2018年浙江省湖州市初中毕业生考试
- 格式:doc
- 大小:177.50 KB
- 文档页数:8
2018年浙江省湖州市中考真题英语一、听力(略)二、完形填空(本题有15小题,每小题1分,共15分)阅读下面短文,理解其大意,然后从各题所给的A 、B、C、D四个选项中选出最佳选项。
In San Francisco, I had this amazing experience. While I was waiting for the bus, I saw a homeless person carrying a 16 which said that he would like a cup of hot coffee.As soon as I 17 it, I knew it was time for me to carry out the task. I joyfully ran across the street, thinking that getting 18 a cup of hot coffee would be great. I went to Uncle Bob's nearby and asked the young lady behind the counter to give me a 19 . I then walked back to the street corner where the man had 20 As I went up to him. I could see that the 21 I got, the more joy in his eyes I could see.When I 22 him the hot coffee, I just said, "This is 23 you, my dear. "I could see so much 24 in his face and even a tear(眼泪)was running down. He kept thanking me and holding his coffee like the biggest 25 and prize in his life. It made me cry that a(n)26 action can bring so much joy and make someone feel really warn.I walked back to the 27 with such a happy hop. When the bus driver opened the door and I wanted to pay the bus fee, 28 , he waved me through and said, "Honey, you don't need to pay. This is on me. " He explained that it 29 his heart to see that I gave away free coffee.This 30 moment was the warmest in my heart and it gave my day and my life a brand new start. It brings me such a joy to simply love and bless.16.A. posterB. noticeC. pictureD. sign解析:句意:在我等车的时候,我看到了一个无家可归的人拿着一个指示牌上面写着他想要一杯热咖啡。
浙江省2018年初中学业水平考试(湖州市)_5ccca3dd0102y737浙江省2018年初中学业水平考试(湖州市)语文试题卷一、积累(16分)1.读下面文字,根据拼音写出汉字。
(3分)这里mo(1)密的青草在向你頻頻点头,当苹果滚落在草地上时,你会将你的目光跟zng(2)它,你会用你的脸庞亲昵它。
花园,我美丽的花园!你走遍夭y(3)也找不到这样的花园,也找不到这样清澈、活泼的流水.也找不到这样的春天和夏天。
——[波兰]切斯拉夫米沃什《牧歌》,张振辉译2.读下面对联根据要求填写合适的古诗文名句(8分)对联一:兵甲富胸中,纵教他虏骑横飞,也怕那范小老子忧乐关天下,愿今人砥砺奋起,都学这秀才先生(冯玉祥题山东青州范公亭)对联二:正气足千秋,只今砥柱中流,得力在惶恐滩头、零丁洋里忠臣惟一死,壮此崇祠孤屿,触景到罗浮山下、扬子江心(清黄惟诰题温州文天祥祠)对联三:铁板铜琶,继东坡高唱大江东去美芹悲黍,冀南宋莫随鸿雁南飞(郭沫若题山东济南稼轩祠)对联四:异代不同时,问如此江山,龙幡虎卧几诗客先生亦流寓,有长流天地,月白风请一草堂(清顾复初题四川成都杜甫草堂)(1)对联一下联说都学这秀才先生。
今人可以向范仲淹学些什么?用《岳阳楼记》中连续且意义完整的两句话回答。
,。
(2)对联二上联赞扬文天样的崇高气节。
《过零丁洋》,写出诗中最能体现文天样正气足千秋的连续的两句。
,。
(3)对联三下联赞扬辛弃疾抗金复国的爱国精神。
《破阵子为陈同甫賦壮词以寄之》,写出词人报效国家,实现理想的凌云壮志的连续的两句。
,。
(4)对联四下联说先生亦流寓,是指杜甫一生颠沛流离。
《月夜忆舍弟》,写出诗中情景交融,抒写思念之情的连续的两句。
,。
3.读下面文字,根据要求完成题目。
(5分)(1)解释下列句中加点的词语。
君子养心,莫善于城。
(【战国】《荀子》)()君子不患位之不尊,而患德之不崇。
(【汉】张衡《应问》)()君子如抱美玉而深藏不市,小人则以石为玉而又炫之。
浙江省2018年湖州中考英语试题考生须知:1.全卷分试题卷和答题卷两部分。
试题卷共8页,答题卷共2页。
全卷满分为100分,考试时间为100分钟。
2.试题卷分卷I和卷II两部分。
卷I中试题(1-56小题)的答案填涂在答题卷上,卷II由试题的答案写在答题卷相应的位置上,写在试题卷上无效。
卷I说明:本卷共五大题,56小题,满分66分。
一、听力(本题有15小题,其中1-10小题每题1分,11-15小题每题2分,共20分)注意:听力共分三节。
答题时,请先将答案标在试卷上,听力部分结束后,请将答案转涂到客观题答题卷上。
听每段对话或独白前,你都有五秒钟的时间阅读这一小题,听完后你将有五秒钟的时间回答这一小题。
第一节:听下面五段对话,每段对话后有1个小题,请从题中所给的A、B、C三个选项中选择正确的选项。
每段对话仅读一遍。
1. Where is the man going?A. To the bookstoreB. To the post officeC. To the library2.Why did the woman miss the bus?A. She oversleptB. She had a headache.C. She got the wrong way3. When did they last see their primary school classmates?A. Yesterday.B. Last yearC. Three years ago.4. Where does the conversation probably take place?A. In a theatreB. In a caféC. In a bank5. What does the woman ask the man to bring?A. Some games.B. Some foodC. Some drinks.第二节:听下面两段较长对话,每段对话后有2至3个小题,请从题中所给的A、B、C三个选项中选择正确的选项。
浙江省湖州市2018年中考数学一、选择题(本题共10小题,每小题3分,共30分)1. 2018的相反数是()A. 2018B. ﹣2018C.D.【答案】B【解析】分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:因为与只有符号不同,的相反数是故选B.点睛:本题考查了相反数的概念,熟记相反数的定义是解题的关键.2. 计算﹣3a•(2b),正确的结果是()A. ﹣6abB. 6abC. ﹣abD. ab【答案】A【解析】分析:根据单项式的乘法解答即可.详解:-3a•(2b)=-6ab,故选:A.点睛:此题考查单项式的除法,关键是根据法则计算.3. 如图所示的几何体的左视图是()A. B. C. D.【答案】D【解析】从左边看是一个正方形,正方形的左上角是一个小正方形,故选C.4. 某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:生产件数(件)10 11 12 13 14 15人数(人) 1 5 4 3 2 1则这一天16名工人生产件数的众数是()A. 5件B. 11件C. 12件D. 15件【答案】B【解析】分析:众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.详解:由表可知,11件的次数最多,所以众数为11件,故选:B.点睛:本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.5. 如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°【答案】B【解析】分析:先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.详解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.6. 如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A. (﹣1,﹣2)B. (﹣1,2)C. (1,﹣2)D. (﹣2,﹣1)【答案】A【解析】分析:直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.详解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(-1,-2).故选:A.点睛:此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.7. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A. B. C. D.【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8. 如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A. AE=EFB. AB=2DEC. △ADF和△ADE的面积相等D. △ADE和△FDE的面积相等【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,∵点D是BC中点,∴BD=CD,由折叠知,∠ACB=∠DFE,CD=DF,∴BD=CD=DF,∴△BFC是直角三角形,∴∠BFC=90°,∵BD=DF,∴∠B=∠BFD,∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,∴AE=EF,故A正确,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,故选:C.点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.9. 尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. rB. (1+)rC. (1+)rD. r【答案】D【解析】分析:如图连接CD,AC,DG,AG.在直角三角形即可解决问题;详解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴AC=r,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴OG=r,故选:D.点睛:本题考查作图-复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10. 在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A. a≤﹣1或≤a<B. ≤a<C. a≤或a>D. a≤﹣1或a≥【答案】A【解析】分析:根据二次函数的性质分两种情形讨论求解即可;详解:∵抛物线的解析式为y=ax2-x+2.观察图象可知当a<0时,x=-1时,y≤2时,满足条件,即a+3≤2,即a≤-1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥,∵直线MN的解析式为y=-x+,由,消去y得到,3ax2-2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤-1或≤a<,故选:A.点睛:本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.二、填空题(本题共6小题,每小题4分,共24分)11. 二次根式中字母x的取值范围是_____.【答案】x≥3【解析】分析:由二次根式有意义的条件得出不等式,解不等式即可.详解:当x-3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.点睛:本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.12. 当x=1时,分式的值是_____.【答案】【解析】由题意得:,解得:x=2. 故答案为:213. 如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC=,AC=6,则BD的长是_____.【答案】2【解析】分析:根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC=3,BD=2OB.再解Rt△OAB,根据tan∠BAC=,求出OB=1,那么BD=2.详解:∵四边形ABCD是菱形,AC=6,∴AC⊥BD,OA=AC=3,BD=2OB.在Rt△OAB中,∵∠AOD=90°,∴tan∠BAC=,∴OB=1,∴BD=2.故答案为2.点睛:本题考查了菱形的性质,解直角三角形,锐角三角函数的定义,掌握菱形的对角线互相垂直平分是解题的关键.14. 如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是_____.【答案】70°【解析】分析:先根据三角形内心的性质和切线的性质得到OB平分∠ABC,OD⊥BC,则∠OBD=∠ABC=20°,然后利用互余计算∠BOD的度数.详解:∵△ABC的内切圆⊙O与BC边相切于点D,∴OB平分∠ABC,OD⊥BC,∴∠OBD=∠ABC=×40°=20°,∴∠BOD=90°-∠OBD=70°.故答案为70°.点睛:本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.15. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是_____.【答案】﹣2【解析】分析:根据正方形的性质结合题意,可得出点B的坐标为(-,-),再利用二次函数图象上点的坐标特征即可得出关于b的方程,解之即可得出结论.详解:∵四边形ABOC是正方形,∴点B的坐标为(-,-).∵抛物线y=ax2过点B,∴-=a(-)2,解得:b1=0(舍去),b2=-2.故答案为:-2.点睛:本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.16. 在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【答案】9或13或49.【解析】分析:共有三种情况:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13;②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.详解:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为:9或13或49.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.三、解答题(本题有8个小题,共66分)17. 计算:(﹣6)2×(﹣).【答案】6【解析】分析:原式先计算乘方运算,再利用乘法分配律计算即可求出值.详解:原式=36×(-)=18-12=6.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18. 解不等式≤2,并把它的解表示在数轴上.【答案】x≤2,将不等式的解集表示在数轴上见解析.【解析】分析:先根据不等式的解法求解不等式,然后把它的解集表示在数轴上.详解:去分母,得:3x-2≤4,移项,得:3x≤4+2,合并同类项,得:3x≤6,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:点睛:本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.19. 已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.【答案】a的值是1,b的值是﹣2.【解析】分析:根据抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),可以求得a、b的值,本题得以解决.详解:∵抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),∴,解得,,即a的值是1,b的值是-2.点睛:本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.20. 某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.【答案】(1)97.2°;(2)D班选择环境保护的学生人数是15人;补全折线统计图见解析;(3)估计该校选择文明宣传的学生人数是950人.【解析】分析:(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;(2)用选择环境保护的学生总人数减去A,B,C三个班选择环境保护的学生人数即可得出D班选择环境保护的学生人数,进而补全折线图;(3)用2500乘以样本中选择文明宣传的学生所占的百分比即可.详解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.点睛:本题考查折线统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.21. 如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.【答案】(1)证明见解析;(2)【解析】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径直定理即可证明。
2018湖州中考总分是多少?580分。
结合义务教育阶段深化课程改革的要求,建立更加规范的学生综合素质档案,客观记录学生成长过程中的突出表现,侧重学生的社会责任感、创新精神和实践能力,主要包括品德表现、运动健康、艺术素养、创新实践等内容。
评价结果实行等级制。
学生综合素质评价由学校根据市、县(区)教育行政部门的要求组织实施。
各初中学校要根据省教育厅、市教育局关于初中阶段学生综合素质评价实施指导意见,结合本校实际,制定评价实施方案。
要严格程序,强化监督,确保民主、公开、透明,保证内容客观、真实、准确。
高中段学校在达到综合素质测评等第要求的考生中,根据其志愿、招生总分、综合评语和《学生成长记录册》,进行全面衡量、择优录取。
初中学校要引导不同志向、兴趣和学业基础的毕业生进入适合的高中段学校学习。
2.健全多元招生机制完善省重点普通高中招收初中保送生、定向分配招生等政策,进一步规范初中学校推荐学生的要求和过程。
继续探索以“三位一体”综合评价方式进行自主招生,即根据学生的升学考试成绩、学校面试(测试)成绩和综合素质评价结果,按一定权重进行考核录取。
特长类招生时,升学考试成绩所占权重不低于30%。
普通高中学校要将保送生、特长生招生办法、计划等报教育行政部门,经批准后方可实施,并提前向社会公布。
贯彻落实好《浙江省教育厅推进实施素质教育的意见》(浙教基〔2007〕150号),进一步扩大重点普通高中招生名额分配比例,2018年省一级和部分省二级重点普通高中定向招生分配比例达到招生计划的50%以上。
市区部分普通高中定向招生实施办法见附件1。
市区各高中学校可根据《湖州市区2018年普通高中特长生招生实施办法》(见附件2)制定本校的特长生招生办法,经市教育局高中段学校考试招生工作领导小组审核同意后,于2018年3月底前向社会公布。
2018年4月20日前各校确定具备特长生资格的对象,报经市教育局高中段学校考试招生工作领导小组审核同意后,在中考后根据考生志愿和成绩择优录取。
s 2018年浙江省湖州市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)2018的相反数是( )A.2018B.﹣2018C.D.2.(3分)计算﹣3a•(2b),正确的结果是( )A.﹣6ab B.6ab C.﹣ab D.ab3.(3分)如图所示的几何体的左视图是( )A.B.C.D.4.(3分)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:生产件数(件)101112131415人数(人)154321则这一天16名工人生产件数的众数是( )A .5件B .11件C .12件D .15件5.(3分)如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°6.(3分)如图,已知直线y=k 1x (k1≠0)与反比例函数y=(k 2≠0)的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是( )A .(﹣1,﹣2)B .(﹣1,2)C .(1,﹣2)D .(﹣2,﹣1)7.(3分)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A .B .C .D .8.(3分)如图,已知在△ABC 中,∠BAC >90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是( )A.AE=EF B.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等9.(3分)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是( )A.r B.(1+)r C.(1+)r D .r10.(3分)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是( )A.a≤﹣1或≤a <B .≤a <C.a ≤或a >D.a≤﹣1或a ≥二、填空题(本题共6小题,每小题4分,共24分)11.(4分)二次根式中字母x的取值范围是 .e 12.(4分)当x=1时,分式的值是 .13.(4分)如图,已知菱形ABCD ,对角线AC ,BD 相交于点O .若tan ∠BAC=,AC=6,则BD 的长是 .14.(4分)如图,已知△ABC 的内切圆⊙O 与BC 边相切于点D ,连结OB ,OD .若∠ABC=40°,则∠BOD 的度数是 .15.(4分)如图,在平面直角坐标系xOy 中,已知抛物线y=ax 2+bx (a >0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y=ax 2(a >0)交于点B .若四边形ABOC 是正方形,则b 的值是 .16.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD 的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E ,F ,G ,H 都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD 的边长为,此时正方形EFGH 的而积为5.问:当格点弦图中的正方形ABCD 的边长为时,正方形EFGH 的面积的所有可能值是 (不包括5).三、解答题(本题有8个小题,共66分)17.(6分)计算:(﹣6)2×(﹣).18.(6分)解不等式≤2,并把它的解表示在数轴上.19.(6分)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.20.(8分)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.21.(8分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.thi n gs in ei r be i ng (1)求证:AE=ED ;(2)若AB=10,∠CBD=36°,求的长.22.(10分)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A ,B 两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A ,B 两个果园分别需用110吨和70吨有机化肥.两个仓库到A ,B 两个果园的路程如表所示:路程(千米)甲仓库乙仓库A 果园1525B 果园2020设甲仓库运往A 果园x 吨有机化肥,若汽车每吨每千米的运费为2元,(1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内)运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A 果园x 110﹣x2×15x2×25(110﹣x )B 果园(2)设总运费为y 元,求y 关于x 的函数表达式,并求当甲仓库运往A 果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?23.(10分)已知在Rt △ABC 中,∠BAC=90°,AB ≥AC ,D ,E 分别为AC ,BC 边上的点(不包括端点),且==m ,连结AE ,过点D 作DM ⊥AE ,垂足为点M ,延长DM 交AB 于点F .(1)如图1,过点E 作EH ⊥AB 于点H ,连结DH .①求证:四边形DHEC 是平行四边形;②若m=,求证:AE=DF ;(2)如图2,若m=,求的值.24.(12分)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.2018年浙江省湖州市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)2018的相反数是( )A.2018B.﹣2018C.D.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:2018的相反数是﹣2018,故选:B.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)计算﹣3a•(2b),正确的结果是( )A.﹣6ab B.6ab C.﹣ab D.ab【分析】根据单项式的乘法解答即可.【解答】解:﹣3a•(2b)=﹣6ab,故选:A.【点评】此题考查单项式的除法,关键是根据法则计算.3.(3分)如图所示的几何体的左视图是( )hingsiA.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个圆环,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.4.(3分)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:生产件数(件)101112131415人数(人)154321则这一天16名工人生产件数的众数是( )A.5件B.11件C.12件D.15件【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:由表可知,11件的次数最多,所以众数为11件,故选:B.【点评】本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.5.(3分)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是( )A.20°B.35°C.40°D.70°【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.【点评】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.6.(3分)如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象的坐标是( )交于M,N两点.若点M的坐标是(1,2),则点NA.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(﹣2,﹣1)【分析】直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.【解答】解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M 的坐标是(1,2),∴点N 的坐标是(﹣1,﹣2).故选:A .【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出M ,N 两点位置关系是解题关键. 7.(3分)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A .B .C .D .【分析】将三个小区分别记为A 、B 、C ,列举出所有情况即可,看所求的情况占总情况的多少即可.【解答】解:将三个小区分别记为A 、B 、C ,列表如下:AB C A (A ,A )(B ,A )(C ,A )B (A ,B )(B ,B )(C ,B )C(A ,C )(B ,C )(C ,C )由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为=,故选:C .【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.(3分)如图,已知在△ABC 中,∠BAC >90°,点D 为BC 的中点,点E 在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是( )A.AE=EF B.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等【分析】先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.【解答】解:如图,连接CF,∵点D是BC中点,∴BD=CD,由折叠知,∠ACB=∠DFE,CD=DF,∴BD=CD=DF,∴△BFC是直角三角形,∴∠BFC=90°,∵BD=DF,∴∠B=∠BFD,∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,∴AE=AF,故A正确,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,.故选:C【点评】此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.9.(3分)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是( )A.r B.(1+)r C.(1+)r D .r【分析】如图连接CD,AC,DG,AG.在直角三角形即可解决问题;【解答】解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴AC=r,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴OG===r,故选:D.【点评】本题考查作图﹣复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10.(3分)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是( )A.a≤﹣1或≤a <B .≤a <C.a ≤或a >D.a≤﹣1或a ≥【分析】根据二次函数的性质分两种情形讨论求解即可;【解答】解:∵抛物线的解析式为y=ax2﹣x+2.观察图象可知当a<0时,x=﹣1时,y≤2时,满足条件,即a+3≤2,即a≤﹣1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,满足条件,∴a ≥,∵直线MN的解析式为y=﹣x +,由,消去y得到,3ax2﹣2x+1=0,∵△>0,∴a <,∴≤a <满足条件,综上所述,满足条件的a的值为a≤﹣1或≤a <,故选:A.【点评】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.二、填空题(本题共6小题,每小题4分,共24分)11.(4分)二次根式中字母x的取值范围是 x≥3 .【分析】由二次根式有意义的条件得出不等式,解不等式即可.【解答】解:当x﹣3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.【点评】本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.12.(4分)当x=1时,分式的值是 .【分析】将x=1代入分式,按照分式要求的运算顺序计算可得.【解答】解:当x=1时,原式==,故答案为:.【点评】本题主要考查分式的值,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.13.(4分)如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC=,AC=6,则BD的长是 2 .【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC=3,BD=2OB.再解Rt△OAB,根据tan∠BAC==,求出OB=1,那么BD=2.【解答】解:∵四边形ABCD是菱形,AC=6,∴AC⊥BD,OA=AC=3,BD=2OB.在Rt△OAB中,∵∠AOD=90°,∴tan∠BAC==,∴OB=1,∴BD=2.故答案为2.【点评】本题考查了菱形的性质,解直角三角形,锐角三角函数的定义,掌握菱形的对角线互相垂直平分是解题的关键.14.(4分)如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是 70° .【分析】先根据三角形内心的性质和切线的性质得到OB平分∠ABC,OD⊥BC,则∠OBD=∠ABC=20°,然后利用互余计算∠BOD的度数.【解答】解:∵△ABC的内切圆⊙O与BC边相切于点D,∴OB平分∠ABC,OD⊥BC,∴∠OBD=∠ABC=×40°=20°,∴∠BOD=90°﹣∠OBD=70°.故答案为70°.【点评】本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.15.(4分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是 ﹣2 .【分析】根据正方形的性质结合题意,可得出点B的坐标为(﹣,﹣),再利用二次函数图象上点的坐标特征即可得出关于b的方程,解之即可得出结论.【解答】解:∵四边形ABOC是正方形,∴点B的坐标为(﹣,﹣).∵抛物线y=ax2过点B,∴﹣=a(﹣)2,解得:b1=0(舍去),b2=﹣2.故答案为:﹣2.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.16.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD 的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD 的边长为时,正方形EFGH的面积的所有可能值是 13或49 (不包括5).d【分析】当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.【解答】解:当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.故答案为13或49.【点评】本题考查作图﹣应用与设计、全等三角形的判定、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题. 三、解答题(本题有8个小题,共66分)17.(6分)计算:(﹣6)2×(﹣).【分析】原式先计算乘方运算,再利用乘法分配律计算即可求出值.【解答】解:原式=36×(﹣)=18﹣12=6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 18.(6分)解不等式≤2,并把它的解表示在数轴上.【分析】先根据不等式的解法求解不等式,然后把它的解集表示在数轴上.【解答】解:去分母,得:3x﹣2≤4,移项,得:3x≤4+2,合并同类项,得:3x≤6,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:【点评】本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.19.(6分)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.【分析】根据抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),可以求得a、b的值,本题得以解决.【解答】解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.20.(8分)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.【分析】(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;(2)用选择环境保护的学生总人数减去A,B,C三个班选择环境保护的学生人数即可得出D班选择环境保护的学生人数,进而补全折线图;(3)用2500乘以样本中选择文明宣传的学生所占的百分比即可.【解答】解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.【点评】本题考查折线统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.21.(8分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;的长.(2)若AB=10,∠CBD=36°,求【分析】(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;(2)根据弧长公式解答即可.【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,thi n gs in ei r be i ng ar e∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.【点评】此题考查弧长公式,关键是根据弧长公式和垂径定理解答.22.(10分)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A ,B 两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A ,B 两个果园分别需用110吨和70吨有机化肥.两个仓库到A ,B 两个果园的路程如表所示:路程(千米)甲仓库乙仓库A 果园1525B 果园2020设甲仓库运往A 果园x 吨有机化肥,若汽车每吨每千米的运费为2元,(1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内)运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A 果园x 110﹣x2×15x 2×25(110﹣x )B 果园 80﹣x x ﹣10 2×20×(80﹣x) 2×20×(x ﹣10) (2)设总运费为y 元,求y 关于x 的函数表达式,并求当甲仓库运往A 果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?【分析】(1)设甲仓库运往A 果园x 吨有机化肥,根据题意求得甲仓库运往B 果园(80﹣x )吨,乙仓库运往A 果园(110﹣x )吨,乙仓库运往B 果园(x ﹣10)吨,然后根据两个仓库到A ,B 两个果园的路程完成表格;(2)根据(1)中的表格求得总运费y (元)关于x (吨)的函数关系式,根据一次函数的增减性结合自变量的取值范围,可知当x=80时,总运费y最省,然后代入求解即可求得最省的总运费.【解答】解:(1)填表如下:运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x)B果园80﹣x x﹣102×20×(80﹣x)2×20×(x﹣10)故答案为80﹣x,x ﹣10,2×20×(80﹣x),2×20×(x﹣10);(2)y=2×15x+2×25×(110﹣x)+2×20×(80﹣x)+2×20×(x﹣10),即y关于x的函数表达式为y=﹣20x+8300,∵﹣20<0,且10≤x≤80,∴当x=80时,总运费y最省,此时y最小=﹣20×80+8300=6700.故当甲仓库运往A果园80吨有机化肥时,总运费最省,最省的总运费是6700元.【点评】此题考查了一次函数的实际应用问题.此题难度较大,解题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数的性质求解. 23.(10分)已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且==m,连结AE,过点D作DM⊥AE,垂足为点M,延长DM交AB于点F.(1)如图1,过点E作EH⊥AB于点H,连结DH.①求证:四边形DHEC是平行四边形;②若m=,求证:AE=DF;(2)如图2,若m=,求的值.②先判断出AC=AB,BH=HE,再判断出∠HEA=∠AFD,即可得出结论;(2)先判断出△EGB∽△CAB,进而求出CD:BE=3:5,再判断出∠AFM=∠AEG进而判断出△FAD∽△EGA,即可得出结论.【解答】解:(1)①证明:∵EH⊥AB,∠BAC=90°,∴EH∥CA,∴△BHE∽△BAC,∴,∵,∴,∴,∴HE=DC,∵EH∥DC,∴四边形DHEC是平行四边形;②∵,∠BAC=90°,∴AC=AB,∵,HE=DC,∴HE=DC,∴,∵∠BHE=90°,∴BH=HE,∵HE=DC,∴BH=CD,∴AH=AD,∵DM⊥AE,EH⊥AB,∴∠EHA=∠AMF=90°,∴∠HAE+∠HEA=∠HAE+∠AFM=90°,∴∠HEA=∠AFD,∵∠EHA=∠FAD=90°,∴△HEA≌△AFD,∴AE=DF;(2)如图2,过点E作EG⊥AB于G,∵CA⊥AB,∴EG∥CA,∴△EGB∽△CAB,∴,∴,∵,∴EG=CD,设EG=CD=3x,AC=3y,∴BE=5x,BC=5y,∴BG=4x,AB=4y,∵∠EGA=∠AMF=90°,∴∠GEA+∠EAG=∠EAG+∠AFM,∴∠AFM=∠AEG,∵∠FAD=∠EGA=90°,∴△FAD∽△EGA,∴=【点评】此题是相似形综合题,主要考查了平行四边形的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,判断出∠HEA=∠AFD是解本题的关键.24.(12分)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.【分析】(1)如图1中,作DE⊥x轴于E,解直角三角形清楚DE,CE即可解决问题;(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(3+a ,),点A、D在同一反比例函数图象上,可得2a=(3+a),清楚a即可;(3)分两种情形:①如图2中,当∠PA1D=90°时.②如图3中,当∠PDA1=90°时.分别构建方程解决问题即可;.【解答】解:(1)如图1中,作DE⊥x轴于E∵∠ABC=90°,∴tan∠ACB==,∴∠ACB=60°,根据对称性可知:DC=BC=2,∠ACD=∠ACB=60°,∴∠DCE=60°,∴∠CDE=90°﹣60°=30°,∴CE=1,DE=,∴OE=OB+BC+CE=5,∴点D坐标为(5,).(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(3+a ,),∵点A、D在同一反比例函数图象上,∴2a=(3+a),∴a=3,∴OB=3.(3)存在.理由如下:①如图2中,当∠PA1D=90°时.∵AD∥PA1,∴∠ADA1=180°﹣∠PA1D=90°,在Rt△ADA1中,∵∠DAA1=30°,AD=2,∴AA1==4,在Rt△APA1中,∵∠APA1=60°,∴PA=,∴PB=,设P(m ,),则D1(m+7,),∵P、A1在同一反比例函数图象上,∴m=(m+7),解得m=3,∴P(3,),∴k=10.②如图3中,当∠PDA1=90°时.∵∠PAK=∠KDA1=90°,∠AKP=∠DKA1,∴△AKP∽△DKA1,∴=.∴=,∵∠AKD=∠PKA1,∴△KAD∽△KPA1,∴∠KPA1=∠KAD=30°,∠ADK=∠KA1P=30°,∴∠APD=∠ADP=30°,∴AP=AD=2,AA1=6,设P(m,4),则D1(m+9,),∵P、A1在同一反比例函数图象上,∴4m=(m+9),解得m=3,∴P(3,4),∴k=12.【点评】本题考查反比例函数综合题、相似三角形的判定和性质、锐角三角函数、解直角三角形、待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,学会了可以参数构建方程解决问题,属于中考压轴题.。
一、单选题1.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°【来源】浙江省湖州市2018年中考数学试题【答案】B点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.2.如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A. AE=EFB. AB=2DEC. △ADF和△ADE的面积相等D. △ADE和△FDE的面积相等【来源】浙江省湖州市2018年中考数学试题【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,故选:C.点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.学科*网3.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A. 20B. 24C.D.【来源】浙江省温州市2018年中考数学试卷【答案】B点睛: 本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键. 4.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A. 4B. 6C.D. 8【来源】山东省淄博市2018年中考数学试题【答案】B【解析】分析:根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.点睛:本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5.如图,已知,添加以下条件,不能判定的是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】C点睛:本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段,分别以为圆心,以长为半径作弧,两弧的交点为;(2)以为圆心,仍以长为半径作弧交的延长线于点;(3)连接下列说法不正确的是( )A. B.C. 点是的外心D.【来源】山东省潍坊市2018年中考数学试题【答案】D【解析】分析:根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;详解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选D.点睛:本题考查作图-基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.如图,点,分别在线段,上,与相交于点,已知,现添加以下哪个条件仍不能...判定..()A. B. C. D.【来源】贵州省安顺市2018年中考数学试题【答案】D点睛:此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.8.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是()A. B.C. D.【来源】贵州省安顺市2018年中考数学试题【答案】D点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【来源】山东省滨州市2018年中考数学试题【答案】A【解析】分析:直接根据勾股定理求解即可.详解:∵在直角三角形中,勾为3,股为4,∴弦为故选A.点睛:本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.在中,,于,平分交于,则下列结论一定成立的是()A. B. C. D.【来源】江苏省扬州市2018年中考数学试题【答案】C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.11.如图,,且.、是上两点,,.若,,,则的长为()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】D【解析】分析:详解:如图,点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.学科*网12.如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】A详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.二、解答题13.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【来源】陕西省2018年中考数学试题【答案】证明见解析.【解析】【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.14.如图,中,,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交于点;②作边的垂直平分线,与相交于点;③连接,.请你观察图形解答下列问题:(1)线段,,之间的数量关系是________;(2)若,求的度数.【来源】湖北省孝感市2018年中考数学试题【答案】(1);(2)80°.【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°-2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.详解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.15.已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【来源】山东省淄博市2018年中考数学试题【答案】证明见解析【解析】分析:过点A作EF∥BC,利用E F∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.详解:证明:过点A作EF∥BC,点睛:本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.16.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【来源】山东省淄博市2018年中考数学试题【答案】(1)MG=NG;MG⊥NG;(2)成立,MG=NG,MG⊥NG;(3)答案见解析【解析】分析:(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.详解:(1)连接BE,CD相较于H,如图1,(2)连接CD,BE,相较于H,如图2,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,如图3.点睛:此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.学科*网17.如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在上.(1)求证:AE=AB;(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.【来源】浙江省温州市2018年中考数学试卷【答案】(1)证明见解析;(2)BC=【解析】分析: (1)由翻折的性质得出△ADE≌△ADC,根据全等三角形对应角相等,对应边相等得出∠AED=∠ACD,AE=AC,根据同弧所对的圆周角相等得出∠ABD=∠AED,根据等量代换得出∠ABD=∠ACD,根据等角对等边得出AB=AC,从而得出结论;(2)如图,过点A作AH⊥BE于点H,根据等腰三角形的三线合一得出BH=EH=1,根据等腰三角形的性质及圆周角定理得出∠ABE=∠AEB=ADB,根据等角的同名三角函数值相等及余弦函数的定义得出BH∶AB = 1∶3,从而得出AC=AB=3,在Rt三角形ABC中,利用勾股定理得出BC的长.(2)解:如图,过点A作AH⊥BE于点H∵AB=AE,BE=2∴BH=EH=1∵∠ABE=∠AEB=ADB,cos∠ADB=∴cos∠ABE=cos∠ADB=∴=∴AC=AB=3∵∠BAC=90°,AC=AB∴BC=点睛: 本题主要考查三角形的外接圆,解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.18.如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当AB=6时,求CD的长.【来源】浙江省温州市2018年中考数学试卷【答案】(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD= AB=3点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【来源】四川省宜宾市2018年中考数学试题【答案】证明见解析.【解析】分析:由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.详解:证明:如图,点睛:考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.20.如图,在四边形中,∥,=2,为的中点,请仅用无刻度的直尺......分别按下列要求画图(保留作图痕迹)(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD, 画出△ABD的AD边上的高 .【来源】江西省2018年中等学校招生考试数学试题【答案】(1)作图见解析;(2)作图见解析.【详解】(1)如图AF是△ABD的BD边上的中线;(2)如图AH是△ABD的AD边上的高.【点睛】本题考查了利用无刻度的直尺......按要求作图,结合题意认真分析图形的成因是解题的关键.21.在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是,与的位置关系是;(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理).(3) 如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.【来源】江西省2018年中等学校招生考试数学试题【答案】(1)BP=CE;CE⊥AD;(2)成立,理由见解析;(3) .【详解】(1)①BP=CE,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE ,∠PAE=60°,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE;(2)(1)中的结论:BP=CE,CE⊥AD 仍然成立,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE ,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE,,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD,∴(1)中的结论:BP=CE,CE⊥AD 仍然成立;(3) 连接AC交BD于点O,CE,作EH⊥AP于H,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴,∵△APE是等边三角形,∴,,∵,∴,===,∴四边形ADPE的面积是 .【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形判定与性质等,熟练掌握相关知识,正确添加辅助线是解题的关键. 学科*网22.已知:在中,,为的中点,,,垂足分别为点,且.求证:是等边三角形.【来源】浙江省嘉兴市2018年中考数学试题【答案】证明见解析.点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质.解题的关键是证明∠A=∠C.23.如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【来源】安徽省2018年中考数学试题【答案】(1)画图见解析;(2)CE=【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.24.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM 的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【来源】安徽省2018年中考数学试题【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.25.数学课上,张老师举了下面的例题:例1 等腰三角形中,,求的度数.(答案:)例2 等腰三角形中,,求的度数.(答案:或或)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形中,,求的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】(1)或或;(2)当且,有三个不同的度数.【解析】【分析】(1)分为顶角和为底角,两种情况进行讨论.(2)分①当时,②当时,两种情况进行讨论.【点评】考查了等腰三角形的性质,注意分类讨论思想在数学中的应用.三、填空题26.在中,,平分,平分,相交于点,且,则__________.【来源】广东省深圳市2018年中考数学试题【答案】【详解】如图,∵AD、BE分别平分∠CAB和∠CBA,∴∠1=∠2,∠3=∠4,∵∠C=90°,∴∠2+∠3=45°,∴∠AFE=45°,过E作EG⊥AD,垂足为G,在Rt△EFG中,∠EFG=45°,EF=,∴EG=FG=1,在Rt△AEG中,AG=AF-FG=4-1=3,∴AE=,过F分别作FH⊥AC垂足为H,FM⊥BC垂足为M,FN⊥AB垂足为N,易得CH=FH,设EH=a,则FH2=EF2-EH2=2-a2,在Rt△AHF中,AH2+HF2=AF2,即+2-a2=16,∴a=,∴CH=FH=,∴AC=AE+EH+HC=,故答案为:.【点睛】本题考查了角平分线的性质,勾股定理的应用等,综合性质较强,正确添加辅助线是解题的关键. 27.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.【来源】广东省深圳市2018年中考数学试题【答案】8【解析】【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.28.等腰三角形的一个底角为,则它的顶角的度数为__________.【来源】四川省成都市2018年中考数学试题【答案】点睛:本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.学科*网29.如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【来源】天津市2018年中考数学试题【答案】;见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.30.如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.31.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.【来源】浙江省金华市2018年中考数学试题【答案】AC=BC.【解析】分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.学科*网32.在△ABC中,若∠A=30°,∠B=50°,则∠C=__________.【来源】山东省滨州市2018年中考数学试题【答案】100°【解析】分析:直接利用三角形内角和定理进而得出答案.详解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°点睛:此题主要考查了三角形内角和定理,正确把握定义是解题关键.33.如图,在中,用直尺和圆规作、的垂直平分线,分别交、于点、,连接.若,则__________.【来源】江苏省南京市2018年中考数学试卷【答案】点睛:本题考查了三角形的中位线定理,属于基础题,解答本题的关键是掌握三角形的中位线定理. 34.如图,五边形是正五边形,若,则__________.【来源】江苏省南京市2018年中考数学试卷【答案】72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.35.如图,为的平分线.,..则点到射线的距离为__________.【来源】山东省德州市2018年中考数学试题【答案】3点睛:本题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.36.等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度数为__________.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】或【解析】【分析】画出示意图,分两种情况进行讨论即可.【解答】如图:分两种情况进行讨论.【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用. 37.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【来源】浙江省湖州市2018年中考数学试题【答案】9或13或49.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.学科*网。
浙江省湖州市2018年中考英语真题试题(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省湖州市2018年中考英语真题试题(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省湖州市2018年中考英语真题试题(含解析)的全部内容。
浙江省湖州市2018年中考英语真题试题一、听力注意:听力共分三节。
答题时,请先将答案标在试卷上,听力部分结束后,请将答案转涂到客观题答题卷上.听每段对话或独白前,你都有五秒钟的时间阅读这一小题,听完后你将有五秒钟的时间回答这一小题。
第一节:听下面五段对话,每段对话后有1个小题,请从题中所给的A、B、C三个选项中选择正确的选项。
每段对话仅读一遍.1. Where is the man going?A。
To the bookstore B. To the post office C。
To the library2.Why did the woman miss the bus?A. She overslept B。
She had a headache. C。
She got the wrong way3. When did they last see their primary school classmates?A。
Yesterday. B。
Last year C. Three years ago. 4。
Where does the conversation probably take place?A。
In a theatre B。
In a café C. In a bank5. What does the woman ask the man to bring?A. Some games。
2018~2019学年湖州中考数学真题一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分. 1.数2的倒数是 A. -2 B. 2C. 21-D.21【答案】D【解析】因为互为倒数的两个数之积为1,所以2的倒数是12,故选D.2.据统计,龙之梦动物世界在2019年“五一”小长假期间共接待游客约238000人次用科学记数法可将238000表示为 A.238×103B.23.8×104C.2.38×105D.0.238×106【答案】C【解析】238000=2.38×105,故选C. 3.计算aa a 11+-,正确的结果是 A.1B.21C. aD.a 1【答案】A 【解析】a a a 11+-=111==+-aaa a ,故选A.4.已知∠α=60°32’,则∠α的余角是 A.29°28’B.29°68’C.119°28’D.119°68’【答案】A【解析】解:∠α的余角为90°-60°32′=29°28′,故选:A .5.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的侧面积是 A. 60πcm 2B.65πcm2C.120πcm2D.130πcm2【答案】B【解析】圆锥的侧面积=21×13×2×π×5=65πcm 2.6.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是 A.101B.109C.51D.54【答案】C【解析】∵10瓶饮料中有2瓶已过了保质期,∴从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是210= 15. 故选C.7.如图,已知正五边形ABCDE 内接于⊙O ,连结BD ,则∠ABD 的度数是(第7题图) A.60°B. 70°C.72°D.144°【答案】C【解析】∵五边形ABCDE 为正五边形,∴∠ABC =∠C =15(5−2)×180°=108°,∵CD =CB ,∴∠CBD =12(180°−108°)=36°,∴∠ABD =∠ABC -∠CBD =72°, 故选:C .8.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =6,BC =9,CD =4,则四边形ABCD 的面积是(第8题图)A.24B.30C. 36D. 42【答案】B【解析】如图,过点D 作DE ⊥AB 于E ,由BD 平分∠ABC 可知,DC =DE ,BC =BE ,∴四边形ABCD 的面积BC ∙CD -12(BE -AB )∙DE =36-6=30. 故选B.9.在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P 是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P 的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是(第9题图)A.22B.5C.253D.10【答案】D【解答】如下图,EF 为剪痕,过点F 作FG ⊥EM 于G .∵EF 将该图形分成了面积相等的两部分,∴EF 经过正方形ABCD 对角线的交点, ∴AF =CN ,BF =DN .易证△PME ≌PDN ,∴EM =DN , 而AF =MG ,∴EG =EM +MG =DN +AF =DN +CN =DC =1.在Rt △FGE 中,EF =10132222=+=+EG FG . 故选:D.10.已知a ,b 是非零实数,b a >,在同一平面直角坐标系中,二次函数y 1=ax 2+bx 与一次函数y 2=ax +b 的大致图象不可能是A. B. C. D.【答案】D【解析】解答本题可采用赋值法. 取a=2,b=1,可知A选项是可能的;取a=2,b=-1,可知B选项是可能的;取a=-2,b=-1,可知C选项是可能的,那么根据排除法,可知D选项是不可能的.故选D.二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:x2-9=_____________.【答案】(x+3)(x-3)【解析】根据平方差公式,有x2-9=(x+3)(x-3).12.已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是__________.【答案】30°【解析】根据圆周角定理:是一条弧所对圆周角等于它所对圆心角的一半,可知它所对的圆心角的度数是30°.13.学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是________分.【答案】9.1【解析】该班的平均得分= 5×8+8×9+7×105+8+7= 9.1.14.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD =α. 若AO =85cm ,BO =DO =65cm .问:当α=74°,较长支撑杆的端点A 离地面的高度h 约为________cm .(参考数据:sin 37≈0.6,cos 3≈0.8,sin 53≈0.8,cos 53≈0.6.)图1 图2【答案】12015.如图,已知在平面直角坐标系xoy 中,直线121-=x y 分别交x 轴,y 轴于点A 和点B ,分别交反比例函数()0,01>>=x k x ky ,()022<=x xk y 的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是_________.【答案】2【解答】如下图,过点D 作DF ⊥y 轴于F .由反比例函数比例系数的几何意义,可得S △COE=12k ,S △DOF =k.∵S △DOB =S △COE =12k ,∴S △DBF =S △DOF -S △DOB =12k=S △DOB ,∴OB=FB.易证△DBF ≌ABO ,从而DF =AO =2,即D 的横坐标为-2,而D 在直线AC 上, ∴D (-2, -2),∴k =12∙(-2)∙(-2)=2.16.七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4√2的正方形ABCD 可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH 内拼成如图2所示的“拼搏兔”造型(其中点Q 、R 分别与图2中的点E 、G 重合,点P 在边EH 上),则“拼搏兔”所在正方形EFGH 的边长是__________.图1图2【答案】4 5【解析】如图3,连结CE 交MN 于O .观察图1、图2可知,EN =MN =4,CM =8,∠ENM =∠CMN =90°.图3∴△EON ∽△COM , ∴EN CN = ON OM = 12, ∴ON =13MN =43,OM =23MN =83.在Rt △ENO 中,OE =ON 2+EN 2=4103,同理可求得OG =8103, ∴GF =22(OE +OG )=2,即“拼搏兔”所在正方形EFGH 的边长是4 5.三、解答题(本题有8小题共66分) 17.(本小题6分)计算:()82123⨯+-. 【答案】8【解答】原式=-8+4=-4.18.(本小题6分)化简:(a +b )2-b (2a +b ).【答案】a 2【解答】原式=a 2+2ab +b 2-2ab -b 2=a 2.19.(本小题6分)已知抛物线y =2x 2-4x +c 与x 轴有两个不同的交点.(1)求c 的取值范围;(2)若抛物线y =2x 2-4x +c 经过点A (2,m )和点B (3,n ),试比较m 与n 的大小,并说明理由.【答案】略【解答】(1) b2-4ac=(-4)2-8c=16-8c.由题意,得b2-4ac>0,∴16-8c>0∴c的取值范围是c<2.(2) m<n. 理由如下:∵抛物线的对称轴为直线x=1,又∵a=2>0,∴当x≥1时,y随x的增大而增大.∵2<3,∴m<n.20.(本小题8分)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表某校抽查的学生文章阅读的篇数情况统计图文章阅读的篇数(篇) 3 4 5 6 7及以上人数(人) 20 28 m16 12请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果估计该校学生在这一周内文章阅读的篇数为4篇的人数.【答案】略【解答】(1) 被抽查的学生人数是16÷16%=100(人),m=100-20-28-16-12=24(人).(2) 中位数是5(篇),众数是4(篇).(3) ∵被抽查的100人中,文章阅读篇数为4篇的人数是28人, ∴800×28100=224(人),∴估计该校学生在这一周内文章阅读的篇数为4篇的人数是224人.21.(本小题8分)如图,已知在△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,连结DF ,EF ,BF.(1)求证:四边形BEFD 是平行四边形;(2)若∠AFB =90°,AB =6,求四边形BEFD 的周长.(1)证明:∵D ,E ,F 分别是AB ,BC ,AC 的中点, ∴DF ∥BC ,FE ∥AB ,∴四边形BEFD 是平行四边形.(2)解:∵∠AFB =90°,D 是AB 的中点,AB =6,∴DF =DB =DA =12AB =3.∴四边形BEFD 是菱形.∵DB =3,∴四边形BEFD 的周长为12.22.(本小题10分)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校义骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B -C -D 分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x ≤30时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)图1图2【答案】略【解答】(1)由题意,得:甲步行的速度是2400÷30=80(米/分),∴乙出发时甲离开小区的路程是80×10=800(米).(2)设直线OA的解析式为: y=kx(k≠0),∵直线OA过点A(30,2400),∴30k=2400,解得k=80,∴直线OA的解析式为:y=80x.∴当x=18时,y=80×18=1440,∴乙骑自行车的速度是1440÷(18-10)=180(米/分).∵乙骑自行车的时间为25-10=15(分),∴乙骑自行车的路程为180×15=2700(米).当x=25时,甲走过的路程是y=80x=80×25=2000(米),∴乙到达还车点时,甲、乙两人之间的距离是2700-2000=700(米).(3)图象如图所示:23.(本小题10分)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(-3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x-3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动2为半径画圆.点,以Q为圆心,2①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点, 连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.图1 图2【答案】略【解答】(1)如图1,连结BP,过点P作PH⊥OB于点H,图3则BH =OH .∵AO =BO =3,∴∠ABO =45°,BH =12OB =2, ∵⊙P 与直线l 1相切于点B ,∴BP ⊥AB ,∴∠PBH =90°-∠ABO =45°.∴PB =2BH =322,从而⊙P 的直径长为3 2. (2)证明:如图4过点C 作CE ⊥AB 于点E ,图4将y =0代入y =3x -3,得x =1,∴点C 的坐标为(1,0).∴AC =4,∵∠CAE =45°,∴CE =22AC =2 2. ∵点Q 与点C 重合,又⊙Q 的半径为22,∴直线l 1与⊙Q 相切.②解:假设存在这样的点Q,使得△QMN是等腰直角三角形,∵直线l1经过点A(-3,0),B(0,3),∴l的函数解析式为y=x+3.记直线l2与l1的交点为F,情况一:如图5,当点Q在线段CF上时,由题意,得∠MNQ=45°.如图,延长NQ交x轴于点G,图5∵∠BAO=45°,∴∠NGA=180°-45°-45°=90°,即NG⊥x轴,∴点Q与N有相同的横坐标,设Q(m,3m-3),则N(m,m+3),∴QN=m+3-(3m-3).∵⊙Q的半径为22,∴m+3-(3m-3)=22,解得m=3-2,∴3m-3=6-22,∴Q的坐标为(3-2,6-22).情况二:当点Q 在线段CF 的延长线上时,同理可得m =3+2,Q 的坐标为(3+2,6+32). ∴存在这样的点Q 1(3-2,6-32)和Q 2(3+2,6+32),使得△QMN 是等腰直角三角形.24.(本小题12分)如图1,已知在平面直角坐标系xoy 中,四边形OABC 是矩形点A ,C 分别在x 轴和y 轴的正半轴上,连结AC ,OA =3,tan ∠OAC =∠3,D 是BC 的中点.(1)求C 的长和点D 的坐标;(2)如图2,M 是线段OC 上的点,OM =OC ,点P 是线段OM 上的一个动点,经过P ,D ,B 三点的抛物线交x 轴的正半轴于点E ,连结DE 交AB 于点F①将△DBF 沿DE 所在的直线翻折,若点B 恰好落在AC 上,求此时BF 的长和点E 的坐标; ②以线段DF 为边,在DF 所在直线的右上方作等边△DFG ,当动点P 从点O 运动到点M 时,点G 也随之运动,请直接写出点G 运动路径的长.图1图2【答案】略【解答】(1)解:∵A =3,t an ∠OAC =OC OA =33, ∴OC = 3.∵四边形OABC 是矩形,∴BC =A 0=3.∵D 是BC 的中点,∴CD =12BC =32,∴点D 的坐标为(32,3). (2) ①∵t an ∠OAC =33, ∴∠OAC =30°,∴∠ACB =∠OAC =30°.设将△DBF 翻折后,点B 落在AC 上的B ’处, 则DB ’=DB =DC ,∠BDF =∠BD ’F , ∴∠DB ’C =∠ACB =30°,∴∠BDB =60°,∴∠BDF =∠B ’DF =30°.∵∠B =90°,∴BF =BD ∙t an 30=32. ∵AB =3,∴AF =BF =32, ∵∠BFD =∠AFE ,∠B =∠FAE =90°, ∴△BFD ≌△AFE .∴AE =BD =32. ∴OE =OA +AE =92,∴点E 的坐标为(92,0). ②36.。
浙江省2021年湖州中考英语试题考生须知:1.全卷分试题卷和答题卷两部分。
试题卷共8页,答题卷共2页。
全卷总分值为100分,考试时间为100分钟。
2.试题卷分卷I和卷两部分。
卷I中试题〔1-56小题〕的答案填涂在答题卷上,卷由试题的答案写在答题卷相应的位置上,写在试题卷上无效。
卷I说明:本卷共五大题,56小题,总分值66分。
一、听力〔此题有15小题,其中1-10小题每题1分,11-15小题每题2分,共20分〕留意:听力共分三节。
答题时,请先将答案标在试卷上,听力部分完毕后,请将答案转涂到客观题答题卷上。
听每段对话或独白前,你都有五秒钟的时间阅读这一小题,听完后你将有五秒钟的时间答复这一小题。
第一节:听下面五段对话,每段对话后有1个小题,请从题中所给的A、B、C三个选项中选择正确的选项。
每段对话仅读一遍。
1.A. B. C.2A. B. a . C.3.A. .B.C. .4.A. aB. a éC. a5.A. .B.C. .第二节:听下面两段较长对话,每段对话后有2至3个小题,请从题中所给的A、B、C三个选项中选择正确的选项。
每段对话读两遍。
听下面一段较长对话,答复第6-7小题。
6.A.B. aC. .7.A. .B.C.听下面一段较长对话,答复第8-10小题。
8.A. AB. AC. A9. ’sA. B. C.10.A. 34B. 48C. 68第三节:听下面一段独白,独白后有5个小题,请从题中所给的A、B、C三个选项中选择正确的选项。
独白读两遍。
11.A. B. . C. .12.A. B. C.13A. .B. .C.14.A.B. .C. .15.A. A a .B. AC. A .二、完形填空(此题有15小题,每题1分,共15分)阅读下面短文,理解其大意,然后从各题所给的A、B、C、D四个选项中选出最正确选项。
, I . I , I a a 16 a .I 17 , I . I , 18 a .I 's a 19 . I 20 I .I 21 I , I .I 22 , I , " 23 , . "I 24 a (眼泪) . 25 . a(n)26 .I 27 a . I , 28 , , ", 't . . " 29 I .30 a . a .16. A. B. C. D.17. A. B. C. D.18. A. B. C. D.19. A. B. C. D.20. A. B. C. D.21. A. B. C. D.22. A. B. C. D.23. A. B. C. D.24. A. B. C. D.25. A. B. C. D.26. A. B. C. D.27. A. B. C. D.28. A. B. C. D.29. A. B. C. D.30. A. B. C. D.三、阅读理解〔此题有15小题,共23分。
浙江省2018年初中学业水平考试(湖州市)科学试题和答案解析友情提示:1.本卷可能用到的相对原子质量:H—1 C—12 O—16 Na—23 Cl—35.5 2.本卷g取10牛/千克一、选择题(本题有16小题,每小题3分,共48分)1.对一些生活常识的认知是科学素养的重要方面。
下列对一些科学量的估测中,比较贴近事实的是()A.一位中学生受到的重力约50牛 B.食用油的密度约0.9千克/米3C.一间教室的体积约200米3 D.中学生正常步行的速度约10米/秒【答案】C【考点】生活常识估测法【解析】A.中学生的质量在50kg左右,受到的重力大约为G=mg=50kg×10N/kg=500N左右。
故A不符合实际;B.水的密度是1.0×103kg/m3,食用油的密度略小于水,在0.9×103kg/m3左右。
故B不符合实际;C.一般教室的长、宽、高分别在9m、8m、3m左右,教室体积在V=abh=9m×8m×3m=216m3,接近200m3。
故C符合实际;D.中学生正常步行的速度在4km/h=4×13.6m/s≈1.1m/s左右。
故D不符合实际。
故选:C。
2.太阳表面经常发生一些变化,即太阳活动,它们对地球的影响很大。
右下图中甲表示的太阳活动是()A.太阳黑子B.耀斑C.日珥D.耀斑和日珥【答案】C【考点】太阳活动的基本类型【解析】太阳黑子是太阳上出现的黑色而低温的区域。
黑子通常成对出现,它们是穿过太阳表面的强大磁场(强度约为地球磁场的5000倍)。
磁场是由在太阳内部运动的气体形成的。
有时,气体云层会升高,从黑子对沿着磁力线运动。
这些拱形的气体被称为“日珥”, 它像是太阳面的“耳环”一样,有时会在夜空中形成可见的极光。
在结构复杂的黑子群中,会发生突然而剧烈的爆炸。
这些爆炸被称为“耀斑”。
当耀斑到达地球后,与地球两极的磁场发生相互作用,会产生北极光和南极光。
2018年浙江省湖州市中考英语试题及答案(Word版)D12. How many people are living in the house?A. TwoB. ThreeC. our13.Where do they have dinner?A. In the dining room.B. In the garden.C. In the kitchen14. When does the speaker do the cooking?A. On Tuesdays and FridaysB. On Thursdays and Fridays.C. On Tuesdays and Thursdays.15. What kind of house are they going to look for next year?A. A house with a garden.B. A house in the city centerC. A house nearer the university.二、完形填空(本题有15小题,每小题1分,共15分)阅读下面短文,理解其大意,然后从各题所给的A、B、C、D四个选项中选出最佳选项。
In San Francisco, I had this amazing experience. While I was waiting for the bus, I saw a homeless person carrying a 16 whichsaid that he would like a cup of hot coffee.As soon as I 17 it, I knew it was time for me to carry out the task. I joyfully ran across the street, thinking that getting 18 a cup of hot coffee would be great. I went to Uncle Bob's nearby and asked the young lady behind the counter to give me a 19 . I then walked back to the street corner where the man had20 As I went up to him. I could see that the21 I got, the more joy in his eyes I could see. When I 22 him the hot coffee, I just said, "This is 23 you, my dear. "I could see so much 24 in his face and even a tear (眼泪) was running down. He kept thanking me and holding his coffee like the biggest 25 and prize in his life. It made me cry that a(n) 26 action can bring so much joy and make someone feel really warn.I walked back to the 27 with such a happy hop. When the bus driver opened the door and I wanted to pay the bus fee, 28 , he waved me through and said, "Honey, you don'tneed to pay. This is on me. " He explained that it 29 his heart to see that I gave away free coffee.This 30 moment was the warmest in my heart and it gave my day and my life a brand new start. It brings me such a joy to simply love and bless.16. A. poster B. notice C. Picture D. sign17. A. reached B. read C. faced D. held18. A. me B. you C. herD. him19. A. ticket B. hand C. coffeeD. prize20. A. stayed B. visited C. sharedD. expected21. A. better B. closer C. fartherD. more22. A. showed B. sold C. handedD. made23. A. for B. with C. fromD. about24. A. sadness B. worry C. joyD. hope25. A. lesson B. treasure C. secretD. chance26. A. unusual B. simple C. strangeD. careless27. A. homeless person B. young lady C. coffee shop D. bus stop28. A. in the end B. in fact C. to my surprise D. to be honest29. A. took B. touched C. brokeD. controlled30. A. lucky B. interesting C. amazing D. successful三、阅读理解(本题有15小题,共23分。
浙江省2018年湖州中考英语试题考生须知:1.全卷分试题卷和答题卷两部分。
试题卷共8页,答题卷共2页。
全卷满分为100分, 考试时间为100分钟。
2.试题卷分卷I 和卷Il 两部分。
卷I 中试题(2-56小题)的答案填涂在答题卷上,卷Il 由试题的答案写在答题卷相应的位置上,写在试题卷上无效。
卷I说明:本卷共五大题,56小题,满分66分。
一、听力(本题有15小题,其中IJO 小题每题2分,11-15小题每题2分,共20分)注意:听力共分三节。
答题时,请先将答案标在试卷上,听力部分结朿后,请将答案转涂到 客观题答题卷上。
听每段对话或独白前,你都有五秒钟的时间阅读这一小题,听完后你将有 五秒钟的时间回答这一小题。
第一节:听下而五段对话,每段对话后有1个小题,请从题中所给的A 、B 、C 三个选项中 选择正确的选项。
每段对话仅读一遍。
2・ Where is the man going5. What does the WOman ask the man to bringA. SOme games ・B. SOme (OOd第二节:听下而两段较长对话,每段对话后有2至3个小题, 个选项中选择正确的选项。
每段对话读两遍匚听下而一段较长对话,回答第6・7小题。
A. TO the bookstoreB. TO the POSt OffiCe did the WOman miss the bus A. She OVerSIePtB. She Had a headache.3. When did they IaSt See their Primary SChOOl ClaSSmateSA. YeSterday.B ・ LaSt year4. Where does the COnVerSatiOn PrObably take PlaCeA. In a theatreB. In a CafeC. TO the IibraryC. She got the WrOng WayC. Three years ago.C. In a bankC. SOme drinks.请从题中所给的A 、B 、C 三6・ What did Cindy do On SUndayA.She did her homeworkB.She StUdied for a testC.She Went to the PaPer-CUtting museum・7.What does Cindy think Of BObS WeekendA.QUite busy.B. RelaXingC. NOt too bad听下面一段较长对话,回答第8√L0小题。
2018年浙江省湖州市中考数学试卷及答案解析(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年浙江省湖州市中考数学试卷及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年浙江省湖州市中考数学试卷及答案解析(word版可编辑修改)的全部内容。
2018年浙江省湖州市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)2018的相反数是()A.2018 B.﹣2018 C .D .2.(3分)计算﹣3a•(2b),正确的结果是()A.﹣6ab B.6ab C.﹣ab D.ab3.(3分)如图所示的几何体的左视图是()A .B .C .D .4.(3分)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:101112131415生产件数(件)人数(人)154321则这一天16名工人生产件数的众数是()A.5件B.11件C.12件D.15件5.(3分)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是( )A.20°B.35°C.40°D.70°6.(3分)如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是( )A.(﹣1,﹣2) B.(﹣1,2) C.(1,﹣2)D.(﹣2,﹣1)7.(3分)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.B.C.D.8.(3分)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是( )A.AE=EF B.AB=2DEC.△ADF和△ADE的面积相等 D.△ADE和△FDE的面积相等9.(3分)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A.r B.(1+)r C.(1+)r D.r10.(3分)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是( )A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥二、填空题(本题共6小题,每小题4分,共24分)11.(4分)二次根式中字母x的取值范围是.12.(4分)当x=1时,分式的值是.13.(4分)如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC=,AC=6,则BD的长是.14.(4分)如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是.15.(4分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是.16.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是(不包括5).三、解答题(本题有8个小题,共66分)17.(6分)计算:(﹣6)2×(﹣).18.(6分)解不等式≤2,并把它的解表示在数轴上.19.(6分)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.20.(8分)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.21.(8分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.22.(10分)“绿水青山就是金山银山",为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:路程(千米)甲仓库乙仓库A果园1525B果园2020设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元,(1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内)运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x)B果园(2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?23.(10分)已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且==m,连结AE,过点D作DM⊥AE,垂足为点M,延长DM交AB于点F.(1)如图1,过点E作EH⊥AB于点H,连结DH.①求证:四边形DHEC是平行四边形;②若m=,求证:AE=DF;(2)如图2,若m=,求的值.24.(12分)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC 关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.2018年浙江省湖州市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)2018的相反数是()A.2018 B.﹣2018 C.D.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:2018的相反数是﹣2018,故选:B.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)计算﹣3a•(2b),正确的结果是()A.﹣6ab B.6ab C.﹣ab D.ab【分析】根据单项式的乘法解答即可.【解答】解:﹣3a•(2b)=﹣6ab,故选:A.【点评】此题考查单项式的除法,关键是根据法则计算.3.(3分)如图所示的几何体的左视图是( )A .B .C .D .【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个圆环,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.4.(3分)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:101112131415生产件数(件)人数(人)154321则这一天16名工人生产件数的众数是()A.5件B.11件C.12件D.15件【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:由表可知,11件的次数最多,所以众数为11件,故选:B.【点评】本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.5.(3分)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.【点评】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.6.(3分)如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是( )A.(﹣1,﹣2) B.(﹣1,2)C.(1,﹣2)D.(﹣2,﹣1)【分析】直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.【解答】解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(﹣1,﹣2).故选:A.【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.7.(3分)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车"的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.B.C.D.【分析】将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.【解答】解:将三个小区分别记为A、B、C,列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为=,故选:C.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.(3分)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A.AE=EF B.AB=2DEC.△ADF和△ADE的面积相等 D.△ADE和△FDE的面积相等【分析】先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.【解答】解:如图,连接CF,∵点D是BC中点,∴BD=CD,由折叠知,∠ACB=∠DFE,CD=DF,∴BD=CD=DF,∴△BFC是直角三角形,∴∠BFC=90°,∵BD=DF,∴∠B=∠BFD,∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,∴AE=AF,故A正确,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,故选:C.【点评】此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.9.(3分)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A.r B.(1+)r C.(1+)r D.r【分析】如图连接CD,AC,DG,AG.在直角三角形即可解决问题;【解答】解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴AC=r,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴OG===r,故选:D.【点评】本题考查作图﹣复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10.(3分)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥【分析】根据二次函数的性质分两种情形讨论求解即可;【解答】解:∵抛物线的解析式为y=ax2﹣x+2.观察图象可知当a<0时,x=﹣1时,y≤2时,满足条件,即a+3≤2,即a≤﹣1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥,∵直线MN的解析式为y=﹣x+,由,消去y得到,3ax2﹣2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤﹣1或≤a<,故选:A.【点评】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.二、填空题(本题共6小题,每小题4分,共24分)11.(4分)二次根式中字母x的取值范围是x≥3 .【分析】由二次根式有意义的条件得出不等式,解不等式即可.【解答】解:当x﹣3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.【点评】本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.12.(4分)当x=1时,分式的值是.【分析】将x=1代入分式,按照分式要求的运算顺序计算可得.【解答】解:当x=1时,原式==,故答案为:.【点评】本题主要考查分式的值,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.13.(4分)如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC=,AC=6,则BD的长是 2 .【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC=3,BD=2OB.再解Rt △OAB,根据tan∠BAC==,求出OB=1,那么BD=2.【解答】解:∵四边形ABCD是菱形,AC=6,∴AC⊥BD,OA=AC=3,BD=2OB.在Rt△OAB中,∵∠AOD=90°,∴tan∠BAC==,∴OB=1,∴BD=2.故答案为2.【点评】本题考查了菱形的性质,解直角三角形,锐角三角函数的定义,掌握菱形的对角线互相垂直平分是解题的关键.(4分)如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°, 14.则∠BOD的度数是70°.【分析】先根据三角形内心的性质和切线的性质得到OB平分∠ABC,OD⊥BC,则∠OBD=∠ABC=20°,然后利用互余计算∠BOD的度数.【解答】解:∵△ABC的内切圆⊙O与BC边相切于点D,∴OB平分∠ABC,OD⊥BC,∴∠OBD=∠ABC=×40°=20°,∴∠BOD=90°﹣∠OBD=70°.故答案为70°.【点评】本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.15.(4分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是﹣2 .【分析】根据正方形的性质结合题意,可得出点B的坐标为(﹣,﹣),再利用二次函数图象上点的坐标特征即可得出关于b的方程,解之即可得出结论.【解答】解:∵四边形ABOC是正方形,∴点B的坐标为(﹣,﹣).∵抛物线y=ax2过点B,∴﹣=a(﹣)2,解得:b1=0(舍去),b2=﹣2.故答案为:﹣2.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.16.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是13或49 (不包括5).【分析】当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.【解答】解:当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH 的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.故答案为13或49.【点评】本题考查作图﹣应用与设计、全等三角形的判定、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.三、解答题(本题有8个小题,共66分)17.(6分)计算:(﹣6)2×(﹣).【分析】原式先计算乘方运算,再利用乘法分配律计算即可求出值.【解答】解:原式=36×(﹣)=18﹣12=6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)解不等式≤2,并把它的解表示在数轴上.【分析】先根据不等式的解法求解不等式,然后把它的解集表示在数轴上.【解答】解:去分母,得:3x﹣2≤4,移项,得:3x≤4+2,合并同类项,得:3x≤6,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:【点评】本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.19.(6分)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.【分析】根据抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),可以求得a、b 的值,本题得以解决.【解答】解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.20.(8分)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.【分析】(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;(2)用选择环境保护的学生总人数减去A,B,C三个班选择环境保护的学生人数即可得出D班选择环境保护的学生人数,进而补全折线图;(3)用2500乘以样本中选择文明宣传的学生所占的百分比即可.【解答】解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.【点评】本题考查折线统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.21.(8分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.【分析】(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;(2)根据弧长公式解答即可.【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.【点评】此题考查弧长公式,关键是根据弧长公式和垂径定理解答.22.(10分)“绿水青山就是金山银山",为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:路程(千米)甲仓库乙仓库A果园1525B果园2020设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元,(1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内)运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x)B果园80﹣x x﹣10 2×20×(80﹣x)2×20×(x﹣10)(2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?【分析】(1)设甲仓库运往A果园x吨有机化肥,根据题意求得甲仓库运往B果园(80﹣x)吨,乙仓库运往A果园(110﹣x)吨,乙仓库运往B果园(x﹣10)吨,然后根据两个仓库到A,B两个果园的路程完成表格;(2)根据(1)中的表格求得总运费y(元)关于x(吨)的函数关系式,根据一次函数的增减性结合自变量的取值范围,可知当x=80时,总运费y最省,然后代入求解即可求得最省的总运费.【解答】解:(1)填表如下:运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x)B果园80﹣x x﹣102×20×(80﹣x)2×20×(x﹣10)故答案为80﹣x,x﹣10,2×20×(80﹣x),2×20×(x﹣10);(2)y=2×15x+2×25×(110﹣x)+2×20×(80﹣x)+2×20×(x﹣10),即y关于x的函数表达式为y=﹣20x+8300,∵﹣20<0,且10≤x≤80,∴当x=80时,总运费y最省,此时y最小=﹣20×80+8300=6700.故当甲仓库运往A果园80吨有机化肥时,总运费最省,最省的总运费是6700元.【点评】此题考查了一次函数的实际应用问题.此题难度较大,解题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数的性质求解.23.(10分)已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且==m,连结AE,过点D作DM⊥AE,垂足为点M,延长DM交AB 于点F.(1)如图1,过点E作EH⊥AB于点H,连结DH.①求证:四边形DHEC是平行四边形;②若m=,求证:AE=DF;(2)如图2,若m=,求的值.【分析】(1)①先判断出△BHE∽△BAC,进而判断出HE=DC,即可得出结论;②先判断出AC=AB,BH=HE,再判断出∠HEA=∠AFD,即可得出结论;(2)先判断出△EGB∽△CAB,进而求出CD:BE=3:5,再判断出∠AFM=∠AEG进而判断出△FAD∽△EGA,即可得出结论.【解答】解:(1)①证明:∵EH⊥AB,∠BAC=90°,∴EH∥CA,∴△BHE∽△BAC,∴,∵,∴,∴,∴HE=DC,∴四边形DHEC是平行四边形;②∵,∠BAC=90°,∴AC=AB,∵,HE=DC,∴HE=DC,∴,∵∠BHE=90°,∴BH=HE,∵HE=DC,∴BH=CD,∴AH=AD,∵DM⊥AE,EH⊥AB,∴∠EHA=∠AMF=90°,∴∠HAE+∠HEA=∠HAE+∠AFM=90°,∴∠HEA=∠AFD,∵∠EHA=∠FAD=90°,∴△HEA≌△AFD,∴AE=DF;(2)如图2,过点E作EG⊥AB于G,∵CA⊥AB,∴△EGB∽△CAB,∴,∴,∵,∴EG=CD,设EG=CD=3x,AC=3y,∴BE=5x,BC=5y,∴BG=4x,AB=4y,∵∠EGA=∠AMF=90°,∴∠GEA+∠EAG=∠EAG+∠AFM,∴∠AFM=∠AEG,∵∠FAD=∠EGA=90°,∴△FAD∽△EGA,∴=【点评】此题是相似形综合题,主要考查了平行四边形的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,判断出∠HEA=∠AFD是解本题的关键.24.(12分)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC 关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.【分析】(1)如图1中,作DE⊥x轴于E,解直角三角形清楚DE,CE即可解决问题;(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(3+a,),点A、D在同一反比例函数图象上,可得2a=(3+a),清楚a即可;(3)分两种情形:①如图2中,当∠PA1D=90°时.②如图3中,当∠PDA1=90°时.分别构建方程解决问题即可;【解答】解:(1)如图1中,作DE⊥x轴于E.∵∠ABC=90°,∴tan∠ACB==,∴∠ACB=60°,根据对称性可知:DC=BC=2,∠ACD=∠ACB=60°,∴∠DCE=60°,∴∠CDE=90°﹣60°=30°,∴CE=1,DE=,∴OE=OB+BC+CE=5,∴点D坐标为(5,).(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(3+a,),∵点A、D在同一反比例函数图象上,∴2a=(3+a),∴a=3,∴OB=3.(3)存在.理由如下:①如图2中,当∠PA1D=90°时.∵AD∥PA1,∴∠ADA1=180°﹣∠PA1D=90°,在Rt△ADA1中,∵∠DAA1=30°,AD=2,∴AA1==4,在Rt△APA1中,∵∠APA1=60°,∴PA=,∴PB=,设P(m,),则D 1(m+7,),∵P、A1在同一反比例函数图象上,∴m=(m+7),解得m=3,∴P(3,),∴k=10.②如图3中,当∠PDA1=90°时.∵∠PAK=∠KDA1=90°,∠AKP=∠DKA1,∴△AKP∽△DKA1,∴=.∴=,∵∠AKD=∠PKA1,∴△KAD∽△KPA1,∴∠KPA1=∠KAD=30°,∠ADK=∠KA1P=30°,∴∠APD=∠ADP=30°,∴AP=AD=2,AA1=6,设P(m,4),则D1(m+9,),∵P、A1在同一反比例函数图象上,∴4m=(m+9),解得m=3,∴P(3,4),∴k=12.【点评】本题考查反比例函数综合题、相似三角形的判定和性质、锐角三角函数、解直角三角形、待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,学会了可以参数构建方程解决问题,属于中考压轴题.。
浙江省2018年初中毕业生考试(湖州市)一.选择题:(本题有12小题,每小题3分,共36分) 1、2的相反数是( ) A 、-2 B 、2 C 、-21 D 、21 2、当x =1时,代数式x+1的值是( )A 、1B 、2C 、3D 、4 3、数据2、4、4、5、3的众数是( )A 、2B 、3C 、4D 、54、已知∠α=35°,则∠α的余角的度数是( )A 、55°B 、45°C 、145°D 、135° 5、计算(-x )2·x 3所得的结果是( )A 、x 5B 、-x 5C 、x 6D 、-x 66、一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是红球的概率是( ) A 、51 B 、52 C 、53 D 、32 7、已知两圆的半径分别为3cm 和2cm ,圆心距为5cm ,则两圆的位置关系是( ) A 、外离 B 、外切 C 、相交 D 、内切 8、下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是( ) A 、32 B 、16 C 、8 D 、49、如图,圆心角∠BOC =78°,则圆周角∠BAC 的度数是( ) A 、156° B 、78° C 、39° D 、12°10、如图,已知直角三角形ABC 中,斜边AB 的长为m ,∠B =40°,则直角边BC 的长是( )A 、msin40°B 、mcos40°C 、mtan40°D 、40tan m11、解放军某部接到上级命令,乘车前往四川地震灾区救灾,前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往,若部队离开驻地的时间为t (小时),离开驻地的距离为S (千米),则能反映S 与t 之间函数关系的大致图象是( )12、已知A 的坐标为(a ,b )O 为坐标原点,连结OA ,将线段OA 绕O 按逆时针方向旋转90得OA 1,则点A 1的坐标为( ) A 、(-a ,b ) B 、(a ,-b ) C 、(-b ,a ) D 、(b ,-a ) 二.填空题:(本题有6小题,每小题4分,共24分) 13、计算:-1+2=14、已知等腰三角形的一个角为70°,则它的顶角为 度 15、利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是第15题 第16题16、如图,AB 是⊙O 的直径,CB 切⊙O 于B ,连结AC 交O 于D ,若BC =8cm ,DO ⊥AB ,则⊙O 的半径OA = cm.17、一个长、宽、高分别为15cm 、10cm 、5cm 的长方体包装盒的表面积为 cm 2 18、将自然数按以下规律排列,则2018所在的位置是第 行第 列。
第一列 第二列 第三列 第四列 … 第一行 1 2 9 10 … 第二行 4 3 8 11 … 第三行 5 6 7 12 … 第四行 16 15 14 13 … 第五行 17 … …三.解答题 19、(本题2小题,每小题5分,共10分) (1)计算:o 30sin 21-252008-+)((2)解不等式组:⎩⎨⎧>++>-1013112x x x20、(本小题8分)如图,在△ABC中,D是BC边的中点,F、E分别是AD及延长线上的点,CF∥BE,(1)求证:△BDE≌△CDF(2)请连结BF、CE,试判断四边形BECF是何种特殊四边形,并说明理由。
21、(本小题10分)为了解九年级学生每周的课外阅读情况,某校语文组调查了该校九年级部分学生某周的课外阅读量(精确到千字),将调查数据经过统计整理后,得到如下频数分布直方图,回答下列问题:(1)填空:①该校语文组调查了名学生的课外阅读量;②左边第一组的频数=,频率=。
(2)求阅读量在14千字及以上的人数。
(3)估计被调查学生在这一周的平均阅读量(精确到千字)。
22、为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成。
(1)按此计划,该公司平均每天就生产帐篷 顶。
(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务,求该公司原计划安排多少名工人生产帐篷?23(本小题10分)如图,在等腰直角三角形OAB 中,∠OAB =90°,B 点在第一象限,A 点坐标为(1,0),△OCD 与△OAB 关于y 轴对称。
(1)求经过D 、O 、B 三点的抛物线的解析式;(2)若将△OAB 向上平移k (k >0)个单位至O 'A 'B '(如图乙),则经过D 、O 、B '三点的抛物线的对称轴在y 轴的 。
(填“左侧”或“右侧”)(3)在(2)的条件下,设过D 、O 、B '三点的抛物线的对称轴为直线x =m ,求当k 为何值时,31 m ?24、(本小题12分)已知:在矩形AOBC 中,OB =4,OA =3,分别以OB 、OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系,F 是边BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数xky(k >0)的图象与AC 边交于点E 。
(1)求证:△AOE 与△BOF 的面积相等。
(2)记S =S △OEF -S △ECF ,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,做一日和尚撞一天钟得将CEF 沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标,若不存在,请说明理由。
四.自选题(本题5分)请注意:本题为自选题,供考生选做,自选题得分将计入本学科总分,但考试总分最多为120分。
函数的图象叫做整点抛物线(例如:y =x 2+2x+2)(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的解析式(2)请探索:是否存在二次项系数的绝对值小于21的整点抛物线?若存在,请写出其中一条抛物线的解析式,若不存在,请说明理由。
参考答案13、1 14、40 15、勾股定理,a 2+b 2=c 216、4 17、550 18、18.45 三.解答题19、解:(1)原式=5+1-212⨯=5 (2)由(1)得x>2 (2)得x>3所以不等式组的解集为x>3 20、证明:(1)∵CF ∥BE ∴EBD =FCD又∵∠BDE =∠CDF ,BD =CD∴△BDE ≌△CDF(2)四边形BECF 是平行四边形 由△BDE ≌△CDF 得ED =FD ∵BD =CD∴四边形BECF 是平行四边形21、(1)①40 ②4、0、1(每答对一个得2分)(2)由图知,阅读量在14千字及以上的学生人数为12+8=20人 (3)估计被调查学生这一周的平均阅读量为:401(4×6+6×9+10×12+12×15+8×18)≈13(千字) 答: 22、(1)2000(2)设该公司原计划安排x 名工人生产帐篷,则由题意得:)50)(2210(2000220000%)251(2000+--⨯-=+x x ∴)50(3165+=x x ∴解这个方程,得:x =750 经检验: 答23、解:(1)由题意可知,经过D 、O 、B 三点的抛物线的顶点是原点故可设所求抛物线的解析式为y =ax 2∵OA =AB ∴B 点的坐标为(1,1)∵B (1,1)在抛物线上 ∴1=a ×12a =1∴经过D 、O 、B 三点的抛物线解析式是y =x 2(2)左侧(3)由题意得:点B '的坐标为(1,1+k )∵抛物线经过原点,故可设抛物线解析式为y =a 1x 2+b 1x ∵抛物线经过点D (-1,1)和点B '(1,1+k ) ∴⎩⎨⎧+=+-=111111b a k b a 得221+=k a , 21kb =∵抛物线对称轴必在y 轴的左侧 ∴m<0,而31=m ∴31=m ∴312222-=+⨯-k k∴k =4即当k =4时,31=m24、(1)证明:设E (x 1,y 1),F(x 2,y 2),△AOE 和△FOB 的面积为S 1、S 2 由题意得11x k y =,22x ky = ∴k y x s 2121111==k y x s 2121222== ∴S 1=S 2 ,即△AOE 和△FOB 的面积相等 (2)由题意知:E 、F 两点坐标分别为E (3k ,3)、F (4,4k) S △ECF =21EC ·CF =21(4-3k )(3-4k) S △EDF =S 矩形AOBC -S △AOE -S △ECF =12-21k -21k -S △ECFS =S △OEF -S △ECF =12-k -2 S △ECF =12-k -2×21(4-3k )(3-4k) S =121-k 2+k 当k =3121-41-=⨯)( (3)解:设存在这样的点F ,将△CEF 沿EF 对折后,C 点恰好落在OB边上的M 点,过点E 作EN ⊥OB ,垂足为N 由题意得:EN =AO =3,EM =EC =4-3k ,MF =CF =3-4k ∵FMN+FMB =FMB +MFB =90,∴EMN =MFB又∵ENM =MBF =90 ∴△ENM △MBF∴MF EM MB EN = ∴)121(3)121(443343k kk k MB --=--∴MB =49∵MB 2+BF 2=MF 2∴ (49)2+(4k )2=(3-4k )2解得 k =821∴BF =4k =3221存在符合条件的点F ,它的坐标为(4,3221) 四.自选题25.(1)如:x x y 21212+=、x x y 21212--=等等(只要写一个) (2)解:假设存在符合条件的抛物线,则对于抛物线y =ax 2+bx+c当x =0时,y =c ,当x =1时,y =a+b+c 由整点抛物线定义知:c 为整数,a+b+c 为整数 ∴a+b 必为整数又当x =2时,y =4a+2b+c =2a+2(a+b )+c 是整数 ∴2a 必为整数,从而a 应为21的整数倍 ∵a ≠0 ∴a ≥21 ∴不存在二次系数的绝对值小于21的整点抛物线。