特的质子沿竖直向下的方向通过磁场,求作用在质子上的力?(m = 1.67⨯10-27 kg )) J (100.8) eV (100.5211362k -⨯=⨯==mv E ) s m (101.31067.1100.822172713k ---⋅⨯=⨯⨯⨯==m E v ︒⨯⨯⨯⨯⨯==-90sin 5.1101.3106.1sin 719θqvB F )N (104.712-⨯=解方向向东F q v 下B 北二、质谱仪(mass spectrograph)R +-⋅⋅⋅P ⋅⋅⋅⋅⋅⋅⋅⋅⋅N ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅B N :粒子源,P :速度选择器 qE qvB v E B ''=⇒=质谱分析:qB mv R x 22==E x B qB m 2'=谱线位置:同位素质量;谱线黑度:相对含量.B’三、霍尔效应(Hall effect)现象:通电流I ,磁场垂直于I ,在既垂直于I ,又垂直于的方向出现电势差∆U. B B m e F qv B F qE =⨯= H I IB U Bb R nqbd d∆==霍尔电势差:解释:载流子q 以漂移,受到磁场力,正负电荷上下两侧积累,形成电场,受力平衡时,有稳定的霍尔电场.v x y zB I b d P 型半导体v q +++++++-+------e F m F I nqvbd =霍尔系数R H 与载流子浓度n 成反比. 在金属中,由于载流子浓度很大,因此霍尔系数很小,相应地霍尔效应也很弱; 而在半导体中,载流子浓度较小,因此霍尔效应也较明显. 霍尔效应是半导体研究的重要手段. 问题:对n 型半导体,霍尔电势差的方向如何?应用:测载流子浓度测载流子电性—半导体类型B 测磁场(霍耳元件)H 1R nq霍尔系数(Hall coefficient):一、安培定律(Ampère Law )磁场对电流元的作用Bl I F ⨯=d d 载流导线所受磁场力d d L L F F I l B ==⨯⎰⎰ 第五节磁场对电流的作用磁矩L I B d I l Fm F qv B =⨯ d F qv BdN qv BnSdl =⨯=⨯载流直导线在均匀磁场中所受的力d L F I l B =⨯⎰ sin d L F IB l θ=⎰θsin ILB F =sin d L IB l θ=⎰安培力的方向由右手螺旋法则可知为垂直纸面向里×IBθFB θd I lLA B C D I 1I 21d I l 2d I l 1B 2B 1d F 2d F 平行长直载流导线间的相互作用力距a 的两无限长直导线,I 1、I 2,导线CD 上的电流元受力:2222d d sin F B I l θ=012 ,22I B a μπθπ==CD 单位长度受力:2012121d d d 2d F I I F l a l μπ==安培:真空中相距为1m 的无限长直细导线,载有相等的电流,若每米导线上受力正好为2⨯10-7N ,则导线内电流定义为1A.例:如图,均匀磁场垂直纸面向外,半径为R 的半圆导线通有电流I ,求作用在导线上的安培力.解R y x Bd θθd I l d F d x F d y F d F =IB d l =IBR d θd d F I l B =⨯ 0d (d )sin 2y y L F F F IBR IBR πθθ====⎰⎰方向为y 轴正向.推广:起点终点相同的载流直导线所受的力?对称性-----各电流元受力水平分量之和为零。
习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcdμ∴ 21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
第九章重、磁异常的处理与转换1、什么是重磁异常的处理与转换?处理转换的目的及包括哪些内容?(1)定义:重、磁异常处理与转换的过程是根据重、磁异常的数学物理特征,对实测异常进行必要的数学加工处理,(2) 目的:提高信噪比,突出有用异常使实际异常满足或接近解释理论所要求的条件。
(3)内容:重、磁异常处理与转换的内容很广泛,它可以在空间域中进行,也可以在波数域中进行。
其主要内容包括:数据的网格化、异常的圆滑、异常的划分、异常的解析延拓、异常的分量转换、异常的导数计算、磁化方向的转换,异常的分离。
2、异常的预处理有哪些内容?数据的网格化、异常的圆滑、区域异常与局部异常的划分3、什么是数据的网格化,网格化的实质是什么?书中介绍了几种方法?(1)定义:将不规则的实测数据或数字化仪取出的数据换算成规则网格节点上的数据,这个过程就是数据的网格化。
(2)实质:数据网格化的实质问题就是对不规则的数据点进行插值。
(插值的方法很多,有拉格朗日多项式法、克里格法(Kriging)、最小二乘拟合法(多项式回归法)和加权平均法(近邻法)等等)(3)方法:拉格朗日多项式法,最小二乘拟合法4、什么是数据的圆滑,圆滑的实质是什么?书中介绍了几种方法?(1)定义:为了去掉数据中的误差或随机干扰对原始重、磁异常做圆滑处理。
(2)实质:其实质就是数学拟合。
(3)方法:1.徒手圆滑法;2.平均圆滑法;3.最小二乘圆滑法。
※异常的圆滑类型:剖面圆滑和平面圆滑5、趋势分析法的数学实质是什么?与最小二乘拟合、最小二乘圆滑法有什么区别?(1)实质:趋势分析法的实质是用一个多项式拟合区域场,是函数拟合。
(2)区别:趋势分析方法的实质与异常圆滑计算中的最小二乘圆滑是一样的,它们都属于函数拟合。
但趋势分析要一次性地利用全测区(或整条测线)中所有测点的异常数据,异常圆滑则是多次利用计算点附近一定范围内的数据。
也就是前者是整体拟合,后者是局部拟合。
正因为如此,圆滑计算时需要取计算点为坐标原点,计算点变化移动时坐标原点以及周围参与计算的已知点的异常值都随着变化,多次移动计算出多组多项式系数;而趋势分析计算时坐标原点必须固定且一次性求解出多项式的全部系数。
六年级科学电和磁教案第一章:电流的基础知识1.1 电流的定义:引导学生理解电流的概念,电流是电荷的定向移动形成的。
1.2 电流的单位:介绍安培(A)作为电流的单位,并学习如何测量电流。
1.3 电流的方向:讲解电流的流动方向,以及正负电荷的移动方向。
第二章:电路的组成与分类2.1 电路的组成:讲解电路的基本组成部分,包括电源、导线、开关和用电器。
2.2 电路的分类:引导学生学习串联电路和并联电路的特点和区别。
2.3 电路图的绘制:教授如何绘制简单的电路图,培养学生的绘图能力。
第三章:磁现象的认识3.1 磁铁的性质:讲解磁铁的吸引和排斥现象,以及磁极的概念。
3.2 磁场的表示:介绍磁感线来表示磁场的分布,理解磁场的强弱。
3.3 磁场的应用:学习磁铁在日常生活中的应用,如指南针、磁悬浮等。
第四章:电磁感应4.1 电磁感应现象:讲解闭合电路的一部分导体在磁场中切割磁感线会产生感应电流。
4.2 发电机的原理:引导学生理解发电机的工作原理,并了解其应用。
4.3 电磁感应的实验:安排学生进行电磁感应实验,加深对电磁感应现象的理解。
第五章:电磁铁5.1 电磁铁的原理:讲解电磁铁的工作原理,以及影响电磁铁磁性强弱的因素。
5.2 电磁铁的制作:指导学生动手制作一个简单的电磁铁,提高学生的实践能力。
5.3 电磁铁的应用:学习电磁铁在日常生活中的应用,如电磁锁、电磁起重机等。
第六章:电流的测量6.1 安培表的使用:教授学生如何正确使用安培表测量电流,包括校零、选择量程、保持表笔接触良好等。
6.2 电流的测量实验:安排学生进行电流测量实验,让他们亲身体验并掌握电流测量的技巧。
6.3 电流数据的处理:引导学生如何记录和分析实验中测得的电流数据,培养他们的数据处理能力。
第七章:电压和电阻7.1 电压的概念:讲解电压的定义,以及电压在电路中的作用。
7.2 电压的测量:介绍电压表的使用方法,以及如何测量电路中的电压。
7.3 电阻的性质:讲解电阻的概念,以及电阻对电流流动的影响。