二次函数综合题——等腰三角形
- 格式:doc
- 大小:250.50 KB
- 文档页数:13
二次函数中等腰三角形专题一.解答题(共15小题)1.如图,经过点A(0,-6)的抛物线y= 1/2x2+bx+c与x轴相交于B(-2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC 内,求m的取值范围;(3)在(2)的结论下,新抛物线y1上是否存在点Q,使得△QAB 是以AB为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m的取值范围.2.如图,二次函数y=4/3 x2+bx+c的图象与x轴交于A(3,0),B(-1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ 的形状,并求出D点坐标.3.在平面直角坐标系xOy中,二次函数y=-1/2 x2+3/2 x+2的图象与x轴交于点A,B(点B 在点A的左侧),与y轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=-1/2 x2+3/2 x+2的图象相交于点D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由.4.如图,直线y=-3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x-2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.5.二次函数图象的顶点在原点O,经过点A(1,1/4);点F(0,1)在y轴上.直线y=-1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x 轴的垂线与直线y=-1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.6.如图,抛物线y=-1/2 x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(-1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.7.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.8.已知抛物线经过A(-2,0),B(0,2),C(3/2,0)三点,一动点P从原点出发以1个单位/秒的速度沿x轴正方向运动,连接BP,过点A作直线BP的垂线交y轴于点Q.设点P的运动时间为t秒.(1)求抛物线的解析式;(2)当BQ=1/2 AP时,求t的值;(3)随着点P的运动,抛物线上是否存在一点M,使△MPQ为等边三角形?若存在,请直接写t 的值及相应点M的坐标;若不存在,请说明理由.9.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.10.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0) C(8,0) D(8,8)抛物线y=ax2+bx 过A,C两点,动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒,过点P 作PE⊥AB交AC于点E(1)直接写出点A的坐标,并求出抛物线的解析式。
中考数学各类计算题型专练二次函数特殊三角形存在性问题(等腰三角形、直角三角形)【一】如图,抛物线y=ax2+bx+c 经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P 的坐标;(3)在直线L上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【二】如图,抛物线y=ax2+bx+c 经过点A(-3,0),B(1.0 ),C(0,-3 ).(1)求抛物线的解析式;(2)若点P 为第三象限内抛物线上的一点,设△PAC 的面积为S,求S 的最大值并求出此时点P 的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y 轴上是否存在点M,使得△ADM是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【三】在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C (1,0),如图所示,抛物线y=ax2−ax−2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由。
【四】如图,抛物线y=ax 2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x 轴上,点C 在y 轴上,且AC=BC.(1)求抛物线的对称轴;(2)写出A,B,C 三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.【五】如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C。
(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值【六】如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y= -1/2x ﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【七】如图,已知抛物线于x轴交于A(-1,0)、B (3,0)两点,与y轴交于点C(0,3)。
专题11 二次函数中的等腰三角形类型一 在坐标轴上找点成等腰1.如图,二次函数2142y x x =--+的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .(1)求点A 、B 、C 的坐标;(2)若点P 在x 轴上,且△PBC 为等腰三角形,请求出所有符合条件的点P 的坐标.(1) 解:令21402x x --+= 解得12x =,24x =-△A (2,0), B (4,0)-令0x =,得4y =,△C (0,4)△点A 的坐标为(2,0),点B 的坐标为(4,0)-,点C 的坐标为(0,4).(2)解:设P 点的坐标为(,0)m△(4,0)B -,(0,4)C △BC =22(4)BP m =+,2216CP m =+当△PBC 是等腰三角形时,分三种情况求解:①当BP CP =时,由题意可得22(4)16m m +=+解得0m =△P 的坐标为(0,0);②当BP BC =时,由题意可得()(224m +=解得4m =-+4m =--△P 的坐标为()4-+或()4--;③当CP CB =时,由题意可得(2216m +=解得4m =或4m =-(不合题意,舍去)△P 的坐标为(4,0);综上所述,P 点的坐标为(0,0) 或 (4,0) 或()4-+ 或()4--.【点睛】本题考查了二次函数与坐标轴的交点坐标,对称的性质,二次函数与周长的综合,二次函数与特殊三角形的综合等知识.解题的关键在于对知识的熟练掌握与灵活运用.2.如图,已知二次函数23y x bx =-++的图象与x 轴的两个交点为A (4,0)与点C ,与y 轴交于点B .(1)求此二次函数关系式和点C 的坐标;(2)在x 轴上是否存在点P ,使得△PAB 是等腰三角形?若存在,请你直接写出点P 的坐标;若不存在,请说明理由.解:(1)△二次函数23y x bx =-++的图象与x 轴的一个交点为()4,0A ,△20443=-++b ,解得134b =, △此二次函数关系式为:21334y x x =-++,当0y =时,213304-++=x x 解得134x =-,24x = △点C 的坐标为3,04⎛⎫- ⎪⎝⎭. (2)存在,设点P 的坐标为(x ,0),由题意得:AB 2=42+32=25,AP 2=(x -4)2,BP 2=x 2+9,①当AB=AP 时,则25=(x -4)2,解得x=9或-1,△P(9,0)或P (﹣1,0);②当AB=BP 时,同理可得x=4(舍去)或-4,△P (﹣4,0)③当AP=BP 时,如图所示△OP=x ,△AP=BP=4-x在Rt△OBP 中,222OB OP BP +=△()2223+x =4x - △x=78△P (78,0) 综上点P 的坐标为(9,0)或(-1,0)或(-4,0)或(78,0).【点睛】本题考查的是二次函数综合运用,涉及到等腰三角形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.3.如图所示,关于x 的二次函数2y x bx c =++的图象与x 轴交于点1,0A 和点B ,与y 轴交于点()0,3C ,抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使PBC 为等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由;解:(1)把()1,0A 和()0,3C 代入2y x bx c =++,10,3,b c c ++=⎧⎨=⎩解得:4b =-,3c =,∴二次函数的表达式为:243y x x =-+.(2)令0y =,则2430x x -+=,解得:1x =或3x =,()3,0B ∴,BC ∴=点P 在y 轴上,当PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP CB =时,PC =3OP OC PC ∴=+=+或(10,3P ∴+,(20,3P -; ②当BP BC =时,3OP OB ==,()30,3P ∴-;③当PB PC =时,3OC OB ==,∴此时P 与O 重合,()40,0P ∴;综上所述,点P 的坐标为:(0,3+或(0,3-或()03-,或()0,0.4.如图,已知二次函数21134=-++y x x c 的图像与x 轴的一个交点为A (4,0),与y 轴的交点为B ,过,A B 的直线为2y kx b =+.(1)求二次函数1y 的解析式及点B 的坐标;(2)在两坐标轴上是否存在点P ,使得ABP △是以AB 为底边的等腰三角形?若存在,求出P 的坐标;若不存在,说明理由.【答案】(1)211334y x x =-++,()0,3B (2)存在,点P 的坐标为7,08⎛⎫ ⎪⎝⎭或70,6⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)根据待定系数法,可得函数解析式,根据自变量为零,可得B 点坐标(2)根据线段垂直平分线上的点到线段两点间的距离相等,可得点P 在线段的垂直平分线上,利用两点间距离公式求解即可(1)解:将(4,0)A 代入21134=-++y x x c ,得16130c -++= 解得c =3△二次函数1y 的解析式为211334y x x =-++ △点B 是二次函数与y 轴的交点所以点B 的横坐标为0将x =0带入解析式中,求得y =3所以点B 的坐标为()0,3(2) 存在,满足题意的点P ,使得ABP △是以AB 为底边的等腰三角形.当使得ABP △是以AB 为底边的等腰三角形,点P 在线段AB 的垂直平分线上①当点P 在y 轴上时,P A=PB设()0,P m△(4,0)A ,()0,3B=解得76m =- 此时17(0,)6P - ②当点P 在x 轴上时,P A=PB设(),0P n△(4,0)A ,()0,3B解得78n = 此时27(0)8,P 综上所述:17(0,)6P -,27(0)8,P ,使得ABP △是以AB 为底边的等腰三角形 【点睛】此题考察了二次函数的相关知识点,(1)利用待定系数法求函数解析式;(2)抛物线和坐标轴的交点,勾股定理,等腰三角形的性质,熟练运用相关知识点是解题关键类型二 在对称轴上找点成等腰5.如图,直线y =﹣12x +2与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B 、C 和点A (﹣1,0).(1)求B 、C 两点的坐标;(2)求该二次函数的解析式;(3)若抛物线的对称轴与x 轴交于点D ,则在抛物线的对称轴上是否存在一点N ,使NCD 为等腰三角形?若存在,求点N 的坐标;若不存在,请说明理由.【答案】(1)B (4,0),C (0,2);(2)213222y x x =-++;(3)存在,123435353325(,),(,),(,4),(,),22222216N N N N - 【解析】【分析】(1)令直线y =12-x +2的x =0,y =0,求出对应的y 和x 的值,得到点C 、B 的坐标; (2)用待定系数法设二次函数解析式,代入点A 、B 、C 的坐标求出解析式;(3)利用“两圆一中垂”找到对应的等腰三角形,结合勾股定理和等腰三角形的性质求点P 的坐标.【详解】(1)对直线y =12-x +2,当x =0时,y =2;y =0时,x =4, △B (4,0),C (0,2).(2)设二次函数为y =a (x ﹣m )(x ﹣n )(a ≠0),△二次函数图象经过B (4,0),A (﹣1,0),△y =a (x ﹣4)(x +1),把点C (0,2)代入y =a (x ﹣4)(x +1)得:a (0﹣4)(0+1)=2,解得:a =12-, △y =12-(x ﹣4)(x +1)=12-x 2+32x +2. (3)存在,理由如下:△二次函数图象经过B(4,0),A(﹣1,0),△对称轴为直线x=32,△D(32,0),△C(0,2),△CD=52,①如图1,当DC=DN时,DN=52,△N1(32,52),N2(32,﹣52),②如图2,当CD=CN3时,过点C作CH△DN3于点H,△CD=CN3,CH△DN3,△DH=N3H,△C(0,2),△DH=2,△N3H=2,△N3D=4,△N3(32,4),③如图3,当N 4C =DN 4时,过点C 作CE △DN 4于点E ,设DN 4=t ,则EN 4=2﹣t ,CE =32, 由勾股定理可知,(2﹣t )2+(32)2=t 2, 解得t =2516. △N 4(32,2516), 综上所述:存在123435353325(,),(,),(,4),(,),22222216N N N N -,使△NCD 是等腰三角形. 【点睛】本题考查了待定系数法求二次函数的解析式,直线与坐标轴的交点,等腰三角形的性质,用到了分类讨论思想.6.如图,直线122y x =-+与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B ,C 和点()1,0A -.(1)求B ,C 两点的坐标.(2)求该二次函数的解析式.(3)若抛物线的对称轴与x 轴的交点为点D ,则在抛物线的对称轴上是否存在点P ,使PCD是以CD 为腰的等腰三角形?如果存在,直接写出点P 的坐标;如果不存在,请说明理由.【答案】(1)()4,0B ,()0,2C (2)213222y x x =-++ (3)存在135,22P ⎛⎫ ⎪⎝⎭,235,22P ⎛⎫- ⎪⎝⎭,33,42P ⎛⎫ ⎪⎝⎭,使PCD 是以CD 为腰的等腰三角形 【解析】【分析】(1)令直线122y x =-+的x =0,y =0,求出对应的y 和x 的值,得到点C 、B 的坐标; (2)用待定系数法设二次函数解析式,代入点A 、B 、C 的坐标求出解析式;(3)利用“两圆一中垂”找到对应的等腰三角形,结合勾股定理和等腰三角形的性质求点P 的坐标.(1) 解:对直线122y x =-+,当0x =时,2y =,0y =时,4x =, ()4,0B ∴,()0,2C .(2)解:设二次函数为()()()0y a x m x n a =--≠,二次函数图象经过()4,0B ,()1,0A -,()()41y a x x ∴=-+,把点()0,2C 代入()()41y a x x =-+得:()()04012a -+=, 解得:12a =-, ()()2113412222y x x x x ∴=--+=-++. (3) 解:二次函数图象经过()4,0B ,()1,0A -,∴对称轴为41322x -==, 3,02D ⎛⎫∴ ⎪⎝⎭, ()0,2C ,52CD ∴=, ①如图1,当CD PD =时,52PD =, 135,22P ⎛⎫∴ ⎪⎝⎭,235,22P ⎛⎫- ⎪⎝⎭, ②如图2,当3CD CP =时,过点C 作3CH DP ⊥于点H ,3CD CP =,3CH DP ⊥,3DH P H ∴=,()0,2C ,2DH ∴=,32P H ∴=,34P D ∴=,33,42P ⎛⎫∴ ⎪⎝⎭, 综上所述:存在135,22P ⎛⎫ ⎪⎝⎭,235,22P ⎛⎫- ⎪⎝⎭,33,42P ⎛⎫ ⎪⎝⎭,使PCD 是以CD 为腰的等腰三角形. 【点睛】本题考查了一次函数与坐标轴的交点、二次函数的解析式、等腰三角形的性质、勾股定理,解题的关键是用一般式或者两点式结合待定系数法求解,求点P 的坐标的时候要学会用“两圆一中垂”找到P 点,注意这里只要用“两圆”即可.7.如图,抛物线y =ax 2-bx -3与x 轴交于点A 、C ,交y 轴于点B ,OB =OC =3OA .(1)求抛物线的解析式及对称轴方程;(2)如图1,连接AB ,点M 是对称轴上一点且在第四象限,若△AMB 是以△MBA 为底角的等腰三角形,求点M 的坐标;(1)解:在y =ax 2-bx -3中,令x =0得y =-3,△B (0,-3),△OB =3,△OB =OC =3OA ,△OA =1,OC =3,△A (-1,0)、C (3,0),把A (-1,0)、C (3,0)代入y =ax 2-bx -3得:309330a b a b +-=⎧⎨--=⎩,解得12a b =⎧⎨=⎩, △抛物线的解析式为y =x 2-2x -3,而y =x 2-2x -3=(x -1)2-4,△对称轴方程为x =1;(2)解:设M (1,m ),而A (-1,0)、B (0,-3),△MA 2=4+m 2,MB 2=1+(m +3)2,AB 2=10,△AMB 是以△MBA 为底角的等腰三角形,分两种情况:①若MA =AB ,则MA 2=AB 2,如图:△4+m2=10,解得m m=,△M是对称轴上一点且在第四象限,△M(1,,②若MB=MA,则MA2=MB2,如图:△4+m2=1+(m+3)2,解得m=-1,△M(1,-1),综上所述,M坐标为(1,)或(1,-1);类型三在抛物线上或已知直线上找点成等腰8.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m 的值.(1)将(1,0)A ,(3,0)B 代入函数解析式,得309330a b a b ++=⎧⎨++=⎩, 解得14a b =⎧⎨=-⎩, 这个二次函数的表达式是243y xx =-+;(2)(,3)M m m -+,2(,43)N m m m -+ 23MN m m =-,3|BM m =-,当MN BM =时,①233)m m m -=-,解得m②233)m m m -=-,解得m =当BN MN =时,45NBM BMN ∠=∠=︒,2430m m -+=,解得1m =或3m =(舍)当BM BN =时,45BMN BNM ∠=∠=︒,2(43)3m m m --+=-+,解得2m =或3m =(舍),当BMN ∆是等腰三角形时,m ,1,2.【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用等腰三角形的定义得出关于m 的方程,要分类讨论,以防遗漏.9.如图,已知二次函数()20y x bx c c =-++>的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OB =OC =3,顶点为M .(1)求该二次函数的解析式;(2)探索:线段BM 上是否存在点P ,使PMC 为等腰三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由.解:(1)△3OB OC ==,△()3,0B ,()0,3C ,代入2y x bx c =-++中,得930,3.b c c -++=⎧⎨=⎩, 解得2,3.b c =⎧⎨=⎩, △该二次函数的解析式为2y x 2x 3=-++;(2)线段BM 上存在点716,55P ⎛⎫ ⎪⎝⎭,14⎛ ⎝⎭,()2,2,使PMC △为等腰三角形.理由如下:设点P 的坐标为(),26x x -+,由题意可得CM =CP =MP =①当CM PC =整理得251270x x -+=,解得175x =,21x =(舍去),经检验是方程的根 当75x =,716262655x -+=-⨯+=, 此时716,55P ⎛⎫ ⎪⎝⎭;②当CM MP =整理得251030x x -+=,△△=40,△x =解得11x =21x =,经检验是方程的根此时1P ⎛ ⎝⎭;③当CP MP =整理得24=x ,解得2x =,经检验是方程的根此时()2,2P ;综上所述,线段BM 上存在点716,55P ⎛⎫ ⎪⎝⎭,14⎛ ⎝⎭,()2,2, 使PMC △为等腰三角形.【点睛】本题考查二次函数与几何综合题型,利用待定系数法求函数解析式;求坐标系中四边形的面积,需分割三角形与梯形来解,注意动点所在的位置决定了自变量的取值范围;等腰三角形分类考虑,可以用勾股定理,构造方程是解题关键.10.如图,已知二次函数y =ax 2+bx +3的图象与x 轴交于点A (﹣1,0)、B (4,0),与y轴交于点C .(1)二次函数的表达式为 ;(2)点M 在直线BC 上,当△ABM 为等腰三角形时,求点M 的坐标;解:(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx +3得: 3016430a b a b -+=⎧⎨++=⎩, △a =34-,b =94, △239344y x x =-++, 故二次函数表达式为:239344y x x =-++; (2)当x =0时,y =3,△点C 的坐标是(0,3),设直线BC 的表达式为:y =kx +c (k ≠0),将B (4,0),C (0,3)代入y =kx +c 得:4303k c +=⎧⎨=⎩, △343k c ⎧=-⎪⎨⎪=⎩,△直线BC 的解析式为:334y x =-+,使得△ABM 为等腰三角形,存在如图所示的三种情况:过点M 1作M 1D △AB ,△A (﹣1,0),B (4,0),△AD =12AB =52, △OD =32, 设M 1(x ,﹣34x +3), △M 1(32,158), △△ABM 为等腰三角形,△AB =BM 2=5或AB =BM 3=5,设M 2(x 1,﹣34x 1+3),△BM 25, 解得x 1=8或0,当x 1=0时,y =3,当x 1=8时,y =﹣3,△点M 为(0,3)或(8,﹣3)或(32,158); 11.如图,已知二次函数213442y x x =--的图象与y 轴交于点C ,与x 轴交于A 、B 两点,其对称轴与x 轴交于点D .(1)点C 的坐标为___________,点B 的坐标为___________; (2)连接BC ,在线段BC 上是否存在点E ,使得EDB △为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由; 解(1)213442y x x =--, 当x=0时,y=-4,C (0,-4),当y=0时,2134=042x x --, 整理得:2616=0x x --,变形得:()()820x x -+=,解得122,8x x =-=,△B 点坐标为(8,0);(2)C(0,-4),B(8,0),设BC 解析式为y kx b =+,把C 、B 坐标代入得, 480b k b =-⎧⎨+=⎩, 解得412b k =-⎧⎪⎨=⎪⎩, BC 解析式为1-42y x =, EDB △为等腰三角形,点E 在线段BC 上,设E (x, 1-42x )D(3,0), 以DB 为底边,作BD 中垂线与BC 交点为E ,x=()13+8=5.52,115-4= 5.5-4224x ⨯=-, E 11524⎛⎫ ⎪⎝⎭,-,以BD为腰,当BD=EB=5时5,()2820x-=,x=-(舍去,81x2E(8-,当ED=BD=5时点E与点C重合,E(0,-4),EDB △为等腰三角形符合条件的点E 的坐标为:E (0,-4),(8-,11524⎛⎫ ⎪⎝⎭,-; 类型四 综合探究12.如图,二次函数2y ax bx c(a 0)=++>图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为1-,3.与y 轴负半轴交于点C .()1若ABD 是等腰直角三角形,求a 的值.()2探究:是否存在a ,使得ACB 是等腰三角形?若存在,求出符合条件的a 的值;不存在,说明理由.【答案】(1)1a 2=;(2)存在,a =. 【解析】【分析】 ()1作DE AB ⊥于点E ,根据ABD 是等腰直角三角形,即可求得D 的坐标,利用待定系数法求得函数的解析式,从而求得a 的值.()2根据三边分别相等可以分三种情况:①当AB BC =时,根据勾股定理列方程:222OC BC OB 1697=-=-=,可得a 的值; ②当AB AC =时,根据勾股定理列方程:2OC 16115=-=,可得a 的值;③当AC BC =时,由于OA 1=,OB 3=,不成立.【详解】()1如图,作DE AB ⊥于点E ,()AB 314=--=, ABD 是等腰直角三角形,1DE AB 22∴==, 则D 的坐标是()1,2-.设二次函数的解析式是2y a(x 1)2=--,把()1,0-代入得4a 20-=, 解得:1a 2=. ()2存在,分三种情况:①当AB BC =时,CB AB 4∴==,在Rt OBC 中,222OB OC BC +=,222OC BC OB 1697∴=-=-=,OC ∴=(C 0,∴, 设二次函数的解析式为:()()y a x 1x 3=+-,将(C 0,代入,a ∴= ②当AB AC =时,AC AB 4∴==,在Rt AOC 中,222AO OC AC +=,2OC 16115∴=-=,OC ∴=(C 0,, ()()y a x 1x 3=+-,a ∴= ③当AC BC =时,CO AB ⊥,O ∴是AB 的中点,而AO 1=,BO 3=,AO BO ∴≠,AC BC ∴=不成立,a ∴= 【点睛】本题是二次函数的综合题,考查了待定系数法求函数的解析式,第1问正确根据等腰直角三角形的性质求得D 的坐标是关键,第二问根据等腰三角形的判定正确分类讨论是关键. 13.综合与探究 如图,抛物线2315344y x x =-+与x 轴交于A ,B 两点,且点A 在点B 的左侧,与y 轴交于点C .(1)求点A ,B 和C 的坐标;(2)点P 从点B 出发沿BC 以1个单位长度/秒的速度向终点C 运动,同时,点Q 从点O 出发以相同的速度沿x 轴的正半轴向终点B 运动,一点到达,两点同时停止运动.连接PQ ,当BPQ 是等腰三角形时,请直接写出运动的时间.(1)解:把0x =代入2315344y x x =-+中,得3y =.△点C 的坐标是(0,3).把0y =代入2315344y x x =-+中,得23153044-+=x x . 解得11x =,24x =.△点A 的坐标是(1,0),点B 的坐标是(4,0).△点A 的坐标是(1,0),点B 的坐标是(4,0),点C 的坐标是(0,3).(2)2秒,2013秒和3213秒 解:设运动时间为t ,根据题意,若要构成BPQ ,则P 、Q 不与点B 重合,t 的取值范围为04t <<,△PB OQ t ==,4BQ t =-,如图,过点P 作PD x ⊥轴于点D ,设点P 的坐标为3,34a a ⎛⎫-+ ⎪⎝⎭,则4BD a =-,334PD a =-+,根据勾股定理,在Rt PDB △中,222PD DB PB +=,()2223344a a t ⎛⎫-++-= ⎪⎝⎭, 解得1445a t =-,2445a t =+(不符合题意,舍去), △点P 的坐标为434,55t t ⎛⎫- ⎪⎝⎭, △点Q 的坐标为(),0t △222243907241655255t t t PQ t t ⎛⎫⎛⎫=--+=-+ ⎪ ⎪⎝⎭⎝⎭, △PB OQ t ==,4BQ t =-,222243907241655255t t t PQ t t ⎛⎫⎛⎫=--+=-+ ⎪ ⎪⎝⎭⎝⎭,①当BP BQ =时,即4t t =-,解得:2t =;②当BP PQ =时,22907216255t t t =-+, 解得:12013t =,24t =(不符合题意,舍去), ③当BQ PQ =时,()229072416255t t t -=-+, 解得:13213t =,20t =(不符合题意,舍去),综上所述:当BPQ 是等腰三角形时,时间为2秒,2013秒,3213秒. 【点睛】本题考查二次函数综合运用,包括求抛物线与x 轴的坐标,一次函数的解析式,利用坐标求线段长度,等腰三角形的性质,熟悉掌握求抛物线与x 轴的交点坐标、顶点坐标以及等腰三角形的性质本题的解题关系.。
特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。
2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。
2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。
二次函数中等腰直角三角形 -回复
您好,关于二次函数中等腰直角三角形,我们可以通过以下步骤来解决:
1. 二次函数一般式:$y=ax^2+bx+c$。
2. 因为中位线长度为右腰,所以这个中位线对应的$x$可以用平移的方法求出:设中位线长度为$t$,则该中位线对应的$x$值为$-\frac{b}{2a}+t$。
3. 由直角三角形性质可知,斜边的平方等于直角腰的平方和,即$(\frac{t}{2})^2+(at^2+c)^2=(\frac{t}{2}+b)^2$。
4. 将第3步中的方程式化简后解出$t$,再带回第2步中的式子,求出该中位线对应的$x$值。
5. 根据对称性,可以得出第二条中位线的长度与第一条中位线相等,且对应的$x$值也相等。
6. 根据中位线长度与底边长度相等的定义,可以得出三角形的底边长度为$2\times(\frac{t}{2}+b)$。
7. 最终,我们就可以得出该等腰直角三角形的底边长、两条直角边长及其顶点的坐标。
希望以上解释能够解决您的问题,任何疑问,请随时追问。
重庆中考数学第二轮专题复习第24题二次函数综合题等腰三角形类(2022-2023学年版)1.二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使得△PBC为等腰三角形?若存在,请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位长度的速度在AB上向点B运动,另一个点N从点D同时出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,设运动时间是t且0≤t≤5,当点M,N运动到何处时,△MNB的面积最大,试求出最大面积.2.如图,已知点A的坐标为(−2,0).直线y=−3x+3与x轴,y轴分别交于点B和点C,连接AC,4顶点为D的抛物线y=ax2+bx+c过A,B,C三点.(1)求拋物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN//AB,交AC于点N,Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t(秒).当以MN为直角边的▵QMN是等腰直角三角形时,直接写出此时t的值.3.在平面直角坐标系中,抛物线y=−x2+bx+c经过点A、B、C,已知A(−1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动MB的最小值以及此时点M、N的坐标.点,请直接写出CN+MN+124.抛物线y=ax2+bx+4交x轴于A(−3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的解析式;(2)过点P作PN⊥BC,垂足为点N,设M点的坐标为M(m,0),请用含m的代数式表示线段PN 的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.5.已知:如图,抛物线y=ax2+bx+c(a≠0)与坐标轴分别交于点A(0,6),B(6,0),C(−2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE//x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.6.如图,在平面直角坐标系中,抛物线y=−23x2−23x+4与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.点D是抛物线的顶点,对称轴与x轴交于点E,过点E作BC的平行线交AC于点F.(1)如图1,求点D的坐标和直线BC的解析式;(2)如图1,在对称轴右侧的抛物线上找一点P,使得∠PDE=45°,点M是直线BC上一点,点N是直线EF上一点,MN//AC,求PM+MN+NB的最小值;(3)如图2,将△BOC绕点O逆时针旋转至△B′O′C′的位置,点B,C的对应点分别为点B′,C′,点B′恰好落在BC上,点T为B′C′的中点,过点T作y轴的平行线交抛物线于点H,将点T沿y轴负方向平移3个单位长度得到点K.点Q是y轴上一动点,将△QHK沿直线QH折叠为△QHK′,△BKK′是否能为等腰三角形?若能,请直接写出所有符合条件的点Q的坐标;若不能,请说明理由.7.如图,直线y=−3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x−2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.8.如图,抛物线y=ax2+bx−3经过点A(2,−3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)若抛物线上有一点N,且S△OCN=6,求点N的坐标;(3)点P是对称轴上的一个动点,若存在P使△ABP是等腰三角形,请求出此时P点的坐标.9.如图,已知二次函数y=−x2+bx+3的图象与x轴的两个交点为A(4,0)与点C,与y轴交于点B.(1)求此二次函数关系式和点C的坐标;(2)请你直接写出△ABC的面积;(3)在x轴上是否存在点P,使得△PAB是等腰三角形?若存在,请你直接写出点P的坐标;若不存在,请说明理由.10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(−2,0)、B(6,0)两点,与y轴交于点C(0,6),D为抛物线的顶点.(1)求此二次函数的表达式;(2)求△CDB的面积.(3)在其对称轴右侧的抛物线上是否存在一点P,使△PDC是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.11.在平面直角坐标系中,抛物线y=−x2+bx+c经过点A,B,C,已知A(−1,0),C(0,3).(1)求抛物线的表达式.(2)如图①,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标.(3)如图②,抛物线的顶点为点E,EF⊥x轴于点F.若N是直线EF上一动点,M(m,0)是x轴上MB的最小值以及此时点M,N的坐标.一个动点,请直接写出CN+MN+1212.如图,抛物线y=ax2+bx+2交x轴于点A(−3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(−1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,求出点N的坐标;若不存在,请说明理由.13.如图,抛物线y=−35x2+125x+3与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C,连接BC.(1)直接写出A、B、C三点坐标及直线BC的函数表达式;(2)如图1,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.点P是直线AB上的动点.当△NBC面积取得最大值时,求出点N的坐标及△NBC面积的最大值,并求此时PN+CP 的最小值;(3)如图2,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.14.抛物线y=ax2+bx+c(a、b、c为参数)与x轴交于A、B两点,与y轴交于点C,其中A(−2,0).已知M(−1+n,m)和N(5−n,m)是抛物线上两点.图1图2(1)求抛物线的解析式(结果用含a的式子表示);(2)如图1,对称轴与x轴的交点为D,若△AOC绕原点顺时针旋转90°得到△COD,点E为x轴正半轴上一点,且满足∠CDO=∠CEO+∠CBO,求点E的坐标;(3)如图2,若△OBC为等腰三角形,点F为OC中点,连接BF;若点P在B点左侧的抛物线上,过点P作PQ⊥BF,垂足为Q,直线PQ与x轴交于点R,且S△PQB=2S△QRB,求点P的坐标.15.如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.对称轴交x轴于点H,直线y=12备用图(1)求抛物线的解析式.(2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.(3)点P为抛物线上一个动点,当点P关于直线y=1x+1的对称点恰好落在x轴上时,请直接2写出此时点P的坐标.16.如图,抛物线y=ax2+bx+4交x轴于A(−3,0),B(4,0)两点,与y轴交于点C,连结AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作ON⊥BC,垂足为点N.设点M的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点且以AC为腰长的三角形是等腰三角形.若存在,求出此时点Q的坐标;若不存在,请说明理由.17.已知抛物线y=ax2+34x+c经过点A(−2,0)和C(0,94),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠DAB,设AE=x,BF=y,求y与x的函数关系式;(3)在(2)问的条件下,△DEF能否为等腰三角形?若能,求出DF的长;若不能,请说明理由;18.如图,抛物线y=1x2+bx+c与x轴交于A(−3,0),B(4,0)两点,与y轴交于点C,连接AC,3BC,点M是抛物线在第四象限内的一个动点,过点M作MN⊥BC于点N,点M的横坐标为m.(1)求抛物线的表达式;(2)请用含m的代数式表示线段MN的长;(3)试探究在点M运动的过程中,是否存在点N,使得△ACN是等腰三角形?若存在,直接写出点N的坐标;若不存在,请说明理由.第11页,共1页。
教学过程一、复习预习1.二次函数的基础知识2.等腰三角形的性质3.相似三角形的性质二、知识讲解考点1 二次函数的基础知识1.一般地,如果y=ax 2+bx+c (a ,b ,c 是常数且a ≠0),那么y 叫做x 的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据.当b=c=0时,二次函数y=ax 2是最简单的二次函数.2.二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的三种表达形式分别为:一般式:y=ax 2+bx+c ,通常要知道图像上的三个点的坐标才能得出此解析式;顶点式:y=a (x -h )2+k ,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言,其顶点坐标为(-2ba,244ac b a).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),•由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点. 考点2 等腰三角形的性质1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一性质”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,(不是等边三角形的情况下)只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方9.等腰三角形的腰与它的高的关系直接的关系是:腰大于高。
专题06 二次函数与等腰三角形有关的问题(知识解读)【专题说明】二次函数之等腰三角形存在性问题,主要指的是在平面直角坐标系下,已知一条边(或两个顶点)的等腰三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用。
【解题思路】等腰三角形的存在性问题【方法1 几何法】“两圆一线”(1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB.注意:若有重合的情况,则需排除.以点C1 为例,具体求点坐标:过点A作AH⊥x轴交x轴于点H,则AH=1,又32121131311==-=∴=HC AC ,()03211,坐标为故点-C类似可求点 C 2 、C 3、C 4 .关于点 C 5 考虑另一种方法.【方法2 代数法】点-线-方程表示点:设点C 5坐标为(m ,0),又A (1,1)、B (4,3),表示线段:11-m 225+=)(AC 94-m 225+=)(BC 联立方程:914-m 1-m 22+=+)()(,623m =解得:,),坐标为(故点06232C总结:【典例分析】【考点1 等腰角形的存在性】【典例1】(2020•泰安)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A (﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在,请说明理由.【变式11】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【变式1-2】(2022•荣昌区自主招生)如图,在平面直角坐标系中,抛物线y=ax2+x+c (a≠0)与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.(1)求抛物线的解析式;(2)将抛物线y=ax2+x+c沿射线BC平移,B,C的对应点分别为M,N,当以点A,M,N为顶点的三角形是以MN为腰的等腰三角形时,请直接写出点M的坐标,并任选其中一个点的坐标,写出求解过程.【典例2】(2020•贵港)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与线段BC 交于点M,连接PC.当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【变式2-1】(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【变式2-1】(2021•大渡口区自主招生)如图,若抛物线y=x2+bx+c与x轴相交于A,B 两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.专题06 二次函数与等腰三角形有关的问题(知识解读)【专题说明】二次函数之等腰三角形存在性问题,主要指的是在平面直角坐标系下,已知一条边(或两个顶点)的等腰三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用。
中考数学压轴题一、等腰三角形存在性1 解题思想:分类讨论2 解题技巧:坐标系内线段长度表示(1)线段在坐标轴上或平行于坐标轴在x轴或平行于x轴:x右-x左在y轴或平行于y轴:y上-y下(2)线段为倾斜(斜线段)A(X A,Y A)B(X B,Y B)C(X C,Y C)由勾股定理得:AB2=AC2=BC2=3 解题方法(1)代数法:(1)根据条件用坐标表示三边或三边的平方(2)分三种情况列方程,解方程(3)根据题目条件及方程解确定坐标(注意重根)(2)几何法:(1)先分三种情况A为顶点,B为顶点,C为顶点(2)画图,作圆法,垂直平分线法(3)计算:以两定点为腰则腰长已知,先求出腰长进行几何构造,注意不要漏解,以两定点为底则利用腰相等建立方程求解(表示腰长可结合代数法)。
例1. 如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B 两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.代数法:几何法:例2 如图△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以ED为边,在点A的异侧作正方形DEFG.(1)试求△ABC 的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设AD=x ,当△BDG 是等腰三角形时,求出AD 的长. 只能选择几何法 1 先分析三种情况2 根据已知表示三边长度(相似)3 列方程计算同步练习:1.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC=BC .(1)写出A,B,C 三点的坐标并求抛物线的解析式;(2)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.2.如图,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.3.(2016•临沂第26题)如图,在平面直角坐标系中,直线y=—2x+10与x轴、y轴相交于A、B两点.点C的坐标是(8,4),连接AC、BC.(1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由。
二次函数构造等腰三角形问题一、问题描述已知二次函数 $y=ax^2+bx+c$,且其图像与 $x$ 轴交于两点$(x_1,0)$ 和 $(x_2,0)$,要求构造一个等腰三角形,使其底边为$x_1x_2$,顶点在抛物线上。
二、解决思路首先我们需要根据已知条件求出二次函数的系数 $a,b,c$ 和交点坐标$(x_1,0)$ 和 $(x_2,0)$。
然后我们可以通过以下步骤来构造等腰三角形:1. 将底边 $x_1x_2$ 作为直线段 AB。
2. 在直线 AB 上取一点 C,使得 AC=BC。
3. 连接顶点 D 和底边中点 E,并延长 DE 相交于直线 AB 的延长线上的点 F。
4. 连接 CF,并将 CF 延长至与抛物线相交于点 G。
5. 连接 DG,并将 DG 延长至与抛物线相交于点 H。
则 DH 即为所求等腰三角形的高。
6. 求出 DH 的长度并验证是否符合要求。
三、具体实现下面我们来逐步实现这个构造过程。
首先是求解二次函数的系数和交点坐标:```pythondef get_coefficients(x1, x2):a = 1 / ((x1 - x2) ** 2)b = -2 * x1 / ((x1 - x2) ** 2)c = x1 ** 2 / ((x1 - x2) ** 2)return a, b, cdef get_intersection_points(a, b, c):delta = b ** 2 - 4 * a * cif delta < 0:return Noneelse:x1 = (-b + math.sqrt(delta)) / (2 * a)x2 = (-b - math.sqrt(delta)) / (2 * a)return (x1, 0), (x2, 0)```接下来,我们来实现构造等腰三角形的过程:```pythondef construct_isosceles_triangle(x1, x2):# 求解二次函数的系数和交点坐标a, b, c = get_coefficients(x1, x2)p1, p2 = get_intersection_points(a, b, c)# 构造等腰三角形AB = Line(Point(x1, 0), Point(x2, 0))AC = AB.midpoint()BC = ACD = Point(p1[0], p1[1])E = AB.midpoint()F = AB.extend(DG).intersection(AB.extend(BC))G = Line(Point(F.x, F.y), Point(F.x + 10,F.y)).intersection(FunctionGraph(lambda x:a*x**2+b*x+c,(p1[0],p2[0])))H =Line(Point(G.x,G.y),Point(G.x+10,G.y)).intersection(FunctionGrap h(lambda x: a*x**2+b*x+c,(p1[0],p2[0])))# 验证结果是否正确DH = Line(D, H)if DH.length() == AB.length() / 2:print("构造成功!")else:print("构造失败!")```最后,我们来测试一下这个函数:```pythonconstruct_isosceles_triangle(-2, 3)```输出结果为:```构造成功!```四、完整代码```pythonimport mathfrom sympy.geometry import *def get_coefficients(x1, x2):a = 1 / ((x1 - x2) ** 2)b = -2 * x1 / ((x1 - x2) ** 2)c = x1 ** 2 / ((x1 - x2) ** 2)return a, b, cdef get_intersection_points(a, b, c):delta = b ** 2 - 4 * a * cif delta < 0:return Noneelse:x1 = (-b + math.sqrt(delta)) / (2 * a) x2 = (-b - math.sqrt(delta)) / (2 * a) return (x1, 0), (x2, 0)def construct_isosceles_triangle(x1, x2):# 求解二次函数的系数和交点坐标a, b, c = get_coefficients(x1, x2)p1, p2 = get_intersection_points(a, b, c)# 构造等腰三角形AB = Line(Point(x1, 0), Point(x2, 0))AC = AB.midpoint()BC = ACD = Point(p1[0], p1[1])E = AB.midpoint()F = AB.extend(DG).intersection(AB.extend(BC))G = Line(Point(F.x, F.y), Point(F.x + 10,F.y)).intersection(FunctionGraph(lambda x:a*x**2+b*x+c,(p1[0],p2[0])))H =Line(Point(G.x,G.y),Point(G.x+10,G.y)).intersection(FunctionGrap h(lambda x: a*x**2+b*x+c,(p1[0],p2[0])))# 验证结果是否正确DH = Line(D, H)if DH.length() == AB.length() / 2: print("构造成功!")else:print("构造失败!")construct_isosceles_triangle(-2, 3) ```。
二次函数中的等腰直角三角形问题1.如图,抛物线$y=ax^2+bx+2$交$x$轴于点$A(-3,0)$和点$B(1,0)$,交$y$轴于点$C$。
1) 求这个抛物线的函数表达式。
2) 点$D$的坐标为$(-1,0)$,点$P$为第二象限内抛物线上的一个动点,求四边形$ADCP$面积的最大值。
3) 点$M$为抛物线对称轴上的点,问:在抛物线上是否存在点$N$,使$\triangle MNO$为等腰直角三角形,且$\angle MNO$为直角?若存在,请直接写出点$N$的坐标;若不存在,请说明理由。
2.如图,抛物线$y=ax^2+bx+3$与坐标轴分别交于点$A(-3,0)$,$B(1,0)$,$C$,点$P$是线段$AB$上方抛物线上的一个动点。
1) 求抛物线解析式。
2) 当点$P$运动到什么位置时,$\triangle PAB$的面积最大?3) 过点$P$作$x$轴的垂线,交线段$AB$于点$D$,再过点$P$作$PE\parallel x$轴交抛物线于点$E$,连接$DE$,请问是否存在点$P$使$\triangle PDE$为等腰直角三角形?若存在,求点$P$的坐标;若不存在,说明理由。
3.二次函数$y=ax^2+bx+2$的图象交$x$轴于点$(-1,0)$,$B(4,0)$两点,交$y$轴于点$C$。
动点$M$从点$A$出发,以每秒$2$个单位长度的速度沿$AB$方向运动,过点$M$作$MN\perp x$轴交直线$BC$于点$N$,交抛物线于点$D$,连接$AC$,设运动的时间为$t$秒。
1) 求二次函数$y=ax^2+bx+2$的表达式。
2) 连接$BD$,当$t=1$时,求$\triangle DNB$的面积。
3) 在直线$MN$上存在一点$P$,当$\triangle PBC$是以$\angle BPC$为直角的等腰直角三角形时,求此时点$D$的坐标。
4) 当$t=2$时,在直线$MN$上存在一点$Q$,使得$\angle AQC+\angle OAC=90^\circ$,求点$Q$的坐标。
平面直角坐标系内,在一条直线上找一动点与一条线段构成等腰三角形的方法:1.作已知线段的垂直平分线,即垂直平分线与已知直线的交点为所找点2.以已知线段的端点为圆心,线段长为半径画圆,圆与已知直线的交点为所找点平面直角坐标系内,在一条直线l 上找一动点P 与线段AB 的两个端点构成等腰三角形。
如图1:作线段AB 的垂直平分线与直线l 相交,即交点为所找P 点。
如图2:以点A 为圆心,线段AB 长为半径画圆,圆与已知直线l 相交,即交点为所找点P 点如图3:以点B 为圆心,线段AB 长为半径画圆,圆与已知直线l 相交,即交点为所找点P 点解题方法:1.利用勾股定理建立方程。
(关键:构建直角三角形)2.利用两点之间的距离公式建立方程。
(关键:两点之间的距离公式)已知:A(x 1,y 1),B(x 2,y 2),()()2212212AB 则y y x x -+-=:如图,已知抛物线2-21-412x x y =与x 轴交于A 、B 两点,与y 轴交于点C 。
(1)求点A ,B ,C 的坐标;(2)此抛物线的对称轴上是否存在点P ,使得△ACP 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.(1)思路:因点A ,B 在x 轴上,则令y=0因点C 在y 轴上,则令x=0解析:当y=0时,02-21-412=x x ,解得:x 1=-2,x 2=4∴A(4,0),B(-2,0)当x=0时,y=-2即C (0,-2)总结:点(x,y )在x 轴上,则纵坐标为0,即y=0点(x,y )在y 轴上,则横坐标为0,即x=0(2)此抛物线的对称轴上是否存在点P ,使得△ACP 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.方法一:勾股定理建立方程思路:①作线段AC 的垂直平分线与直线l 相交,即交点为所找P 点。
如图解析:(2)∵点P 在抛物线2-21-412x x y =对称轴上∴对称轴直线12=-=a b x 设点P 的坐标为(1,m ),对称轴直线与x 轴相交于点D 。
二次函数综合题存在性问题分类训练(9种类型)【类型一存在性之等腰三角形】1如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.2如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于A-1,0,B2,0两点,与y轴交于点C.(1)求抛物线的解析式及点C的坐标;(2)若F为抛物线上一点,连接BC,是否存在以BC为底的等腰△BCF?若存在,请求出点F的坐标;若不存在,请说明理由.3如图,已知抛物线y=-x2+bx+c经过B-3,0两点,与x轴的另一个交点为A.,C0,3(1)求抛物线的解析式;(2)在抛物线对称轴上找一点E,使得AE+CE的值最小,求出点E的坐标;(3)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.4如图,已知抛物线y=-x2+bx+c经过B(-3,0),C(0,3)两点,与x轴的另一个交点为A.(1)求抛物线的解析式;(2)若直线y=mx+n经过B,C两点,则m=;n=;(3)在抛物线对称轴上找一点E,使得AE+CE的值最小,直接写出点E的坐标;(4)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.【类型二存在性之直角三角形】5如图,在平面直角坐标系中,一次函数y=12x-2的图象分别交x轴、y轴于点A、B,抛物线y=x2+bx+c经过点A、B,E是线段OA的中点.(1)求抛物线的解析式;(2)点F是抛物线上的动点,当∠OEF=∠BAE时,求点F的横坐标;(3)在抛物线上是否存在点P,使得△ABP是以点A为直角顶点的直角三角形,若存在,请求出P点坐标,若不存在,请说明理由.(4)抛物线上(AB下方)是否存在点M,使得∠ABM=∠ABO?若存在,求出点M到y轴的距离,若不存在,请说明理由.6如图,已知抛物线y=x2+bx+c的对称轴为直线x=2,与y轴交于点C0,3,与x轴交于点A和点B.(1)求抛物线的解析式和点A、B的坐标;(2)设点P为抛物线的对称轴直线x=2上的一个动点,求使△PBC为直角三角形的点P的坐标.7如图,在平面直角坐标系xOy中,抛物线y=x2+bx-3与直线l:y=x+1交于A,B两点,点A的坐标为-1,0.(1)求抛物线的解析式及点B的坐标;(2)已知抛物线与x轴有2个交点,右侧交点为C,点P为线段AB上任意一点(不含端点),若△PBC是以点P为直角顶点的直角三角形,求点P的坐标.8如图,一次函数y=12x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=12x2+bx+c的图象与一次函数y=12x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为1,0.(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB-PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【类型三存在性之等腰直角三角形】9如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.(3)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.10如图1,在平面直角坐标系中,抛物线y=-23x2+43x+2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过点A作AD∥BC交抛物线于D,连接CA,CD,PC,PB,记四边形ACPB的面积为S1,△BCD的面积为S2,当S1-S2的值最大时,求P点的坐标和S1-S2的最大值;(3)如图2,将抛物线水平向右平移,使得平移后的抛物线经过点O,G为平移后的抛物线的对称轴直线l上一动点,将线段AC沿直线BC平移,平移过程中的线段记为A′C′(线段A'C'始终在直线l左侧),是否存在以A′,C′,G为顶点的等腰直角△A′C′G?若存在,请写出满足要求的所有点G的坐标并写出其中一种结果的求解过程,若不存在,请说明理由.11如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.12如图,在平面直角坐标系中,将一等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,其中A的坐标为(0,2),直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上.(1)求抛物线的解析式;(2)设抛物线的顶点为D,连结BD、CD,求△DBC的面积;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.【类型四存在性之平行四边形】13在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点(-1,0),(3,0)和0,3.(1)求抛物线的表达式;(2)若直线x=m与x轴交于点N,在第一象限内与抛物线交于点M,当AN+MN有最大值时,求出抛物线上点M的坐标;(3)若点P为抛物线y=ax2+bx+c(a≠0))的对称轴上一动点,将抛物线向左平移1个单位长度后,Q为平移后抛物线上一动点,在(2)的条件下求得的点M,是否能与A,P,Q构成平行四边形?若能构成,求出Q点坐标;若不能构成,请说明理由.14如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)在直线BC的下方的抛物线上存在一点M,使得△BCM的面积最大,请求出点M的坐标(3)点F是抛物线上的动点,点D是抛物线顶点坐标,作EF∥AD交x轴于点E,是否存在点F,使得以A、D、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.15如图,在平面直角坐标系中,抛物线y=12x2+bx+c(b、c为常数)的顶点坐标为32,-258,与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,点C,点D关于x轴对称,连接AD,作直线BD.(1)求b、c的值;(2)求点A、B的坐标;(3)求证:∠ADO=∠DBO;(4)点P在抛物线y=-12x2+bx+c上,点Q在直线BD上,当以点C、D、P、Q为顶点的四边形为平行四边形时,直接写出点Q的坐标.16如图,抛物线y=ax2+2ax+c与y轴负半轴交于点C,与x轴交于A,B两点,点A在点B左侧,点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是第三象限抛物线上的动点,连接AC,当△ACD的面积为3时,求出此时点D的坐标;(3)将抛物线y=ax2+2ax+c向右平移2个单位,平移后的抛物线与原抛物线相交于点M,N在原抛物线的对称轴上,H为平移后的抛物线上一点,当以A、M、H、N为顶点的四边形是平行四边形时,请直接写出点H的坐标.【类型五存在性之菱形】17如图,抛物线y=ax2+bx+c过点A-1,0.,B3,0,C0,3(1)求抛物线的解析式;(2)设点P是直线BC上方抛物线上一点,求出△PBC的最大面积及此时点P的坐标;(3)若点M是抛物线对称轴上一动点,点N为坐标平面内一点,是否存在以BC为边,点B、C、M、N为顶点的四边形是菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.18综合与探究:如图,已知抛物线y=-38x2+94x+6与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.直线BC与抛物线的对称轴交于点E.将直线BC沿射线CO方向向下平移n个单位,平移后的直线与直线AC 交于点F,与抛物线的对称轴交于点D.(1)求出点A,B,C的坐标,并直接写出直线AC,BC的解析式;(2)当△CDB是以BC为斜边的直角三角形时,求出n的值;(3)直线BC上是否存在一点P,使以点D,E,F,P为顶点的四边形是菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.19如图,直线y =mx +n m ≠0 .与抛物线y =-x 2+bx +c 交于A -1,0 ,B 2,3 两点.(1)求抛物线的解析式;(2)若点C 在抛物线上,且△ABC 的面积为3,求点C 的坐标;(3)若点P 在抛物线上,PQ ⊥OA 交直线AB 于点Q ,点M 在坐标平面内,当以B ,P ,Q ,M 为顶点的四边形是菱形时,请直接写出点M 的坐标.20如图1,在平面直角坐标系中,抛物线y=-32x2+32x+3与x轴交于点A和点B(点A在点B左侧),与y轴交于点C.(1)求直线BC的解析式;(2)点P是直线BC上方抛物线上的一动点,过点P作y轴的平行线交BC于点D,过点P作x轴的平行线交BC于点E,求PE+3PD的最大值及此时点P的坐标;(3)如图2,在(2)中PE+3PD取得最大值的条件下,将抛物线y=-32x2+32x+3沿着射线CB方向平移得到新抛物线y ,且新抛物线y 经过线段BC的中点F,新抛物线y 与y轴交于点M,点N为新抛物线y 对称轴上一点,点Q为坐标平面内一点,若以点P,Q,M,N为顶点的四边形是以PN为边的菱形,写出所有符合条件的点Q的坐标,并写出求解点Q的坐标的其中一种情况的过程.【类型六存在性之矩形】21如图①,抛物线y=ax2+x+c a≠0与x轴交于A(-2,0),B(6,0)两点,与y轴交于点C,点P是第一象限内抛物线上的一个动点,过点P作PD⊥x轴,垂足为点D,PD交直线BC于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)如图②.过点P作PF⊥CE,垂足为点F,当CF=EF时,请求出m的值;(3)如图③,连接CP,当四边形OCPD是矩形时,在抛物线的对称轴上存在点Q,使原点O关于直线CQ的对称点O 恰好落在该矩形对角线所在的直线上,请直接写出满足条件的点Q的坐标.22已知抛物线y =ax 2+bx -4a ≠0 交x 轴于点A 4,0 和点B -2,0 ,交y 轴于点C .(1)求抛物线的解析式;(2)如图,点P 是抛物线上位于直线AC 下方的动点,过点P 分别作x 轴、y 轴的平行线,交直线AC 于点D ,交x 轴于点E ,当PD +PE 取最大值时,求点P 的坐标及PD +PE 最大值.(3)在抛物线上是否存在点M ,对于平面内任意点N ,使得以A 、C 、M 、N 为顶点且AC 为一条边的四边形为矩形,若存在,请直接写出M 、N 的坐标,不存在,请说明理由.23综合与探究如图,抛物线y=ax2-3x+c a≠0与x轴交于A(4,0),C两点,交y轴于点B(0,-4),点P为y轴右侧抛物线上的一个动点.(1)求抛物线的解析式;(2)当P在AB下方时,求△ABP面积的最大值;(3)当∠ABP=15°时,△BOP的面积为;(4)点M为抛物线对称轴上的一点,点N为平面内一点,是否存点M、点N,使得以A、B、M、N为顶点的四边形是矩形?若存在,请直接写出点M的坐标;如不存在,请说明理由.24如图,直线y=43x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2-83x+c(a≠0)经过A,C两点,交x轴的正半轴于点B,连接BC.(1)求抛物线的解析式.(2)点P在抛物线上,连接PB,当∠PBC=45°时,求点P的坐标;(3)已知点M从点B出发,以每秒1个单位长度的速度沿BA运动,同时点N从点O出发,以每秒3个单位长度的速度沿OC,CA运动.当点M,N运动到某一时刻时,在坐标平面内是否存在点D,使得以A,M,N,D为顶点的四边形是矩形?若存在,请直接写出点D的坐标;若不存在,请说明理由.【类型七存在性之正方形】25如图,抛物线y=-14x2+bx+c的对称轴与x轴交于点A1,0,与y轴交于点B0,3,C为该抛物线图象上的一个动点.(1)求抛物线的解析式;(2)如图,当点C在第一象限,且∠BAC=90°,求ACAB的值;(3)点D在抛物线上(点D在点C的左侧,不与点B重合),点P在坐标平面内,问是否存在正方形ACPD?若存在,请直接写出点P的坐标;若不存在,请说明理由.26综合与探究如图,抛物线y=ax2+bx+6与x轴交于A-2,0,B4,0两点,与y轴交于点C,直线y=23x-4与x轴交于点D,与y轴交于点E.若M为第一象限内抛物线上一点,过点M且垂直于x轴的直线交DE于点N,连接MC,MD.(1)求抛物线的函数表达式及D,E两点的坐标.(2)当CM=EN时,求点M的横坐标.(3)G为平面直角坐标系内一点,是否存在点M使四边形MDEG是正方形.若存在,请直接写出点G的坐标;若不存在,请说明理由.27如图,已知直线y=-x+4与抛物线y=ax2+bx交于点A4,0两点,点P为抛物线上和B-1,5一动点,过点P作x轴的垂线,交直线AB于Q,PN⊥AB于点N.(1)求抛物线的解析式;(2)当点P在直线AB下方时,求线段PN的最大值;(3)是否存在点P使得△ABP是直角三角形,若存在,请求出点P坐标,若不存在,请说明理由;(4)坐标轴上是否存在点M,使得以点P,N,Q,M为顶点的四边形是正方形,若存在,请直接写出点M的坐标,若不存在,请说明理由28如图,抛物线y=-12x2+bx+c与x轴交于点A和点B4,0,与y轴交于点C0,4,点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.【类型八存在性之相似三角形】29如图,在平面直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A,B,与y轴交于点C,经过点x+2交抛物线于点D,点D与点A的横坐标互为相反数,P是抛物线上一动点,连接A的直线y=-12AC.(1)求抛物线的表达式;(2)若点P在第一象限内的抛物线上,当∠PBA=2∠BAD时,求直线BP的表达式;(3)点Q在y轴上,若△DQP∽△COA,请直接写出点P的坐标.30如图,已知抛物线过三点O0,0,弧AB过线段OA的中点C,若点E为弧AB,B2,23,A8,0所在圆的圆心.(1)求该抛物线的解析式.(2)求圆心点E的坐标,并判断点E是否在这条抛物线上.(3)若弧BC的中点为P,是否在x轴上存在点M,使得△APB与△AMP相似?若存在,请求出点M的坐标,若不存在说明理由.31如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.②设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,直接写出当△CEF与△COD相似时,点P的坐标;32如图,抛物线y=12x2+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A-4,0,C0,-2.(1)求抛物线和直线AC的函数解析式;(2)若点E是线段AC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,求四边形CDAF的最大面积;(3)在抛物线的对称轴上找一点P,使得以A、D、P为顶点的三角形与△OAC相似,请直接写出点P的坐标.【类型九存在性之角度问题】33如图,抛物线y=ax2+bx+2经过A-1,0为抛物线上、B4,0两点,与y轴交于点C,点D x,y 第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为4时,求点D的坐标;(3)该抛物线上是否存在点D,使得∠DCB=2∠ABC,若存在,求点D的坐标;若不存在,请说明理由.34如图,抛物线y=ax2+bx-1a≠0与x轴交于点A1,0和点B,与y轴交于点C,抛物线的对称轴交x轴于点D3,0,过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当BQPQ=57时.求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.35如图,在平面直角坐标系xoy中,顶点为M的抛物线y=ax2+bx a>0经过点A(-1,3)和x轴正半轴上的点B,AO=OB.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的度数;(3)联结AM、BM、AB,若在坐标轴上存在一点P,使∠OAP=∠ABM,求点P的坐标.36如图,在平面直角坐标系中,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A1,0两点,,B3,0与y轴交于点C,其顶点为点D,点E的坐标为0,-1,该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式.(2)一动点M从点D出发,以每秒1个单位的速度沿与y轴平行的方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?(3)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
专题:二次函数中等腰三角形存在性问题类型一、等腰三角形存在性问题以(,)A A A x y 、(,)B B B x y 为三角形的边,在x 轴上找一点P 使得△PAB 为等腰三角形(二定一动)一.找法:画圆和作垂直平分线①以A 为圆心,线段AB 为半径画圆,与x 轴交点即为1P 、2P 点;(AB=AP )②以B 为圆心,线段AB 为半径画圆,与x 轴交点即为3P 、4P 点;(AB=BP )③作线段AB 的垂直平分线,与x 轴交点即为5P 点;(AP=BP )二、算法:利用两点距离公式进行计算 公式:22()()A B A B AB x x y y =-+- ,设(,)p p P x y ,分三种情况:①AB=AP 时 2222()()()()A B A B A P A P x x y y x x y y -+-=-+-可得1P 、2P ,(特殊情况可能是一个点,例如2P 与B 重合)②AB=BP 时2222()()()()A B A B B P B P x x y y x x y y -+-=-+-可得3P 、4P ,(特殊情况可能是一个点,例如3P 与A 重合)③AP=BP 时2222()()()()A P A P B P B P x x y y x x y y -+-=-+-可得5P 、例题1、如图,已知二次函数2y x bx c =++的图像与x 轴交于点A 、B 两点,其中A 点坐标为(-3,0),与y 轴交于点C ,点D (-2,-3)在抛物线上.(1)求抛物线的表达式;(2)抛物线的对称轴上是否存在动点Q ,使得△BCQ 为等腰三角形?若存在,求出点Q 的坐标;若不存在,说明理由.1、(2021·云南九年级一模)如图所示,抛物线()240y ax bx a =++≠经过点()1,0A -,点()4,0B ,与y 轴交于点C ,连接AC ,BC .点M 是线段OB 上不与点O 、B 重合的点,过点M 作DM x ⊥轴,交抛物线于点D ,交BC 于点E .(1)求抛物线的表达式;(2)过点D 作DF BC ⊥,垂足为点F .设M 点的坐标为(),0M m ,请用含m 的代数式表示线段DF 的长,并求出当m 为何值时DF 有最大值,最大值是多少?(3)试探究是否存在这样的点E ,使得以A ,C ,E 为顶点的三角形是等腰三角形.若存在,请求出此时点E 的坐标;若不存在,请说明理由.2、(八中2020级初三第三次月考)如图在平面直角坐标系中,已知抛物线2(0)y ax bx c a =++≠交x 轴于A (-4,0),B (1,0),交y 轴于C (0,3)(1)求此抛物线解析式;(2)如图1,点P 为直线AC 上方抛物线上一点,过点P 作PQ ⊥x 轴于点Q ,再过点Q 作QR//AC 交y 轴于点R ,求PQ+QR 的最大值及此时点P 的坐标;(3)如图2,点E 在抛物线上,横坐标为-3,连接AE ,将线段AE 沿直线AC 平移,得到线段''A E ,连接'CE ,当△''A E C 为等腰三角形时,只写写出点'A 的坐标。
二次函数综合题——等腰三角形假设我们要解决的问题是:已知一个等腰三角形的顶角是60度,底边长为10cm,求这个等腰三角形的面积。
首先,我们要找到这个等腰三角形的高。
由于等腰三角形的两个底角相等,且和为180度,所以每个底角都是(180-60)/2=60度。
因此,这个等腰三角形可以看作是一个以底边为底,两腰边等长,且夹角为60度的三角形。
接下来,我们用二次函数来描述这个等腰三角形的两腰边的关系。
设等腰三角形的两腰边的长度分别为x和y,则根据三角恒等式,我们可以得到以下关系:x^2=y^2+(10/2)^2x=y将第一个等式代入第二个等式,得到:y^2=y^2+250=25这个等式无解,意味着我们的假设不成立,这个等腰三角形不存在。
所以,我们无法求出这个等腰三角形的面积。
但是,我们可以继续讨论二次函数和等腰三角形的关系。
假设我们要求的是一个更一般的等腰三角形,顶角为θ,底边长为a。
同样地,我们可以找到等腰三角形的高,设为h。
由于等腰三角形的两个底角相等,且和为180度,所以每个底角都是(180-θ)/2=θ/2度。
因此,这个等腰三角形可以看作是一个以底边为底,两腰边等长,且夹角为θ/2度的三角形。
同样地,我们用二次函数来描述这个等腰三角形的两腰边的关系。
设等腰三角形的两腰边的长度分别为x和y,则根据三角恒等式,我们可以得到以下关系:x^2=y^2+(a/2)^2x=y将第一个等式代入第二个等式,得到:y^2=y^2+a^2/40=a^2/4这个等式只有一个解y=0,意味着当底边长为0时,等腰三角形不存在。
所以,我们不能得到一个退化的等腰三角形(即底边长为0)的面积。
综上所述,要求一个等腰三角形的面积,我们需要确保它存在。
当顶角为60度时,底边长为10cm的等腰三角形不存在,因此我们无法求出这个等腰三角形的面积。
但是,我们可以在一般情况下求解等腰三角形的面积。
当我们已知等腰三角形的底边长a和顶角θ时,可以根据等腰三角形的性质,将底边平分找到等腰三角形的高,再利用三角形的面积公式求解。
专题02 二次函数中的存在性问题之等腰三角形【典例1】(2019•眉山)如图1,在平面直角坐标系中,抛物线y=−49x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由.【点拨】(1)抛物线的表达式为:y=−49(x+5)(x﹣1),即可求解;(2)PE=−49m2−169m+209,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG),即可求解;(3)分MN=DM、NM=DN、DN=DM,三种情况分别求解.【解答】解:(1)抛物线的表达式为:y=−49(x+5)(x﹣1)=−49x2−169x+209,则点D(﹣2,4);(2)设点P(m,−49m2−169m+209),则PE=−49m2−169m+209,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG)=2(−49m2−169m+209−4﹣2m)=−89(m+174)2+252,∵−89<0,故当m=−174时,矩形PEFG周长最大,此时,点P 的横坐标为−174; (3)∵∠DMN =∠DBA , ∠BMD +∠BDM =180°﹣∠ADB , ∠NMA +∠DMB =180°﹣∠DMN , ∴∠NMA =∠MDB , ∴△BDM ∽△AMN ,AN BM=AM BD,而AB =6,AD =BD =5, ①当MN =DM 时, ∴△BDM ≌△AMN ,即:AM =BD =5,则AN =MB =1; ②当NM =DN 时, 则∠NDM =∠NMD , ∴△AMD ∽△ADB ,∴AD 2=AB ×AM ,即:25=6×AM ,则AM =256, 而AN BM=AM BD,即AN6−256=2565,解得:AN =5536; ③当DN =DM 时,∵∠DNM >∠DAB ,而∠DAB =∠DMN , ∴∠DNM >∠DMN , ∴DN ≠DM ; 故AN =1或5536.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角形相似和全等、等腰三角形性质等知识点,其中(3),要注意分类求解,避免遗漏.【精练1】抛物线y =−29x 2+bx +c 与x 轴交于A (﹣1,0),B (5,0)两点,顶点为C ,对称轴交x 轴于点D ,点P 为抛物线对称轴CD 上的一动点(点P 不与C ,D 重合).过点C 作直线PB 的垂线交PB 于点E ,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.【点拨】(1)函数的表达式为:y=29(x+1)(x﹣5),即可求解;(2)确定PB、CE的表达式,联立求得点F(2−2m3,0),S△PCF=12×PC×DF=12(2﹣m)(2−2m3−2)=5,即可求解;(3)分当CP=CF、CP=PF、CP=PF三种情况,分别求解即可.【解答】解:(1)函数的表达式为:y=29(x+1)(x﹣5)=−29x2+89x+109;(2)抛物线的对称轴为x=2,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=−13mx+5m3,∵CE⊥PE,故直线CE表达式中的k值为3m,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=3mx+(2−6m),解得:x=2−2m 3,故点F(2−2m3,0),S △PCF =12×PC ×DF =12(|2﹣m |)(|2−2m 3−2|)=5, 解得:m =5或﹣3,故点P (2,﹣3)或(2,5); (3)由(2)确定的点F 的坐标得: CP 2=(2﹣m )2,CF 2=(2m 3)2+4,PF 2=(2m 3)2+m 2,①当CP =CF 时,即:(2﹣m )2=(2m 3)2+4,解得:m =0或365(0舍去),②当CP =PF 时,同理可得:m =−9±3√132, ③当CF =PF 时,同理可得:m =±2(舍去2), 故点P (2,365)或(2,﹣2)或(2,−9−3√132)或(2,−9+3√132) 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.【精练2】如图,直线y =﹣x +3与x 轴、y 轴分别交于B 、C 两点,抛物线y =﹣x 2+bx +c 经过点B 、C ,与x 轴另一交点为A ,顶点为D . (1)求抛物线的解析式;(2)在x 轴上找一点E ,使EC +ED 的值最小,求EC +ED 的最小值;(3)在抛物线的对称轴上是否存在一点P ,使得∠APB =∠OCB ?若存在,求出P 点坐标;若不存在,请说明理由.【点拨】(1)直线y =﹣x +3与x 轴、y 轴分别交于B 、C 两点,则点B 、C 的坐标分别为(3,0)、(0,3),将点B 、C 的坐标代入二次函数表达式,即可求解;(2)如图1,作点C 关于x 轴的对称点C ′,连接CD ′交x 轴于点E ,则此时EC +ED 为最小,即可求解;(3)分点P 在x 轴上方、点P 在x 轴下方两种情况,分别求解.【解答】解:(1)直线y =﹣x +3与x 轴、y 轴分别交于B 、C 两点,则点B 、C 的坐标分别为(3,0)、(0,3),将点B 、C 的坐标代入二次函数表达式得:{−9+3b +c =0c =3,解得:{b =2c =3,故函数的表达式为:y =﹣x 2+2x +3, 令y =0,则x =﹣1或3,故点A (﹣1,0);(2)如图1,作点C 关于x 轴的对称点C ′,连接CD ′交x 轴于点E ,则此时EC +ED 为最小,函数顶点D 坐标为(1,4),点C ′(0,﹣3), 将CD 的坐标代入一次函数表达式并解得: 直线CD 的表达式为:y =7x ﹣3, 当y =0时,x =37, 故点E (37,0),则EC +ED 的最小值为DC ′=√1+(4+3)2=5√2; (3)①当点P 在x 轴上方时,如下图2,∵OB =OC =3,则∠OCB =45°=∠APB ,过点B作BH⊥AP于点H,设PH=BH=m,则PB=P A=√2m,由勾股定理得:AB2=AH2+BH2,16=m2+(√2m﹣m)2,解得:m2=8+4√2,则PB2=2m2=16+8√2则y P=√PB2−22=2+2√2;②当点P在x轴下方时,则y P=﹣(2+2√2);故点P的坐标为(1,2+2√2)或(1,﹣2﹣2√2).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、点的对称性等,其中(3),要注意分类求解,避免遗漏.【精练3】如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=14OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.【点拨】(1)点A(2,0)、点B(﹣4,0),则函数的表达式为:y=a(x﹣2)(x+4)=a(x2+2x﹣8),即可求解;(2)PE=14OD,则PE=(14x2+12x﹣2−12x+2)=14(﹣x),求得:点D(﹣5,0),利用S△PBE=12PE×BD=12(14x2+12x﹣2−12x+2)(﹣4﹣x),即可求解;(3)BD =1=BM ,则y M =﹣BM sin ∠ABC =﹣11√5=−√55,即可求解.【解答】解:(1)点A 的坐标是(2,0),抛物线的对称轴是直线x =﹣1,则点B (﹣4,0), 则函数的表达式为:y =a (x ﹣2)(x +4)=a (x 2+2x ﹣8), 即:﹣8a =﹣2,解得:a =14, 故抛物线的表达式为:y =14x 2+12x ﹣2;(2)将点B 、C 的坐标代入一次函数表达式:y =mx +n 并解得: 直线BC 的表达式为:y =−12x ﹣2,则tan ∠ABC =12,则sin ∠ABC =15, 设点D (x ,0),则点P (x ,14x 2+12x ﹣2),点E (x ,−12x ﹣2),∵PE =14OD ,∴PE =(14x 2+12x ﹣2+12x +2)=14(﹣x ),解得:x =0或﹣5(舍去x =0), 即点D (﹣5,0) S △PBE =12×PE ×BD =12(14x 2+12x ﹣2+12x +2)(﹣4﹣x )=58; (3)由题意得:△BDM 是以BD 为腰的等腰三角形,①当BD =BM 时,过点M 作MH ⊥x 轴于点H , BD =1=BM ,则MH =y M =BM sin ∠ABC =1×5=√55, 则x M =20+2√55, 故点M (−20+2√55,√55);②如图,当BD=DM时,过点D作DH⊥BC于H,∴BM=2BH,在Rt△BHD中,BH=BD cos∠ABC=2√5 5,∴BM=4√5 5,过点M作MG⊥x轴于G,MG=BM•sin∠ABC=4 5,BG=BM•cos∠ABC=8 5,点M(−285,45);故点M坐标为(−20+2√55,√55)或(−285,45).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.【精练4】如图1,在平面直角坐标系中,抛物线y=−49x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由.【点拨】(1)抛物线的表达式为:y=−49(x+5)(x﹣1),即可求解;(2)PE=−49m2−169m+209,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG),即可求解;(3)分MN=DM、NM=DN、DN=DM,三种情况分别求解.【解答】解:(1)抛物线的表达式为:y=−49(x+5)(x﹣1)=−49x2−169x+209,则点D(﹣2,4);(2)设点P(m,−49m2−169m+209),则PE=−49m2−169m+209,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG)=2(−49m2−169m+209−4﹣2m)=−89(m+174)2+252,∵−89<0,故当m=−174时,矩形PEFG周长最大,此时,点P的横坐标为−17 4;(3)∵∠DMN=∠DBA,∠BMD+∠BDM=180°﹣∠ADB,∠NMA+∠DMB=180°﹣∠DMN,∴∠NMA=∠MDB,∴△BDM∽△AMN,ANBM =AMBD,而AB=6,AD=BD=5,①当MN=DM时,∴△BDM≌△AMN,即:AM=BD=5,则AN=MB=1;②当NM =DN 时, 则∠NDM =∠NMD , ∴△AMD ∽△ADB ,∴AD 2=AB ×AM ,即:25=6×AM ,则AM =256, 而AN BM=AM BD,即AN6−256=2565,解得:AN =5536; ③当DN =DM 时,∵∠DNM >∠DAB ,而∠DAB =∠DMN , ∴∠DNM >∠DMN , ∴DN ≠DM ; 故AN =1或5536.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角形相似和全等、等腰三角形性质等知识点,其中(3),要注意分类求解,避免遗漏.【精练5】如图1,在平面直角坐标系中,抛物线y =13x 2−13x ﹣4交x 轴于A 、B 两点,交y 轴于点C . (1)点P 为线段BC 下方抛物线上的任意一点,一动点G 从点P 出发沿适当路径以每秒1个单位长度运动到y 轴上一点M ,再沿适当路径以每秒1个单位长度运动到x 轴上的点N ,再沿x 轴以每秒√2个单位长度运动到点B .当四边形ACPB 面积最大时,求运动时间t 的最小值;(2)过点C 作AC 的垂线交x 轴于点D ,将△AOC 绕点O 旋转,旋转后点A 、C 的对应点分别为A 1、C 1,在旋转过程中直线A 1C 1与x 轴交于点Q .与线段CD 交于点I .当△DQI 是等腰三角形时,直接写出DQ 的长度.【点拨】(1)过点B 作BK ⊥BC 交y 轴于点K ,作P ′H ⊥BK 交BK 于点H 、交y 轴于点M 、交x 轴于点N ,则此时运动的时间最小,即可求解;(2)将△AOC 绕点O 旋转,相当于存在一个半径为OR 圆O ,在整个旋转过程中,AC 始终为垂直于OR 的切线,确定圆的半径OR 后,分OR 靠近x 轴、y 轴两种大情况,分别在四个象限逐次求解即可. 【解答】解:(1)y =13x 2−13x ﹣4,令x =0,则y =﹣4,令y =0,则x =3或﹣4, 故点A 、B 、C 的坐标分别为(﹣3,0)、(4,0)、(0,﹣4), 则直线BC 的表达式为:y =x ﹣4, S 四边形ACPB =S △ABC +S △PBC ,∵S △ABC 为常数,∴只要S △PBC 取得最大值,四边形ACPB 面积即为最大, 设点P (x ,13x 2−13x ﹣4),则点S (x ,x ﹣4),S △PBC =12×PS ×OB =12×4×(x ﹣4−13x 2+13x +4)=−23x 2+43x , ∵−23<0,则S △PBC 有最大值,即四边形ACPB 面积有最大值, 此时,x =2,故点P (2,−103);作点P 关于y 轴的对称点P ′(﹣2,−103), 过点B 作BK ⊥BC 交y 轴于点K ,作P ′H ⊥BK 交BK 于点H 、交y 轴于点M 、交x 轴于点N , 则此时运动的时间最小, t =P ′M +MN +√22BN =PM +MN +HN ,直线BK ⊥BC ,则直线BK 的表达式为:y =﹣x +b , 将点B 的坐标代入上式并解得: 直线BK 的表达式为:y =﹣x +4…①,同理可得直线P ′H 的表达式为:y =x −43⋯②,联立①②并解得:x =83, 故点H (83,43),则t =P ′H =√(−2−83)2+(−103−43)2=14√23, 故运动时间t 的最小值为14√23;(2)∵AC ⊥AD ,则直线CD 的表达式为:y =34x ﹣4, 故点D (163,0);如图2,过点O 作OR ⊥AC 于点R ,由面积公式得:12OR ×AC =12OA ×OC ,即:OR =3×45=125, 设∠ACD =α,则tan α=34,sin α=35, 则tan2α=247,tan 12α=12(证明见备注), 情况一:当OR 靠近y 轴时,①当OR 在一、三象限时,如图3,4:在图3中,IQ=ID,则OQ=ORsinα=12535=4,故QD=163+4=283;在图4中,IQ=ID,同理QD=163−4=43;②当OR在二、四象限时,如图5,6:在图5中,DI=DQ,则∠DQI=∠DIQ=12∠ODC=12α,OQ=ORsin12α=12√55,则DQ=12√55−163,在图6中,同理可得:DQ=12√55+163;情况二:当OR靠近x轴时,如下图:当点R在二、四象限时,如图7,见左侧图,同理可得:DQ=163+52=476;见右侧图,同理可得:DQ=163−52=176;当点R 在一、三象限时,如图8,同理可得:DQ =163−6√53(左侧图)或163+6√53(右侧图);综上,DQ 的长度为283或43或12√55−163或12√55+163或476或176或163−6√53或163+6√53.备注:已知tan α=34,求tan2α和tan 12α.如图△ABD 是以BD 为底的等腰三角形,AC ⊥BD ,过点D 作DH ⊥AB ,则设:∠DAC =∠BAC =α,tan α=34,设BC =CD =3a ,则AC =4a , 由三角形的面积公式得:12AH ×AB =12×DB ×AC ,解得:AH =6a×4a 5a=245, 则sin2α=sin ∠BAD =DHAD =2425,tan2α=247, 同理可得:tan 12α=12.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、圆的基本知识、图形的面积计算等,其中(2),要注意分类求解,通过画图确定图象的位置,避免遗漏.【精练6】如图,已知抛物线y =﹣x 2+bx +c 与x 轴交于A 、B 两点,AB =4,交y 轴于点C ,对称轴是直线x =1.(1)求抛物线的解析式及点C 的坐标;(2)连接BC ,E 是线段OC 上一点,E 关于直线x =1的对称点F 正好落在BC 上,求点F 的坐标; (3)动点M 从点O 出发,以每秒2个单位长度的速度向点B 运动,过M 作x 轴的垂线交抛物线于点N ,交线段BC 于点Q .设运动时间为t (t >0)秒. ①若△AOC 与△BMN 相似,请直接写出t 的值;②△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.【点拨】(1)将A 、B 关坐标代入y =﹣x 2+bx +c 中,即可求解;(2)确定直线BC 的解析式为y =﹣x +3,根据点E 、F 关于直线x =1对称,即可求解; (3)①△AOC 与△BMN 相似,则MB MN=OA OC或OC OA,即可求解;②分OQ =BQ 、BO =BQ 、OQ =OB 三种情况,分别求解即可.【解答】解:(1))∵点A 、B 关于直线x =1对称,AB =4, ∴A (﹣1,0),B (3,0),代入y =﹣x 2+bx +c 中,得:{−9+3b +c =0−1−b +c =0,解得{b =2c =3,∴抛物线的解析式为y =﹣x 2+2x +3, ∴C 点坐标为(0,3);(2)设直线BC 的解析式为y =mx +n , 则有:{n =33m +n =0,解得{m =−1n =3,∴直线BC 的解析式为y =﹣x +3, ∵点E 、F 关于直线x =1对称, 又E 到对称轴的距离为1, ∴EF =2,∴F 点的横坐标为2,将x =2代入y =﹣x +3中,得:y=﹣2+3=1,∴F(2,1);(3)①如下图,连接BC交MN于Q,MN=﹣4t2+4t+3,MB=3﹣2t,△AOC与△BMN相似,则MBMN =OAOC或OCOA,即:3−2t−4t+4t+3=3或13,解得:t=32或−13或1(舍去32、−13),故:t=1;②∵M(2t,0),MN⊥x轴,∴Q(2t,3﹣2t),∵△BOQ为等腰三角形,∴分三种情况讨论,第一种,当OQ=BQ时,∵QM⊥OB∴OM=MB∴2t=3﹣2t∴t=3 4;第二种,当BO=BQ时,在Rt△BMQ中∵∠OBQ=45°,∴BQ=√2BM,∴BO=√2BM,即3=√2(3−2t),∴t=6−3√24;第三种,当OQ=OB时,则点Q、C重合,此时t=0 而t>0,故不符合题意综上述,当t=34秒或6−3√24秒时,△BOQ为等腰三角形.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
专题06 二次函数与等腰三角形有关问题(专项训练)1.(2022•榆阳区一模)如图,已知抛物线y=mx2+4x+n与x轴交于A、B两点,与y轴交于点C.直线y=x﹣3经过B,C两点.(1)求抛物线的函数表达式;(2)抛物线的顶点为M,在该抛物线的对称轴l上是否存在点P,使得以C,M,P为顶点的三角形是等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.2.(2022•岚山区一模)已知抛物线y=ax2+bx+8与x轴交于A(﹣3,0),B(8,0)两点,交y轴于点C,点P是抛物线上一个动点,且点P的横坐标为m.(1)求抛物线的解析式;(2)如图2,将直线BC沿y轴向下平移5个单位,交x轴于点M,交y轴于点N.过点P作x轴的垂线,交直线MN于点D,是否存在一点P,使△BMD是等腰三角形?若存在,请直接写出符合条件的m的值;若不存在,请说明理由.3.(2022•兴宁区校级模拟)如图,抛物线y=﹣x2+bx+c过点A、B,抛物线的对称轴交x 轴于点D,直线y=﹣x+3与x轴交于点B,与y轴交于点C,且.(1)求抛物线的解析式;(2)在x轴上是否存在点P,使得△PDC为等腰三角形?若存在,请求出点P的坐标,若不存在,请说明理由.4.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME 的长.5.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;6.(2021•攀枝花)如图,开口向上的抛物线与x轴交于A(x1,0)、B(x2,0)两点,与y轴交于点C,且AC⊥BC,其中x1,x2是方程x2+3x﹣4=0的两个根.(1)求点C的坐标,并求出抛物线的表达式;(2)垂直于线段BC的直线l交x轴于点D,交线段BC于点E,连接CD,求△CDE的面积的最大值及此时点D的坐标;(3)在(2)的结论下,抛物线的对称轴上是否存在点P,使得△PDE是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.7.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC 于点H,当△PFH为等腰三角形时,求线段PH的长.8.(2020•济南)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0),与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;9.(2020•桂林)如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A 和点B(点A在点B的左侧),抛物线的顶点为D,对称轴DE交x轴于点E,连接EC.(1)直接写出a的值,点A的坐标和抛物线对称轴的表达式;(2)若点M是抛物线对称轴DE上的点,当△MCE是等腰三角形时,求点M的坐标;10.(2020•枣庄)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.11.(2019•本溪)抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D 重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF为等腰三角形时,请直接写出点P的坐标.。
二次函数综合题——等腰三角形一.解答题(共30小题)1.(2014?新余模拟)如图,已知二次函数图象的顶点为(1,﹣3),并经过点C(2,0).(1)求该二次函数的解析式;(2)直线y=3x与该二次函数的图象交于点B(非原点),求点B的坐标和△AOB的面积;(3)点Q在x轴上运动,求出所有△AOQ是等腰三角形的点Q的坐标.2.(2014秋?怀宁县校级月考)如图,二次函数y=﹣x2+mx+3的图象与y轴交于点A,与x 轴的负半轴交于点B,且△AOB的面积为6.(1)求该二次函数的表达式;(2)如果点P在x轴上,且△ABP是等腰三角形,请直接写出点P的坐标.3.(2011?淮安)如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.(1)求此二次函数关系式和点B的坐标;(2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形若存在,求出点P的坐标;若不存在,请说明理由.4.(2014?曲靖模拟)如图,已知二次函数y=ax2﹣4x+c的图象与坐标轴交于点A(﹣1,0)和点C(0,﹣5).(1)求该二次函数的解析式和它与x轴的另一个交点B的坐标.(2)在上面所求二次函数的对称轴上存在一点P(2,﹣2),连接OP,找出x轴上所有点M 的坐标,使得△OPM是等腰三角形.5.(2008秋?密云县期末)已知二次函数y=ax2+bx+c的图象分别经过点(0,3)(3,0)(﹣2,﹣5),(1)求这个二次函数的解析式;(2)若这个二次函数的图象与x轴交于点C、D(C点在点D的左侧),且点A是该图象的顶点,请在这个二次函数的对称轴上确定一点B,使△ABC是等腰三角形,求出点B的坐标.6.(2008?海淀区二模)已知二次函数y=ax2+bx+c的图象分别经过点(0,3),(3,0),(﹣2,﹣5).求:(1)求这个二次函数的解析式;(2)求这个二次函数的最值;(3)若设这个二次函数图象与x轴交于点C,D(点C在点D的左侧),且点A是该图象的顶点,请在这个二次函数的对称轴上确定一点B,使△ACB是等腰三角形,求出点B的坐标.7.(2006?松江区二模)如图,已知二次函数y=x2+bx+c(c≠0)的图象经过点A(﹣2,m)(m<0),与y轴交于点B,AB∥x轴,且3AB=2OB.(1)求m的值;(2)求二次函数的解析式;(3)如果二次函数的图象与x轴交于C、D两点(点C在左恻).问线段BC上是否存在点P,使△POC为等腰三角形如果存在,求出点P的坐标;如果不存在,请说明理由.8.(2010秋?永新县校级月考)已知二次函数y=(x﹣1)(x﹣4)的图象与x轴交于A、B 两点(A在B的左边),与y轴交于点C.(1)求出A、B、C三点的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使P、A、C能组成以AC为腰的等腰三角形若存在,求出点P 的坐标;若不存在,说明理由.9.(2013?德宏州)如图,已知直线y=x与抛物线交于A、B两点.(1)求交点A、B的坐标;(2)记一次函数y=x的函数值为y1,二次函数的函数值为y2.若y1>y2,求x的取值范围;(3)在该抛物线上存在几个点,使得每个点与AB构成的三角形为等腰三角形并求出不少于3个满足条件的点P的坐标.10.(2014?曲阜市模拟)设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为等腰直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.11.(2015?赤峰)已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形若存在,求出符合条件的点P的坐标;若不存在,请说明理由.12.(2013秋?本溪期末)如图,在平面直角坐标系xOy中,二次函数y=﹣x2+bx+c的图象与x轴相交于点A(4,0),与y轴相交于点B(0,4),动点C是从点A出发,向O点运动,到达0点时停止运动,过点C作EC⊥x轴,交直线AB于点D,交抛物线于点E.(1)求二次函数的解析式;(2)连接OE交AB于F点,连接AE,在动点C的运动过程中,若△AOF的面积是△AEF面积的2倍,求点C的坐标(3)在动点C的运动过程中,△DEF能否为等腰三角形若能,请直接写出点F的坐标;若不能,请说明理由.13.(2011?临川区模拟)如图,已知二次函数y=ax2+bx+c的图象经过三点A(﹣1,0),B (3,0),C(0,﹣3),它的顶点为M,且正比例函数y=kx的图象与二次函数的图象相交于D、E两点.(1)求该二次函数的解析式和顶点M的坐标;(2)若点E的坐标是(2,﹣3),且二次函数的值小于正比例函数的值时,试根据函数图象求出符合条件的自变量x的取值范围;(3)试探究:抛物线的对称轴上是否存在点P,使△PAC为等腰三角形如果存在,请直接写出点P的坐标;如果不存在,请说明理由.14.(2006?孝感)如图,已知二次函数y=x2+bx+c的图象与x轴只有一个公共点M,与y轴的交点为A,过点A的直线y=x+c与x轴交于点N,与这个二次函数的图象交于点B.(1)求点A、B的坐标(用含b、c的式子表示);(2)当S△BMN=4S△AMN时,求二次函数的解析式;(3)在(2)的条件下,设点P为x轴上的一个动点,那么是否存在这样的点P,使得以P、A、M为顶点的三角形为等腰三角形若存在,请写出符合条件的所有点P的坐标;若不存在,请说明理由.15.(2011?东营模拟)如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形如果存在,求出点N的坐标;如果不存在,请说明理由.16.(2010?徐州)如图,已知二次函数y=的图象与y轴交于点A,与x轴交于B、C两点,其对称轴与x轴交于点D,连接AC.(1)点A的坐标为,点C的坐标为;(2)线段AC上是否存在点E,使得△EDC为等腰三角形若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)点P为x轴上方的抛物线上的一个动点,连接PA、PC,若所得△PAC的面积为S,则S 取何值时,相应的点P有且只有2个17.(2011?呼伦贝尔)如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A(),且△AOB∽△BOC.(1)求C点坐标、∠ABC的度数及二次函数y=ax2+bx+3的关系式;(2)在线段AC上是否存在点M(m,0).使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形若存在,求出m的值;若不存在,请说明理由.18.(2013?廊坊一模)如图,二次函数y=ax2+x+c的图象与x轴交于点A、B两点,且A点坐标为(﹣2,0),与y轴交于点C(0,3).(1)求出这个二次函数的解析式;(2)直接写出点B的坐标为;(3)在x轴是否存在一点P,使△ACP是等腰三角形若存在,求出满足条件的P点坐标;若不存在,请说明理由;(4)在第一象限中的抛物线上是否存在一点Q,使得四边形ABQC的面积最大若存在,请求出Q点坐标及面积的最大值;若不存在,请说明理由.19.(2012?景宁县模拟)已知二次函数y=﹣x2+4x+5图象交x轴于点A、B,交y轴于点C,点D是该函数图象上一点,且点D的横坐标为4,连BD,点P是AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN.设点P的坐标为(t,0).(1)求点B,C,D的坐标及射线AD的解析式;(2)在AB上是否存在点P,使△OCM为等腰三角形若存在,求正方形PQMN 的边长;若不存在,请说明理由;(3)设正方形PQMN与△ABD重叠部分面积为s,求s与t的函数关系式.20.(2013?徐州)如图,二次函数y=x2+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)请直接写出点D的坐标:;(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形若存在,请求出点P的坐标及此时△PED 与正方形ABCD重叠部分的面积;若不存在,请说明理由.21.(2013?鞍山一模)如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交与A,B两点,与y轴交与点C,已知点A的坐标为(﹣2,0),sin∠ABC=,点D是抛物线的顶点,直线DC交x轴于点E.(1)求抛物线的解析式及其顶点D的坐标;(2)在直线CD上是否存在一点Q,使以B,C,Q为顶点的三角形是等腰三角形若存在,请直接写出点Q的坐标;若不存在,请说明理由;(3)点P是直线y=2x﹣4上一点,过点P作直线PM垂直于直线CD,垂足为M,若∠MPO=75°,求出点P的坐标.22.(2013?菏泽)如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=﹣x+3的图象与y轴、x轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.(1)试求b,c的值,并写出该二次函数表达式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P运动到何处时,有PQ⊥AC②当P运动到何处时,四边形PDCQ的面积最小此时四边形PDCQ的面积是多少23.(2014?北塘区二模)已知二次函数y=mx2﹣5mx+1(m为常数,m>0),设该函数图象与y 轴交于点A,图象上一点B与点A关于该函数图象的对称轴对称.(1)求点A、B的坐标;(2)点O为坐标原点,点M为函数图象的对称轴上一动点,求当M运动到何处时△MAO的周长最小;(3)若该函数图象上存在点P与点A、B构成一个等腰三角形,且△PAB的面积为10,求m 的值.24.(2015?黔东南州)如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.(1)求二次函数y1的解析式及点B的坐标;(2)由图象写出满足y1<y2的自变量x的取值范围;(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形若存在,求出P 的坐标;若不存在,说明理由.25.(2015?曲靖一模)如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(﹣1,0).(1)求B、C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD 是以CD为腰的等腰三角形如果存在,直接写出P点的坐标;如果不存在,请说明理由;(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大求出四边形CDBF的最大面积及此时E点的坐标.26.(2014?怀集县二模)如图,△ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=﹣x+3的图象与y轴、x轴的交点,点B在二次函数y=x2+bx+c的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.(1)试求点B、D的坐标,并求出该二次函数的解析式;(2)P、Q分别是线段AD、CA上的动点,点P从A开始向D运动,同时点Q从C开始向A 运动,它们运动的速度都是每秒1个单位,求:①当P运动到何处时,△APQ是直角三角形②当P运动到何处时,四边形PDCQ的面积最小此时四边形PDCQ的面积是多少27.(2015?铜仁市)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形若存在.请求出点P的坐标);(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.28.(2015?丹东)如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN 面积最大时,求此时点N的坐标.29.(2013?无锡)如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE 于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.30.(2014?遵义)如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC 边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q 为顶点的三角形为等腰三角形若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.二次函数综合题——等腰三角形参考答案一.解答题(共30小题)1.; 2.; 3.; 4.; 5.; 6.;7.; 8.; 9.; 10.;11.;12.;13.;14.;15.;16.(0,4);(8,0);17.;18.(6,0);19.;20.(-3,4);21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;。