高中数学 2.2.3.5三垂线定理(1)教案 新人教A版必修2
- 格式:doc
- 大小:113.50 KB
- 文档页数:3
实用文档 精心整理1课题:2.2.3.6三垂线定理(2)课 型:新授课一、课题:三垂线定理(2)二、教学目标:1.进一步明确三垂线定理及逆定理的内容;2.能在新的情景中正确识别定理中的“三垂线”,并能正确应用.三、教学重、难点:三垂线定理的应用。
四、教学过程: (一)复习:1.三垂线定理及其逆定理的内容; 2.练习:已知:在正方体中,求证:(1);(2). (二)新课讲解:例1.点为所在平面外的一点,点为点在平面内的射影,若,求证:.证明:连结, ∵,且 ∴(三垂线定理逆定理) 同理,∴为的垂心, ∴, 又∵, ∴(三垂线定理)【练习】:所在平面外的一点在平面内的射影为的垂心,求证:点在内的射影是的垂心.例2.已知:四面体中,是锐角三角形,是点在面上的射影,求证:不可能是的垂心.1AC 111BD AC ⊥11BD B C ⊥A BCD ∆O A BCD ,AC BD AD BC ⊥⊥AB CD ⊥,,OB OC OD AO BCD ⊥平面AC BD ⊥BD OC ⊥OD BC ⊥O ABC ∆OB CD ⊥AO BCD ⊥平面AB CD ⊥BCD ∆A BCD O BCD ∆B ACD ∆P ACD ∆S ABC -,SA ABC ABC ⊥∆平面H A SBC H SBC ∆DCBAD 1C 1B 1A 1O DCBA实用文档精心整理 2 证明:假设是的垂心,连结,则,∵∴是在平面内的射影,∴(三垂线定理)又∵,是在平面内的射影∴(三垂线定理的逆定理)∴是直角三角形,此与“是锐角三角形”矛盾∴假设不成立,所以,不可能是的垂心.例3.已知:如图,在正方体中,是的中点,是的交点,求证:.证明:,是在面上的射影又∵,∴取中点,连结,∵,∴为在面上的射影,又∵正方形中,分别为的中点,∴,∴(三垂线定理)又∵,∴.五、课堂小结:三垂线定理及其逆定理的应用.六、作业:1.已知是所在平面外一点,两两垂直,是的垂心,求证:平面.2.已知是所在平面外一点,两两垂直,H SBC∆BH BH SC⊥BH SBC⊥平面BH AB SBCSC AB⊥SA ABC⊥平面AC SC ABCAB AC⊥ABC∆ABC∆H SBC∆1111ABCD A B C D-E1CCF,AC BD1A F BED⊥平面1AA ABCD⊥平面AF1A F ABCDAC BD⊥1A F BD⊥BC G1,FG B G111111,A B BCC B FG BCC B⊥⊥平面平面,B G1A F11BCC B11BCC B,E G1,CC BC1BE B G⊥1A F BE⊥EB BD B=1A F BED⊥平面P ABC∆,,PA PB PC H ABC∆PH⊥ABCP ABC∆,,PA PB PCHCSBAGFED CBAD1C1B1A1。
三垂线定理教学设计教学目标:1.掌握垂线的概念和性质。
2.理解三角形的三垂线及其关系。
3.学会运用三垂线定理解决相关问题。
教学重点:1.掌握三垂线的定义和性质。
2.理解三垂线定理的内容和证明过程。
教学难点:1.运用三垂线定理解决相关问题。
2.理解三垂线定理的证明过程。
教学准备:1. PowerPoint课件。
2.教学黑板、粉笔、橡皮等。
教学过程:一、导入(5分钟)1.引导学生回忆并复习垂线的概念和性质。
2.让学生讲解垂线的相关知识,对学生的回答逐一给予肯定和指导。
二、新知讲解(25分钟)1.展示幻灯片,讲解三垂线的概念和性质。
a.什么是三垂线?它们有哪些特征?b.三角形的三垂线有哪些重要性质?c.三垂线交于一点,该点叫什么名字?在三角形中的作用是什么?d.三垂线定理是什么?如何解释这个定理?2.通过具体实例演示三垂线定理的应用。
a.展示一个三角形,绘制三条垂线。
b.引导学生发现三垂线交于一点的特点。
c.解释三垂线交于一点的意义和作用。
三、练习与讨论(30分钟)1.分发练习册,让学生在课堂上独立完成相关练习。
2.提供一些思考问题,引导学生深入思考三垂线的相关性质和定理。
四、课堂展示(20分钟)1.随机抽几位同学上台展示他们的练习,并请他们解答一些问题。
2.学生之间互相评价,给出肯定和提出改进意见。
五、概念总结(10分钟)1.对本节课的内容进行总结,强调三垂线定理的重要性和应用价值。
2.确认学生是否达到了本节课的学习目标。
六、拓展延伸(10分钟)1.提供更复杂的问题,让学生思考如何应用三垂线定理解决。
2.引导学生思考三垂线定理的证明过程,并提供相关的参考材料。
七、课堂小结(5分钟)1.概括本节课的内容和要点。
2.引导学生对今天的学习进行反思,列出自己的问题和困惑。
八、课后作业:1.让学生继续完成练习册的相关题目。
2.要求学生思考三垂线定理的证明过程,并撰写一篇小论文。
2.3.3 直线与平面垂直的性质整体设计教学分析空间中直线与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中直线与平面垂直的性质定理不仅是由线面关系转化为线线关系,而且将垂直关系转化为平行关系,因此直线与平面垂直的性质定理在立体几何中有着特殊的地位和作用.本节重点是在巩固线线垂直和面面垂直的基础上,讨论直线与平面垂直的性质定理的应用. 三维目标1.探究直线与平面垂直的性质定理,培养学生的空间想象能力、实事求是等严肃的科学态度和品质.2.掌握直线与平面垂直的性质定理的应用提高逻辑推理的能力. 重点难点直线与平面垂直的性质定理及其应用. 课时安排 1课时教学过程复习直线与平面垂直的定义:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.直线和平面垂直的画法及表示如下:图1如图1,表示方法为:a⊥α. 由直线与平面垂直的定义不难得出:⎭⎬⎫⊥⊂ααb a ⇒b⊥a. 导入新课思路1.(情境导入)大家都读过茅盾先生的《白杨礼赞》,在广阔的西北平原上,矗立着一排排白杨树,它们像哨兵一样守卫着祖国疆土.一排排的白杨树,它们都垂直地面,那么它们之间的位置关系如何呢? 思路2.(事例导入)如图2,长方体ABCD —A′B′C′D′中,棱AA′、BB′、CC′、DD′所在直线都垂直所在的平面ABCD ,它们之间具有什么位置关系?图2推进新课 新知探究 提出问题①回忆空间两直线平行的定义.②判断同垂直于一条直线的两条直线的位置关系?③找出恰当空间模型探究同垂直于一个平面的两条直线的位置关系. ④用三种语言描述直线与平面垂直的性质定理.⑤如何理解直线与平面垂直的性质定理的地位与作用?讨论结果:①如果两条直线没有公共点,我们说这两条直线平行.它的定义是以否定形式给出的,其证明方法多用反证法.②如图3,同垂直于一条直线的两条直线的位置关系可能是:相交、平行、异面.图3③如图4,长方体ABCD —A′B′C′D′中,棱AA′、BB′、CC′、DD′所在直线都垂直于所在的平面ABCD ,它们之间具有什么位置关系?图4 图5棱AA′、BB′、CC′、DD′所在直线都垂直所在的平面ABCD ,它们之间互相平行. ④直线和平面垂直的性质定理用文字语言表示为:垂直于同一个平面的两条直线平行,也可简记为线面垂直、线线平行. 直线和平面垂直的性质定理用符号语言表示为:⎭⎬⎫⊥⊥ααb a ⇒b∥a. 直线和平面垂直的性质定理用图形语言表示为:如图5. ⑤直线与平面垂直的性质定理不仅揭示了线面之间的关系,而且揭示了平行与垂直之间的内在联系. 应用示例思路1例1 证明垂直于同一个平面的两条直线平行. 解:已知a⊥α,b⊥α. 求证:a∥b.图6证明:(反证法)如图6,假定a 与b 不平行,且b∩α=O,作直线b′,使O ∈b′,a∥b′. 直线b′与直线b 确定平面β,设α∩β=c,则O ∈c. ∵a⊥α,b⊥α,∴a⊥c,b⊥c.∵b′∥a,∴b′⊥c.又∵O∈b,O ∈b′,b ⊂β,b′⊂β, a∥b′显然不可能,因此b∥a.例2 如图7,已知α∩β=l,EA⊥α于点A,EB⊥β于点B,a ⊂α,a⊥AB. 求证:a∥l.图7证明:⎭⎬⎫⊥⊥⇒⎭⎬⎫=⋂⊥⊥EB l EA l l EB EA βαβα,⇒l⊥平面EAB.又∵a ⊂α,EA⊥α,∴a⊥EA.又∵a⊥AB,∴a⊥平面EAB.∴a∥l.思路2例1 如图8,已知直线a⊥b,b⊥α,a ⊄α. 求证:a∥α.图8证明:在直线a 上取一点A ,过A 作b′∥b,则b′必与α相交,设交点为B ,过相交直线a 、b′作平面β,设α∩β=a′,∵b′∥b,a⊥b,∴a⊥b′.∵b⊥α,b′∥b, ∴b′⊥α.又∵a′⊂α,∴b′⊥a′.由a ,b′,a′都在平面β内,且b′⊥a,b′⊥a′知a∥a′.∴a∥α. 例2 如图9,已知PA⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点. (1)求证:MN⊥CD;(2)若∠PDA=45°,求证:MN⊥面PCD.图9证明:(1)取PD 中点E,又N 为PC 中点,连接NE,则NE∥CD,NE=21CD. 又∵AM∥CD,AM=21CD, ∴AM NE.∴四边形AMNE 为平行四边形. ∴MN∥AE.∵⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊂⊥ADP AE ADP CD AD CD PA CD ABCD CD ABCD PA 平面平面平面平面⇒CD⊥AE.(2)当∠PDA=45°时,Rt△PAD 为等腰直角三角形, 则AE⊥PD.又MN∥AE, ∴MN⊥PD,PD∩CD=D. ∴MN⊥平面PCD. 变式训练已知a 、b 、c 是平面α内相交于一点O 的三条直线,而直线l 和平面α相交,并且和a 、b 、c 三条直线成等角.求证:l⊥α.证明:分别在a 、b 、c 上取点A 、B 、C 并使AO=BO=CO.设l 经过O ,在l 上取一点P ,在△POA、△POB、△P OC 中,∵PO=PO=PO,AO=BO=CO ,∠POA=∠POB=∠POC, ∴△POA≌△POB≌△POC. ∴PA=PB=PC.取AB 的中点D,连接OD 、PD ,则OD⊥AB,PD⊥AB. ∵PD∩OD=D,∴AB⊥平面POD. ∵PO ⊂平面POD,∴PO⊥AB.同理,可证PO⊥BC.∵AB ⊂α,BC ⊂α,AB∩BC=B,∴PO⊥α,即l⊥α.若l 不经过点O 时,可经过点O 作l′∥l.用上述方法证明l′⊥α, ∴l⊥α. 知能训练如图10,已知正方体ABCD —A 1B 1C 1D 1的棱长为a, (1)求证:BD 1⊥平面B 1AC; (2)求B 到平面B 1AC 的距离.图10(1)证明:∵AB⊥B 1C ,BC 1⊥B 1C,∴B 1C⊥面ABC 1D 1. 又BD 1⊂面ABC 1D 1,∴B 1C⊥BD 1. ∵B 1B⊥AC,BD⊥AC,∴AC⊥面BB 1D 1D.又BD 1⊂面BB 1D 1D,∴AC⊥BD 1. ∴BD 1⊥平面B 1AC.(2)解:∵O∈BD,∴连接OB 1交BD 1于E. 又O ∈AC ,∴OB 1⊂面B 1AC.∴BE⊥OE,且BE 即为所求距离. ∵1BD BD OB BE =,∴BE=1BD BD ·OB=a a a a 332232=∙.拓展提升已知在梯形ABCD 中,A B∥CD,CD 在平面α内,AB∶CD=4∶6,AB 到α的距离为10 cm ,求梯形对角线的交点O 到α的距离.图11解:如图所示,过B 作BE⊥α交α于点E ,连接DE, 过O 作OF⊥DE 交DE 于点F,∵AB∥CD,AB ⊄α,CD ⊂α,∴AB∥α.又BE⊥α, ∴BE 即为AB 到α的距离,BE=10 cm 且∠BED=90°. ∵OF⊥DE,∴OF∥BE,得BDODBE OF =. ∵AB∥CD,∴△AOB∽△COD.∴46==AB CD OB OD ,得53106==BD OD . 又BD ODBE OF =,BE=10 cm, ∴OF=53×10=6(cm ).∵OF∥BE,BE⊥α.∴OF⊥α,即OF 即为所求距离为6 cm. 课堂小结知识总结:利用线面垂直的性质定理将线面垂直问题转化为线线平行,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题. 作业课本习题2.3 B 组1、2.设计感想线面关系是线线关系和面面关系的桥梁和纽带,空间中直线与平面垂直的性质定理不仅是由线面关系转化为线线关系,而且将垂直关系转化为平行关系,因此直线与平面垂直的性质定理在立体几何中有着特殊的地位和作用,因此它是高考考查的重点.本节不仅选用了大量经典好题,还选用了大量的2007高考模拟题,相信能够帮助大家解决立体几何中的重点难点问题.。
第一课时直线与平面垂直的判定〔一〕教学目标1.知识与技能〔1〕使学生掌握直线和平面垂直的定义及判定定理;〔2〕使学生掌握直线和平面所成的角求法;〔3〕培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论.2.过程与方法〔1〕通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;〔2〕探究判定直线与平面垂直的方法.3.情态、态度与价值观培养学生学会从“感性认识〞到“理性认识〞过程中获取新知.〔二〕教学重点、难点重点:〔1〕直线与平面垂直的定义和判定定理;〔2〕直线和平面所成的角.难点:直线与平面垂直判定定理的探究.教学过程教学内容师生互动设计意图新课导入问题:直线和平面平行的判定方法有几种?师投影问题,学生回答.生:可用定义可判断,也可依判定定理判断.复习巩固探索新知一、直线和平面垂直的定义、画法如果直线l与平面α内的任意一条直线都垂直,我们说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们惟一的公共点P叫做垂足.画直线与平面垂直时,通常把直线画成与表不平面的平行四边形的一边垂直,如图.师:日常生活中我们对直线与平面垂直有很多感性认识,如旗杆与地面,桥柱与水面等,你能举出更多的例子来吗?师:在阳光下观察,直立于地面的旗杆及它在地面的影子,它们的位置关系如何?生:旗杆与地面内任意一条经B的直线垂直.师:那么旗杆所在直线与平面内不经过B点的直线位置关系如何,依据是什么?〔图〕培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论.生:垂直,依据是异面直线垂直的定义.师:你能尝试给线面垂直下定义吗?……师:能否将任意直线改为无数条直线?学生找一反例说明.探索新知二、直线和平面垂直的判定1.试验如图,过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上〔BD、DC与桌面接触〕.〔1〕折痕AD与桌面垂直吗?〔2〕如何翻折才能使折痕AD与桌面所在平面α垂直?2.直线与平面垂直的判定定理:一条直线与一个平面内两条相交直线都垂直,那么该直线与此平面垂直.思考:能否将直线与平面垂直的判定定理中的“两条相交直线〞改为一条直线或两条平行直线?师:下面请同学们准备一块三角形的小纸片,我们一起来做一个实验,〔投影问题〕.学生动手实验,然后回答以下问题.生:当且仅当折痕AD是BC边上的高时,AD所在直线与桌面所在平面α垂直.师:此时AD垂直上的一条直线还是两条直线?生:AD垂直于桌面两条直线,而且这两条直线相交.师:怎么证明?生:折痕AD⊥BC,翻折之后垂直关系不变,即AD⊥CD,AD⊥BD……师:直线和平面垂直的判定定理表达了“直线与平面垂直〞与“直线与直线垂直〞互相转化的数学思想.培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论.典例剖析例1 如图,a∥b,a⊥α,求证:b⊥α.证明:在平面α内作两条相交直线m、n.因为直线a⊥α,根据直线师:要证b⊥α,需证b与α内任意一条直线的垂直,又a∥b,问题转化为a与面α内任意直线m垂直,这个结论显然成立.学生依图及分析写出证明巩固所知识培养学生转化化归能力、书写表达能力.与平面垂直的定义知 a ⊥m ,a ⊥n .又因为b ∥a , 所以b ⊥m ,b ⊥n . 又因为,m n αα⊂⊂,m 、n 是两条相交直线,b ⊥α.过程.……师:此结论可以直接利用,判定直线和平面垂直.探索新知二、直线和平面所成的角 如图,一条直线PA 和一个平面α相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线的平面的交点A 叫做斜足.过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线AO 叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.教师借助多媒体直接讲授,注意直线和平面所成的角是分三种情况定义的.借助多媒体讲授,提高上课效率.典例剖析 例 2 如图,在正方体ABCD –A 1B 1C 1D 1中,求A 1B 和平面A 1B 1CD 所成的角.分析:找出直线A 1B 在平面A 1B 1CD 内的射影,就可以求出A 1B 和平面A 1B 1CD 所成的角.解:连结BC 1交B 1C 于点O ,连结A 1O .师:此题A 1是斜足,要求直线A 1B 与平面A 1B 1CD 所成的角,关键在于过B 点作出〔找到,面A 1B 1CD 的垂线,作出〔找到〕了面A 1B 1CD 的垂线,直线A 1B 在平面A 1B 1CD 内的射影就知道了,怎样过B 作平面A 1B 1CD的垂线呢?生:连结BC 1即可. 师:能证明吗? 学生分析,教师板书,共点拔关键点,突破难点,示X 书写及解题步骤.设正方体的棱长为a ,因为A 1B 1⊥B 1C 1,A 1B 1⊥B 1B ,所以A 1B 1⊥平面BCC 1B 1.所以A 1B 1⊥BC 1.又因为BC 1⊥B 1C ,所以B 1C ⊥平面A 1B 1CD .所以A 1O 为斜线A 1B 在平面A 1B 1CD 内的射影,∠BA 1O 为A 1B与平面A 1B 1CD 所成的角.在Rt △A 1BO 中,12A B a =,22BO a =, 所以112BO A B =, ∠BA 1O = 30°因此,直线A 1B 和平面A 1B 1CD 所成的角为30°.同完成求解过程.随堂练习1.如图,在三棱锥V –ABC 中,VA = VC ,AB = BC ,求证:VB ⊥AC .2.过△ABC 所在平面α外一点P ,作PO ⊥α,垂足为O ,连接PA ,PB ,PC .〔1〕假设PA = PB = PC ,∠C =90°,那么点O 是AB 边的心.〔2〕假设PA = PB =PC ,那么点O 是△ABC 的心.〔3〕假设PA ⊥PB ,PB ⊥PC ,PB ⊥PA ,那么点O 是△ABC的 . 心.学生独立完成 答案: 1.略2.〔1〕AB 边的中点;〔2〕点O 是△ABC 的外心;〔3〕点O 是△ABC 的垂心.3.不一定平行. 4.AC ⊥BD .巩固所学知识3.两条直线和一个平面所成的角相等,这两条直线一定平行吗?4.如图,直四棱柱A ′B ′C ′D ′ – ABCD 〔侧棱与底面垂直的棱柱称为直棱柱〕中,底面四边形ABCD 满足什么条件时,A ′C ⊥B ′D ′?归纳总结 1.直线和平面垂直的定义判定2.直线和平面所成的角定义与解答步骤、完善.3.线线垂直线面垂直学生归纳总结教师补充巩固学习成果,使学生逐步养成爱总结,会总结的习惯和能力.课后作业2.7 第一课时 习案学生独立完成强化知识 提升能力备选例题例1如图,在空间四边形ABCD 中,AB = AD ,CB = CD ,M 为BD 中点,作AO ⊥MC ,交MC 于O .求证:AO ⊥平面BCD .[解析]连结AM∵AB = AD ,CB = CD ,M 为BD 中点. ∴BD ⊥AM ,BD ⊥CM .又AM ∩CM = M ,∴BD ⊥平面ACM . ∵AO 平面ACM ,∴BD ⊥AO . 又MC ⊥AO ,BD ∩MC = M ,∴AO ⊥平面貌BCD .[评析]此题为了证明AO ⊥平面BCD ,先证明了平面BCD 内的直线垂≠直于AO 所在的平面.这一方法具有典型性,即为了证明线与面的垂直,需要转化为线与线的垂直;为了解决线与线的垂直,又需转化为另一个线与面的垂直,再化为新的线线垂直.这样互相转化,螺旋式往复,最终使问题得到解决.例2棱长为1的正方体ABCD – A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成的角的正弦值.[解析]取CD 的中点F ,连接EF 交平面ABC 1D 1于O ,连AO . 由正方体,易知EO ⊥ABC 1D 1,所以∠EAO 为所求. 在Rt △EOA 中,11122EO EF AD ===,AE =,sin ∠EAO =EO AE =.所以直线AE 与平面ABC 1D 1 [评析]求直线和平面所成角的步骤: 〔1〕作——作出斜线和平面所成的角;〔2〕证——证明所作或找到的角就是所求的角;〔3〕求——常用解三角形的方法〔通常是解由垂线、斜线、射影所组成的直角形〕 〔4〕答.。
三垂线定理(人教版)一、设计理念本教学设计以师生互动教学为指导,以信息技术融入学科教学为手段,以课堂为依托来实现教学目标。
在教学过程中,注意与学生所学数据知识的衔接,突出三垂线定理的思想,强调三垂线定理的应用。
人人学习有价值的数学。
二、教材分析“三垂线定理”是在研究了空间直线和平面直线关系的基础上来研究空间两条直线垂直关系的一个重要定理。
它既是线面垂直关系的一个应用,又为后续学习奠定了基础,同时这节课也是培养学生空间想象能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新精神能力都有重要意义。
三、学情分析对处于该学习阶段的学生来说,空间观念才初步形成,学生在认识和理解的上都会存在困难,为了加深印象并说。
明复杂的直线位置关系,可以采用一些教具,或者让学生通过亲自动手操作,提高感性认识,进行理性的证明和记忆,有助于定理的掌握。
领会定理实质的关键是要认识到平面内一条直线与斜线及其在平面内的射影确定的平面垂直;应用定理的关键是要找到平面的垂线,射影就可以由垂足与斜足确定,问题便会迎刃而解。
四、教学目标1. 知识与技能1)理解、掌握三垂线定理及其逆定理的内容,并能从口头上和书面上作出正确的表达。
2)掌握运用三垂线定理或逆定理解决数学问题。
2. 过程与方法通过探索三垂线定理及其证明,培养学生观察问题,发现问题的能力和空间想象能力,培养学生空间计算能力和逻辑思维能力。
3. 情感态度与价值观激发学生学习兴趣,激发学生不断发现、探索新知的精神;渗透知识相互转化理论联系实际的辩证唯物主义观点,并通过图形的立体美、对称美,培养学生的审美意识。
五、教学重、难点重点:启发学生去发现三垂线定理,证明三垂线定理,正确运用三垂线定理及其逆定理去解决实际问题。
难点:理解三垂线定理及其逆定理的本质,掌握运用两个定理证题的一般思路和步骤。
真正弄清定理中复杂的线线关系。
六、教学方法与手段以老师的讲授法、学生的讨论法和师生之间的问答法相结合。
三垂线定理〔一〕一、素质教育目标〔一〕知识教学点1.三垂线定理及其逆定理的形成和论证.2.三垂线定理及其逆定理的简单应用.〔二〕能力训练点1.猜想和论证能力的训练.2.由线面垂直证明线线垂直的方法〔线面垂直法〕;3.训练学生分清三垂线定理及其逆定理中各条直线之间的关系;4.善于在复杂图形中分离出适用的直线用于解题.〔三〕德育渗透点通过定理的论证和练习的训练渗透化繁为简的思想和转化的思想.二、教学重点、难点、疑点及解决方法1.教学重点〔1〕掌握三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.〔2〕掌握三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.2.教学难点:两个定理的证明及应用.3.教学疑点及解决方法〔1〕三垂线定理及其逆定理,揭示了平面内的直线与平面的垂线、斜线及斜线在平面内的射影这三条直线的垂直关系,其实质是平面内的一条直线与平面的一条斜线〔或斜线在平面内的射影〕垂直的判定定理.〔2〕本节课的两个定理,涉及的直线较多,学生在认识和理解上都会存在困难,为了加深印象并说明复杂的直线位置关系,可以采用一些教具,或者让学生准备三根竹签,按照教师的要求摆放.在学生感性认识的基础上,进行理性的证明和记忆,有助于定理的掌握.〔3〕三垂线定理是先有直线a垂直于射影AO的条件,然后得到a垂直于斜线PO的结论;而其逆定理那么是直线a垂直于斜线PO,再推出a垂直于射影AO.在引用时容易引起混淆,解决的办法是,构造一个同时使用这两个定理的问题,引导学生分清.〔4〕教学核心是定理的形成教学,教学的指导思想是:遵循由具体探究抽象、由简单到复杂的认识规律,启发学生反复思考,不断内化成为自己的认知结构.三、课时安排本课题共安排2课时,本节课为第一课时.四、学生活动设计三垂线定理及其逆定理的条件和结论都比较简单,但应用却很广泛,为了培养学生的能力,应让学生探索定理的命题形式,充分利用好手中的三根竹签.设计学生活动符合建构主义的教学思想,也符合教师为主导、学生为主体的教学思想;教师根据教学要求,提出问题,创设情景,引导学生观察、猜想,主动发现,主动发展,从而调动了学生学习的积极性.五、教学步骤〔一〕温故知新,引入课题师:我们已经学习了直线和平面的垂直关系,学新课之前,让我们作个简单的回顾:1.直线和平面垂直的定义?2.直线和平面垂直的判定定理.3.什么叫做平面的斜线、斜线在平面上的射影?4.平面α和斜线l,如何作出l在平面α上的射影?〔板书〕l∩α=A,作出l在平面α上的射影〔二〕猜想推测,激发兴趣师:根据直线与平面垂直的定义我们知道,平面内的任意一条直线都和平面的垂线垂直,那么,平面内的任意一条直线是否也都和平面的一条斜线垂直呢?〔教师演示教具,用一个三角板的一条直角边当平面的斜线,一根包有色纸的竹竿摆放在桌面的不同位置当作平面内的不同直线,学生容易看出它们不一定互相垂直.〕师:是否平面内的任意一条直线都不和这条平面的斜线垂直呢?〔教师将三角板的另一条直角边平放在桌面上,并提示学生注意这条直角边与平面的关系——在平面上,与斜线的关系——垂直.〕师:在平面上有几条直线和这条斜线垂直?〔学生可能会回答一条,也可能回答无数条,教师应调整桌面上的竹竿位置,使其平行于三角板的直角边,然后平行移动,并向学生说明,这些直线都与斜线垂直.〕师:平面内一条直线具备什么条件,才能和平面的一条斜线垂直?〔学生的直觉判断是要与那条和桌面接触的直角边平行,这是正确的,但无多大用途;这时教师提醒学生注意斜线在平面内的射影,并调整教具,将三角板的斜边当作平面的斜线,构成垂线、斜线和射影的立体模型;要求学生与同桌配合,摆放课前准备的竹签成教师示范的模型;然后在教师的引导之下观察、猜想,与同桌的探讨中发现了只要与斜线的射影垂直就和斜线垂直.〕〔三〕层层推进,证明定理师:猜测和实验的结论不一定正确,那么你想怎样证明这个猜想呢?〔假设用幻灯或投影仪,可以节省板书时间.〕:PA、PO分别是平面α的垂线、斜线,AO是PO在平面α求证:a⊥PO.师:这是证明两条直线互相垂直的问题,你准备怎么证明?分析:从直线和平面垂直的定义可知,要证两条直线互相垂直,只要证明其中一条直线垂直于另一条直线所在的平面即可.师:这个平面你找到了吗?生:是平面PAO.师:怎样证明a⊥平面PAO呢?生:只要证明a垂直于平面PAO内的两条相交直线.证明:说明:1.定理的证明,表达了“由线面垂直证明线线垂直〞的方法;2.上述命题反映了平面内的直线、平面的斜线和斜线在平面内的射影这三条直线之间的垂直关系,这就是著名的三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.3.改变定理的题设和结论,得到逆命题:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.可以用同样的方法证明,这就是三垂线定理的逆定理〔请学生简要说明其证明方法和步骤〕.4.定理中包含了三个垂直关系:PA⊥α,AO⊥a,PO⊥a,看出三垂线定理名称的来由.5.从定理的条件看,关键的是直线和平面的相对位置关系,而与平面本身是否水平放置无关;在平面内的直线a与斜线或斜线的射影的位置关系关键在于垂直;这样直线a的如下四种位置关系,都是三垂线定理及其逆定理常见的情形.6.从定理的结论看,三垂线定理及其逆定理是判断直线垂直的重要命题.〔四〕初步运用,提高能力1.〔见课后练习题1.〕:点O是△ABC的垂心,OP⊥平面ABC.求证:PA⊥BC.〔学生先思考,教师作如下点拨〕〔1〕什么叫做三角形垂心?〔2〕点O是△ABC的垂心可以得到什么结论?〔3〕可以考虑使用三垂线定理证明:你能找出此题中,应用三垂线定理必须涉及到的几个重要元素?生:首先先确定一个平面——平面ABC,斜线是PA,PA在平面ABC上的射影是AD,∵AD垂直于BC,∴PA⊥BC.师:他的回答是否有缺漏?生:应该交代BC是平面ABC上的一条直线.师:对,这个交代是必需的!〔视学生程度作适当补充,用教具演示,还可以举反例说明.〕证明:连接AO并延长交BC与D.师:三垂线定理是证明空间两条直线互相垂直的重要方法,上面的示例反映了应用三垂线定理解题的一般步骤,即确定一个平面、平面的垂线、斜线和斜线在平面上的射影.同时要注意的是平面内的一条直线和射影垂直,有这条直线和斜线垂直〔定理〕;平面内的一条直线和斜线垂直,有这条直线和射影垂直〔逆定理〕,同学们必须理解掌握.2.〔见课本例1〕如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上.⊥AC,PO⊥α,垂足分别是E、F、O,PE=PF.求证:∠BAO=∠CAO.〔学生思考,教师作适当的点拨.〕〔1〕在平面几何中,证明点在角的平分线上的常规方法是什么?〔2〕PE=PF给我们提供了什么结论?〔3〕所缺的垂直关系可以用三垂线定理或逆定理证明,你能列出证明所需的条件吗?证明:3.〔课堂练习,师生共同完成.〕如图1-91,点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.分析:证明直线与直线垂直的问题,可以考虑三垂线定理及其逆定理,图形中缺少的平面的垂线需要添加上去.证明:过P作平面ABC的垂线,垂足为O,连结AO、BO、CO.∵ PA⊥BC,∴AO⊥BC〔三垂线逆定理〕.同理可证 CO⊥AB,∴O是△ABC的垂心.∵OB⊥AC,∴PB⊥AC〔三垂线定理〕.〔五〕归纳小结,强化思想师:这节课,我们学习了三垂线定理及其逆定理,定理的证明方法是证明空间两条直线互相垂直的基本方法,我们称之为线面垂直法;还通过三个练习的训练加深了定理的理解,同时得到立体几何问题解决的一般思路.六、布置作业作为一般要求,完成习题四11、12、13.提高要求,完成以下两个补充练习:1.如图1-92,PA⊥△ABC所在平面,AB=AC=13,BC=10,PA=5,求点P到直线BC 的距离.参考答案:设BC的中点为D,连结PD.∵AB=AC=13,BC=10,∴AD⊥BC.且AD=12.又∵PA⊥平面ABC,∴PD⊥BC.即 PD的长度就是P到直线BC的距离.而 PD=13.2.〔课后练习题2略作改变〕如图1-93,l是平面α的斜线,斜足是O,A是l上任意一点,AB是平面α的垂线,B 是垂足,设OD是平面α内与OB不同的一条直线,AC垂直于OD于C,假设直线l与平面α所成的角θ=45°,∠BOC=45°,求∠AOC的大小.参考答案:连结BC.中,有∠AOC=60°.讲评作业时说明:求角大小的问题,往往先确定〔或构造〕一个包含这个角的三角形,然后解三角形.由此,我们还验证了∠AOC>θ.。
课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
2019-2020年高二数学三垂线定理(一)教案一、教学目标 (一)知识目标1.三垂线定理及其逆定理的论证. 2.三垂线定理及其逆定理的简单应用.(二)能力目标通过探索三垂线定理及其证明,培养学生观察问题,发现问题的能力和空间想象能力,培养学生逻辑思维能力.(三)情感目标:激发学生学习兴趣,培养学生不断发现、探索新知的精神;渗透事物相互转化理论联系实际的辩证唯物主义观点,并通过图形的立体美、对称美,培养学生的审美意识。
二、教学重点、难点1.教学重点三垂线定理、三垂线定理的逆定理2.教学难点:两个定理的证明及应用.三、对象分析:对高二学生来说,空间观念才初步形成,学生在认识和理解上都会存在困难,为了加深印象并说明复杂的直线位置关系,可以采用一些教具,或者让学生准备三根竹签,让学生摆放各种位置关系,通过学生感性认识,进行理性的证明和记忆,有助于定理的掌握。
领会定理实质的关键是要认识到平面内一条直线与斜线及其在平面内的射影确定的平面垂直;应用定理的关键是要找到平面的垂线,射影就可由垂足与斜足确定,问题便会迎刃而解。
四、教材分析:“三垂线定理”是在研究了空间直线和平面垂直关系的基础上来研究空间两条直线垂直关系的一个重要定理。
它既是线面垂直关系的一个应用,又为后续学习奠定了基础,同时这节课也是培养学生空间想象能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力都有重要意义五、学生活动设计三垂线定理及其逆定理的条件和结论都比较简单,但应用却很广泛,为了培养学生的能力,应让学生探索定理的命题形式,充分利用好手中的三根竹签.设计学生活动符合建构主义的教学思想,也符合教师为主导、学生为主体的教学思想;教师根据教学要求,提出问题,创设情景,引导学生观察、猜想,主动发现,主动发展,从而调动了学生学习的积极性.六、教学模式:“启发-------探究”模式 :设问激疑,以旧探新————启发引导,猜想论证————讨论辨析,形成概念————示例练习,初步应用————反思小结,培养能力————布置作业,巩固深化七、教具准备:三角板,竹签,模型八、教学过程(一)设问激疑,以旧探新问题1.直线和平面垂直的定义?问题2.直线和平面垂直的判定定理.问题3.PO 是平面α的垂线,O 为垂足;PA 为平面α的斜线,A 为斜足;AO 是PO 在平面α内的射影。
《2.3.3直线与平面垂直的性质》教学设计教学内容人教版新教材高二数学第二册第二章第三节第3课教材分析直线与平面垂直问题是直线与平面的重要内容,也是高考考查的重点,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。
通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力。
学情分析1.学生思维活跃,参与意识、自主探究能力较强,故采用启发、探究式教学。
2.学生的抽象概括能力和空间想象力有待提高,故采用多媒体辅助教学。
教学目标1.知识与技能(1)培养学生的几何直观能力和知识的应用能力,使他们在直观感知的基础上进一步学会证明.(2)掌握直线和平面垂直的性质定理和推论的内容、推导和简单应用。
(3)掌握等价转化思想在解决问题中的运用.2.情感态度与价值观(1)发展学生的合情推理能力和空间想象力,培养学生的质疑思辨、创新的精神.(2)让学生亲从问题解决过程中认识事物发展、变化的规律.教学重、难点1.重点:直线和平面垂直的性质定理和推论的内容和简单应用。
2.难点:直线和平面垂直的性质定理和推论的证明,等价转化思想的渗透。
教学理念学生是学习和发展的主体,教师是教学活动的组织者和引导者.设计思路直线与平面垂直的性质定理是判定线线平行的有效方法,学生学习的重点是直线与平面垂直的性质定理以及直线与平面垂直的性质定理的应用,强调直线与平面垂直的性质定理证明中反证法的学习,应让学生清楚,对于一些条件简单而结论复杂的问题或正面较难证明的问题,可考虑用反证法;教学中要引导学生认识到,定理的证明过程实质是应用转化思想的过程,将立体几何问题转化为平面几何问题来解决,线面垂直问题转化为线线垂直问题来解决,这种转化的数学思想方法在立体几何的证明和解题中体现的尤为明显。
教学过程(一)复习引入师:判断直线和平面垂直的方法有几种?生:定义、例题2结论、判定定理。
《线面垂直的性质》教案
教学目标:1.探究线面垂直的性质定理,培养学生的空间想象能力
2.对性质定理进行变式探究,培养学生发现问题,提出问题的能
力
3.掌握线面垂直性质定理的应用,提高逻辑推理能力。
重点难点:线面垂直性质定理及其应用,定理变式探究
教学过程:
一、知识回顾
1.直线和平面垂直的定义如何?
2.直线与平面垂直的判定定理?
二、新知探究
1. 线面垂直的性质定理
先观察图片直观感知,再借助模型思考,由此抽象出线面垂直的性质定理: 垂直于同一个平面的两条直线平行
证略。
点评:(1)反证法;(2)定理的作用。
2. 性质定理的应用举例
例 1: 请在下面的横线上填上适当的条件,使结论成立。
, ,则a ∥b
例 2: 如图,已知 于点A , 于点B , 求证:a ∥l .
点评:(1)证线线平行的方法;(2)线线关系与线面关系的反复转化。
3. 性质定理的变式探究
(1)类比探究:
①交换“平行”与“垂直”
②交换“直线”与“平面”
(2)逆向探究:再对类比探究得到的两结论进行探究
点评:(1)学会发现问题,提出问题的方法;
(2)注意这些结论在解题中应用。
三、课堂小结
(1)知识方法;(2)数学思想。
四、课后作业
(1)书面作业;(2)课后探究。
板书略。
,a m a n ⊥⊥,b m b n ⊥⊥,l CA αβα=⊥CB β⊥,,a a AB α⊂⊥。
课题:2.2.3.2直线和平面垂直(2)一、教学目标:1.进一步掌握线面垂直的定义和判定定理;2.熟练应用定理解决有关问题.二、教学重、难点:定理应用.三、教学过程:(一)复习:1.直线与平面垂直的定义;2.直线与平面垂直的判定定理;3.练习:平行四边形ABCD 所在平面α外有一点P ,且PA PB PC PD ===,求证:点P 和平行四边形对角线交点O 的连线PO 垂直于BC 和AB .(二)新课讲解:例1.过一点和已知平面垂直的直线只有一条.已知:平面α和一点P求证:过点P 与α垂直的直线只有一条.证明:不论P 在平面α内或外,设直线PA α⊥,垂足为A (或P )若另一直线PB α⊥,设,PA PB 确定的平面为β,且a αβ=∴,PA a PB a ⊥⊥又∵,PA PB 在平面β内,与平面几何中的定理矛盾所以过点P 与α垂直的直线只有一条。
例2.定理:如果两条直线同垂直于一个平面,那么这两条直线平行.(线面垂直的性质定理)已知:如图,,a b αα⊥⊥ 求证://a b证明:(反证法)假定b 不平行于a ,则b 与a 相交或异面;(1)若a 与b 相交,设a b A =,∵,a b αα⊥⊥ ∴过点A 有两条直线与平面α垂直,此与“过一点有且只有一条直线垂直于已知平面”矛盾,∴a 与b 不相交;(2)若a 与b 异面,设b O α=,过O 作//b a ',∵a α⊥ ∴b α'⊥ 又∵b α⊥且b b O '=,∴过点O 有直线b '和b 垂直于α与过一点有且只有一条直线一已知平面垂直矛盾, ∴b 与a 不异面,综上假设不成立,∴//a b .βαa P B A βαa P A B αb'b a O说明:例1和例2结论可直接应用于其他的解题过程中.例3.已知直线l ⊥平面α,垂足为A ,直线AP l ⊥,求证:AP 在平面α内. 证明:设AP 与l 确定的平面为β,如果AP 不在α内,则可设AM αβ=, ∵l α⊥,∴l AM ⊥,又∵AP l ⊥,于是在平面β内过点A 有两条直线垂直于l , 这与过一点有且只有一条直线一已知平面垂直矛盾,所以AP 一定在平面α内.点到平面的距离:从平面外一点引一个平面的垂线,这点和垂足间线段的长,叫做点到平面的距离。
教案:三垂线定理及其逆定理(复习课)(教材:人教版全日制普通高级中学(必修)数学第二册(下A))课题:三垂线定理及其逆定理(复习课)教学目的:1、知识目标:进一步理解、记忆并应用三垂线定理及其逆定理。
2、能力目标:(1)理解三垂线定理及其逆定理之间的关系,掌握三垂线定理及其逆定理应用的规律;(2)善于在复杂图形中分离出适用的直线用于解题;(3)进一步培养学生的识图能力、思维能力和解决问题的能力.3、德育目标:通过强化训练渗透化繁为简的思想和转化的思想.教学重点:进一步掌握三垂线定理及其逆定理并应用它们来解有关的题.教学难点:对复杂图形如何分离出符合定理的条件用以解题以及解决问题的能力的培养授课类型:复习课教学模式:讲练结合教学过程:环节1:复习导入教师给出三垂线定理及其逆定理,然后提出问题:三垂线定理及其逆定理彼此独立吗?它们的位置能不能交换一下?(引发学生对三垂线定理及其逆定理的关系的思考,分析三垂线定理及其逆定理的内容)环节2:三垂线定理及其逆定理的剖析1、认识三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么,它就和这条斜线垂直。
问题:正定理研究的是哪两条线的垂直关系?它是如何解决的?解决问题的主要思想使什么?设置目的:让学生通过分析得出三垂线定理是通过判断平面内的直线与斜线在平面内的射影垂直来得到这条直线与斜线的垂直关系,即线射垂直 ⇒ 线斜垂直(平面问题) (空间问题)从而让学生体会三垂线定理中蕴含的降维思想:把空间问题转化为平面问题。
2、认识三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。
问题:逆定理研究的又是哪两条直线的垂直关系?它又是如何解决的? 设置目的:让学生类比三垂线定理的分析思路得出三垂线定理的已知和结论: 线斜垂直 ⇒ 线射垂直(空间问题) (平面问题)教师再引导学生分析其中的数学思想:把空间中的条件归结到同一个平面中,这在解题中是非常重要的,把已知条件相对集中是解题的第一步。
2.3.3 直线与平面垂直的性质(一)复习直线与平面垂直的定义:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.直线和平面垂直的画法及表示如下:图1如图1,表示方法为:a⊥α.由直线与平面垂直的定义不难得出:⎭⎬⎫⊥⊂ααb a ⇒b⊥a.(二)导入新课思路1.(情境导入)大家都读过茅盾先生的《白杨礼赞》,在广阔的西北平原上,矗立着一排排白杨树,它们像哨兵一样守卫着祖国疆土.一排排的白杨树,它们都垂直地面,那么它们之间的位置关系如何呢?思路2.(事例导入)如图2,长方体ABCD —A′B′C′D′中,棱AA′、BB′、CC′、DD′所在直线都垂直所在的平面ABCD ,它们之间具有什么位置关系?图2(三)推进新课、新知探究、提出问题①回忆空间两直线平行的定义.②判断同垂直于一条直线的两条直线的位置关系?③找出恰当空间模型探究同垂直于一个平面的两条直线的位置关系. ④用三种语言描述直线与平面垂直的性质定理.⑤如何理解直线与平面垂直的性质定理的地位与作用?讨论结果:①如果两条直线没有公共点,我们说这两条直线平行.它的定义是以否定形式给出的,其证明方法多用反证法.②如图3,同垂直于一条直线的两条直线的位置关系可能是:相交、平行、异面.图3③如图4,长方体ABCD —A′B′C′D′中,棱AA′、BB′、CC′、DD′所在直线都垂直于所在的平面ABCD ,它们之间具有什么位置关系?图4 图5棱AA′、BB′、CC′、DD′所在直线都垂直所在的平面ABCD ,它们之间互相平行. ④直线和平面垂直的性质定理用文字语言表示为:垂直于同一个平面的两条直线平行,也可简记为线面垂直、线线平行. 直线和平面垂直的性质定理用符号语言表示为:⎭⎬⎫⊥⊥ααb a ⇒b∥a. 直线和平面垂直的性质定理用图形语言表示为:如图5. ⑤直线与平面垂直的性质定理不仅揭示了线面之间的关系,而且揭示了平行与垂直之间的内在联系.(四)应用示例思路1例1 证明垂直于同一个平面的两条直线平行.解:已知a⊥α,b⊥α. 求证:a∥b.图6证明:(反证法)如图6,假定a 与b 不平行,且b∩α=O,作直线b′,使O ∈b′,a∥b′. 直线b′与直线b 确定平面β,设α∩β=c,则O ∈c. ∵a⊥α,b⊥α,∴a⊥c,b⊥c.∵b′∥a,∴b′⊥c.又∵O∈b,O ∈b′,b ⊂β,b′⊂β, a∥b′显然不可能,因此b∥a.例2 如图7,已知α∩β=l,EA⊥α于点A,EB⊥β于点B,a ⊂α,a⊥AB.求证:a∥l.图7证明:⎭⎬⎫⊥⊥⇒⎭⎬⎫=⋂⊥⊥EB l EA l l EB EA βαβα,⇒l⊥平面EAB.又∵a ⊂α,EA⊥α,∴a⊥EA.又∵a⊥AB,∴a⊥平面EAB. ∴a∥l.思路2例1 如图8,已知直线a⊥b,b⊥α,a ⊄α.求证:a∥α.图8证明:在直线a 上取一点A ,过A 作b′∥b,则b′必与α相交,设交点为B ,过相交直线a 、b′作平面β,设α∩β=a′,∵b′∥b,a⊥b,∴a⊥b′.∵b⊥α,b′∥b, ∴b′⊥α.又∵a′⊂α,∴b′⊥a′.由a ,b′,a′都在平面β内,且b′⊥a,b′⊥a′知a∥a′.∴a∥α.例2 如图9,已知PA⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点.(1)求证:MN⊥CD;(2)若∠PDA=45°,求证:MN⊥面PCD.图9证明:(1)取PD 中点E,又N 为PC 中点,连接NE,则NE∥CD,NE=21CD. 又∵AM∥CD,AM=21CD, ∴AMNE.∴四边形AMNE 为平行四边形. ∴MN∥AE.∵⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊂⊥ADP AE ADP CD AD CD PA CD ABCD CD ABCD PA 平面平面平面平面⇒CD⊥AE.(2)当∠PDA=45°时,Rt△PAD 为等腰直角三角形, 则AE⊥PD.又MN∥AE, ∴MN⊥PD,PD∩CD=D. ∴MN⊥平面PCD. 变式训练已知a 、b 、c 是平面α内相交于一点O 的三条直线,而直线l 和平面α相交,并且和a 、b 、c 三条直线成等角.求证:l⊥α.证明:分别在a 、b 、c 上取点A 、B 、C 并使AO=BO=CO.设l 经过O ,在l 上取一点P ,在△POA、△POB、△POC 中,∵PO=PO=PO,AO=BO=CO ,∠POA=∠POB=∠POC, ∴△POA≌△POB≌△POC. ∴PA =PB=PC.取AB 的中点D,连接OD 、PD ,则OD⊥AB,PD⊥AB. ∵PD∩OD=D,∴AB⊥平面POD. ∵PO ⊂平面POD,∴PO⊥AB. 同理,可证PO⊥BC.∵AB ⊂α,BC ⊂α,AB∩BC=B,∴PO⊥α,即l⊥α.若l 不经过点O 时,可经过点O 作l′∥l.用上述方法证明l′⊥α, ∴l⊥α.(五)知能训练如图10,已知正方体ABCD —A 1B 1C 1D 1的棱长为a,(1)求证:BD 1⊥平面B 1AC; (2)求B 到平面B 1AC 的距离.图10(1)证明:∵AB⊥B 1C ,BC 1⊥B 1C,∴B 1C⊥面ABC 1D 1. 又BD 1⊂面ABC 1D 1,∴B 1C⊥BD 1. ∵B 1B⊥AC,BD⊥AC,∴AC⊥面BB 1D 1D.又BD 1⊂面BB 1D 1D,∴AC⊥BD 1. ∴BD 1⊥平面B 1AC.(2)解:∵O∈BD,∴连接OB 1交BD 1于E. 又O ∈AC ,∴OB 1⊂面B 1AC.∴BE⊥OE,且BE 即为所求距离. ∵1BD BD OB BE =,∴BE=1BD BD ·OB=a a aa 332232=∙.(六)拓展提升已知在梯形ABCD 中,AB∥CD,CD 在平面α内,AB∶CD=4∶6,AB 到α的距离为10 cm ,求梯形对角线的交点O 到α的距离.图11解:如图所示,过B 作BE⊥α交α于点E ,连接DE, 过O 作OF⊥DE 交DE 于点F,∵AB∥CD,AB ⊄α,CD ⊂α,∴AB∥α.又BE⊥α, ∴BE 即为AB 到α的距离,BE=10 cm 且∠BED=90°. ∵OF⊥DE,∴OF∥BE,得BDODBE OF =. ∵AB∥CD,∴△AOB∽△COD.∴46==AB CD OB OD ,得53106==BD OD . 又BD OD BE OF =,BE=10 cm, ∴OF=53×10=6(cm ).∵OF∥BE,BE⊥α.∴OF⊥α,即OF 即为所求距离为6 cm.(七)课堂小结知识总结:利用线面垂直的性质定理将线面垂直问题转化为线线平行,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.(八)作业课本习题2.3 B 组1、2.。
《三垂线定理》教案基本问题: 三垂线定理及逆定理内容是什么单元问题: 如何运用三垂线定理和逆定理解题内容问题: 运用三垂线定理及逆定理有哪些要素课程标准(本单元所针对的课程标准或内容大纲):三垂线定理及其逆定理是现行立体几何教材中的两个十分重要的定理 .前者实际上是平面内一条直线和平面的一条斜线垂直的判定定理 ,后者实际上是平面内的一条直线和平面的一条斜线垂直的性质定理 .这两个定理的实质是 :平面内的一条直线与平面的斜线及其在平面内的射影垂直的关系。
一、教学目标:立足学生现状,结合教学大纲,制定以下教学目标:1、知识与技能1)熟练掌握三垂线定理及其逆定理的内容,并会证明。
2)会运用定理解简单题。
3)培养学生的识图能力及空间想象力,提高对知识的应用能力。
4)通过探索过程,进一步渗透立体几何证明中的转化思想,提高学生的多向思维能力。
2、过程与方法自主合作探究,指导法、讲练结合法3、情感态度价值观通过数学严密的逻辑推理教学使学生感受到数学的严谨性,体会数学美。
二、教学重难点:重点:熟练掌握并区分三垂线定理及其逆定理内容。
难点:真正弄清定理中复杂的线线关系。
三、教学用具:电脑、大屏幕、实物投影仪四、教学过程:(一)复习提问:我先用电脑结合大屏幕依次提出如下问题:(二)讲授新课1、三垂线定理的证明及简单应用。
1)在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么,它就和这条斜线垂直。
(首先,通过问答法由学生说出命题的已知、求证,然后让学生思考证明过程,接着让学生互说证明过程,最后请一名同学讲出证明过程。
)已知:P A、PO分别是平面α的垂线、斜线,AO是PO在平面α上的射影。
a在平面α内,a⊥AO。
求证:a⊥PO命题正确得出这便是三垂线定理。
2)分析定理:①定理中元素:一面四线三垂直一面——平面α(基础平面)四线——PA(α的垂线),PO(斜线),AO(射影),a(α内的直线)三垂直——PO⊥a ,A0⊥a ,PA⊥a (故称三垂线定理),由一垂、二垂得出第三垂,并不是三垂都作为已知条件。
课题:2.2.3.5三垂线定理(尖刀班)(1)
课 型:新授课
一、课题:三垂线定理
二、教学目标:1.掌握科学的概念,了解射影、斜线的定义;
2.掌握三垂线定理及其逆定理,利用三垂线定理及其逆定理解决有关线线
垂直问题。
三、教学重、难点:三垂线定理及其逆定理;三垂线定理及其逆定理中各条直线之间的关系.
四、教学过程:
(一)复习:平面几何中,点、线段在直线上射影的概念及性质:
(二)新课讲解:
1.射影的有关概念:
(1)点的射影:自一点P 向平面α引垂线,垂足P '叫做P 在平面α内的正射影(简
称射影)。
(2)图形的射影:如果图形F 上所有点在一个平面内的射影构成图形F ',则F '叫做F 在
这个平面内的射影.
2.斜线的有关概念:
(1)斜线:如果一条直线和一个平面相交但不垂直,那么这条直线叫做平面的斜线;
(2)斜足:斜线和平面的交点;
(3)斜线段:斜线上一点和斜足间的线段叫做斜线段.
由此,斜线段AB 在平面内的射影仍为线段,
即为线段0A B .
3.三垂线定理:
定理:在平面内的一条直线如果和这个平面的一条斜线的射影垂直,
那么它也和这条斜线垂直。
已知:,PO PA 分别是平面α的垂线和斜线,OA 是PA 在平面α内的射影,a α⊂,
且a OA ⊥
求证:a PA ⊥;
证明:∵PO α⊥∴PO a ⊥,又∵,a OA PO
OA O ⊥=
∴a ⊥平面POA , ∴a PA ⊥.
说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系;
(2)推理模式:,,PO O PA A a PA a a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭
.
4.三垂线定理的逆定理:
在平面内的一条直线如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
(证明
略)
推理模式: ,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭
.
练习:Rt ABC ∆在平面α内,90,,C PC CD AB α∠=⊥⊥于点D ,请指出图形中的
直角三角形。
,,,,,Rt ABC Rt ADC Rt BDC Rt PDA Rt PDB Rt PCA Rt PCB Rt PCD ∆∆∆⎧⎫⎪⎪∆∆⎨⎬⎪⎪∆∆∆⎩⎭
三.例题分析:
例1.已知:点O 是ABC ∆的垂心,PO ABC ⊥平面,垂足为O ,
求证:PA BC ⊥.
证明:∵点O 是ABC ∆的垂心,
∴AD BC ⊥
又∵PO ABC ⊥平面,垂足为O ,PA ABC A =平面
所以,由三垂线定理知,PA BC ⊥.
例2. 如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这
个角的角平分线上.
已知:BAC ∠在平面α内,点,,,P PE AB PF AC PO αα∉⊥⊥⊥,垂足分别为
,,,E F O PE PF =,
求证:BAO CAO ∠=∠.
证明:∵,,PE AB PF AC PO α⊥⊥⊥,
∴,AB OE AC OF ⊥⊥(三垂线定理逆定理)
∵,PE PF PA PA ==,∴Rt PAE Rt AOF ∆≅∆,
∴AE AF =,又∵AO AO =, ∴Rt AOE Rt AOF ∆≅∆
∴BAO CAO ∠=∠.
例3.如图,道路两旁有一条河,河对岸有电塔AB ,高15m ,只有量角器和 尺作测量工具,能否测出电塔顶与道路的距离?
解:在道路边取点C ,使BC 与道路边所成的水平角等于90,
再在道路边取一点D ,使水平角45CDB ∠=,
测得,C D 的距离等于20m ,
∵BC 是AC 在平面上的射影,且CD BC ⊥ ∴CD AC ⊥(三垂线定理)
因此斜线段AC 的长度就是塔顶与道路的距离,
∵45,,20CDB CD BC CD m ∠=⊥=,∴20BC m =,
在Rt ABC ∆中得2222||152025()AC AB BC m =+=+=,
答:电塔顶与道路距离是25m .
四、课堂小结:
1.射影和斜线的有关概念;
2.三垂线定理及其逆定理.
五、作业:
1.在正方体1AC 中,求证:正方体的对角线1AC 垂直于平面11AB D .
2.如图,ABCD 是矩形,PA ⊥平面ABCD ,点
,M N 分别是,AB PC 的中点,
求证:AB MN ⊥.
3.已知:如图若直角ABC ∠的一边//BC 平面α,另一边AB 和平面α斜交于点A ,求证:ABC ∠在平面α上的射影仍为直角。
课后记:。