辽宁师大附中2016届高三上学期10月月考试题 数学(文)
- 格式:doc
- 大小:237.00 KB
- 文档页数:4
2015—2016学年度上学期高三期中考试数学试题(文科)(满分:150分考试时间:120分钟)命题:杨悦一.选择题:(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是最符合题目要求的.)1、对任意的实数,直线与圆的位置关系一定是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心2、已知直线m、l和平面α、β,则α⊥β的充分条件是( )A.m⊥l,m //α,l//βB.m⊥l,α∩β=m,lαC.m // l,m⊥α,l⊥βD.m // l,l⊥β,mα3、设是等差数列的前项和,若=,则=()A. B. C. D.4.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是()A.B.C.D.5、已知直线的斜率不存在,则的值是()A.B.或C.D.6. 已知双曲线的一条渐近线的斜率为,且右焦点与抛物线的焦点重合,则该双曲线的方程为()A.B.C.D.7.ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A.B.C.D.8. 设、是两条不同的直线,、是两个不同的平面,则下列命题正确的是( )A. 若,,则B. 若,,,则C. 若,,,则D. 若,,,则9. 等比数列的前n项和为,已知,, 则().A.38 B.20 C.10 D.910.为直线上的一动点,过作圆的两条切线,切点分别为,则四边形的面积的最小值是 ( )A.B.C.D.11.在数列中,已知,且,则的值为()A.2477 B.2427 C.2427.5 D.2477.512.双曲线的左、右焦点分别为为双曲线右支上一点,与圆切于点,且为的中点,则该双曲线的离心率为( )A. B.C.D.二.填空题:(本题共4小题,每小题5分,共20分.)13.若三棱锥的三视图如图,则其表面积为 .14.是圆上固定的一点,在圆上其他位置任取一点,连接,它是一条弦,它的长度小于或等于半径长度的概率是_______.15. 过圆外一点作圆的两条切线,切点为,则的外接圆的方程是_________.16. 在等差数列中,公差,前项和为,若取得最大值,则 .三.解答题:(本题共6道大题,共70分.)17.(本题满分10分) 如图,四棱锥 中,,,,,.(Ⅰ) 求证:;(Ⅱ) 求点到平面的距离.18.(本小题满分12分) 袋内装有6个球,这些球依次被编号为1、2、3、4、5、6,设编号为的球重 (单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(Ⅰ) 从袋子中任意取出一个球,求其重量大于其编号的概率;(Ⅱ) 如果不放回地任意取出2个球,求它们重量相等的概率.19. (本小题满分12分)各项均为正数的数列{}的前项和为,且点在函数的图象上,(Ⅰ) 求数列{}的通项公式;(Ⅱ) 记求证:20.已知过抛物线的焦点,斜率为的直线交抛物线于()两点,且.(Ⅰ)求该抛物线的方程;(Ⅱ)为坐标原点,为抛物线上一点,若,求的值.21.(本小题满分12分)如图甲,在平面四边形ABCD 中,已知:, ,现将四边形ABCD 沿BD 折起,使平面ABD 平面BDC (如图 乙),设点E 、F 分别为棱D CP B AAC、AD的中点.(Ⅰ)求证:DC平面ABC;(Ⅱ)设,求三棱锥A-BFE的体积.22.(本小题满分12分)已知椭圆.过点作圆的切线交椭圆于两点.(I)求椭圆的焦点坐标和离心率;(II)将表示为的函数,并求的最大值.2015—2016学年度上学期高三期中考试数学试题(文科)(答案)一.选择题:CDAAC DCBCA CB二.填空题:13.14.15. 16. 7或8三.解答题:17. 17.【解】(Ⅰ) 因为,所以,又,,所以,因为,所以.(Ⅱ)设点到平面的距离为,因为,,所以,为直角三角形.又因为,所以.因为,所以三棱锥的高为..又由(Ⅰ),则为直角三角形.由及,则,.因为,则,即,.所以点到平面的距离为.18.答案:(1);(2)19.F EBA.20. 【解】(Ⅰ) 抛物线的焦点为,所以直线的方程为,由消去得.所以,由抛物线定义得,即,所以.所以抛物线方程为.(Ⅱ)由,方程化为.解得,.所以,.则,因为为抛物线上一点,所以,整理得,所以.21.(Ⅰ)证明:在图甲中∵且∴,即在图乙中,∵平面ABD 平面BDC , 且平面ABD 平面BDC =BD ∴AB ⊥底面BDC ,∴AB ⊥CD .又,∴DC⊥BC,且∴DC平面ABC.(Ⅱ)解:∵E、F分别为AC、AD的中点∴EF//CD,又由(Ⅰ)知,DC平面ABC,∴EF⊥平面ABC,∴在图甲中,∵, ∴,由得,∴∴∴.22.解:(Ⅰ)由已知得,所以.所以椭圆的焦点坐标为.离心率为.(Ⅱ)由题意知,.当时,切线的方程,点的坐标分别为,此时.当时,同理可得.当时,设切线的方程为.由得.设两点的坐标分别为,则,.又由与圆相切得,即.所以.由于当时,所以.,.因为.且当时,,所以的最大值为..。
辽宁师大附中2016届高三上学期10月月考试卷化学Word版含答案.pdf辽师大附中2015-2016学年度模块考试高三化学试题第Ⅰ卷(选择题共50分)可能用到的相对原子质量:N:14 Na:23 Al:27 S:32 Cl:35.5 K:39 Fe:56 Cu:64一、选择题:(本题共20小题,1~10每小题2分,11~20每小题3分,共50分。
每小题只有一项是最符合题目要求)1、为建设“蓝天常在、青山常在、绿水常在”的美丽中国,2015年4月16日国务院颁布了《水污染防治行动计划》。
下列做法不利于该目标实现的是()A、推广使用无磷洗涤剂B、用O3替代Cl2作饮用水消毒剂C、用工业污水直接灌溉农田D、含Cr3+的废水用适量石灰处理后排放2、从化学看生活,你认为下列说法不合理的是()A、塑料制品长期不使用也会老化B、食醋和料酒混合即可产生大量有香味的乙酸乙酯C、“84消毒液”可用于消毒、漂白,说明其具有强氧化性D、纯碱是Na2C03,小苏打是NaHC03,其水溶液均呈碱性3、下列工业生产的主要反应中,涉及置换反应的是()A、生产粗硅B、海水提镁.C、电解冶铝D、生产硫酸4、将淀粉—KI混合液装在半透膜中,浸泡在盛蒸馏水的烧杯中一段时间后,某学生取烧杯中液体滴加几滴试剂便立即报告老师说:这个半透膜袋已经破损了,老师肯定了他的做法。
这位学生所滴的试剂及观察到的现象是() A、滴两滴碘水显蓝色 B、滴淀粉试液显蓝色C、滴入氯水一淀粉试液显蓝色D、滴AgNO3,溶液出现黄色沉淀5、设NA为阿伏加德罗常数的值,下列叙述正确的是( )A常温下1 L 0.1 mol·L-1 NH4NO3溶液中的氮原子数为0.2NA B含1 mol H2SO4的浓硫酸和足量的锌完全反应,转移的电子数为2NAC标准状况下2.24 L己烷分子中含有1.9NA对共用电子D以Mg、Al为电极,NaOH溶液为电解质溶液的原电池中,导线上流过NA个电子,则正极放出H2的体积为11.2 L除去下列物质中所含的杂质,选用的试剂正确的是( )选项物质(杂质)试剂AAl2O3(SiO2)NaOH溶液BCO2(SO2)Na2CO3溶液CFeCl2溶液(FeCl3)Fe粉DNaHCO3溶液(Na2CO3)Ca(OH)2溶液火法炼铜首先要焙烧黄铜矿,其反应为:2CuFeS2+O2→Cu2S+2FeS+SO2下列说法正确的是A、每转移l2 mol电子,有02mol硫被氧化B、CuFeS2仅作还原剂,硫元素被氧化C每生成1molCu2S,有4mol硫被氧化D、SO2只是氧化产物10、下列实验结论正确的是()A、将某无色气体通入溴水中,溴水颜色褪去,该气体一定是SO2B、用铂丝蘸取少量某溶液进行焰色反应,火焰呈黄色,该溶液中一定不含K+C、向某溶液中滴加KSCN溶液不变色,滴加氯水后溶液显红色,原溶液中一定含Fe2+D、向某溶液中加入稀盐酸,产生的气体能使澄清石灰水变浑浊,该溶液一定是碳酸盐溶液11、有一块铝铁合金,将其溶解于足量盐酸中,再加入足量NaOH溶液,在空气中静置至红褐色沉淀不再增加时,将沉淀滤出再灼烧至恒重,得到残留物的质量与原合金质量相同,则合金中铝的质量分数是()A、22.2%B、30%C、75.5%D、80.6%12、下列叙述正确的是( )①向久置于空气中的NaOH溶液中加盐酸时有气体产生②浓硫酸可用于干燥H2、NO2等气体,但不能干燥NH3、SO2等气体③CO2和Na2O2反应生成Na2CO3和O2,SO2和Na2O2反应生成Na2SO3和O2 ④足量的硫单质与64 g铜反应,有2 mol电子发生转移⑤蔗糖炭化的演示实验中,浓硫酸既体现了强氧化性又体现了脱水性⑥氢氧化铁胶体与氯化铁溶液分别蒸干灼烧得相同的物质A.①④⑤ B.①⑤⑥C.②③④ D.④⑤⑥下列实验操作、现象和结论均正确的是()选项实验操作现象结论A分别加热Na2CO3和NaHCO3固体试管内壁都有水珠两种物质均受热分解B向稀的苯酚溶液中滴加溴水生成白色沉淀产物三溴苯酚不溶于水C向含I-的无色溶液中滴加少量新制氯水,再滴加淀粉溶液加入淀粉后溶液变成蓝色氧化性:Cl2>I2D 向FeSO4溶液中先滴入KSCN溶液再滴加H2O2溶液加入H2O2后溶液变成血红色Fe2+既有氧化性又有还原性下列表示对应化学反应的离子方程式正确的是A、MnO2 与浓盐酸反应制Cl2MnO2+4HClMn2++2Cl-+Cl2+2H2O B、明矾溶于水产生Al(OH)3 胶体Al3++3H2O===Al(OH)3+3H+CNa2O2 溶于水产生O2Na2O2+H2O===2Na++2OH-+O2D、Ca(HCO3)2溶液与少量NaOH溶液反应HCO3-+Ca2++OH-===CaCO3+H2O15、甲、乙、丙、丁四种物质中,甲、乙、丙均含有相同的某种元素,它们之间具有如下转化关系。
辽师大附中2015—2016学年上学期期中考试高三(理)数学试题考试时间:120分钟 满分150分注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B 铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题纸的相应位置。
第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选择一个符合题目要求的选项. 1、已知集合⎭⎬⎫⎩⎨⎧<=13x x M,{}22--==x x y y N ,则()=M C N R( )A.[]2,0B.[),2+∞C.[]3,1D.[]3,2 2、“1=a ”是“函数ax ax y 22sin cos -=的最小正周期为π”的( )条件A.充分不必要B.必要不充分C.充分且必要D.既不充分也不必要3、在ABC ∆中,内角C B A ,,所对的边长分别为c b a ,,,且满足b A Bc C B a 21cos sin cos sin =+,则=∠B ( ) A. 6π或65π B.3π C. 6π D.65π 4、等比数列{}n a 中,4,281==a a ,函数()()()()821a x a x a x x x f ---= ,则()=0'f ( )A. 62B.92C.152D.122 5、定积分()dx x x ⎰-12的值为( )A. 4π B.2π C.π D.π2 6、设D 为ABC ∆所在平面内一点,CD BC 3=,则( )A. AD +=B. AD -=C. AD +=D. AD -=7、 在等差数列{}n a 中,若1201210864=++++a a a a a ,则12102a a -的值为( )A. 20B.22C.24D.28 8、已知函数()x f y =对任意的⎪⎭⎫⎝⎛-∈2,2ππx 满足()()0sin cos '>+x x f x x f ,则下列不等式不成立的是( )A.⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛432ππf f B.⎪⎭⎫⎝⎛-<⎪⎭⎫ ⎝⎛-432ππf f C.()⎪⎭⎫ ⎝⎛<420πf f D.()⎪⎭⎫ ⎝⎛<320πf f 9、若()x m x x f ln 212+-=在()+∞,1是减函数,则m 的取值范围是( )A.[)+∞,1B.()+∞,1C.(]1,∞-D.()1,∞- 10、设函数()42-+=x e x f x ,()52ln 2-+=x x x g ,若实数a ,b 分别是()x f ,()x g 的零点,则( ) A.()()a gb f <<0 B.()()b f a g <<0 C.()()b f a g <<0D.()()0<<a g b f11、定义域是R 的函数()x f 满足()()x f x f 22=+,当(]2,0∈x 时,()(](]⎩⎨⎧∈-∈-=2,1,log 1,0,22x x x x x x f ,若(]2,4--∈x 时,()t t x f 214-≤有解,则实数t 的取值范围是( )A.[)()1,00,2 -B.[)[)+∞-,10,2C.[]1,2-D.(](]1,02, -∞-12、已知函数()()ϕω+=x A x f sin (其中ϕω,,A 均为正数)的最小正周期为π,当32π=x 时,函数取得最小值,则下列结论正确的是( )A.()()()022f f f <-<B.()()()220-<<f f fC. ()()()202f f f <<-D. ()()()202-<<f f f第Ⅱ卷( 共90分)二、填空题:本大题共4小题,每小题5分,共20分.将正确答案填在相应位置上。
辽师大附中2015-2016学年上学期第一次模块考试高一数学试题一,选择题(每题5分)1.设集合{}{}|10,|20A x x B x x =+>=-<,则图中阴影部分表示的集合为 ( )A .{}|1x x >-B .{}|2x x ≥C .{}|21x x x ><-或D .{}|12x x -<<2.若a 、b 为实数,集合M={,1},N={a ,0},f :x→x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a+b 为 ( )A . 0B . 1C .﹣1D .±13.在R 上定义运算⊗:)1(y x y x -=⊗,若不等式0)()(>-⊗-b x a x 的解集是)3,2(,则ba +的值为 ( )A .1B .2C .4D .84.己知,则m 等于 ( )A .BC .D .5.如果偶函数f (x )在[),0+∞上是增函数且最小值是2,那么f (x )在)0,(-∞上是 ( )A .减函数且最小值是2B .减函数且最大值是2C .增函数且最小值是2D .增函数且最大值是26.已知函数y=f (x+1)定义域是[﹣2,3],则y=f (2x ﹣1)的定义域( )A . [﹣3,7]B . [﹣1,4]C . [﹣5,5]D .7.已知f (x )是定义在R 上的奇函数,当x≥0时,f (x )=x 2+2x ,若f (2﹣a 2)>f (a ),则实数a 的取值范围是 ( )A.(﹣∞,﹣1)∪(2,+∞) B.(﹣2,1)C.(﹣1,2) D.(﹣∞,﹣2)∪(1,+∞)8.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞) B.(﹣∞,﹣1)∪(0,1)C.(﹣1,0)∪(0,1) D.(﹣∞,﹣1)∪(1,+∞)二,填空题(每题5分)9.集合A={x|(a﹣1)x2+3x﹣2=0}有且仅有两个子集,则a的取值为.10.已知f(x)=ax5+bx3+cx+1(a,b,c都不为零),若f(3)=11,则f(﹣3)= .11.若函数f(x)=(k﹣2)x2+(k﹣1)x+3是偶函数,则f(x)的递减区间是.12.已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+|x|﹣1,那么x<0时,f(x)= .三.解答题13.(10分)已知集合A={x|x2+ax﹣12=0},B={x|x2+bx+c=0},且A≠B,A∩B={﹣3},A∪B={﹣3,1,4},求实数a,b,c的值.14.(15分)已知函数f(x)=|x﹣1|+|x+1|(x∈R)(1)证明:函数f(x)是偶函数;(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图象,并写出函数的值域;(3)在同一坐标系中画出直线y=x+2,观察图象写出不等式f(x)>x+2的解集.R上的函数f(x)同时满足下列三个条件:15. (15分)已知定义在+R都有f(xy)=f(x)+f(y);③x>1时,f(x)<0.①f(3)=﹣1;②对任意x、y∈+(1)求f(9)、的值;R上为减函数;(2)证明:函数f(x)在+(3)解关于x的不等式f(6x)<f(x﹣1)﹣2.辽师大附中2015-2016学年上学期第一次模块考试(答案)1---8BBCAADBC9. a=1或﹣﹣910.11. [0,+∞)12. ﹣x2+x+113.a=-1 b=2 c=-314.解答:(1)f(﹣x)=|﹣x﹣1|+|﹣x+1|=|x+1|+|x﹣1|=f(x)∴f(x)是偶函数(2)原函数式可化为:;其图象如图所示,由函数图象知,函数的值域为[2,+∞)(3)由函数图象知,当x=0或2时,f(x)=x+2.结合图象可得,不等式的解集为{x|x<0或x>2}…15.解答:(1)解:令x=y=3得f(9)=f(3×3)=f(3)+f(3)=﹣2 令x=y=得(2)证明:设0<x1<x2,x1,x2∈R+∴f(x1)>f(x2)∴f(x)在R+上为减函数.(3)不等式等价于,解得1<x<3.。
辽宁师大附中2015届高三上学期10月月考数学试卷(理科)一、选择题:本题共10小题,每小题5分,共50分.1.(5分)若a、b为实数,则“ab<1”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分条件D.既不充分也不必要条件2.(5分)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.x3>y3B.sinx>sinyC.ln(x2+1)>ln(y2+1)D.>3.(5分)下列四个图中,函数y=的图象可能是()A.B. C.D.4.(5分)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增.若实数a 满足f(log2a)+f(a)≤2f(1),则a的最小值是()A.B.1 C.D.25.(5分)已知向量、,其中||=,||=2,且(﹣)⊥,则向量和的夹角是()A.B.C.D.6.(5分)把函数y=sin3x的图象适当变化就可以得到y=(sin3x﹣cos3x)的图象,这个变化可以是()A.沿x轴方向向右平移B.沿x轴方向向左平移C.沿x轴方向向右平移D.沿x轴方向向左平移7.(5分)已知等差数列{a n}的前n项和为S n,又知(xlnx)′=lnx+1,且S10=lnxdx,S20=17,则S30为()A.33 B.46 C.48 D.508.(5分)已知,则的值是()A.B.C.D.9.(5分)已知函数f(x)=lnx+tanα(α∈(0,))的导函数为f′(x),若使得f′(x0)=f(x0)立的x0<1,则实数α的取值范围为()A.(,)B.(0,)C.(,)D.(0,)10.(5分)已知f(x)=()x﹣log2x,实数a、b、c满足f(a)f(b)f(c)<0,(0<a<b<c)若实数x0是方程f(x)=0的一个解,那么下列不等式中,不可能成立的是()A.x0<a B.x0>b C.x0<c D.x0>c二、填空题:本大题共4小题,每小题5分,共20分.将正确答案填在相应位置上.11.(5分)函数f(x)的定义域为R,f(﹣1)=1,对任意x∈R,f'(x)>3,则f(x)>3x+4的解集为.12.(5分)已知f(x)=tanx+cos(x+m)为奇函数,且m满足不等式≤0,则实数m的值为.13.(5分)已知x>0,y>0,且,若x+2y>m2+2m恒成立,则实数m的取值范围是.14.(5分)已知点O是△ABC的外接圆圆心,且AB=3,AC=4.若存在非零实数x、y,使得=x+y,且x+2y=1,则cos∠BAC=.三、解答题:本大题共5小题,共50分.15.(10分)已知命题p:∀x∈[1,2],x2﹣a≥0;命题q:∃x0∈R,使得x02+(a﹣1)x0+1<0.若“p或q”为真,“p且q”为假,求实数a的取值范围.16.(10分)已知f(x)=cos2x+2sin(+x)sin(π﹣x),x∈R(Ⅰ)最小正周期及对称轴方程;(Ⅱ)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,且f(A)=﹣,a=3,求BC 边上的高的最大值.17.(10分)已知首项是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a n b n+1﹣a n+1b n+2b n+1b n=0.(1)令c n=,求数列{c n}的通项公式;(2)若b n=3n﹣1,求数列{a n}的前n项和S n.18.(10分)已知向量=(sinx,),=(cosx,﹣1).(1)当∥时,求cos2x﹣sin2x的值;(2)设函数f(x)=2()•,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=,b=2,sinB=,求 f(x)+4cos(2A+)(x∈[0,])的取值范围.19.(10分)已知函数f(x)=(x2﹣2x)•lnx+ax2+2(Ⅰ)当a=﹣1时,求f(x)在(1,f(1))处的切线方程;(Ⅱ)设函数g(x)=f(x)﹣x﹣2;(i)若函数g(x)有且仅有一个零点时,求a的值;(ii)在(i)的条件下,若e﹣2<x<e,g(x)≤m,求m的取值范围.辽宁师大附中2015届高三上学期10月月考数学试卷(理科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分.1.(5分)若a、b为实数,则“ab<1”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:常规题型.分析:令a=﹣1,b=1特殊值法代入再根据必要条件和充分条件的定义进行判断;解答:解:若a、b为实数,ab<1,令a=﹣1,b=1,ab=﹣1<1,推不出,若,可得b>0,∴0<ab<1,⇒ab<1,∴ab<1”是“必要不充分条件,故选B.点评:此题以不等式为载体,考查了必要条件和充分条件的定义及其判断,利用了特殊值法进行判断,特殊值法是2015届高考做选择题和填空题常用的方法,此题是一道基础题.2.(5分)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.x3>y3B.sinx>sinyC.ln(x2+1)>ln(y2+1)D.>考点:指数函数的图像与性质.专题:函数的性质及应用.分析:本题主要考查不等式的大小比较,利用函数的单调性的性质是解决本题的关键.解答:解:∵实数x,y满足a x<a y(0<a<1),∴x>y,A.当x>y时,x3>y3,恒成立,B.当x=π,y=时,满足x>y,但sinx>siny不成立.C.若ln(x2+1)>ln(y2+1),则等价为x2>y2成立,当x=1,y=﹣1时,满足x>y,但x2>y2不成立.D.若>,则等价为x2+1<y2+1,即x2<y2,当x=1,y=﹣1时,满足x>y,但x2<y2不成立.故选:A.点评:本题主要考查函数值的大小比较,利用不等式的性质以及函数的单调性是解决本题的关键.3.(5分)下列四个图中,函数y=的图象可能是()A.B. C.D.考点:函数的图象.专题:函数的性质及应用.分析:根据四个选择项判断函数值的符号即可选择正确选项.解答:解:当x>0时,y>0,排除A、B两项;当﹣2<x<﹣1时,y>0,排除D项.故选:C.点评:本题考查函数的性质与识图能力,属中档题,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项.4.(5分)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增.若实数a 满足f(log2a)+f(a)≤2f(1),则a的最小值是()A.B.1 C.D.2考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:根据函数奇偶性和单调性之间的关系,将不等式进行化简,即可得到结论.解答:解:∵函数f(x)是定义在R上的偶函数,∴,等价为f(log2a)+f(﹣log2a)=2f(log2a)≤2f(1),即f(log2a)≤f(1).∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增,∴f(log2a)≤f(1)等价为f(|log2a|)≤f(1).即|log2a|≤1,∴﹣1≤log2a≤1,解得≤a≤2,故a的最小值是,故选:C点评:本题主要考查对数的基本运算以及函数奇偶性和单调性的应用,综合考查函数性质的综合应用.5.(5分)已知向量、,其中||=,||=2,且(﹣)⊥,则向量和的夹角是()A.B.C.D.考点:数量积表示两个向量的夹角.专题:计算题.分析:利用向量垂直的数量积为0列出方程;利用向量的平方等于向量模的平方及向量的数量积公式将方程用模与夹角表示求出夹角.解答:解:设两个向量的夹角为θ∵∴∴即∴∵θ∈[0,π]∴故选A点评:本题考查向量垂直的充要条件、考查向量模的平方等于向量的平方、考查向量的数量积公式.6.(5分)把函数y=sin3x的图象适当变化就可以得到y=(sin3x﹣cos3x)的图象,这个变化可以是()A.沿x轴方向向右平移B.沿x轴方向向左平移C.沿x轴方向向右平移D.沿x轴方向向左平移考点:函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.专题:三角函数的图像与性质.分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.解答:解:∵函数y=(sin3x﹣cos3x)=sin(3x﹣)=sin3(x﹣),∴把函数y=sin3x的图象沿x轴方向向右平移个单位,可得y=(sin3x﹣cos3x)的图象,故选:C.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.7.(5分)已知等差数列{a n}的前n项和为S n,又知(xlnx)′=lnx+1,且S10=lnxdx,S20=17,则S30为()A.33 B.46 C.48 D.50考点:等差数列的性质;定积分的简单应用.专题:计算题.分析:先利用微积分基本定理求定积分的值,得S10=1,再利用等差数列的性质,即S10,S20﹣S10,S30﹣S20为等差数列,即可列方程得所求值解答:解:S10=lnxdx=(xlnx﹣x)=e﹣e﹣(﹣1)=1∵等差数列中,S10,S20﹣S10,S30﹣S20为等差数列,即1,17﹣1,S30﹣17为等差数列,∴32=1+S30﹣17∴S30=48故选 C点评:本题主要考查了利用微积分基本定理求定积分的方法,等差数列的定义和性质运用,属基础题8.(5分)已知,则的值是()A.B.C.D.考点:两角和与差的正弦函数.分析:先用正弦两角和公式把sin(﹣α)+sinα展开求的sin()的值,然后通过诱导公式展开则,把sin()的值代入即可.解答:解:sin(﹣α)+sinα=sin cosα﹣cos sinα+sinα=cosα+sinα+sinα=cosα+sinα=(cosα+sinα)=(sin cosα+cos sinα)=sin()=∴=sin()=∴=sin()=﹣sin()=﹣故答案选:C点评:本题主要考查正弦函数的两角和公式.注意巧妙利用特殊角.9.(5分)已知函数f(x)=lnx+tanα(α∈(0,))的导函数为f′(x),若使得f′(x0)=f(x0)立的x0<1,则实数α的取值范围为()A.(,)B.(0,)C.(,)D.(0,)考点:导数的运算.专题:导数的综合应用.分析:由于f′(x)=,f′(x0)=,f′(x0)=f(x0),可得=ln x0+tan α,即tan α=﹣ln x0,由0<x0<1,可得﹣ln x0>1,即tan α>1,即可得出.解答:解:∵f′(x)=,f′(x0)=,f′(x0)=f(x0),∴=ln x0+tan α,∴tan α=﹣ln x0,又∵0<x0<1,∴可得﹣ln x0>1,即tan α>1,∴α∈(,).故选:A.点评:本题考查了导数的运算法则、对数函数和正切函数的单调性,属于中档题.10.(5分)已知f(x)=()x﹣log2x,实数a、b、c满足f(a)f(b)f(c)<0,(0<a<b<c)若实数x0是方程f(x)=0的一个解,那么下列不等式中,不可能成立的是()A.x0<a B.x0>b C.x0<c D.x0>c考点:函数零点的判定定理.专题:计算题;压轴题;数形结合.分析:有f(a)f(b)f(c)<0可得①f(a),f(b),f(c)都为负值;②(a)>0,f (b)>0,f(c)<0,对这两种情况利用图象分别研究可得结论解答:解:因为f(x)=()x﹣log2x,在定义域上是减函数,所以0<a<b<c时,f(a)>f(b)>f(c)又因为f(a)f(b)f(c)<0,所以一种情况是f(a),f(b),f(c)都为负值,①,另一种情况是f(a)>0,f(b)>0,f(c)<0.②在同一坐标系内画函数y=()x与y=log2x的图象如下,对于①要求a,b,c都大于x0,对于②要求a,b都小于x0是,c大于x0.两种情况综合可得x0>c不可能成立故选D.点评:本题考查函数零点的判定和数形结合思想的应用.,数形结合的应用大致分两类:一是以形解数,即借助数的精确性,深刻性来讲述形的某些属性;二是以形辅数,即借助与形的直观性,形象性来揭示数之间的某种关系,用形作为探究解题途径,获得问题结果的重要工具二、填空题:本大题共4小题,每小题5分,共20分.将正确答案填在相应位置上.11.(5分)函数f(x)的定义域为R,f(﹣1)=1,对任意x∈R,f'(x)>3,则f(x)>3x+4的解集为(﹣1,+∞).考点:函数的单调性与导数的关系.专题:函数的性质及应用.分析:构造函数F(x)=f(x)﹣(3x+4),由f(﹣1)=1得F(﹣1)的值,求F(x)的导函数,根据f′(x)>3,得F(x)在R上为增函数,根据函数的单调性得F(x)大于0的解集,从而得所求不等式的解集.解答:解:设F(x)=f(x)﹣(3x+4),则F(﹣1)=f(﹣1)﹣(﹣3+4)=1﹣1=0,又对任意x∈R,f′(x)>3,∴F′(x)=f′(x)﹣3>0,∴F(x)在R上是增函数,∴F(x)>0的解集是(﹣1,+∞),即f(x)>3x+4的解集为(﹣1,+∞).故答案为:(﹣1,+∞)点评:本题考查了运用函数思想求解不等式的问题,解题的关键是构造函数,确定函数的单调性,属于中档题.12.(5分)已知f(x)=tanx+cos(x+m)为奇函数,且m满足不等式≤0,则实数m的值为±.考点:函数奇偶性的性质.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:首先解不等式≤0,得到﹣3≤m<0或1<m≤3,①再根据f(x)=tanx+cos (x+m)为奇函数,由奇函数的定义,以及应用三角恒等变换公式,求出m=k,k为整数,②,然后由①②得,m=±.解答:解:不等式≤0等价于或,解得,或,即有﹣3≤m<0或1<m≤3,①∵f(x)=tanx+cos(x+m)为奇函数,∴f(﹣x)=﹣f(x),即tan(﹣x)+cos(﹣x+m)=﹣tanx﹣cos(m+x),∴cos(﹣x+m)=﹣cos(x+m),∴cosmcosx+sinmsinx=﹣cosmcosx+sinmsinx,∴cosm=0,m=k,k为整数,②∴由①②得,m=±.故答案为:±.点评:本题主要考查函数的奇偶性及运用,注意定义的应用,同时考查分式不等式的解法,是一道基础题.13.(5分)已知x>0,y>0,且,若x+2y>m2+2m恒成立,则实数m的取值范围是﹣4<m<2.考点:函数恒成立问题.专题:计算题;压轴题.分析:先把x+2y转化为(x+2y)展开后利用基本不等式求得其最小值,然后根据x+2y>m2+2m求得m2+2m<8,进而求得m的范围.解答:解:∵,∴x+2y=(x+2y)=4++≥4+2=8∵x+2y>m2+2m恒成立,∴m2+2m<8,求得﹣4<m<2故答案为:﹣4<m<2.点评:本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决问题的能力.14.(5分)已知点O是△ABC的外接圆圆心,且AB=3,AC=4.若存在非零实数x、y,使得=x+y,且x+2y=1,则cos∠BAC=.考点:平面向量的基本定理及其意义.专题:综合题;平面向量及应用.分析:由=x+y,且x+2y=1,可得﹣=y(﹣2),利用向量的运算法则,取AC的中点D,则=2y,再利用点O是△ABC的外心,可得BD⊥AC.即可得出.解答:解:如图所示,∵=x+y,且x+2y=1,∴﹣=y(﹣2),∴=y(+),取AC的中点D,则+=2,∴=2y,又点O是△ABC的外心,∴BD⊥AC.在Rt△BAD中,cos∠BAC=.故答案为:,点评:本题考查了向量的运算法则、三角形的外心定理、直角三角形的边角关系,属于难题.三、解答题:本大题共5小题,共50分.15.(10分)已知命题p:∀x∈[1,2],x2﹣a≥0;命题q:∃x0∈R,使得x02+(a﹣1)x0+1<0.若“p或q”为真,“p且q”为假,求实数a的取值范围.考点:复合命题的真假.专题:计算题.分析:先求出命题p,q为真命题时,a的范围,据复合函数的真假得到p,q中必有一个为真,另一个为假,分两类求出a的范围.解答:解:p真,则a≤1 …(2分)q真,则△=(a﹣1)2﹣4>0即a>3或a<﹣1 …(4分)∵“p或q”为真,“p且q”为假,∴p,q中必有一个为真,另一个为假…(6分)当p真q假时,有得﹣1≤a≤1 …(8分)当p假q真时,有得a>3 …(10分)∴实数a的取值范围为﹣1≤a≤1或a>3 …(12分)点评:本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时参数的范围,属于基础题.16.(10分)已知f(x)=cos2x+2sin(+x)sin(π﹣x),x∈R(Ⅰ)最小正周期及对称轴方程;(Ⅱ)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,且f(A)=﹣,a=3,求BC 边上的高的最大值.考点:三角函数中的恒等变换应用;三角函数的周期性及其求法.专题:三角函数的图像与性质;解三角形.分析:(Ⅰ)利用二倍角公式,诱导公式和两角和公式对函数解析式进行化简,利用三角函数图象和性质求得其最小正周期T,及对称轴.(Ⅱ)利用三角形面积公式得到h和bc的关系式,进而利用余弦定理得到b和c的关系式,利用基本不等式的性质求得bc的最大值,进而求得h的最大值.解答:解:(Ⅰ)f(x)=cos2x+2sin(+x)sin(π﹣x)=cos2x﹣2cosxsinx=cos2x ﹣sin2x=2(cos2x﹣sin2x)=2cos(2x+),∴T==π,令2x+=kπ(k∈Z),即x=﹣(k∈Z),∴函数f(x)的对称轴方程为x=﹣(k∈Z),(Ⅱ)∵f(x)=2cos(2x+),∴f(A)=2cos(2A+)=﹣,即cos(2A+)=﹣,∵0<A<,∴<2A+<,∴2A+=,∴A=.设BC边上的高位h,则S△ABC=bcsinA=a•h,即bc=3h,h=,∵cosA===,∴bc+9=b2+c2,∵b2+c2≥2bc,当且仅当b=c时,等号成立.∴bc+9≥2bc,bc≤9,此时b=c,∵A=,∴b=c=a=3,等号能成立.∴此时h==3.∴h的最大值为3.点评:本题主要考查了正弦定理,余弦定理,诱导公式,三角函数恒等变换的应用.考查了基础的知识的综合运用.17.(10分)已知首项是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a n b n+1﹣a n+1b n+2b n+1b n=0.(1)令c n=,求数列{c n}的通项公式;(2)若b n=3n﹣1,求数列{a n}的前n项和S n.考点:数列递推式;数列的求和.专题:综合题;等差数列与等比数列.分析:(1)由a n b n+1﹣a n+1b n+2b n+1b n=0,c n=,可得数列{c n}是以1为首项,2为公差的等差数列,即可求数列{c n}的通项公式;(2)用错位相减法来求和.解答:解:(1)∵a n b n+1﹣a n+1b n+2b n+1b n=0,c n=,∴c n﹣c n+1+2=0,∴c n+1﹣c n=2,∵首项是1的两个数列{a n},{b n},∴数列{c n}是以1为首项,2为公差的等差数列,∴c n=2n﹣1;(2)∵b n=3n﹣1,c n=,∴a n=(2n﹣1)•3n﹣1,∴S n=1×30+3×31+…+(2n﹣1)×3n﹣1,∴3S n=1×3+3×32+…+(2n﹣1)×3n,∴﹣2S n=1+2•(31+…+3n﹣1)﹣(2n﹣1)•3n,∴S n=(n﹣1)3n+1.点评:本题为等差等比数列的综合应用,用好错位相减法是解决问题的关键,属中档题.18.(10分)已知向量=(sinx,),=(cosx,﹣1).(1)当∥时,求cos2x﹣sin2x的值;(2)设函数f(x)=2()•,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=,b=2,sinB=,求 f(x)+4cos(2A+)(x∈[0,])的取值范围.考点:解三角形;平面向量共线(平行)的坐标表示;三角函数的恒等变换及化简求值.专题:计算题.分析:(1)由可得,从而可求tanx,而(2)由正弦定理得,可求A=代入可得,结合已知x可求函数的值域解答:解:(1)∵∴∴(2分)(6分)(2)由正弦定理得,所以A=(9分)∵∴所以(12分)点评:本题主要考查了向量平行的坐标表示,利用1=sin2x+cos2x的代换,求解含有sinx,cosx的齐次式,向量的数量积的坐标表示,三角函数在闭区间上的值域的求解.19.(10分)已知函数f(x)=(x2﹣2x)•lnx+ax2+2(Ⅰ)当a=﹣1时,求f(x)在(1,f(1))处的切线方程;(Ⅱ)设函数g(x)=f(x)﹣x﹣2;(i)若函数g(x)有且仅有一个零点时,求a的值;(ii)在(i)的条件下,若e﹣2<x<e,g(x)≤m,求m的取值范围.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数研究函数的极值.专题:综合题;导数的综合应用.分析:(Ⅰ)当a=﹣1时,求导数,可得切线斜率,求出切点坐标,即可求f(x)在(1,f(1))处的切线方程;(Ⅱ)(i)令g(x)=f(x)﹣x﹣2=0,可得a=,令h(x)=,证明h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,可得h(x)max=h(1)=1,即可求a的值;(ii)若e﹣2<x<e,g(x)≤m,只需证明g(x)max≤m,即可求m的取值范围.解答:解:(Ⅰ)当a=﹣1时,f(x)=(x2﹣2x)•lnx﹣x2+2,定义域(0,+∞)∴f′(x)=(2x﹣2)•lnx+(x﹣2)﹣2x.∴f′(1)=﹣3,又f(1)=1,∴f(x)在(1,f(1))处的切线方程3x+y﹣4=0.(Ⅱ)(ⅰ)令g(x)=f(x)﹣x﹣2=0则(x2﹣2x)•lnx+ax2+2=x+2,即a=令h(x)=,则h′(x)=令t(x)=1﹣x﹣2lnx,则t′(x)=∵x>0,∴t′(x)<0,∴t(x)在(0,+∞)上是减函数,又∵t(1)=h′(1)=0,∴当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴h(x)max=h(1)=1,∴当函数g(x)有且仅有一个零点时a=1,(ⅱ)当a=1时,g(x)=(x2﹣2x)•lnx+x2﹣x,若e﹣2<x<e,g(x)≤m,只需证明g(x)max≤m,∴g′(x)=(x﹣1)(3+2lnx),令g′(x)=0得x=1或x=又∵e﹣2<x<e,∴函数g(x)在(e﹣2,)上单调递增,在(,1)上单调递减,在(1,e)上单调递增又g()=﹣e﹣3+2,g(e)=2e2﹣3e∵g()=﹣e﹣3+2<2<2e<2e(e﹣)=g(e),∴g()<g(e),∴m≥2e2﹣3e点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性与最值,考查分离参数法的运用,属于难题.。
辽宁师大附中2015届高三上学期10月模块考试数学(文)试题(解析版)【试卷综析】试卷的题型着眼于考查现阶段学生的基础知识及基本技能掌握情况。
整份试卷难易适中,没有偏、难、怪题,保护了学生的学习信心并激励学生继续学习的热情;在选题和确定测试重点上都认真贯彻了“注重基础,突出知识体系中的重点,培养能力”的命题原则,重视对学生运用所学的基础知识和技能分析问题、解决问题能力的考查。
第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选择一个符合题目要求的选项. 【题文】1、已知集合B A x xx B x x x A 则},02|{},034|{2等于( ) A .}21|{ x x B .}321|{ x x x 或C .}10|{ x xD .}310|{ x x x 或【知识点】交集及其运算.A1【答案解析】C 解析:由题意解出A ,B ,然后根据交集的定义和运算法则进行计算.【思路点拨】∵集合A={x|x 2﹣4x+3>0},∴A={x|x>3或x <1}, ∵B={x|≤0},∴B={x|0≤x<2},∴A∩B={x|0≤x<1},故选C .【题文】2、已知数列}{n a 为等差数列,且 41371 a a a ,则)tan(122a a 的值为( )A 3B 、3C 、3、3【知识点】等差数列的性质;运用诱导公式化简求值;两角和与差的正切函数.C2 C5 D2 【答案解析】B 解析:∵ 41371 a a a ,则a 7=43, ∴tan(a 2+a 12)=tan2a 7=tan83=3 B. 【思路点拨】因为 41371 a a a ,则a 7=43 ,所以tan (a 2+a 12)=tan2a 7=tan 83,由诱导公式计算可得答案.【题文】3、已知b a ,是两个非零向量,给定命题b a b a p:,命题R t q :,使得b t a,则p 是q 的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件【知识点】必要条件、充分条件与充要条件的判断;向量的几何表示.A2 F2【答案解析】C 解析:(1)若命题p 成立,∵,是两个非零向量,|•|=||||,即|||||•cos<,>|=||||,∴cos<,>=±1,<,>=00或<,>=1800∴,共线,即;∃t ∈R ,使得=t ,∴由命题p 成立能推出命题q 成立.(2)若命题p 成立,即∃t ∈R ,使得=t ,则,两个非零向量共线,∴<,>=00或<,>=1800,∴cos<,>=±1,即|||||•cos<,>|=||||, ∴|•|=||||,∴由命题q 成立能推出命题p 成立.∴p 是q 的充要条件.故选C . 【思路点拨】利用两个向量的数量积公式,由命题p 成立能推出命题q 成立,由命题q 成立能推出命题p 成立,p 是q 的充要条件. 【题文】4、函数)42sin(2)(x x f 的一个单调减区间是( )A 、 ]89,85[B 、 ]83,8[C 、 ]87,83[D 、 ]85,8[ 【知识点】复合三角函数的单调性.C3 【答案解析】C 解析:由2kπ+≤2x﹣≤2kπ+(k ∈Z )得:kπ+≤x≤kπ+,∴函数)42sin(2)(x x f 的单调递减区间为[kπ+,kπ+].当k=0时,函数)42sin(2)(x x f 的一个单调递减区间是]87,83[.故选C . 【思路点拨】由正弦函数的单调性可求得正弦函数的递减区间,继而可得答案. 【题文】5、设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69SS =( ) A 、 2 B 、73 C 、 83D 、3 【知识点】等比数列的前n 项和.D3【答案解析】B 解析:设公比为q ,则63S S ===1+q 3=3,所以q 3=2,所以69S S ===.故选B .【思路点拨】首先由等比数列前n 项和公式列方程,并解得q 3,然后再次利用等比数列前n项和公式则求得答案.【题文】6、已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( ) A 、3B 、4C 、5D 、2【知识点】等差数列的通项公式.D2 【答案解析】A 解析:根据题意得:115201552530a d a d,解得:3d ,故选A .【思路点拨】写出数列的第一、三、五、七、九项的和,写出数列的第二、四、六、八、十项的和,都用首项和公差表示,两式相减,得到结果.【题文】7、已知向量(1,2)a r ,向量(,2)b x r,且()a a b r r r ,则实数x 等于( )A 、4B 、4C 、0D 、9 【知识点】数量积判断两个平面向量的垂直关系.F3【答案解析】D 解析:由向量(1,2)a r ,向量(,2)b x r,∴a b r r =(1﹣x ,4), 又()a a b r r r,∴1×(1﹣x )+2×4=0,解得x=9.故选D .【思路点拨】由给出的向量的坐标求出a b r r的坐标,然后直接利用向量垂直的坐标表示列式求解x 的值.【题文】8、已知01a ,log 2log 3aa x ,1log 52a y ,log 21log 3a a z ,则( ) A .x y z B .z y x C .y x z D .z x y【知识点】对数值大小的比较。
辽宁省实验中学分校2016—2017学年度上学期阶段性测试数学学科(文科) 高三年级 命题人:谭健 校对人:刘敬第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,满分60分,每题四个选项中只有一项是符合题目要求的)1.如果{|6}U x N x =∈<,{1,2,3}A =,{2,4,5}B =,那么=)()(B C A C U U Y ( ) (A ){}5,4,3,1,0 (B ) {1,3,4,5} (C ){1,2,3,4,5} (D ){0} 2.在复平面内,复数21ii-+(i 是虚数单位)的共轭复数对应的点位于( ) (A ) 第四象限 (B ) 第三象限 (C )第二象限 (D ) 第一象限 3.“sin cos αα=”是“2,()4k k Z παπ=+∈”的( )(A )充分不必要条件 (B ) 必要不充分条件 (C ) 充分必要条件 (D )既不充分也不必要4.已知向量=a b ,则a 与b 夹角的大小为( ) (A )30o(B )ο45 (C )ο60 (D )ο905.下列函数中,在区间(1,1)- 上为减函数的是( )(A ). xy -=11 (B )x y cos = (C )()1ln +=x y (D )xy -=2 6.命题“0x ∀>,01xx >-”的否定是( )(A )0,01xx x ∃<≤- (B )0,01x x ∃>≤≤(C )0,01xx x ∀>≤- (D )0,01x x ∀<≤≤7.已知等差数列{}n a 前9项的和为27,10=8a ,则100=a ( ) (A )100 (B )99 (C )98 (D )97 8.若3tan 4α= ,则2cos 2sin 2αα+= ( ) (A)6425 (B) 4825 (C) 1 (D)16259.在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为( )(A )6(B )3(C )7(D )810.已知函数)(x f 的定义域为R ,当0<x 时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=-,则=)6(f ( ) (A )−2(B )−1(C )0(D )211.已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则⋅的值为( ) (A )85-(B )81 (C )41 (D )81112.已知函数2(43)3,0()(01)log (1)1,0a x a x a x f x a a x x ⎧+-+<⎪=>≠⎨++≥⎪⎩且在R 上单调递减,且关于x 的方程|()|23xf x =-恰有两个不相等的实数解,则a 的取值范围是( ) (A )(0,23] (B )[23,34] (C )[13,23] (D )[13,23)第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分。
辽宁师大附中2015届高三上学期10月模块考试数学(理)试题(解析版)【试卷综析】本次试卷考查的范围是三角函数和数列。
试卷的题型着眼于考查现阶段学生的基础知识及基本技能掌握情况。
整份试卷难易适中,没有偏、难、怪题,保护了学生的学习信心并激励学生继续学习的热情;在选题和确定测试重点上都认真贯彻了“注重基础,突出知识体系中的重点,培养能力”的命题原则,重视对学生运用所学的基础知识和技能分析问题、解决问题能力的考查。
第Ⅰ卷 选择题(共50分)一、选择题:本题共10小题,每小题5分,共50分。
1.若a 、b 为实数,则“1ab <”是“10a b<<”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 【知识点】必要条件、充分条件与充要条件的判断.L4【答案解析】B 解析:若a 、b 为实数,1ab <,令a=﹣1,b=1,ab=﹣1<1,推不出10a b <<,若10a b<<,可得b >0,∴0<1ab <,⇒1ab <, ∴1ab <”是“10a b<<必要不充分条件,故选B .【思路点拨】令a=﹣1,b=1特殊值法代入再根据必要条件和充分条件的定义进行判断. 【题文】2.已知实数,x y 满足(01)x ya a a <<<,则下列关系式恒成立的是( ) A .33x y > B. sin sin x y > C.22ln(1)ln(1)x y +>+D.221111x y >++ 【知识点】指数函数的图像与性质.L4【答案解析】A 解析:∵实数,x y 满足(01)x ya a a <<<,∴x>y , A .当x >y 时,33x y >,恒成立, B .当x=π,y=时,满足x >y ,但sin sin x y >不成立.C .若22ln(1)ln(1)x y +>+,则等价为x 2>y 2成立,当x=1,y=﹣1时,满足x >y ,但x 2>y 2不成立.D .若221111x y >++,则等价为x 2+1<y 2+1,即x 2<y 2,当x=1,y=﹣1时,满足x >y ,但x 2<y 2不成立.故选:A .【思路点拨】本题主要考查不等式的大小比较,利用函数的单调性的性质是解决本题的关键. 【题文】3.下列四个图中,函数10ln 11x y x +=+的图象可能是( )【知识点】函数的图象.L4【答案解析】C 解析:当x >0时,y <0,排除A 、B 两项;当﹣2<x <﹣1时,y >0,排除D 项.故选:C .【思路点拨】根据四个选择项判断函数值的符号即可选择正确选项.【题文】4.已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的最小值是( )A .32B .1C .12 D .2【知识点】奇偶性与单调性的综合.L4【答案解析】C 解析:∵函数f (x )是定义在R 上的偶函数,∴,等价为f (log 2a )+f (﹣log 2a )=2f (log 2a )≤2f(1),即f (log 2a )≤f(1). ∵函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)单调递增, ∴f(log 2a )≤f(1)等价为f (|log 2a|)≤f(1).即|log 2a|≤1, ∴﹣1≤log 2a≤1,解得,故a 的最小值是,故选:C【思路点拨】根据函数奇偶性和单调性之间的关系,将不等式进行化简,即可得到结论. 【题文】5.已知向量b a 、,其中2=a ,2=b ,且a b)a ⊥-(,则向量a 和b 的夹角是 ( )A .4π B .2π C .43πD .π【知识点】数量积表示两个向量的夹角.L4 【答案解析】A 解析:设两个向量的夹角为θ∵a b)a ⊥-(,∴,∴,即∴,∵θ∈[0,π],∴,故选A【思路点拨】利用向量垂直的数量积为0列出方程;利用向量的平方等于向量模的平方及向量的数量积公式将方程用模与夹角表示求出夹角. 【题文】6.把函数sin3y x =的图象适当变化就可以得2(sin 3cos3)2y x x =-的图象,这个变化可以是( )A .沿x 轴方向向右平移4π B .沿x 轴方向向左平移4π C .沿x 轴方向向右平移12π D .沿x 轴方向向左平移12π【知识点】函数y=Asin (ωx+φ)的图象变换;三角函数中的恒等变换应用.L4【答案解析】C 解析:∵函数2(sin 3cos3)2y x x =-=sin (3x ﹣)=sin3(x ﹣),∴把函数sin3y x =的图象沿x 轴方向向右平移12π个单位,可得2(sin 3cos3)2y x x =-的图象,故选:C .【思路点拨】由条件根据函数y=Asin (ωx+φ)的图象变换规律,可得结论. 【题文】7.已知等差数列{}n a 的前n 项和为n S ,又知(ln )'ln 1x x x =+,且101ln eS xdx =⎰,2017S =,则30S 为( )A .33B .46C .48D .50【知识点】等差数列的性质;定积分的简单应用.L4 【答案解析】C 解析:101ln eS xdx =⎰=(xlnx ﹣x )=e ﹣e ﹣(﹣1)=1∵等差数列中,S 10,S 20﹣S 10,S 30﹣S 20为等差数列,即1,17﹣1,S 30﹣17为等差数列,∴32=1+S 30﹣17,∴S 30=48,故选 C 。
2025届上师大附中高三10月月考数学试卷一一、填空题(1-6每题4分,7-12每题5分,共54分)1.函数()f x =的定义域为__.【答案】(0,1].【解析】【分析】由函数有意义需要的条件,求解函数定义域【详解】函数的意义,有0110x x≠⎧⎪⎨-≥⎪⎩,解得01x <≤,即函数()f x =定义域为(0,1].故答案为:(0,1]2. 已知0a >=________.【答案】34a 【解析】【分析】根式形式化为分数指数幂形式再由指数运算化简即可.1113322224a a a a ⎛⎫⎛⎫=⋅== ⎪ ⎪⎝⎭⎝⎭.故答案为:34a .3. 已知幂函数()f x 的图象经过点13,9⎛⎫ ⎪⎝⎭,求(3)f -=_________.【答案】19【解析】【分析】设幂函数为(),R f x x αα=∈,根据题意求得2α=-,得到2()f x x -=,代入即可求解.【详解】设幂函数为(),R f x x αα=∈,因为幂函数()f x 的图象经过点13,9⎛⎫ ⎪⎝⎭,可得139α=,解得2α=-,即2()f x x -=,所以21(3)(3)9f --=-=.故答案为:19.4. 若1sin 3α=,则cos(2)πα-=____.【答案】79-【解析】【分析】原式利用诱导公式化简后,再利用二倍角的余弦函数公式变形,将sin α的值代入计算即可求出值.【详解】因为1sin 3α=,所以()2227cos(2)cos 212sin12sin 199παααα-=-=--=-+=-+=-.故答案为: 79-5. 已知集合{|3sin ,}M y y x x =∈=R ,{|||}N x x a =<,若M N ⊆,则实数a 的取值范围是___________.【答案】(3,)+∞【解析】【分析】先求出集合M ,N ,再由M N ⊆可求出实数a 的取值范围【详解】解:由题意得{}{|3sin ,}33M y y x x y y ===-≤∈≤R ,{}{|||}N x x a x a x a =<=-<<,因为M N ⊆,所以3a >,故答案为:(3,)+∞6. 设a ,b ∈R .已知关于x 的不等式250ax x b -+>的解集为21,34⎛⎫-⎪⎝⎭,则不等式250ax x b ++<的解集为__________.【答案】12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】先由不等式250ax x b -+>的解集为21,34⎛⎫- ⎪⎝⎭求出实数a ,b 的值,再求不等式250ax x b ++<的解集.【详解】∵不等式250ax x b -+>的解集为21,34⎛⎫- ⎪⎝⎭,∴方程250ax x b -+=的两根分别为123x =-,214x =,且0a <∴由韦达定理可知,1212215342134x x a b x x a ⎧+=-+=⎪⎪⎨⎛⎫⎪=-⨯= ⎪⎪⎝⎭⎩解得122a b =-⎧⎨=⎩,∴将a ,b 代入不等式250ax x b ++<得212520x x -++<,即212520x x -->()()32410x x ⇔-+>∴不等式250ax x b ++<的解集为12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.故答案为:12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.7. 已知锐角α的顶点为原点,始边为x 轴的正半轴,将α的终边绕原点逆时针旋转π6后交单位圆于点1,3P y ⎛⎫- ⎪⎝⎭,则sin α的值为________.【解析】【分析】先求得ππcos ,sin 66αα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,然后利用三角恒等变换的知识求得sin α【详解】由于1,3P y ⎛⎫- ⎪⎝⎭在单位圆上,所以222181,39y y ⎛⎫-+== ⎪⎝⎭,由于α是锐角,所以289y y =⇒=13P ⎛- ⎝,所以π1πcos ,sin 636αα⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭所以ππππππsin sin sin cos cos sin 666666αααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1132=⨯=.8. 已知()()()()1f x x x a x b =+++.若()y f x =为奇函数,则()0f '=__________.【答案】1-【解析】【分析】根据题意,求得()3f x x x =-,得到()231f x x ='-,即可求解.【详解】由函数()()()()321(1)()f x x x a x b x a b x a b ab x ab =+++=+++++++,可得()32(1)()f x x a b x a b ab x ab -=-+++-+++因为函数()f x 为R 上的奇函数,可得()()f x f x -=-,即3232(1)()(1)()x a b x a b ab x ab x a b x a b ab x ab -+++-+++=--++-++-,所以100a b ab ++=⎧⎨=⎩,解得01a b =⎧⎨=-⎩或10=-⎧⎨=⎩a b ,所以()3f x x x =-,可得()231f x x ='-,所以()01f '=-.故答案为:1-.9. 如图,某同学为测量鹳雀楼的高度MN ,在鹳雀楼的正东方向找到一座建筑物AB ,高约为37m ,在地面上点C 处(,,B C N 三点共线)测得建筑物顶部A ,鹳雀楼顶部M 的仰角分别为30o 和45 ,在A 处测得楼顶部M 的仰角为15 ,则鹳雀楼的高度约为___________m .【答案】74【解析】【分析】根据题意在Rt △ABC 中求出AC ,在△MCA 中利用正弦定理求出MC ,然后在Rt △MNC 中可求得结果.【详解】在Rt △ABC 中,274AC AB ==,在△MCA 中,105MCA ︒∠=,45MAC ︒∠=,则18030AMC MCA MAC ︒︒∠=-∠-∠=,由正弦定理得sin sin MC AC MAC AMC=∠∠,即74sin 45sin 30MC ︒︒=,解得MC =,在Rt △MNC中,74m MN ==.故答案:7410. 对于函数()f x 和()g x ,设(){}|0x f x α∈=,(){}|0x g x β∈=,若存在α,β,使得1αβ-<,则称()f x 与()g x 互为“零点相邻函数”.若函数()1e 2x f x x -=+-与()21g x x ax =-+互为“零点相邻函数”,则实数a 的取值范围是______.【答案】[2,)+∞【解析】【分析】由题知函数()f x 有唯一零点1,进而得210x ax -+=在(0,2)上有解,再根据二次函数零点分布求解即可.【详解】因为1()e 2-=+-x f x x ,所以()f x 在R 上为增函数,又0(1)e 120f =+-=,所以()f x 有唯一零点为1,令()g x 的零点为0x ,依题意知0||11x -<,即002x <<,即函数()g x 在(0,2)上有零点,令()0g x =,则210x ax -+=(0,2)上有解,即1x a x +=在(0,2)上有解,因为12x x +≥=,当且仅当1x x =,即1x =时,取等号,所以2a ≥,故答案为:[2,)+∞.为为在11. 若函数()y f x =的图像上存在不同的两点M (x 1,y 1)和N (x 2,y 2),满足1212x x y y +≥()y f x =具有性质P ,给出下列函数:①()sin f x x =;②()x f x e =;③1(),(0,)f x x x x=+∈+∞;④()||1f x x =+.其中其有性质p 的函数为________(填上所有正确序号).【答案】①②【解析】【分析】利用数量积性质得出过点O 的直线与函数图像存在至少两个不同的交点,结合函数图象可得.【详解】1212||||cos ,,|||OM ON x x y y OM ON OM ON OM ON ⋅=+=〈〉==所以1212cos ,1x x y y OM ON +≥⇔〈〉≥ ,即cos ,1OM ON 〈〉=± .即O ,M ,N 三点共线,即过点O 的直线与函数图像存在至少两个不同的交点,由图可知,①②符合.故答案为:①②12. 已知函数()ln 1f x b x =--,若关于x 的方程()0f x =在2e,e ⎡⎤⎣⎦上有解,则22a b +的最小值为______.【答案】29e 【解析】【分析】设函数()f x 在2e,e ⎡⎤⎣⎦上的零点为m ,则由ln 10b m +--=,则(),P a b 在直线:ln 10l x y m +--=上,则22a b +可看作是O 到直线l 的距离的平方,利用导数求出其最小值即可得到答案【详解】解:设函数()f x 在2e,e ⎡⎤⎣⎦上的零点为m ,则ln 10b m --=,所以点(),P a b 在直线ln 10l x y m +--=上,设O 为坐标原点,则222||a b OP +=,其最小值就是O 到直线l 的距离的平方,,2e,eméùÎêúëû,设t⎤=⎦,设()2ln1tg tt+=,则()()212lntg t tt-⎤'=≤∈⎦,所以()g t在⎤⎦上单调递减,所以()()min3eeg t g==,3e≥即2229ea b+≥,所以22a b+的最小值为29e,故答案为:29e二、选择题(13-14每题4分,15-16每题5分,共18分)13. 已知a b∈R,且0ab≠,则“22a b>”是“11a b<”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】【分析】结合指数函数单调性,根据充分必要条件的定义分别进行判断即可.【详解】22a b a b>⇔>Q,当0a b>>时,11a b<不成立,当11a b<<时,a b>不成立.所以a b>是11a b<的既不充分也不必要条件,即22a b>是11a b<的既不充分也不必要条件.故选:D.14. 设函数()sinf x x=,若对于任意5π2π,63α⎡⎤∈--⎢⎥⎣⎦,在区间[0,]m上总存在唯一确定的β,使得()()0f fαβ+=,则m的值可能是()A.π6B.π3C.2π3D.5π6【答案】B【解析】的【分析】由等量关系找α与β的关系,由α的范围求出sin β的范围,从而得出m 的值.【详解】∵()()0f f αβ+=,∴sin sin 0αβ+=,即()sin sin sin βαα=-=-,∵5π2π,63α⎡⎤∈--⎢⎥⎣⎦,即2π5π,36α⎡⎤-∈⎢⎥⎣⎦,∴()1sin sin 2βα⎡=-∈⎢⎣,又∵[]0,m β∈,∴π3m =故选:B15. 已知在ABC V 中,0P 是边AB 上一定点,满足023P B AB = ,且对于边AB 上任意一点P ,都有00PB PC P B P C ⋅≥⋅ ,则ABC V 是( )A. 钝角三角形B. 直角三角形C. 锐角三角形D. 无法确定【答案】A【解析】【分析】取BC 的中点D ,DC 的中点E ,连接0P D ,AE ,根据向量的线性运算计算向量00,P B P C 并计算00P B P C ⋅ ,同理计算PB PC ⋅ ,根据不等关系可得出对于边AB 上任意一点P 都有0PD P D ≥ ,从而确定0P D AB ⊥,从而得到结果.【详解】取BC 的中点D ,DC 的中点E ,连接0P D ,AE (如图所示),则()()0000P B P C P D DB P D DC ⋅=+⋅+ ()()22000P D DB P D DB P D DB =+⋅-=- ,同理22PB PC PD DB ⋅=- ,因为00PB PC P B P C ⋅≥⋅ ,所以22220PD DB P D DB -≥- ,即220PD P D ≥ ,所以对于边AB 上任意一点P 都有0PD P D ≥ ,因此0P D AB ⊥,又023P B AB = ,D 为BC 中点,E 为DC 中点,所以023P B BD AB BE ==,所以0//P D AE ,即90BAE ∠=︒,所以90BAC ∠>︒,即ABC V 为钝角三角形.故选:A .16. 设函数,()2,2x x P f x x x M x∈⎧⎪=⎨+∈⎪⎩其中,P M 是实数集R 的两个非空子集,又规定(){(),},(){(),}A P y y f x x P A M y y f x x M ==∈==∈∣∣,有下列命题:①对任意满足P M ⋃=R 的集合P 和M ,都有()()A P A M ⋃=R ;②对任意满足P M ⋃≠R 的集合P 和M ,都有()()A P A M ⋃≠R ,则对于两个命题真假判断正确的是( )A. ①和②都是真命题B. ①和②都是假命题C. ①是真命题,②是假命题D. ①是假命题,②是真命题【答案】B【解析】【分析】根据集合的新定义对两个命题进行分析,从而确定正确答案.【详解】对于①可举反例,(,0],(0,)P M =-∞=+∞此时()()()()(),0,2,,A P A M A P A M ∞∞⎤⎡=-=+⋃≠⎦⎣R ,故①是假命题;对于②,可举反例(,4],(4)P M =-∞=++∞,此时()(,4],()(4,),()()R A P A M A P A M =-∞=+∞= ,故②是假命题;故选:B【点睛】解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.三、解答题(共5题,满分78分)17. 已知向量3sin ,,(cos ,1)4a x b x ⎛⎫==- ⎪⎝⎭ .(1)当a b∥时,求tan 2x 的值;(2)设函数()2()f x a b b =+⋅ ,且π0,2x ⎛⎫∈ ⎪⎝⎭,求()f x 的值域.【答案】(1)247- (2)1322⎛⎤+ ⎥⎝⎦【解析】【分析】(1)根据向量平行列出等式,计算tan x 的值,二倍角公式即可计算tan 2x ;(2)计算()f x ,并用辅助角公式化简,根据角的范围可求出值域.【小问1详解】因为a b∥,所以3sin cos 4x x -=,因为cos 0x ≠,所以3tan 4x =-,所以22tan 24tan 21tan 7x x x ==--.【小问2详解】213π3()2()2sin cos 2cos sin 2cos 222242f x a b b x x x x x x ⎛⎫=+⋅=++=++=++ ⎪⎝⎭ ,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以ππ5π2,444x ⎛⎫+∈ ⎪⎝⎭,所以πsin 24x ⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,所以()f x的值域为1322⎛⎤ ⎥⎝⎦.18. 已知函数()22x x a f x =+其中a 为实常数.(1)若()07f =,解关于x 的方程()5f x =;(2)判断函数()f x 的奇偶性,并说明理由.【答案】(1)1x =或2log 3(2)答案见解析【解析】【分析】(1)因为()22x x a f x =+,()07f =,可得6a =,故6()22x x f x =+,因为()5f x =,即6252x x+=,通过换元法,即可求得答案;(2)因为函数定义域为R ,分别讨论()f x 为奇函数和()f x 为偶函数,即可求得答案.【详解】(1) ()22x xa f x =+,∴()07f =,即17a +=解得:6a =可得:6()22x xf x =+ ()5f x =∴6252x x+=令2x t =(0t >)∴65t t+=,即:2560t t -+=解得:12t =或23t =即:122x =,223x =∴11x =或22log 3x =.(2)函数定义域为R ,①当()f x 为奇函数时,根据奇函数性质()()f x f x -=-可得2222x x x x a a --⎛⎫+=-+ ⎪⎝⎭恒成立即1(1)202x x a ⎛⎫+⋅+= ⎪⎝⎭恒成立,∴1a =-.②当()f x 为偶函数时,根据偶函数性质()()f x f x -=可得2222x x x x a a --+=+恒成立即1(1)202x x a ⎛⎫-⋅-= ⎪⎝⎭恒成立,∴1a =.③当1a ≠±时,函数为非奇非偶函数.【点睛】本题主要考查了解指数方程和根据奇偶性求参数,解题关键是掌握指数方程的解法和奇偶函数的定义,考查了分析能力和计算能力,属于中档题.19. 某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y (万元)随投资收益x (万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数()f x 模型制定奖励方案,试用数学语言表述公司对奖励函数()f x 模型的基本要求;(2)现有两个奖励函数模型:①()2150x f x =+;②()ln 2f x x =-;问这两个函数模型是否符合公司要求,并说明理由?【答案】(1)答案见解析(2)()2150x f x =+不符合公司要求,()ln 2f x x =-符合公司要求,理由见解析【解析】【分析】(1)根据题意,用数学语言依次写出函数()f x 的要求即可;(2)判断两个函数模型的单调性,并判断()9f x ≤,()5x f x ≤是否成立得解.【小问1详解】设奖励函数模型为()y f x =,则公司对奖励函数模型基本要求是:当[]10,1000x ∈时,()f x 是严格增函数,()9f x ≤恒成立,()5x f x ≤恒成立.【小问2详解】①对于函数模型()2150x f x =+,易知当[]10,1000x ∈时,()f x 为增函数,且()()max 26100093f x f ==<,所以()9f x ≤恒成立,但是()101005f ->,不满足()5x f x ≤恒成立,所以()2150x f x =+不符合公司要求;②对于函数模型()ln 2f x x =-,的当[]10,1000x ∈时,()10f x x'=>,所以()f x 为增函数,且()max f x f =()100023ln109=-+<,所以()9f x ≤恒成立,令()()ln 255x x g x f x x =-=--,则()1105g x x '=-<,所以()()10ln1040g x g =-<≤,所以()5x f x ≤恒成立,所以()ln 2f x x =-符合公司要求.20. 已知函数()y f x =的定义域为区间D ,若对于给定的非零实数m ,存在0x ,使得()()00f f x x m =+,则称函数()y f x =在区间D 上具有性质()P m .(1)判断函数()2f x x =在区间[]1,1-上是否具有性质12P ⎛⎫ ⎪⎝⎭,并说明理由;(2)若函数()sin f x x =在区间()()0,0>n n 上具有性质4P π⎛⎫⎪⎝⎭,求n 的取值范围;(3)已知函数()y f x =的图像是连续不断的曲线,且()()02f f =,求证:函数()y f x =在区间[]0,2上具有性质13P ⎛⎫ ⎪⎝⎭.【答案】(1)具有性质12P ⎛⎫ ⎪⎝⎭,理由见解析 (2)5,8π⎛⎫+∞ ⎪⎝⎭(3)证明见解析【解析】【分析】(1)由题可得220012x x ⎛⎫=+ ⎪⎝⎭,则014x =-,结合条件即得;(2)由00sin sin 4x x π⎛⎫=+⎪⎝⎭,解得038x k ππ=+,()()050,N 48x k n k πππ+=+∈∈,可得58n π>,即得;(3)设()()13g x f x f x ⎛⎫=-+ ⎪⎝⎭,50,3x ⎡⎤∈⎢⎥⎣⎦,可得()()()1150200333k g g g g f f -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13k g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中有一个为0时,可得111333i i f f --⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,即证;当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13n g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中均不为0时,由于其和为0,则其中必存在正数和负数,不妨设103i g -⎛⎫> ⎪⎝⎭,103j g -⎛⎫< ⎪⎝⎭,结合条件可知,存在0x ,()()000103g x f x f x ⎛⎫=-+= ⎪⎝⎭,即证.【小问1详解】函数()2f x x =在[]1,1-上具有性质12P ⎛⎫⎪⎝⎭.若220012x x ⎛⎫=+ ⎪⎝⎭,则014x =-,因为[]11,14-∈-,且[]1111,1424-+=∈-,所以函数()2f x x =在[]1,1-上具有性质12P ⎛⎫⎪⎝⎭.【小问2详解】解法1:由题意,存在()00,x n ∈,使得00sin sin 4x x π⎛⎫=+ ⎪⎝⎭,得0024x x k ππ+=+(舍)或0024x k x πππ+=+-()k ∈Z ,则得038x k ππ=+.因为0308x k ππ=+>,所以k ∈N .又因为()030,8x k n ππ=+∈且()()050,48x k n k πππ+=+∈∈N ,所以58n π>,即所求n 的取值范围是5,8π⎛⎫+∞ ⎪⎝⎭.解法2:当02n π<≤时,函数()sin f x x =,()0,x n ∈是增函数,所以不符合题意;当2n π>时,因为直线2x π=是函数()sin f x x =的一条对称轴,而函数()sin f x x =在区间()()0,0>n n 上具有性质4P π⎛⎫ ⎪⎝⎭,所以224n ππ⎛⎫-> ⎪⎝⎭,解得58n π>,即所求n 的取值范围是5,8π⎛⎫+∞ ⎪⎝⎭.【小问3详解】设()()13g x f x f x ⎛⎫=-+ ⎪⎝⎭,50,3x ⎡⎤∈⎢⎥⎣⎦.则有()()1003g f f ⎛⎫=- ⎪⎝⎭,112333g f f ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()22133g f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,⋅⋅⋅,11333k k k g f f --⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,⋅⋅⋅,()55233g f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭{}()1,2,3,,6k ∈⋅⋅⋅.以上各式相加得()()()115020333k g g g g f f -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+=- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭即()11500333k g g g g -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(ⅰ)当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13k g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中有一个为0时,不妨设103i g -⎛⎫= ⎪⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,即110333i i i g f f --⎛⎫⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即111333i i f f --⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,所以函数()y f x =在区间[]0,2上具有性质13P ⎛⎫⎪⎝⎭.(ⅱ)当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13n g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中均不为0时,由于其和为0,则其中必存在正数和负数,不妨设103i g -⎛⎫>⎪⎝⎭,103j g -⎛⎫< ⎪⎝⎭,其中i j ≠,{}1,2,3,,6i j ∈⋅⋅⋅、.由于函数()y g x =的图像是连续不断的曲线,所以当i j <时,至少存在一个实数011,33i j x --⎛⎫∈ ⎪⎝⎭(当i j >时,至少存在一个实数011,33j i x --⎛⎫∈ ⎪⎝⎭),其中{}1,2,3,,6i j ∈⋅⋅⋅、,使得()00g x =,即()()000103g x f x f x ⎛⎫=-+= ⎪⎝⎭,即存在0x ,使得()0013f x f x ⎛⎫=+ ⎪⎝⎭,所以函数()y f x =在区间[]0,2上也具有性质13P ⎛⎫⎪⎝⎭.综上,函数()y f x =在区间[]0,2上具有性质13P ⎛⎫⎪⎝⎭.21. 已知函数()e (,1),()(,)k x f x x k k g x cx m c m =∈≥=+∈N R ,其中e 是自然对数的底数.(1)当1k =时,若曲线()y f x =在1x =处的切线恰好是直线()y g x =,求c 和m 的值;(2)当1k =,e m =-时,关于x 的方程()()f x g x =有正实数根,求c 的取值范围:(3)当2,1k m ==-时,关于x 的不等式2()e ()f x ax bx g x -≥+≥对于任意[1,)x ∈+∞恒成立(其中,a b ∈R ),当c 取得最大值时,求a 的最小值.【答案】(1)2e,e c m ==-(2)[2e,)+∞(3)1【解析】【分析】(1)利用导数求得()f x 在1x =处的切线方程,通过对比系数求得,c m .(2)由()()f x g x =分离c ,利用构造函数法,结合导数来求得c 的取值范围.(3)由恒成立的不等式得到e 1e xc x x-≤-恒成立,利用构造函数法,结合导数来求得c 的最大值,进而求得a 的最小值,并利用构造函数法,结合导数来判断a 的最小值符合题意.【小问1详解】当1k =时,()e x f x x =,所以()(1)e x f x x '=+,由(1)e,(1)2e f f '==,得曲线()y f x =在1x =处的切线方程为e 2e(1)y x -=-,即2e e y x =-,由题意,2e,e c m ==-.【小问2详解】当1k =,e m =-时,()e ,()e x f x x g x cx ==-,由题意,方程e e x x cx =-在(0,)+∞上有解,即e e x c x =+在(0,)+∞上有解,令e ()e (0)x h x x x =+>,则2e e ()x h x x'=-,由()0h x '=得1x =,()h x '在()0,∞+上严格递增,所以:当(0,1)x ∈时,()0h x '<,所以()h x 严格递减,当(1,)x ∈+∞时,()0h x '>,所以()h x 严格递增,所以min ()(1)2e h x h ==,又x →+∞时,()h x →+∞,所以()h x 的值域为[2e,)+∞,所以c 的取值范围为[2e,)+∞.【小问3详解】当2,1k m ==-时,2()e ,()1x f x x g x cx ==-,由题意,对于任意2[1,),()e ()x f x ax bx g x ∈+∞-≥+≥恒成立,即:22e e 1x x ax bx cx -≥+≥-(*)恒成立,那么,2e 1x x cx ≥-恒成立,所以e 1e xc x x-≤-恒成立,令e 1()e (1)x x x x x ϕ-=-≥,则2e 1()(1)e 0x x x x ϕ-'=++>在[1,)+∞上恒成立,所以()ϕx 在[1,)+∞上严格递增,所以min ()(1)1x ϕϕ==,从而1c ≤,即c 的最大值为1,1c =时,取1x =代入(*)式,得00a b ≥+≥,所以=-b a ,所以21ax ax x -≥-在[1,)+∞上恒成立,得1a ≥,即a 的最小值为1,当1a =时,记()222()()e e e (1)x F x f x x x x x x x =---=--+≥,则()2()2e 21x F x x x x '=+-+,设()()()()222e 21,42e 2x x x x x u u x x x x '+-+=++-=,因为()u x '在[1,)+∞上严格递增,所以()()17e 20u x u ''≥=->,所以()F x '在[1,)+∞上严格递增,所以()(1)3e 10F x F ''≥=->,所以()F x 在[1,)+∞上严格递增,所以()(1)0F x F ≥=,从而对于任意2[1,),()e ()x f x ax bx g x ∈+∞-≥+≥恒成立,综上,a 的最小值为1.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,。
辽宁师范大学附属中学2015-2016学年高二10月月考数学试题第Ⅰ卷(共48分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合M ={x|x 2-3x -4<0},N ={x|0≤x ≤5},则M ∩N=( )A .(0,4]B .[0,4)C .[-1,0)D .(-1,0]2. 命题“,11a b a b >->-若则”的否命题...是 ( ) A .,11a b a b >-≤-若则 B .若b a ≥,则11-<-b aC .,11a b a b ≤-≤-若则D .,11a b a b <-<-若则3.不等式≥-1的解集为 ( ) A.(-∞,0]∪(1,+∞) B.[0,+∞)C.[0,1)∪(1,+∞)D.(-∞,0]∪[1,+∞)4.关于x 的不等式x 2-ax+a>0(a ∈R)在R 上恒成立的充分不必要条件是 ( )A.a<0或a>4B.0<a<2C.0<a<4D.0<a<8 5. “a c +>b+d ”是“a >b 且c >d ”的 ( )A.必要不充分条件B. 充分不必要条件C.充分必要条件D.既不充分也不必要条件6.命题{}{}{}{}:21,2,3,:21,2,3,p q ∈⊆则在下述判断:①p 或q 为真;②p 或q 为假;③p 且q 为真;④p 且q 为假;⑤非p 为真;⑥非q 为假.其中正确的的个数为 ( )A .2B . 3C . 4D .57. 若函数2()()a f x x a x=+∈R ,则下列结论正确的是 ( ) A .a ∀∈R ,()f x 在(0,)+∞上是增函数B .a ∀∈R ,()f x 在(0,)+∞上是减函数C .a ∃∈R ,()f x 是偶函数D .a ∃∈R ,()f x 是奇函数8. 已知关于x 的不等式x 2-4ax +3a 2<0(a>0)的解集为(x 1,x 2),则x 1+x 2+a x 1x 2的最小值是 ( )9. x ,y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为 ( ) A. 12或-1 B .2或12C .2或1D .2或-1 10.已知等比数列{a n }的各项均为正数,公比q≠1,设P =12(721521log log a a +),Q =2log 9321a a +,则P 与Q 的大小关系是( ) A .P ≥Q B .P <Q C .P ≤Q D .P >Q11. 已知二次函数f(x)=ax 2+2x +c(x∈R)的值域为[0,+∞),则1a c ++1c a +的最小值为 ( ) A .4 B .C .8D .12. 关于x 的不等式x 2-(a+1)x+a<0的解集中,恰有3个整数,则a 的取值范围是 ( )A.(4,5)B.( -3,-2)∪(4,5)C.(4,5]D.[-3,-2)∪(4,5]第Ⅱ卷(共52分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题“01,2>++∈∀x x R x 都有”的否定是 。
高三数学(文科)一.选择题(共12小题,每题5分,共60分)1. 设全集R U =,集合}1|||{≤=x x A ,}1log |{2≤=x x B ,则B A U等于( )A .]1,0(B .]1,1[-C .]2,1(D .]2,1[)1,( --∞ 2. 设i 是虚数单位,若复数)(310R a ia ∈--是纯虚数,则a 的值为( ) A .-3 B .-1 C .1 D .3 3. 已知命题44,0:≥+>∀x x x p ;命题12),,0(:00=+∞∈∃x x q ,则下列判断正确的是( ) A .p 是假命题 B .q 是真命题C .)(q p ⌝∧是真命题D .q p ∧⌝)(是真命题4.已知错误!未找到引用源。
其结果为错误!未找到引用源。
除以源。
.右面是一个算法的程序框图,当输入的值为则输出的结果为( )A .错误!未找到引用源。
B .D .错误!未找到引用源。
5.设n m ,是不同的直线,βα,是不同的平面,下列命题中正确的是( )A .若n m n m ⊥⊥,,//βα,则βα⊥;B .若n m n m //,,//βα⊥,则βα⊥;C .若n m n m ⊥⊥,,//βα,则βα//;D .若n m n m //,,//βα⊥,则βα//; 6.若)2,0(πα∈,且103)22cos(cos 2=++απα,则=αtan ( )A .21B .31C .41D .517.设错误!未找到引用源。
满足约束条件错误!未找到引用源。
,则下列不等式恒成立的是( )A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
8.设函数错误!未找到引用源。
上既是奇函数又是减函数,则错误!未找到引用源。
的图象是( )9.若42log (34)log a b a b +=+则的最小值是( )A.B. C.D. 10.已知圆1)4()3(:22=-+-y x C 和两点A (0,m -),B )0,(m (0>m ),若圆C 上存在点P ,使得︒=∠90APB ,则m 的最大值为( ) A.7 B. 6 C. 5 D. 411.定义在R 上的函数()f x 满足:()()()1,04f x f x f '+>=,则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为( )A. ()0,+∞B. ()(),03,-∞⋃+∞C. ()(),00,-∞⋃+∞D. ()3,+∞12.设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若点P 在双曲线右支上,满足124PF PF =,则该双曲线离心率的最大值为( )A.43 B .53 C .2 D .73二.填空题(共4小题,每小题5分,共20分) 13.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据上表提供的数据,求出y 关于x 的线性回归方程为 0.70.35y x =+,那么表中t 的值为____ 14. ABC ∆的三边长分别是,3,4,,,==c b c b a D 为BC 边的中点,AD=237,则=a _______ 15. 平面向量,42=+=,且向量与向量+的夹角为3π为_____. 16. 等差数列{}n a 的前n 项和为n S ,已知12a =,且数列也为等差数列,则数列{}na的通项公式n a = 三.解答题(共6大题,共70分) 17.(本题满分12分)已知函数)0(21cos cos sin 3)(2>+-=ωωωωx x x x f 经化简后利用“五点法”画其在某一个周期内的图象时,列表并填入的部分数据如下表:(Ⅰ)请直接写出①处应填的值,并求函数()f x 在区间,23⎡⎤-⎢⎥⎣⎦上的值域; (Ⅱ)ABC ∆的内角A ,B ,C 所对的边分别为c b a ,,,已知7,4,13==+=⎪⎭⎫⎝⎛+a c bA f π,,求ABC ∆的面积.18. (本小题满分12分)某区工商局、消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传 咨询服务活动,着力提升消费者维权意识.组织方从参加 活动的群众中随机抽取120名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4 组[50,60),第5组[60,70],得到的频率分布直方图如图所示.(Ⅰ)若电视台记者要从抽取的群众中选1人进行采访,求被采访人恰好在第2组或第4组的概率;(Ⅱ)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女性的概率.19.(本小题满分12分)如图,三角形ABC 中,AC BC AB ==,ABED 是边长为1的正方形,平面ABED ⊥平面ABC ,若,G F 分别是,ECBD 的中点. (Ⅰ)求证://GF 平面ABC ;(Ⅱ)求证:AC ⊥平面EBC ; (Ⅲ)求几何体ADEBC 的体积.20. (本题满分12分)已知椭圆C :2222by a x +=1(a>b>0)m的离心率为21,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+6=0相切。
某某师大附中2015届高三上学期10月月考数学试卷(理科)一、选择题:本题共10小题,每小题5分,共50分.1.(5分)若a、b为实数,则“ab<1”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分条件D.既不充分也不必要条件2.(5分)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.x3>y3B.sinx>sinyC.ln(x2+1)>ln(y2+1)D.>3.(5分)下列四个图中,函数y=的图象可能是()A.B. C.D.4.(5分)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增.若实数a 满足f(log2a)+f(a)≤2f(1),则a的最小值是()A.B.1 C.D.25.(5分)已知向量、,其中||=,||=2,且(﹣)⊥,则向量和的夹角是()A.B.C.D.6.(5分)把函数y=sin3x的图象适当变化就可以得到y=(sin3x﹣cos3x)的图象,这个变化可以是()A.沿x轴方向向右平移B.沿x轴方向向左平移C.沿x轴方向向右平移D.沿x轴方向向左平移7.(5分)已知等差数列{a n}的前n项和为S n,又知(xlnx)′=lnx+1,且S10=lnxdx,S20=17,则S30为()A.33 B.46 C.48 D.508.(5分)已知,则的值是()A.B.C.D.9.(5分)已知函数f(x)=lnx+tanα(α∈(0,))的导函数为f′(x),若使得f′(x0)=f(x0)立的x0<1,则实数α的取值X围为()A.(,)B.(0,)C.(,)D.(0,)10.(5分)已知f(x)=()x﹣log2x,实数a、b、c满足f(a)f(b)f(c)<0,(0<a<b<c)若实数x0是方程f(x)=0的一个解,那么下列不等式中,不可能成立的是()A.x0<a B.x0>b C.x0<c D.x0>c二、填空题:本大题共4小题,每小题5分,共20分.将正确答案填在相应位置上.11.(5分)函数f(x)的定义域为R,f(﹣1)=1,对任意x∈R,f'(x)>3,则f(x)>3x+4的解集为.12.(5分)已知f(x)=tanx+cos(x+m)为奇函数,且m满足不等式≤0,则实数m的值为.13.(5分)已知x>0,y>0,且,若x+2y>m2+2m恒成立,则实数m的取值X围是.14.(5分)已知点O是△ABC的外接圆圆心,且AB=3,AC=4.若存在非零实数x、y,使得=x+y,且x+2y=1,则cos∠BAC=.三、解答题:本大题共5小题,共50分.15.(10分)已知命题p:∀x∈[1,2],x2﹣a≥0;命题q:∃x0∈R,使得x02+(a﹣1)x0+1<0.若“p或q”为真,“p且q”为假,某某数a的取值X围.16.(10分)已知f(x)=cos2x+2sin(+x)sin(π﹣x),x∈R(Ⅰ)最小正周期及对称轴方程;(Ⅱ)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,且f(A)=﹣,a=3,求BC 边上的高的最大值.17.(10分)已知首项是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a n b n+1﹣a n+1b n+2b n+1b n=0.(1)令=,求数列{}的通项公式;(2)若b n=3n﹣1,求数列{a n}的前n项和S n.18.(10分)已知向量=(sinx,),=(cosx,﹣1).(1)当∥时,求cos2x﹣sin2x的值;(2)设函数f(x)=2()•,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=,b=2,sinB=,求 f(x)+4cos(2A+)(x∈[0,])的取值X围.19.(10分)已知函数f(x)=(x2﹣2x)•lnx+ax2+2(Ⅰ)当a=﹣1时,求f(x)在(1,f(1))处的切线方程;(Ⅱ)设函数g(x)=f(x)﹣x﹣2;(i)若函数g(x)有且仅有一个零点时,求a的值;(ii)在(i)的条件下,若e﹣2<x<e,g(x)≤m,求m的取值X围.某某师大附中2015届高三上学期10月月考数学试卷(理科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分.1.(5分)若a、b为实数,则“ab<1”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:常规题型.分析:令a=﹣1,b=1特殊值法代入再根据必要条件和充分条件的定义进行判断;解答:解:若a、b为实数,ab<1,令a=﹣1,b=1,ab=﹣1<1,推不出,若,可得b>0,∴0<ab<1,⇒ab<1,∴ab<1”是“必要不充分条件,故选B.点评:此题以不等式为载体,考查了必要条件和充分条件的定义及其判断,利用了特殊值法进行判断,特殊值法是2015届高考做选择题和填空题常用的方法,此题是一道基础题.2.(5分)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.x3>y3B.sinx>sinyC.ln(x2+1)>ln(y2+1)D.>考点:指数函数的图像与性质.专题:函数的性质及应用.分析:本题主要考查不等式的大小比较,利用函数的单调性的性质是解决本题的关键.解答:解:∵实数x,y满足a x<a y(0<a<1),∴x>y,A.当x>y时,x3>y3,恒成立,B.当x=π,y=时,满足x>y,但sinx>siny不成立.C.若ln(x2+1)>ln(y2+1),则等价为x2>y2成立,当x=1,y=﹣1时,满足x>y,但x2>y2不成立.D.若>,则等价为x2+1<y2+1,即x2<y2,当x=1,y=﹣1时,满足x>y,但x2<y2不成立.故选:A.点评:本题主要考查函数值的大小比较,利用不等式的性质以及函数的单调性是解决本题的关键.3.(5分)下列四个图中,函数y=的图象可能是()A.B. C.D.考点:函数的图象.专题:函数的性质及应用.分析:根据四个选择项判断函数值的符号即可选择正确选项.解答:解:当x>0时,y>0,排除A、B两项;当﹣2<x<﹣1时,y>0,排除D项.故选:C.点评:本题考查函数的性质与识图能力,属中档题,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项.4.(5分)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增.若实数a 满足f(log2a)+f(a)≤2f(1),则a的最小值是()A.B.1 C.D.2考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:根据函数奇偶性和单调性之间的关系,将不等式进行化简,即可得到结论.解答:解:∵函数f(x)是定义在R上的偶函数,∴,等价为f(log2a)+f(﹣log2a)=2f(log2a)≤2f(1),即f(log2a)≤f(1).∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增,∴f(log2a)≤f(1)等价为f(|log2a|)≤f(1).即|log2a|≤1,∴﹣1≤log2a≤1,解得≤a≤2,故a的最小值是,故选:C点评:本题主要考查对数的基本运算以及函数奇偶性和单调性的应用,综合考查函数性质的综合应用.5.(5分)已知向量、,其中||=,||=2,且(﹣)⊥,则向量和的夹角是()A.B.C.D.考点:数量积表示两个向量的夹角.专题:计算题.分析:利用向量垂直的数量积为0列出方程;利用向量的平方等于向量模的平方及向量的数量积公式将方程用模与夹角表示求出夹角.解答:解:设两个向量的夹角为θ∵∴∴即∴∵θ∈[0,π]∴故选A点评:本题考查向量垂直的充要条件、考查向量模的平方等于向量的平方、考查向量的数量积公式.6.(5分)把函数y=sin3x的图象适当变化就可以得到y=(sin3x﹣cos3x)的图象,这个变化可以是()A.沿x轴方向向右平移B.沿x轴方向向左平移C.沿x轴方向向右平移D.沿x轴方向向左平移考点:函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.专题:三角函数的图像与性质.分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.解答:解:∵函数y=(sin3x﹣cos3x)=sin(3x﹣)=sin3(x﹣),∴把函数y=sin3x的图象沿x轴方向向右平移个单位,可得y=(sin3x﹣cos3x)的图象,故选:C.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.7.(5分)已知等差数列{a n}的前n项和为S n,又知(xlnx)′=lnx+1,且S10=lnxdx,S20=17,则S30为()A.33 B.46 C.48 D.50考点:等差数列的性质;定积分的简单应用.专题:计算题.分析:先利用微积分基本定理求定积分的值,得S10=1,再利用等差数列的性质,即S10,S20﹣S10,S30﹣S20为等差数列,即可列方程得所求值解答:解:S10=lnxdx=(xlnx﹣x)=e﹣e﹣(﹣1)=1∵等差数列中,S10,S20﹣S10,S30﹣S20为等差数列,即1,17﹣1,S30﹣17为等差数列,∴32=1+S30﹣17∴S30=48故选 C点评:本题主要考查了利用微积分基本定理求定积分的方法,等差数列的定义和性质运用,属基础题8.(5分)已知,则的值是()A.B.C.D.考点:两角和与差的正弦函数.分析:先用正弦两角和公式把sin(﹣α)+sinα展开求的sin()的值,然后通过诱导公式展开则,把sin()的值代入即可.解答:解:sin(﹣α)+sinα=sin cosα﹣cos sinα+sinα=cosα+sinα+sinα=cosα+sinα=(cosα+sinα)=(sin cosα+cos sinα)=sin()=∴=sin()=∴=sin()=﹣sin()=﹣故答案选:C点评:本题主要考查正弦函数的两角和公式.注意巧妙利用特殊角.9.(5分)已知函数f(x)=lnx+tanα(α∈(0,))的导函数为f′(x),若使得f′(x0)=f(x0)立的x0<1,则实数α的取值X围为()A.(,)B.(0,)C.(,)D.(0,)考点:导数的运算.专题:导数的综合应用.分析:由于f′(x)=,f′(x0)=,f′(x0)=f(x0),可得=ln x0+tan α,即tan α=﹣ln x0,由0<x0<1,可得﹣ln x0>1,即tan α>1,即可得出.解答:解:∵f′(x)=,f′(x0)=,f′(x0)=f(x0),∴=ln x0+tan α,∴tan α=﹣ln x0,又∵0<x0<1,∴可得﹣ln x0>1,即tan α>1,∴α∈(,).故选:A.点评:本题考查了导数的运算法则、对数函数和正切函数的单调性,属于中档题.10.(5分)已知f(x)=()x﹣log2x,实数a、b、c满足f(a)f(b)f(c)<0,(0<a<b<c)若实数x0是方程f(x)=0的一个解,那么下列不等式中,不可能成立的是()A.x0<a B.x0>b C.x0<c D.x0>c考点:函数零点的判定定理.专题:计算题;压轴题;数形结合.分析:有f(a)f(b)f(c)<0可得①f(a),f(b),f(c)都为负值;②(a)>0,f (b)>0,f(c)<0,对这两种情况利用图象分别研究可得结论解答:解:因为f(x)=()x﹣log2x,在定义域上是减函数,所以0<a<b<c时,f(a)>f(b)>f(c)又因为f(a)f(b)f(c)<0,所以一种情况是f(a),f(b),f(c)都为负值,①,另一种情况是f(a)>0,f(b)>0,f(c)<0.②在同一坐标系内画函数y=()x与y=log2x的图象如下,对于①要求a,b,c都大于x0,对于②要求a,b都小于x0是,c大于x0.两种情况综合可得x0>c不可能成立故选D.点评:本题考查函数零点的判定和数形结合思想的应用.,数形结合的应用大致分两类:一是以形解数,即借助数的精确性,深刻性来讲述形的某些属性;二是以形辅数,即借助与形的直观性,形象性来揭示数之间的某种关系,用形作为探究解题途径,获得问题结果的重要工具二、填空题:本大题共4小题,每小题5分,共20分.将正确答案填在相应位置上.11.(5分)函数f(x)的定义域为R,f(﹣1)=1,对任意x∈R,f'(x)>3,则f(x)>3x+4的解集为(﹣1,+∞).考点:函数的单调性与导数的关系.专题:函数的性质及应用.分析:构造函数F(x)=f(x)﹣(3x+4),由f(﹣1)=1得F(﹣1)的值,求F(x)的导函数,根据f′(x)>3,得F(x)在R上为增函数,根据函数的单调性得F(x)大于0的解集,从而得所求不等式的解集.解答:解:设F(x)=f(x)﹣(3x+4),则F(﹣1)=f(﹣1)﹣(﹣3+4)=1﹣1=0,又对任意x∈R,f′(x)>3,∴F′(x)=f′(x)﹣3>0,∴F(x)在R上是增函数,∴F(x)>0的解集是(﹣1,+∞),即f(x)>3x+4的解集为(﹣1,+∞).故答案为:(﹣1,+∞)点评:本题考查了运用函数思想求解不等式的问题,解题的关键是构造函数,确定函数的单调性,属于中档题.12.(5分)已知f(x)=tanx+cos(x+m)为奇函数,且m满足不等式≤0,则实数m的值为±.考点:函数奇偶性的性质.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:首先解不等式≤0,得到﹣3≤m<0或1<m≤3,①再根据f(x)=tanx+cos (x+m)为奇函数,由奇函数的定义,以及应用三角恒等变换公式,求出m=k,k为整数,②,然后由①②得,m=±.解答:解:不等式≤0等价于或,解得,或,即有﹣3≤m<0或1<m≤3,①∵f(x)=tanx+cos(x+m)为奇函数,∴f(﹣x)=﹣f(x),即tan(﹣x)+cos(﹣x+m)=﹣tanx﹣cos(m+x),∴cos(﹣x+m)=﹣cos(x+m),∴cosmcosx+sinmsinx=﹣cosmcosx+sinmsinx,∴cosm=0,m=k,k为整数,②∴由①②得,m=±.故答案为:±.点评:本题主要考查函数的奇偶性及运用,注意定义的应用,同时考查分式不等式的解法,是一道基础题.13.(5分)已知x>0,y>0,且,若x+2y>m2+2m恒成立,则实数m的取值X围是﹣4<m<2.考点:函数恒成立问题.专题:计算题;压轴题.分析:先把x+2y转化为(x+2y)展开后利用基本不等式求得其最小值,然后根据x+2y>m2+2m求得m2+2m<8,进而求得m的X围.解答:解:∵,∴x+2y=(x+2y)=4++≥4+2=8∵x+2y>m2+2m恒成立,∴m2+2m<8,求得﹣4<m<2故答案为:﹣4<m<2.点评:本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决问题的能力.14.(5分)已知点O是△ABC的外接圆圆心,且AB=3,AC=4.若存在非零实数x、y,使得=x+y,且x+2y=1,则cos∠BAC=.考点:平面向量的基本定理及其意义.专题:综合题;平面向量及应用.分析:由=x+y,且x+2y=1,可得﹣=y(﹣2),利用向量的运算法则,取AC的中点D,则=2y,再利用点O是△ABC的外心,可得BD⊥AC.即可得出.解答:解:如图所示,∵=x+y,且x+2y=1,∴﹣=y(﹣2),∴=y(+),取AC的中点D,则+=2,∴=2y,又点O是△ABC的外心,∴BD⊥AC.在Rt△BAD中,cos∠BAC=.故答案为:,点评:本题考查了向量的运算法则、三角形的外心定理、直角三角形的边角关系,属于难题.三、解答题:本大题共5小题,共50分.15.(10分)已知命题p:∀x∈[1,2],x2﹣a≥0;命题q:∃x0∈R,使得x02+(a﹣1)x0+1<0.若“p或q”为真,“p且q”为假,某某数a的取值X围.考点:复合命题的真假.专题:计算题.分析:先求出命题p,q为真命题时,a的X围,据复合函数的真假得到p,q中必有一个为真,另一个为假,分两类求出a的X围.解答:解:p真,则a≤1 …(2分)q真,则△=(a﹣1)2﹣4>0即a>3或a<﹣1 …(4分)∵“p或q”为真,“p且q”为假,∴p,q中必有一个为真,另一个为假…(6分)当p真q假时,有得﹣1≤a≤1 …(8分)当p假q真时,有得a>3 …(10分)∴实数a的取值X围为﹣1≤a≤1或a>3 …(12分)点评:本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时参数的X围,属于基础题.16.(10分)已知f(x)=cos2x+2sin(+x)sin(π﹣x),x∈R(Ⅰ)最小正周期及对称轴方程;(Ⅱ)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,且f(A)=﹣,a=3,求BC 边上的高的最大值.考点:三角函数中的恒等变换应用;三角函数的周期性及其求法.专题:三角函数的图像与性质;解三角形.分析:(Ⅰ)利用二倍角公式,诱导公式和两角和公式对函数解析式进行化简,利用三角函数图象和性质求得其最小正周期T,及对称轴.(Ⅱ)利用三角形面积公式得到h和bc的关系式,进而利用余弦定理得到b和c的关系式,利用基本不等式的性质求得bc的最大值,进而求得h的最大值.解答:解:(Ⅰ)f(x)=cos2x+2sin(+x)sin(π﹣x)=cos2x﹣2cosxsinx=cos2x ﹣sin2x=2(cos2x﹣sin2x)=2cos(2x+),∴T==π,令2x+=kπ(k∈Z),即x=﹣(k∈Z),∴函数f(x)的对称轴方程为x=﹣(k∈Z),(Ⅱ)∵f(x)=2cos(2x+),∴f(A)=2cos(2A+)=﹣,即cos(2A+)=﹣,∵0<A<,∴<2A+<,∴2A+=,∴A=.设BC边上的高位h,则S△ABC=bcsinA=a•h,即bc=3h,h=,∵cosA===,∴bc+9=b2+c2,∵b2+c2≥2bc,当且仅当b=c时,等号成立.∴bc+9≥2bc,bc≤9,此时b=c,∵A=,∴b=c=a=3,等号能成立.∴此时h==3.∴h的最大值为3.点评:本题主要考查了正弦定理,余弦定理,诱导公式,三角函数恒等变换的应用.考查了基础的知识的综合运用.17.(10分)已知首项是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a n b n+1﹣a n+1b n+2b n+1b n=0.(1)令=,求数列{}的通项公式;(2)若b n=3n﹣1,求数列{a n}的前n项和S n.考点:数列递推式;数列的求和.专题:综合题;等差数列与等比数列.分析:(1)由a n b n+1﹣a n+1b n+2b n+1b n=0,=,可得数列{}是以1为首项,2为公差的等差数列,即可求数列{}的通项公式;(2)用错位相减法来求和.解答:解:(1)∵a n b n+1﹣a n+1b n+2b n+1b n=0,=,∴﹣+1+2=0,∴+1﹣=2,∵首项是1的两个数列{a n},{b n},∴数列{}是以1为首项,2为公差的等差数列,∴=2n﹣1;(2)∵b n=3n﹣1,=,∴a n=(2n﹣1)•3n﹣1,∴S n=1×30+3×31+…+(2n﹣1)×3n﹣1,∴3S n=1×3+3×32+…+(2n﹣1)×3n,∴﹣2S n=1+2•(31+…+3n﹣1)﹣(2n﹣1)•3n,∴S n=(n﹣1)3n+1.点评:本题为等差等比数列的综合应用,用好错位相减法是解决问题的关键,属中档题.18.(10分)已知向量=(sinx,),=(cosx,﹣1).(1)当∥时,求cos2x﹣sin2x的值;(2)设函数f(x)=2()•,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=,b=2,sinB=,求 f(x)+4cos(2A+)(x∈[0,])的取值X围.考点:解三角形;平面向量共线(平行)的坐标表示;三角函数的恒等变换及化简求值.专题:计算题.分析:(1)由可得,从而可求tanx,而(2)由正弦定理得,可求A=代入可得,结合已知x可求函数的值域解答:解:(1)∵∴∴(2分)(6分)(2)由正弦定理得,所以A=(9分)∵∴所以(12分)点评:本题主要考查了向量平行的坐标表示,利用1=sin2x+cos2x的代换,求解含有sinx,cosx的齐次式,向量的数量积的坐标表示,三角函数在闭区间上的值域的求解.19.(10分)已知函数f(x)=(x2﹣2x)•lnx+ax2+2(Ⅰ)当a=﹣1时,求f(x)在(1,f(1))处的切线方程;(Ⅱ)设函数g(x)=f(x)﹣x﹣2;(i)若函数g(x)有且仅有一个零点时,求a的值;(ii)在(i)的条件下,若e﹣2<x<e,g(x)≤m,求m的取值X围.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数研究函数的极值.专题:综合题;导数的综合应用.分析:(Ⅰ)当a=﹣1时,求导数,可得切线斜率,求出切点坐标,即可求f(x)在(1,f(1))处的切线方程;(Ⅱ)(i)令g(x)=f(x)﹣x﹣2=0,可得a=,令h(x)=,证明h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,可得h(x)max=h(1)=1,即可求a的值;(ii)若e﹣2<x<e,g(x)≤m,只需证明g(x)max≤m,即可求m的取值X围.解答:解:(Ⅰ)当a=﹣1时,f(x)=(x2﹣2x)•lnx﹣x2+2,定义域(0,+∞)∴f′(x)=(2x﹣2)•lnx+(x﹣2)﹣2x.∴f′(1)=﹣3,又f(1)=1,∴f(x)在(1,f(1))处的切线方程3x+y﹣4=0.(Ⅱ)(ⅰ)令g(x)=f(x)﹣x﹣2=0则(x2﹣2x)•lnx+ax2+2=x+2,即a=令h(x)=,则h′(x)=令t(x)=1﹣x﹣2lnx,则t′(x)=∵x>0,∴t′(x)<0,∴t(x)在(0,+∞)上是减函数,又∵t(1)=h′(1)=0,∴当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴h(x)max=h(1)=1,∴当函数g(x)有且仅有一个零点时a=1,(ⅱ)当a=1时,g(x)=(x2﹣2x)•lnx+x2﹣x,若e﹣2<x<e,g(x)≤m,只需证明g(x)max≤m,∴g′(x)=(x﹣1)(3+2lnx),令g′(x)=0得x=1或x=又∵e﹣2<x<e,∴函数g(x)在(e﹣2,)上单调递增,在(,1)上单调递减,在(1,e)上单调递增又g()=﹣e﹣3+2,g(e)=2e2﹣3e∵g()=﹣e﹣3+2<2<2e<2e(e﹣)=g(e),∴g()<g(e),∴m≥2e2﹣3e点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性与最值,考查分离参数法的运用,属于难题.。
2015-2016学年辽宁师大附中高二(上)10月月考数学试卷一.选择题(每小题4分,共48分)1.设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4] B.[0,4)C.[﹣1,0)D.(﹣1,0]2.命题“若a>b,则a﹣1>b﹣1”的否命题是()A.若a>b,则a﹣1≤b﹣1 B.若a≥b,则a﹣1<b﹣1C.若a≤b,则a﹣1≤b﹣1 D.若a<b,则a﹣1<b﹣13.不等式的解集为()A.(﹣∞,0]∪(1,+∞)B.[0,+∞)C.[0,1)∪(1,+∞)D.(﹣∞,0]∪[1,+∞)4.关于x的不等式x2﹣ax+a>0(a∈R)在R上恒成立的充分不必要条件是()A.a<0或a>4 B.0<a<2 C.0<a<4 D.0<a<85.“a+c>b+d”是“a>b且c>d”的()A.必要不充分条件B.充分不必要条件C.充分必要条件 D.既不充分也不必要条件6.命题p:{2}∈{1,2,3,},q:{2}⊆{1,2,3}则在下述判断:①p或q为真;②p或q 为假;③p且q为真;④p且q为假;⑤非p为真;⑥非q为假.其中正确的个数为()A.2 B.3 C.4 D.57.若函数f(x)=x2+(a∈R),则下列结论正确的是()A.∀a∈R,f(x)在(0,+∞)上是增函数 B.∀a∈R,f(x)在(0,+∞)上是减函数C.∃a∈R,f(x)是偶函数D.∃a∈R,f(x)是奇函数8.关于x的不等式x2﹣4ax+3a2<0(a>0)的解集为(x1,x2),则的最小值是()A.B.C.D.9.x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a 的值为()A.或﹣1 B.2或C.2或1 D.2或﹣110.已知等比数列{a n}的各项均为正数,公比q≠1,设P=(),Q=,则P与Q的大小关系是()A.P≥Q B.P<Q C.P≤Q D.P>Q11.二次函数f(x)=ax2+2x+c(x∈R)的值域为[0,+∞),则+的最小值为()A.2 B.2+C.4 D.2+212.关于x的不等式x2﹣(a+1)x+a<0的解集中,恰有3个整数,则a的取值范围是()A.(4,5)B.(﹣3,﹣2)∪(4,5)C.(4,5] D.[﹣3,﹣2)∪(4,5]二、填空题(每题5分,共20分)13.命题“∀x∈R,x2+x+1>0”的否定是.14.已知x>0,y>0,lg2x+lg8y=lg2,则+的最小值是.15.已知点P(x,y)的坐标满足条件,记的最大值为a,x2+(y+)2的最小值为b,则a+b= .16.下列正确命题有.①“”是“θ=30°”的充分不必要条件②如果命题“¬(p或q)”为假命题,则 p,q中至多有一个为真命题③设a>0,b>1,若a+b=2,则+的最小值为3+2④函数f(x)=3ax+1﹣2a在(﹣1,1)上存在x0,使f(x0)=0,则a的取值范围是.三、解答题(共4道小题,每题8分,共32分)17.已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m﹣2)x+1=0无实根.若“p或q”为真,“p且q”为假.求实数m的取值范围.18.已知x,y是正实数,且2x+5y=20,(1)求u=lgx+lgy的最大值;(2)求的最小值.19.已知p:﹣x2+16x﹣60>0,,r:关于x的不等式x2﹣3ax+2a2<0(a∈R),若r是p的必要不充分条件,且r是q的充分不必要条件,试求a的取值范围.20.已知不等式xy≤ax2+2y2,若对任意x∈[1,2],且y∈[2,3],该不等式恒成立,求实数a的取值范围.2015-2016学年辽宁师大附中高二(上)10月月考数学试卷参考答案与试题解析一.选择题(每小题4分,共48分)1.设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4] B.[0,4)C.[﹣1,0)D.(﹣1,0]【考点】交集及其运算.【专题】集合.【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.【解答】解:由x2﹣3x﹣4<0,得﹣1<x<4.∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4).故选:B.【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.2.命题“若a>b,则a﹣1>b﹣1”的否命题是()A.若a>b,则a﹣1≤b﹣1 B.若a≥b,则a﹣1<b﹣1C.若a≤b,则a﹣1≤b﹣1 D.若a<b,则a﹣1<b﹣1【考点】四种命题.【专题】阅读型.【分析】本题考查的知识点是四种命题,根据若原命题为:若p,则q.否命题为:若┐p,则┐q.我们易得答案.【解答】解:根据否命题的定义:若原命题为:若p,则q.否命题为:若┐p,则┐q.∵原命题为“若a>b,则a﹣1>b﹣1”∴否命题为:若a≤b,则a﹣1≤b﹣1故选C【点评】此题是基础题.若原命题为:若p,则q.逆命题为:若q,则p.否命题为:若┐p,则┐q.逆否命题为:若┐q,则┐p.3.不等式的解集为()A.(﹣∞,0]∪(1,+∞)B.[0,+∞)C.[0,1)∪(1,+∞)D.(﹣∞,0]∪[1,+∞)【考点】其他不等式的解法.【专题】计算题;不等式的解法及应用.【分析】先将此分式不等式等价转化为一元二次不等式组,特别注意分母不为零的条件,再解一元二次不等式即可.【解答】解:不等式⇔⇔x(x﹣1)≤0且x≠0⇔1<x或x≤0,不等式的解集为:(﹣∞,0]∪(1,+∞)故选A.【点评】本题考察了简单分式不等式的解法,一般是转化为一元二次不等式来解,但要特别注意转化过程中的等价性.4.关于x的不等式x2﹣ax+a>0(a∈R)在R上恒成立的充分不必要条件是()A.a<0或a>4 B.0<a<2 C.0<a<4 D.0<a<8【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】求出不等式恒成立的等价条件,根据充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若不等式x2﹣ax+a>0恒成立,则△=a2﹣4a<0,解得0<a<4,则不等式x2﹣ax+a>0(a∈R)在R上恒成立的充分不必要条件应是{a|0<a<4}的一个真子集,故选:B.【点评】本题主要考查充分条件和必要条件的应用,根据不等式恒成立求出对应的等价条件是解决本题的关键.5.“a+c>b+d”是“a>b且c>d”的()A.必要不充分条件B.充分不必要条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由不等式的基本性持得a>b且c>d时必有a+c>b+d.若a+c>b+d时,则可能有a>d且c>b【解答】解:∵a>b且c>d∴a+c>b+d.若a+c>b+d时,则可能有a>d且c>b,故选A.【点评】本题考查不等式的基本性质,解题时要认真审题,仔细解答.6.命题p:{2}∈{1,2,3,},q:{2}⊆{1,2,3}则在下述判断:①p或q为真;②p或q 为假;③p且q为真;④p且q为假;⑤非p为真;⑥非q为假.其中正确的个数为()A.2 B.3 C.4 D.5【考点】命题的真假判断与应用.【专题】计算题.【分析】利用复合命题真假与简单命题真假的关系进行判断是解决本题的关键.弄清∈,⊆的适用对象:⊆连接两个集合,∈连接元素与集合.【解答】解:p:{2}∈{1,2,3},符号用错,故p假.q:{2}⊆{1,2,3}是正确的,故①“p或q”为真、④“p且q”为假、⑤“非p”为真、⑥“非q”为假正确.所以正确的有:①④⑤⑥.故选C.【点评】本题考查学生对集合中常用符号⊆、∈的正确选取,弄清二者适用的对象.注意2∈{1,2,3}⇔{2}⊆{1,2,3}.理解常用符号的使用范围.属于基础题.7.若函数f(x)=x2+(a∈R),则下列结论正确的是()A.∀a∈R,f(x)在(0,+∞)上是增函数 B.∀a∈R,f(x)在(0,+∞)上是减函数C.∃a∈R,f(x)是偶函数D.∃a∈R,f(x)是奇函数【考点】函数奇偶性的判断;函数单调性的判断与证明.【专题】函数的性质及应用.【分析】利用导数考查函数f(x)=x2+(a∈R)的单调性,可对A、B选项进行判断;考查函数f(x)=x2+(a∈R)的奇偶性,可对C、D选项的对错进行判断.【解答】解析:∵f′(x)=2x﹣,故只有当a≤0时,f(x)在(0,+∞)上才是增函数,因此A、B不对,当a=0时,f(x)=x2是偶函数,因此C对,D不对.答案:C【点评】本题主要考查了利用导数进行函数奇偶性的判断以及函数单调性的判断,属于基础题.8.关于x的不等式x2﹣4ax+3a2<0(a>0)的解集为(x1,x2),则的最小值是()A.B.C.D.【考点】一元二次不等式的解法.【专题】不等式的解法及应用.【分析】由不等式x2﹣4ax+3a2<0(a>0)的解集为(x1,x2),利用根与系数的关系可得x1+x2,x1x2,再利用基本不等式即可得出.【解答】解:∵关于x的不等式x2﹣4ax+3a2<0(a>0)的解集为(x1,x2),∴△=16a2﹣12a2=4a2>0,又a>0,可得a>0.∴x1+x2=4a,,∴=4a+==,当且仅当a=时取等号.∴的最小值是.故选:C.【点评】本题考查了一元二次不等式解集与相应的一元二次方程的实数根的关系、根与系数的关系、基本不等式的性质,属于基础题.9.x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣1【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y+2=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y﹣2=0,平行,此时a=﹣1,综上a=﹣1或a=2,故选:D【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.注意要对a进行分类讨论,同时需要弄清楚最优解的定义.10.已知等比数列{a n}的各项均为正数,公比q≠1,设P=(),Q=,则P与Q的大小关系是()A.P≥Q B.P<Q C.P≤Q D.P>Q【考点】数列与函数的综合;对数值大小的比较.【专题】计算题;函数思想;转化思想;等差数列与等比数列;不等式的解法及应用.【分析】利用对数运算法则以及等比数列的性质化简P,然后利用基本不等式比较大小即可.【解答】解:等比数列{a n}的各项均为正数,公比q≠1,P=()==,Q=<=.∴P>Q.故选:D.【点评】本题考查数列与函数相结合,基本不等式以及对数运算法则的应用,考查分析问题解决问题的能力.11.二次函数f(x)=ax2+2x+c(x∈R)的值域为[0,+∞),则+的最小值为()A.2 B.2+C.4 D.2+2【考点】二次函数的性质;函数的值域.【专题】计算题.【分析】f(x)为二次函数,则a≠0,由题意可知△=0,得ac=1,利用不等式性质得=≥4【解答】解:f(x)为二次函数,则a≠0,由题意可知△=0,得ac=1,利用不等式性质得,故选C.【点评】此题主要考查二次函数的△判别式计算和不等式性质.12.关于x的不等式x2﹣(a+1)x+a<0的解集中,恰有3个整数,则a的取值范围是()A.(4,5)B.(﹣3,﹣2)∪(4,5)C.(4,5] D.[﹣3,﹣2)∪(4,5] 【考点】一元二次不等式的解法.【专题】计算题;分类讨论;分类法;不等式的解法及应用.【分析】不等式等价转化为(x﹣1)(x﹣a)<0,当a>1时,得1<x<a,当a<1时,得a<x<1,由此根据解集中恰有3个整数,能求出a的取值范围.【解答】解:∵关于x的不等式x2﹣(a+1)x+a<0,∴不等式可能为(x﹣1)(x﹣a)<0,当a>1时得1<x<a,此时解集中的整数为2,3,4,则4<a≤5,当a<1时,得a<x<1,则﹣3≤a<﹣2,故a的取值范围是[﹣3,﹣2)∪(4,5].故选:D.【点评】本题考查实数a的取值范围的求法,是中档题,解题时要认真审题,注意一元二次不等式的解法及分类讨论思想的合理运用.二、填空题(每题5分,共20分)13.命题“∀x∈R,x2+x+1>0”的否定是∃x∈R,x2+x+1≤0.【考点】命题的否定.【专题】综合题.【分析】欲写出命题的否定,必须同时改变两个地方:①:“∀”;②:“>”即可,据此分析选项可得答案.【解答】解:命题“∀x∈R,x2+x+1>0“的否定是:∃x∈R,x2+x+1≤0.故答案为:∃x∈R,x2+x+1≤0.【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.14.已知x>0,y>0,lg2x+lg8y=lg2,则+的最小值是 4 .【考点】基本不等式在最值问题中的应用;对数的运算性质.【专题】计算题.【分析】由对数的运算性质,lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,结合题意可得,x+3y=1;再利用1的代换结合基本不等式求解即可.【解答】解:lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,又由lg2x+lg8y=lg2,则x+3y=1,进而由基本不等式的性质可得,=(x+3y)()=2+≥2+2=4,当且仅当x=3y时取等号,故答案为:4.【点评】本题考查基本不等式的性质与对数的运算,注意基本不等式常见的变形形式与运用,如本题中,1的代换.15.已知点P(x,y)的坐标满足条件,记的最大值为a,x2+(y+)2的最小值为b,则a+b= 5 .【考点】简单线性规划.【专题】函数思想;数形结合法;不等式的解法及应用;直线与圆.【分析】作出不等式组对应的平面区域,根据斜率和距离的几何意义进行求解即可.【解答】解:作出不等式组对应的平面区域,设k=,则k的几何意义是区域内的点到E(﹣2,0)的斜率,设z=x2+(y+)2,则z的几何意义为区域内的点到点F(0,﹣)的距离的平方,由图象知AF的斜率最大,由,得,即A(0,2),则k=,即a=1,C(1,0)到F到的距离最小,此时|CF|===2,故d=|CF|2=4,则a+b=1+4=5,故答案为:5.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,利用直线斜率和距离公式结合数形结合是解决本题的关键.16.下列正确命题有③④.①“”是“θ=30°”的充分不必要条件②如果命题“¬(p或q)”为假命题,则 p,q中至多有一个为真命题③设a>0,b>1,若a+b=2,则+的最小值为3+2④函数f(x)=3ax+1﹣2a在(﹣1,1)上存在x0,使f(x0)=0,则a的取值范围是.【考点】命题的真假判断与应用.【专题】转化思想;函数的性质及应用;简易逻辑.【分析】根据充要条件的定义,可判断①;根据复合命题真假判断的真值表,可判断②;根据基本不等式,可判断③;根据一次函数的图象和性质,即零点存在定理,可判断④.【解答】解:①“”时,“θ=30°”不一定成立,“θ=30°”时“”一定成立,故“”是“θ=30°”的必要不充分条件,故①错误;②如果命题“¬(p或q)”为假命题,则命题“p或q”为真命题,则p,q中可能全为真命题,故②错误;a>0,b>1,若a+b=2,则b﹣1>0,a+(b﹣1)=1,则+=(+)[a+(b﹣1)]=3++≥3+2=3+2,即+的最小值为3+2,故③正确;若函数f(x)=3ax+1﹣2a在(﹣1,1)上存在x0,使f(x0)=0,则f(﹣1)•f(1)<0,即(﹣3a+1﹣2a)(a+1)<0,解得,故④正确,故正确的命题有:③④,故答案为:③④【点评】本题以命题的真假判断与应用为载体,考查了充要条件,复合命题,基本不等式,零点存在定理等知识点,难度中档.三、解答题(共4道小题,每题8分,共32分)17.已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m﹣2)x+1=0无实根.若“p或q”为真,“p且q”为假.求实数m的取值范围.【考点】复合命题的真假;一元二次方程的根的分布与系数的关系.【专题】分类讨论;简易逻辑.【分析】根据题意,首先求得p、q为真时m的取值范围,再由题意p,q中有且仅有一为真,一为假,分p假q真与p真q假两种情况分别讨论,最后综合可得答案.【解答】解:由题意p,q中有且仅有一为真,一为假,若p为真,则其等价于,解可得,m>2;若q为真,则其等价于△<0,即可得1<m<3,若p假q真,则,解可得1<m≤2;若p真q假,则,解可得m≥3;综上所述:m∈(1,2]∪[3,+∞).【点评】本题考查命题复合真假的判断与运用,难点在于正确分析题意,转化为集合间的包含关系,综合可得答案.18.已知x,y是正实数,且2x+5y=20,(1)求u=lgx+lgy的最大值;(2)求的最小值.【考点】基本不等式在最值问题中的应用.【专题】计算题.(1)直接使用均值定理a+b≥2,即可求得xy的最大值,进而求得u=lgx+lgy=lgxy 【分析】的最大值;(2)将乘以1==,再利用均值定理即可求得的最小值【解答】解:(1)∵,∴xy≤10,(当且仅当x=5且y=2时等号成立).所以u=lgx+lgy=lgxy≤lg10=1∴u=lgx+lgy的最大值为1(2)∵2x+5y=20,∴∴(当且仅当时等号成立)∴的最小值为【点评】本题考查了利用均值定理求函数最值的方法,利用均值定理求函数最值时,特别注意等号成立的条件,恰当的使用均值定理求最值是解决本题的关键19.已知p:﹣x2+16x﹣60>0,,r:关于x的不等式x2﹣3ax+2a2<0(a∈R),若r是p的必要不充分条件,且r是q的充分不必要条件,试求a的取值范围.【考点】必要条件、充分条件与充要条件的判断.【专题】集合思想;不等式的解法及应用;简易逻辑.【分析】求出命题的等价条件,结合充分条件和必要条件的定义转化为不等式对应集合的关系进行求解即可.【解答】解:由﹣x2+16x﹣60>0解得:6<x<10,由解得:x>1(Ⅰ)当a>0,由x2﹣3ax+2a2<0解得:a<x<2a若r是p的必要不充分条件,则(6,10)⊆(a,2a),则5≤a≤6①且r是q的充分不必要条件,则(a,2a)⊆(1,+∞),则a≥1②由①②得5≤a≤6(Ⅱ)当a<0时,由x2﹣3ax+2a2<0解得:2a<x<a<0,而若r是p的必要不充分条件,(6,10)⊆(a,2a)不成立,(a,2a)⊆(1,+∞)也不成立,不存在a值.(Ⅲ)当a=0时,由x2﹣3ax+2a2<0解得:r为∅,(6,10)⊆∅不成立,不存在a值综上,5≤a≤6为所求.【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式对应的等价条件,结合充分条件和必要条件的定义建立不等式关系是解决本题的关键.20.已知不等式xy≤ax2+2y2,若对任意x∈[1,2],且y∈[2,3],该不等式恒成立,求实数a的取值范围.【考点】简单线性规划.【专题】计算题;函数思想;转化思想;数形结合法;不等式的解法及应用.【分析】把已知不等式变形,分离变量a,得到a≥,由x∈[1,2],且y∈[2,3]作出可行域,由的几何意义求出的取值范围,进一步求出函数的最大值,则答案可求.【解答】解:依题意得,当x∈[1,2],且y∈[2,3]时,不等式xy≤ax2+2y2,即a≥=﹣2•=.在坐标平面内画出不等式组表示的平面区域,注意到可视为该区域内的点(x,y)与原点连线的斜率,结合图形可知,的取值范围是[1,3],此时的最大值是﹣1,因此满足题意的实数a的取值范围是a≥﹣1.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.。
辽宁师大附中2015届高三上学期10月模块考试数学(文)试题注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B 铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题纸的相应位置。
第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选择一个符合题目要求的选项.1、已知集合B A x xx B x x x A 则},02|{},034|{2≤-=>+-=等于( ) A . B . C . D . 2、已知数列为等差数列,且,则的值为( )A 、B 、C 、D 、 3、已知是两个非零向量,给定命题,命题,使得,则是的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 4、函数的一个单调减区间是( ) A 、 B 、 C 、 D 、5、设等比数列{ }的前n 项和为 ,若 =3 ,则 =( ) A 、 2 B 、 C 、 D 、36、已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( ) A 、3B 、4C 、5D 、27、已知向量,向量,且,则实数等于( )A 、B 、C 、D 、8、已知,log log a a x =,log log a a z =,则( ) A .B .C .D .9、在中,内角所对的边长分别是。
若A A B C 2sin )sin(sin =-+,则的形状为( ) A 、等腰三角形 B 、直角三角形 C 、等腰直角三角形 D 、等腰或直角三角形 10、函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )11、已知,则的值是( )A 、B 、C 、D 、12、已知实数33,,,,x x y d c b a -=且曲线成等比数列的极大值点坐标为(b,c )则等于( )A .2B .1C .—1D .—2第Ⅱ卷( 共60分)二、填空题:本大题共4小题,每小题4分,共16分.将正确答案填在相应位置上。
辽宁师大附中2014-2015学年高一上学期10月月考数学试卷一、选择题:(每小题4分,共40分)1.(4分)设集合A={x∈Q|x>﹣1},则()A.∅∉A B.∉A C.∈A D.⊆A2.(4分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}3.(4分)函数y=x2﹣4x+3,x∈的值域为()A.B.C.D.4.(4分)f(x)=x3﹣3x﹣3有零点的区间是()A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)5.(4分)已知函数f(x)=的定义域是R,则实数a的取值范围是()A.a>B.﹣12<a≤0C.﹣12<a<0 D.a≤6.(4分)不等式ax2+ax﹣4<0的解集为R,则a的取值范围是()A.﹣16≤a<0 B.a>﹣16 C.﹣16<a≤0D.a<07.(4分)设,则f(5)的值为()A.6 B.7 C.8 D.98.(4分)已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣2x,则在R上f(x)的表达式是()A.﹣x(x﹣2)B.x(|x|﹣2)C.|x|(x﹣2)D.|x|(|x|﹣2)9.(4分)在实数的原有运算法则中,我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2.则函数f(x)=(1⊕x)•x﹣(2⊕x)(x∈)(“•”和“﹣”仍为通常的乘法和减法)的最大值等于()A.﹣1 B.1 C.6 D.1210.(4分)设奇函数f(x)在(﹣∞,0)上为增函数,且f(﹣1)=0,则不等式的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)二、填空题:(每小题5分,共20分,答案填在横线上)11.(5分)设函数f(x)=(x+2)(x+a)是偶函数,则a=.12.(5分)设函数f(x)=,若f(x)是奇函数,则g(2)的值是.13.(5分)已知y=f(x)在定义域(﹣1,1)上是减函数,且f(1﹣a)<f(2a﹣1),则a 的取值范围是.14.(5分)设函数f(x)=x2+(m﹣1)x+1在区间上有两个零点,则实数m的取值范围是.三、解答题:(15、16题均9分,17题10分,18题12分)15.(9分)设集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.16.(9分)已知函数f(x)=ax2+2ax+1,(1)当a=1时,求f(x)在区间上的值域;(2)若f(x)在区间上的最大值为4,求实数a的值.17.(10分)已知函数f(x)=(x≠0)是奇函数,且f(1)=f(4)(Ⅰ)求实数a、b的值;(Ⅱ)试证明函数f(x)在区间(0,2]单调递减,在区间(2,+∞)单调递增.18.(12分)已知函数f(x)定义域为,若对于任意的x,y∈,都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.(1)证明:f(x)为奇函数;(2)证明:f(x)在上为单调递增函数;(3)设f(1)=1,若f(x)<m2﹣2am+1,对所有x∈,a∈恒成立,求实数m的取值范围.辽宁师大附中2014-2015学年高一上学期10月月考数学试卷参考答案与试题解析一、选择题:(每小题4分,共40分)1.(4分)设集合A={x∈Q|x>﹣1},则()A.∅∉A B.∉A C.∈A D.⊆A考点:元素与集合关系的判断.专题:集合思想.分析:根据题意,易得集合A的元素为全体大于﹣1的有理数,据此分析选项,综合可得答案.解答:解:∵集合A={x∈Q|x>﹣1},∴集合A中的元素是大于﹣1的有理数,对于A,“∈”只用于元素与集合间的关系,故A错;对于B,不是有理数,故B正确,C错,D错;故选:B.点评:本小题主要考查元素与集合关系的判断、常用数集的表示等基础知识,考查了集合的描述符表示以及符号的运算求解能力.属于基础题.2.(4分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}考点:交、并、补集的混合运算.专题:计算题.分析:找出全集U中不属于A的元素,求出A的补集,找出既属于A补集又属于B的元素,确定出所求的集合.解答:解:∵全集U={0,1,2,3,4},集合A={1,2,3},∴C U A={0,4},又B={2,4},则(C U A)∪B={0,2,4}.故选C点评:此题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.3.(4分)函数y=x2﹣4x+3,x∈的值域为()A.B.C.D.考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:由函数y=x2﹣4x+3=(x﹣2)2﹣1,x∈可得,当x=2时,函数取得最小值为﹣1,当x=0时,函数取得最大值3,由此求得函数的值域.解答:解:∵函数y=x2﹣4x+3=(x﹣2)2﹣1,x∈,故当x=2时,函数取得最小值为﹣1,当x=0时,函数取得最大值3,故函数的值域为,故选C.点评:本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,属于中档题.4.(4分)f(x)=x3﹣3x﹣3有零点的区间是()A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)考点:函数零点的判定定理.专题:计算题;转化思想.分析:由函数零点存在的定理知,可验证区间端点的符号,两两端点函数值的符号相反则存在零点,利用此规律验证,找出正确选项解答:解:由题意,知当x=﹣1,0,1,2,3时,y的值是﹣1,﹣3,﹣5,﹣1,15由零点判定定理知,f(x)=x3﹣3x﹣3有零点的区间是(2,3)故选D点评:本题考查函数零点的判定定理,解题的关键是理解定理,掌握零点判官的规则与步骤,本题是基本概念考查题,考查了转化的思想.5.(4分)已知函数f(x)=的定义域是R,则实数a的取值范围是()A.a>B.﹣12<a≤0C.﹣12<a<0 D.a≤考点:函数的定义域及其求法.专题:计算题.分析:由函数f(x)=的定义域是R,表示函数的分母恒不为零,即方程ax2+ax ﹣3=0无解,根据一元二次方程根的个数与判断式△的关系,我们易得数a的取值范围.解答:解:由a=0或可得﹣12<a≤0,故选B.点评:求函数的定义域时要注意:(1)当函数是由解析式给出时,其定义域是使解析式有意义的自变量的取值集合.(2)当函数是由实际问题给出时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如长度、面积必须大于零、人数必须为自然数等).(3)若一函数解析式是由几个函数经四则运算得到的,则函数定义域应是同时使这几个函数有意义的不等式组的解集.若函数定义域为空集,则函数不存在.(4)对于(4)题要注意:①对在同一对应法则f 下的量“x”“x+a”“x﹣a”所要满足的范围是一样的;②函数g(x)中的自变量是x,所以求g(x)的定义域应求g(x)中的x的范围.6.(4分)不等式ax2+ax﹣4<0的解集为R,则a的取值范围是()A.﹣16≤a<0 B.a>﹣16 C.﹣16<a≤0D.a<0考点:一元二次不等式的应用.专题:计算题.分析:由于不能确定原不等式的二次项系数的符号,故对a进行分类讨论:当a=0 时,不等式恒成立;当a≠0时,由题意可得△<0,且a<0,将这两种情况下的a的取值范围取并集,即为所求.解答:解:当a=0 时,不等式即﹣4<0,恒成立.当a≠0时,由题意可得△=a2+16a<0,且a<0,解得﹣16<a<0.综上,实数a的取值范围是﹣16<a≤0,故选C.点评:本题考查二次函数的性质、函数的恒成立问题、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、分类讨论思想,注意检验a=0时的情况,这是解题的易错点,属于基础题.7.(4分)设,则f(5)的值为()A.6 B.7 C.8 D.9考点:函数的值.专题:函数的性质及应用.分析:由函数的解析式可得 f(5)=f=f(7)=f=f( 9),运算求得结果.解答:解:∵,则 f(5)=f=f=f(7)=f=f(9)=9﹣2=7,故选B.点评:本题主要考查利用分段函数求函数的值,属于基础题.8.(4分)已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣2x,则在R上f(x)的表达式是()A.﹣x(x﹣2)B.x(|x|﹣2)C.|x|(x﹣2)D.|x|(|x|﹣2)考点:函数奇偶性的性质;函数的表示方法.分析:设x<0,则﹣x>0,利用当x≥0时f(x)的解析式,求出f(﹣x)的解析式,再利用奇函数的定义,求出x<0时的解析式,综合在一起,可得在R上f(x)的表达式.解答:解:设x<0,则﹣x>0,∵当x≥0时,f(x)=x2﹣2x,∴f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,又∵y=f(x)是定义在R上的奇函数,f(﹣x)=﹣f(x),∴﹣f(x)=x2+2x,∴f(x)=﹣x2﹣2x,故则在R上f(x)的表达式是 x(|x|﹣2),故选B.点评:本题考查利用奇函数的定义求函数的解析式的方法.9.(4分)在实数的原有运算法则中,我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2.则函数f(x)=(1⊕x)•x﹣(2⊕x)(x∈)(“•”和“﹣”仍为通常的乘法和减法)的最大值等于()A.﹣1 B.1 C.6 D.12考点:分段函数的应用.专题:压轴题;新定义.分析:首先认真分析找出规律,可以先分别求得(1⊕x)•x和(2⊕x),再求f(x)=(1⊕x)•x﹣(2⊕x)的表达式.然后求出其最大值即可.解答:解:当﹣2≤x≤1时,在1⊕x中,1相当于a,x相当于b,∵﹣2≤x≤1,∴符合a≥b时的运算公式,∴1⊕x=1.(1⊕x)x﹣(2⊕x)=x﹣(2⊕x),=x﹣(2⊕x),=x﹣2,当1<x≤2时,(1⊕x)x﹣(2⊕x)=x2•x﹣(2⊕x),=x3﹣(2⊕x),=x3﹣2,∴此函数当x=2时有最大值6.故选C.点评:此题主要考查了二次函数最值问题,解决此类问题时,主要运用等量代换思想,即要看准用哪一个数字代替哪一个字母.10.(4分)设奇函数f(x)在(﹣∞,0)上为增函数,且f(﹣1)=0,则不等式的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)考点:函数单调性的性质.专题:函数的性质及应用.分析:f(x)是奇函数,在(﹣∞,0)上为增函数,且f(﹣1)=0,可画出函数示意图,写出不等式的解集.解答:解:∵f(x)是奇函数,∴f(﹣x)=﹣f(x);∴可化为:>0<0;又f(x)在(﹣∞,0)上为增函数,且f(﹣1)=0,画出函数示意图,如图;则<0的解集为:﹣1<x<0,或0<x<1;∴原不等式的解集为(﹣1,0)∪(0,1);故选:D.点评:本题考查了函数的单调性与奇偶性的应用问题,是基础题.二、填空题:(每小题5分,共20分,答案填在横线上)11.(5分)设函数f(x)=(x+2)(x+a)是偶函数,则a=﹣2.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:因为函数f(x)为偶函数,则根据偶函数定义f(﹣x)=f(x)得到一等式解出a 即可.解答:解:由函数f(x)为偶函数,得f(2)=f(﹣2),即:4(2+a)=0,∴a=﹣2.故答案为:﹣2.点评:此题考查学生灵活应用函数奇偶性解决问题的能力,属基础题.12.(5分)设函数f(x)=,若f(x)是奇函数,则g(2)的值是4.考点:函数奇偶性的性质;函数的值.专题:函数的性质及应用.分析:根据函数的奇偶性的性质进行转化即可.解答:解:∵f(x)是奇函数,∴g(2)=f(2),∵f(﹣2)=﹣f(2)=﹣4,则f(2)=4,则g(2)=f(2)=4,故答案为:4点评:本题主要考查函数值的计算,根据函数的奇偶性进行转化是解决本题的关键.13.(5分)已知y=f(x)在定义域(﹣1,1)上是减函数,且f(1﹣a)<f(2a﹣1),则a 的取值范围是.考点:函数单调性的性质.专题:计算题.分析:根据f(1﹣a)<f(2a﹣1),严格应用函数的单调性.要注意定义域.解答:解:∵f(x)在定义域(﹣1,1)上是减函数,且f(1﹣a)<f(2a﹣1)∴,∴故答案为:点评:本题主要考查应用单调性解题,一定要注意变量的取值范围.14.(5分)设函数f(x)=x2+(m﹣1)x+1在区间上有两个零点,则实数m的取值范围是.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:当f(x)在上有两个零点时,即方程x2+(m﹣1)x+1=0在区间上有两个不相等的实根,由此构造关于m的不等式组,解不等式组可求出m的取值范围.解答:解:当f(x)在上有两个零点时,此时方程x2+(m﹣1)x+1=0在区间上有两个不相等的实根,则,解得,实数m的取值范围故答案为:点评:本题考查二次函数与方程之间的关系,二次函数在给定区间上的零点问题,要注意函数图象与x轴相切的情况,属于中档题.三、解答题:(15、16题均9分,17题10分,18题12分)15.(9分)设集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.考点:集合的包含关系判断及应用;并集及其运算;交集及其运算.专题:计算题.分析:(1)先解出集合A,根据2是两个集合的公共元素可知2∈B,建立关于a的等式关系,求出a后进行验证即可.(2)一般A∪B=A转化成B⊆A来解决,集合A两个元素故可考虑对集合B的元素个数进行讨论求解.解答:解:由x2﹣3x+2=0得x=1或x=2,故集合A={1,2}(1)∵A∩B={2},∴2∈B,代入B中的方程,得a2+4a+3=0⇒a=﹣1或a=﹣3;当a=﹣1时,B={x|x2﹣4=0}={﹣2,2},满足条件;当a=﹣3时,B={x|x2﹣4x+4=0}={2},满足条件;综上,a的值为﹣1或﹣3;(2)对于集合B,△=4(a+1)2﹣4(a2﹣5)=8(a+3).∵A∪B=A,∴B⊆A,①当△<0,即a<﹣3时,B=∅满足条件;②当△=0,即a=﹣3时,B={2},满足条件;③当△>0,即a>﹣3时,B=A={1,2}才能满足条件,则由根与系数的关系得⇒矛盾;综上,a的取值范围是a≤﹣3.点评:本题主要考查了交集并集以及一元二次方程的解法,属于基础题,考查分类讨论的思想.16.(9分)已知函数f(x)=ax2+2ax+1,(1)当a=1时,求f(x)在区间上的值域;(2)若f(x)在区间上的最大值为4,求实数a的值.考点:二次函数在闭区间上的最值.专题:计算题.分析:(1)先配方f(x)=x2+2x+1=(x+1)2,可知函数f(x)在上递减,在上递增,从而可求f(x)在区间上的值域;(2)由于二次函数的最值与图象的开口方向、对称轴及区间有关,故要进行分类讨论:①当a>0时,因对称轴为x=﹣1,f(2)=4;②当a<0时,因对称轴为x=﹣1,f(﹣1)=4;③当a=0时,f(x)=1,不成立.故可求实数a的值.解答:解:(1)f(x)=x2+2x+1=(x+1)2∴函数f(x)在上递减,在上递增,所以y min=f(﹣1)=0,y max=f(2)=9,所以f(x)在区间上的值域为.(2)①当a>0时,因对称轴为x=﹣1,f(2)=4,得.②当a<0时,因对称轴为x=﹣1,f(﹣1)=4,得a=﹣3.③当a=0时,f(x)=1,不成立.由①②③得或a=﹣3点评:本题以二次函数为载体,考查二次函数在指定区间上的值域与最值,解题的关键是正确配方,合理分类.17.(10分)已知函数f(x)=(x≠0)是奇函数,且f(1)=f(4)(Ⅰ)求实数a、b的值;(Ⅱ)试证明函数f(x)在区间(0,2]单调递减,在区间(2,+∞)单调递增.考点:函数的单调性及单调区间;函数奇偶性的性质.专题:函数的性质及应用.分析:(Ⅰ)根据条件建立方程关系即可求实数a、b的值;(Ⅱ)根据函数单调性的定义即可得到结论.解答:解:(Ⅰ)∵函数f(x)=(x≠0)是奇函数,∴f(﹣x)=﹣f(x),即=﹣,即﹣ax=ax,解得a=0,此时f(x)=,∵f(1)=f(4)∴1+b=4+,即,解得b=4.故实数a=0,b=4;(Ⅱ)∵a=0,b=4,∴f(x)=x+,设x1<x2,则f(x1)﹣f(x2)=x1+﹣x2﹣=(x1﹣x2)+(﹣)=(x1﹣x2)•,∵x1<x2,∴x1﹣x2<0,①若0<x1<x2≤2,则x1x2<4,则f(x1)﹣f(x2)>0,即f(x1)>f(x2),此时函数单调递减.②若2<x1<x2,则x1x2>4,则f(x1)﹣f(x2)<0,即f(x1)<f(x2),此时函数单调递增.点评:本题主要考查函数的奇偶性和单调性的判断,根据函数奇偶性和单调性的定义和性质是解决本题的关键.18.(12分)已知函数f(x)定义域为,若对于任意的x,y∈,都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.(1)证明:f(x)为奇函数;(2)证明:f(x)在上为单调递增函数;(3)设f(1)=1,若f(x)<m2﹣2am+1,对所有x∈,a∈恒成立,求实数m的取值范围.考点:函数恒成立问题;奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:(1)先利用特殊值法,求证f(0)=0,令y=﹣x即可求证;(2)由(1)得f(x)为奇函数,f(﹣x)=﹣f(x),利用定义法进行证明;(3)由题意f(x)<m2﹣2am+1,对所有x∈,a∈恒成立,只要f(x)的最大值小于m2﹣2am+1即可,从而求出m的范围;解答:解:(1)令x=y=0,∴f(0)=0,令y=﹣x,f(x)+f(﹣x)=0,∴f(﹣x)=﹣f(x),∴f(x)为奇函数(2)∵f(x)是定义在上的奇函数;令﹣1≤x1<x2≤1,则有f(x2)﹣f(x1)=f(x2﹣x1)>0,∴f(x)在上为单调递增函数;(3)f(x)在上为单调递增函数,f(x)max=f(1)=1,使f(x)<m2﹣2am+1对所有x∈,a∈恒成立,只要m2﹣2am+1>1,即m2﹣2am>0令g(a)=m2﹣2am=﹣2am+m2,要使g(a)>0恒成立,则,∴m∈(﹣∞,﹣2)∪(2,+∞);点评:考查抽象函数及其应用,以及利用函数单调性的定义判断函数的单调性,并根据函数的单调性解函数值不等式,体现了转化的思想,在转化过程中一定注意函数的定义域.。
2015-2016学年辽宁师大附中高二(上)12月月考试数学试卷(文科)一.选择题(每题5分,共50分)1.抛物线y2=8x的焦点到直线的距离是()A. B.2 C.D.12.曲线y=在点(4,e2)处的切线与坐标轴所围三角形的面积为()A.B.4e2C.2e2D.e23.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点的个数为()A.1 B.2 C.3 D.44.若双曲线上的一点P到它的右焦点的距离为8,则点P到它的左焦点的距离是()A.4 B.12 C.4或12 D.65.若双曲线的离心率为,则其渐近线方程为()A.y=±2x B.C. D.6.已知,则双曲线C1:与C2:的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等7.设函数f(x)=+lnx,则()A.为f(x)的极小值点B.x=2为f(x)的极大值点C.为f(x)的极大值点D.x=2为f(x)的极小值点8.已知点F1、F2分别是椭圆的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A、B两点,若△ABF2为正三角形,则该椭圆的离心率e是()A.B.C.D.9.已知函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4则()A.f(2a)<f(3)<f(log2a)B.f(3)<f(log2a)<f(2a)C.f(log2a)<f(3)<f(2a)D.f(log2a)<f(2a)<f(3)10.函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式e x•f(x)>e x+1的解集为()A.{x|x>0}B.{x|x<0}C.{x|x<﹣1,或x>1}D.{x|x<﹣1,或0<x<1}二.填空题(每题5分,共20分)11.方程+=1表示椭圆,则k的取值范围是.12.在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=.13.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为.14.已知函数f(x)=+lnx(a>0),若函数f(x)在区间(1,+∞)上为增函数,则正实数a的取值范围是.三.解答题15.根据下列条件求双曲线的标准方程.(1)已知双曲线的渐近线方程为y=±x,且过点M(,﹣1);(2)与椭圆+=1有公共焦点,且离心率e=.16.已知函数(Ⅰ)当f(x)在x=1处取得极值时,求函数f(x)的解析式;(Ⅱ)当f(x)的极大值不小于时,求m的取值范围.17.如图,椭圆+=1(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知点M(,)在椭圆上,且点M到两焦点距离之和为4.(1)求椭圆的方程;(2)设与MO(O为坐标原点)垂直的直线交椭圆于A,B(A,B不重合),求•的取值范围.18.设函数f(x)=x2+ax﹣lnx(a∈R)(Ⅰ)当a=1时,求函数f(x)的极值;(Ⅱ)当a≥2时,讨论函数f(x)的单调性;(Ⅲ)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)﹣f(x2)|成立,求实数m的取值范围.2015-2016学年辽宁师大附中高二(上)12月月考试数学试卷(文科)参考答案与试题解析一.选择题(每题5分,共50分)1.抛物线y2=8x的焦点到直线的距离是()A. B.2 C.D.1【考点】抛物线的简单性质;点到直线的距离公式.【分析】由抛物线y2=8x得焦点F(2,0),再利用点到直线的距离公式可得点F(2,0)到直线的距离.【解答】解:由抛物线y2=8x得焦点F(2,0),∴点F(2,0)到直线的距离d==1.故选D.2.曲线y=在点(4,e2)处的切线与坐标轴所围三角形的面积为()A.B.4e2C.2e2D.e2【考点】利用导数研究曲线上某点切线方程.【分析】利用导数求曲线上点切线方程,求直线与x轴,与y轴的交点,然后求切线与坐标轴所围三角形的面积.【解答】解:∵曲线y=,∴y′=×,切线过点(4,e2)∴f(x)|x=4=e2,∴切线方程为:y﹣e2=e2(x﹣4),令y=0,得x=2,与x轴的交点为:(2,0),令x=0,y=﹣e2,与y轴的交点为:(0,﹣e2),∴曲线y=在点(4,e2)处的切线与坐标轴所围三角形的面积s=×2×|﹣e2|=e2,故选D.3.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f (x)在开区间(a,b)内有极小值点的个数为()A.1 B.2 C.3 D.4【考点】利用导数研究函数的单调性.【分析】根据当f’(x)>0时函数f(x)单调递增,f’(x)<0时f(x)单调递减,可从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,然后得到答案.【解答】解:从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,根据极值点的定义可知在(a,b)内只有一个极小值点.故选:A.4.若双曲线上的一点P到它的右焦点的距离为8,则点P到它的左焦点的距离是()A.4 B.12 C.4或12 D.6【考点】双曲线的简单性质.【分析】利用双曲线的定义,结合P到它的右焦点的距离为8,可求点P到它的左焦点的距离.【解答】解:设点P到它的左焦点的距离是m,则由双曲线的定义可得|m﹣8|=2×2∴m=4或12故选C.5.若双曲线的离心率为,则其渐近线方程为()A.y=±2x B.C. D.【考点】双曲线的简单性质.【分析】通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程.【解答】解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y==±x.故选B.6.已知,则双曲线C1:与C2:的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等【考点】双曲线的简单性质.【分析】通过双曲线的方程求出双曲线的实半轴的长,虚半轴的长,焦距即可得到结论.【解答】解:双曲线C1:可知a=sinθ,b=cosθ,2c=2(sin2θ+cos2θ)=2;双曲线C2:可知,a=cosθ,b=sinθ,2c=2(sin2θ+cos2θ)=2;所以两条双曲线的焦距相等.故选D.7.设函数f(x)=+lnx,则()A.为f(x)的极小值点B.x=2为f(x)的极大值点C.为f(x)的极大值点D.x=2为f(x)的极小值点【考点】利用导数研究函数的极值.【分析】求导数f′(x),令f′(x)=0,得x=2可判断在2左右两侧导数符号,由极值点的定义可得结论.【解答】解:f′(x)=﹣=,当0<x<2时,f′(x)<0;当x>2时f′(x)>0,所以x=2为f(x)的极小值点,故选:D.8.已知点F1、F2分别是椭圆的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A、B两点,若△ABF2为正三角形,则该椭圆的离心率e是()A.B.C.D.【考点】椭圆的简单性质.【分析】先求出AF1 的长,直角三角形AF1F2中,由边角关系得tan30°==,建立关于离心率的方程,解方程求出离心率的值.【解答】解:把x=﹣c代入椭圆的方程可得y=,∴AF1 =,由tan30°=====,求得3e2+2e﹣3=0,解得(舍去),或,故选D.9.已知函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4则()A.f(2a)<f(3)<f(log2a) B.f(3)<f(log2a)<f(2a)C.f(log2a)<f(3)<f(2a)D.f(log2a)<f(2a)<f(3)【考点】抽象函数及其应用;导数的运算.【分析】由f(x)=f(4﹣x),可知函数f(x)关于直线x=2对称,由xf′(x)>2f′(x),可知f(x)在(﹣∞,2)与(2,+∞)上的单调性,从而可得答案.【解答】解:∵函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),∴f(x)关于直线x=2对称;又当x≠2时其导函数f′(x)满足xf′(x)>2f′(x)⇔f′(x)(x﹣2)>0,∴当x>2时,f′(x)>0,f(x)在(2,+∞)上的单调递增;同理可得,当x<2时,f(x)在(﹣∞,2)单调递减;∵2<a<4,∴1<log2a<2,∴2<4﹣log2a<3,又4<2a<16,f(log2a)=f(4﹣log2a),f(x)在(2,+∞)上的单调递增;∴f(log2a)<f(3)<f(2a).故选C.10.函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式e x•f(x)>e x+1的解集为()A.{x|x>0} B.{x|x<0}C.{x|x<﹣1,或x>1}D.{x|x<﹣1,或0<x<1}【考点】函数单调性的性质;导数的运算.【分析】构造函数g(x)=e x•f(x)﹣e x,结合已知可分析出函数g(x)的单调性,结合g(0)=1,可得不等式e x•f(x)>e x+1的解集.【解答】解:令g(x)=e x•f(x)﹣e x,则g′(x)=e x•[f(x)+f′(x)﹣1]∵对任意x∈R,f(x)+f′(x)>1,∴g′(x)>0恒成立即g(x)=e x•f(x)﹣e x在R上为增函数又∵f(0)=2,∴g(0)=1故g(x)=e x•f(x)﹣e x>1的解集为{x|x>0}即不等式e x•f(x)>e x+1的解集为{x|x>0}故选A二.填空题(每题5分,共20分)11.方程+=1表示椭圆,则k的取值范围是.【考点】椭圆的定义.【分析】根据题意,方程+=1表示椭圆,则,解可得答案.【解答】解:方程+=1表示椭圆,则,解可得k>3,故答案]为k>3.12.在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=.【考点】椭圆的简单性质;椭圆的应用.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则, ∴,.答案:.13.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为.【考点】点到直线的距离公式.【分析】由题意知,当曲线上过点P的切线和直线y=x﹣2平行时,点P到直线y=x﹣2的距离最小.求出曲线对应的函数的导数,令导数值等于1,可得且点的坐标,此切点到直线y=x﹣2的距离即为所求.【解答】解:点P是曲线y=x2﹣lnx上任意一点,当过点P的切线和直线y=x﹣2平行时,点P到直线y=x﹣2的距离最小.直线y=x﹣2的斜率等于1,令y=x2﹣lnx的导数y′=2x﹣=1,x=1,或x=﹣(舍去),故曲线y=x2﹣lnx上和直线y=x﹣2平行的切线经过的切点坐标(1,1),点(1,1)到直线y=x﹣2的距离等于,故点P到直线y=x﹣2的最小距离为,故答案为.14.已知函数f(x)=+lnx(a>0),若函数f(x)在区间(1,+∞)上为增函数,则正实数a的取值范围是.【考点】函数的单调性与导数的关系.【分析】求f(x)的导数f′(x),利用f′(x)判定f(x)的单调性,求出f(x)的单调增区间,即得正实数a的取值范围.【解答】解:∵f(x)=+lnx(a>0),∴f′(x)=(x>0);令f′(x)=0,得x=;∴在(0,]上f′(x)≤0,在[,+∞)上f′(x)≥0,∴f(x)在(0,]上是减函数,在[,+∞)上是增函数;∵函数f(x)在区间[1,+∞)内是增函数,∴≤1,又a>0,∴a≥1;∴实数a的取值范围是[1,+∞).故答案为:[1,+∞).三.解答题15.根据下列条件求双曲线的标准方程.(1)已知双曲线的渐近线方程为y=±x,且过点M(,﹣1);(2)与椭圆+=1有公共焦点,且离心率e=.【考点】双曲线的简单性质.【分析】(1)根据双曲线的渐近线设出双曲线的渐近线系方程进行求解即可.(2)根据条件设出双曲线的方程,利用待定系数法进行求解即可.【解答】解:(1)∵双曲线的渐近线方程为2x±3y=0,∴可设双曲线的方程为4x2﹣9y2=λ(λ≠0).又∵双曲线过点M(,﹣1),∴λ=4×﹣9=72.∴双曲线方程为4x2﹣9y2=72,即﹣=1.(2)解法1(设标准方程)由椭圆方程可得焦点坐标为(﹣5,0),(5,0),即c=5且焦点在x轴上,∴可设双曲线的标准方程为(a>0,b>0),且c=5.又e==,∴a=4,∴b2=c2﹣a2=9.∴双曲线的标准方程为﹣=1.解法2(设共焦点双曲线系方程)∵椭圆的焦点在x轴上,∴可设双曲线方程为﹣=1(24<λ<49).又e=,∴=﹣1,解得λ=33.∴双曲线的标准方程为﹣=1.16.已知函数(Ⅰ)当f(x)在x=1处取得极值时,求函数f(x)的解析式;(Ⅱ)当f(x)的极大值不小于时,求m的取值范围.【考点】利用导数研究函数的极值;简单复合函数的导数.【分析】(Ⅰ)因为f(x)在x=1时取极值,先求出f′(x)令其等于0求出驻点得到m的值即可;(Ⅱ)利用导数求出函数的极值根据极大值不小于列出不等式取出m的取值即可.【解答】解:(Ⅰ)f′(x)=x2﹣m2,由已知得f′(1)=1﹣m2=0(m>0),∴m=1∴(Ⅱ)f′(x)=x2﹣m2,令f′(x)=0,x=±m.当x变化时,f′(x),f(x)的变化情况如下表:=,∴m3≥1,∴m≥1∴y极大值故m的取值范围是[1,+∞).17.如图,椭圆+=1(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知点M(,)在椭圆上,且点M到两焦点距离之和为4.(1)求椭圆的方程;(2)设与MO(O为坐标原点)垂直的直线交椭圆于A,B(A,B不重合),求•的取值范围.【考点】直线与圆锥曲线的综合问题.【分析】(1)由已知条件设椭圆方程为,把点M(,)代入,能求出椭圆的方程.(2)设AB的方程为y=﹣,联立,得13x2﹣4mx+2m2﹣4=0,由△>0求出0≤m2<26,由此能求出•的取值范围.【解答】解:(1)∵椭圆+=1(a>b>0)的左、右焦点分别为F1(﹣c,0)F2(c,0).点M(,)在椭圆上,且点M到两焦点距离之和为4,∴2a=4,a=2,∴椭圆方程为,把点M(,)代入,得,解得b2=2,∴椭圆的方程为.(2)∵k MO==,与MO(O为坐标原点)垂直的直线交椭圆于A,B(A,B不重合),∴设AB的方程为y=﹣,联立,消去y,得:13x2﹣4mx+2m2﹣4=0,=8(12m﹣13m2+26)>0,解得m2<26,∴0≤m2<26,设A(x1,y1),B(x2,y2),则,x1x2=,∴=x1x2+y1y2=7x1x2﹣(x1+x2)+m2=,∴求•的取值范围是[﹣,).18.设函数f(x)=x2+ax﹣lnx(a∈R)(Ⅰ)当a=1时,求函数f(x)的极值;(Ⅱ)当a≥2时,讨论函数f(x)的单调性;(Ⅲ)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)﹣f(x2)|成立,求实数m的取值范围.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)将a=1代入函数求出导函数得到单调区间,从而求出极值,(Ⅱ)先求出导函数,再分别讨论a>2,a=2,a<2时的情况,综合得出单调区间;(Ⅲ)由(Ⅱ)得;a∈(2,3)时,f(x)在[2,3]上递减,x=1时,f(x)最大,x=2时,f(x)最小,从而|f(x1)﹣f(x2)|≤f(1)﹣f(2)=﹣+ln2,进而证出ma+ln2>﹣+ln2.经整理得m>﹣,由2<a<3得;﹣<﹣<0,从而m≥0.【解答】解;(Ⅰ)函数的定义域为(0,+∞),a=1时,f(x)=x﹣lnx,f′(x)=1﹣=,令f′(x)=0,得x=1,∴f(x)在(0,1)递减,在(1,+∞)递增,=f(1)=1,无极大值;∴f(x)极小值(Ⅱ)f′x)=(1﹣a)x+a﹣=,当=1,即a=2时,f′(x)≤0,f(x)在(0,+∞)上递减;当<1,即a>2时,令f′(x)<0,得0<x<,或x>1,令f′(x)>0,得<x<1,当>1,即a<2时,矛盾舍,综上,a=2时,f(x)在(0,+∞)递减,a>2时,f(x)在(0,)和(1,+∞)递减,在(,1)递增;(Ⅲ)由(Ⅱ)得;a∈(2,3)时,f(x)在[1,2]上递减,x=1时,f(x)最大,x=2时,f(x)最小,∴|f(x1)﹣f(x2)|≤f(1)﹣f(2)=﹣+ln2,∴ma+ln2>﹣+ln2.a>0时,经整理得m>﹣,由2<a<3得;﹣<﹣<0,∴m≥0.2016年10月11日。
高三数学(文科)一.选择题(共12小题,每题5分,共60分) 1。
设全集R U =,集合}1|||{≤=x x A ,}1log |{2≤=x x B ,则B A U等于( )A .]1,0(B .]1,1[-C .]2,1(D .]2,1[)1,( --∞2。
设i 是虚数单位,若复数)(310R a ia ∈--是纯虚数,则a 的值为( )A .-3B .-1C .1D .3 3. 已知命题44,0:≥+>∀xx x p ;命题212),,0(:00=+∞∈∃x xq ,则下列判断正确的是( )A .p 是假命题B .q 是真命题C .)(q p ⌝∧是真命题D .q p ∧⌝)(是真命题4.已知MOD 函数是一个求余函数,其格式为(,)MOD n m , 其结果为n 除以m 的余数,例如(8,3)2=。
右面是一个算法的程序框图,当输入的值为25时, 则输出的结果为( )A .4B .5C .6D .75。
设n m ,是不同的直线,βα,是不同的平面,下列命题中正确的是( )A .若n m n m ⊥⊥,,//βα,则βα⊥;B .若n m n m //,,//βα⊥,则βα⊥;C .若n m n m ⊥⊥,,//βα,则βα//;D .若n m n m //,,//βα⊥,则βα//;6。
若)2,0(πα∈,且103)22cos(cos 2=++απα,则=αtan ( )A .21B .31C .41D .517.设,x y 满足约束条件2311x x y y x ≥⎧⎪-≥⎨⎪≥+⎩,则下列不等式恒成立的是()A .3x ≥ B .4y ≥ C .280x y +-≥ D .210x y -+≥ 结束开始输入n2i =(,)0?MOD n i = 输出i1i i =+是 否8.设函数()()()01xx f x aka a a -=->≠-∞+∞且在,上既是奇函数又是减函数,则()()log a g x x k =+的图象是()9.若42log (34)log ,a b ab a b +=+则的最小值是()A.6+23B.3 C. 7+43 D 。
辽宁师大附中2015届高三上学期10月模块考试数学(文)试题(解析版)【试卷综析】试卷的题型着眼于考查现阶段学生的基础知识及基本技能掌握情况。
整份试卷难易适中,没有偏、难、怪题,保护了学生的学习信心并激励学生继续学习的热情;在选题和确定测试重点上都认真贯彻了“注重基础,突出知识体系中的重点,培养能力”的命题原则,重视对学生运用所学的基础知识和技能分析问题、解决问题能力的考查。
第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选择一个符合题目要求的选项. 【题文】1、已知集合B A x xx B x x x A 则},02|{},034|{2≤-=>+-=等于( ) A .}21|{<<x x B .}321|{><<x x x 或C .}10|{<≤x xD .}310|{><≤x x x 或【知识点】交集及其运算.A1【答案解析】C 解析:由题意解出A ,B ,然后根据交集的定义和运算法则进行计算.【思路点拨】∵集合A={x|x 2﹣4x+3>0},∴A={x|x>3或x <1}, ∵B={x|≤0},∴B={x|0≤x<2},∴A∩B={x|0≤x<1},故选C .【题文】2、已知数列}{n a 为等差数列,且π41371=++a a a ,则)t a n (122a a +的值为( )A 、、、-【知识点】等差数列的性质;运用诱导公式化简求值;两角和与差的正切函数.C2 C5 D2 【答案解析】B 解析:∵π41371=++a a a ,则a 7=43π,∴tan(a 2+a 12)=tan2a 7=tan83π= B. 【思路点拨】因为π41371=++a a a ,则a 7=43π,所以tan (a 2+a 12)=tan2a 7=tan 83π,由诱导公式计算可得答案.【题文】3、已知b a,是两个非零向量,给定命题b a b a p =⋅:,命题R t q ∈∃:,使得b t a=,则p 是q 的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件【知识点】必要条件、充分条件与充要条件的判断;向量的几何表示.A2 F2【答案解析】C 解析:(1)若命题p 成立,∵,是两个非零向量,|•|=||||,即|||||•cos<,>|=||||,∴cos<,>=±1,<,>=00或<,>=1800∴,共线,即;∃t ∈R ,使得=t ,∴由命题p 成立能推出命题q 成立.(2)若命题p 成立,即∃t ∈R ,使得=t ,则,两个非零向量共线,∴<,>=00或<,>=1800,∴cos<,>=±1,即|||||•cos<,>|=||||, ∴|•|=||||,∴由命题q 成立能推出命题p 成立.∴p 是q 的充要条件.故选C . 【思路点拨】利用两个向量的数量积公式,由命题p 成立能推出命题q 成立,由命题q 成立能推出命题p 成立,p 是q 的充要条件. 【题文】4、函数)42sin(2)(π-=x x f 的一个单调减区间是( )A 、 ]89,85[ππB 、 ]83,8[ππ-C 、 ]87,83[ππ D 、 ]85,8[ππ 【知识点】复合三角函数的单调性.C3 【答案解析】C 解析:由2k π+≤2x﹣≤2k π+(k ∈Z )得:k π+≤x≤k π+,∴函数)42sin(2)(π-=x x f 的单调递减区间为[k π+,k π+].当k=0时,函数)42sin(2)(π-=x x f 的一个单调递减区间是]87,83[ππ.故选C . 【思路点拨】由正弦函数的单调性可求得正弦函数的递减区间,继而可得答案. 【题文】5、设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69SS =( ) A 、 2 B 、73 C 、 83D 、3 【知识点】等比数列的前n 项和.D3【答案解析】B 解析:设公比为q ,则63S S ===1+q 3=3,所以q 3=2,所以69S S ===.故选B .【思路点拨】首先由等比数列前n 项和公式列方程,并解得q 3,然后再次利用等比数列前n项和公式则求得答案.【题文】6、已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( ) A 、3B 、4C 、5D 、2【知识点】等差数列的通项公式.D2 【答案解析】A 解析:根据题意得:115201552530a d a d +=⎧⎨+=⎩,解得:3d =,故选A .【思路点拨】写出数列的第一、三、五、七、九项的和,写出数列的第二、四、六、八、十项的和,都用首项和公差表示,两式相减,得到结果.【题文】7、已知向量(1,2)a =,向量(,2)b x =-,且()a a b ⊥-,则实数x 等于( ) A 、4- B 、4 C 、0 D 、9 【知识点】数量积判断两个平面向量的垂直关系.F3【答案解析】D 解析:由向量(1,2)a =,向量(,2)b x =-,∴a b -=(1﹣x ,4), 又()a a b ⊥-,∴1×(1﹣x )+2×4=0,解得x=9.故选D .【思路点拨】由给出的向量的坐标求出a b -的坐标,然后直接利用向量垂直的坐标表示列式求解x 的值.【题文】8、已知01a <<,log log aa x =1log 52a y =,log log a a z =则( ) A .x y z >> B .z y x >> C .y x z >> D .z x y >>【知识点】对数值大小的比较。
2015-2016学年度高三数学(文)上学期第一模块考试
一、选择题 (每题4分,共40分)
1.已知直线m 、n 及平面α、β,则下列命题正确的是
( )
A .
B .
C .
D . 2.已知两条不同的直线m ,n 和两个不同的平面α,β,以下四个结论中正确的个数为( )
①若m∥α,n∥β,且α∥β,则m∥n;
②若m∥α,n⊥β,且α⊥β,则m∥n;
③若m⊥α,n∥β,且α∥β,则m⊥n;
④若m⊥α,n⊥β,且α⊥β,则m⊥n.
A . 1个
B . 2个
C . 3个
D . 4个
3.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为
( )
A .9
B .10
C .11
D .
4.已知等差数列{a n },满足a 1+a 5=2,a 2+a 14=12,则此数列的前10项和S 10=( )
(A)7 (B)14 (C)21 (D)35
5.等比数列{a n }的前n 项和为S n ,已知12310a a S +=,95=a ,则1a = ( )
6.三棱锥P ﹣ABC 中,PA ⊥平面ABC ,AC ⊥BC ,AC=BC=1,PA=,则该三棱锥外接球的
表面积为
( )
A .5π
B .
C .20π
D .4π
7.若点(3,1)P -是圆22(2)25x y -+=的弦AB 的中点,则直线AB 的方程是 ( )
A .40x y --=
B .270x y --=
C .20x y +-=
D .250x y +-=
8.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 ( ) A.54 B.53 C.52 D.5
1 9.设直线:10l kx y -+=与圆22:4C x y +=相较于A 、B 两点,OM OA OB =+ ,且点M 在
圆C 上,则实数k 等于 ( )
A .1
B .2
C .1-
D .0
10.设椭圆)0(,1:2222>>=+b a b
y a x C 的左,右焦点分别为,,21F F 离心率为33 ,过2F 的直线l 交C 于B A ,两点,若B AF 1∆的周长为34,则C 的方程为 ( ) A. 181222=+y x .B.141222=+y x C.12
322=+y x D. 1322
=+y x 二、填空题 (每题5分,共20分)
11.一个几何体的三视图如图所示,则这个几何体的体积为
.
12.已知等差数列{a n }中,a 2=2,a 4=8,若a bn =3n ﹣1,则b 2015= .
13.直线过点(2,3)-,且在两个坐标轴上的截距互为相反数,则这样的直线方程是________.
14.2by +=(其中a 、b 为非零实数)与圆221x y +=相交于A 、B 两点,O 为坐标原点,且AOB ∆为直角三角形,则2212a b
+的最小值为________. 三、解答题 (15题14分,16题12分,17题14分,共40分)
15.已知点()2,2P ,圆08:22=-+y y x C ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为O M ,为坐标原点。
(1)求M 的轨迹方程;
(2)当OM OP =时,求l 的方程及POM ∆的面积。
16.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点. 求证:
(Ⅰ)平面PA∥平面BDE ;
(Ⅱ)平面PAC⊥平面BDE .
17. 设数列{a n }的前n 项和为S n ,且21=a ,221+=+n n S a .
(1)求数列{a n }的通项公式;
(2)若数列{b n }的各项均为正数,且n b 是n a n 与2
+n a n 的等比中项,求n b ,的前n 项和T n .
试卷答案
1.D 2B 3C 4D 5C 6A 7A 8B 9D 10C 11.. 1
2. 2016 . 1
3. 3x+2y=0或x-y-5=0. 1
4.1
15.解答: 15(1)()()2312
2=-+-y x (2)083:=-+y x l 516=
S 。
16.解答: 证明:(I )∵O 是AC 的中点,E 是PC 的中点, ∴OE∥AP,又∵OE ⊂平面BDE ,PA ⊄平面BDE .∴PA∥平面BDE . (II )∵PO⊥底面ABCD ,PO⊥BD,
又∵AC⊥BD,且AC∩PO=O
∴BD ⊥平面PAC ,而BD ⊂平面BDE ,∴平面PAC ⊥平面BDE 17.
(1) 当n≥2时,由a n +1=2S n +2得a n =2S n -1+2,两式相减得,a n +1-a n =2a n ,。