2021高考数学一轮提高复习《难点5 利用导数研究函数的零点》
- 格式:ppt
- 大小:654.00 KB
- 文档页数:11
高考数学复习专题训练—利用导数研究函数的零点1.(2021·福建厦门月考)已知函数f (x )=x 3-43x 2e x 的定义域为[-1,+∞). (1)求f (x )的单调区间;(2)讨论函数g (x )=f (x )-a 在区间[-1,2]上的零点个数.2.(2021·江苏苏州月考)已知函数f (x )=x 2a -2ln x (a ∈R ,a ≠0). (1)求函数f (x )的极值;(2)若函数f (x )有两个零点x 1,x 2(x 1<x 2),且a=4,证明:x 1+x 2>4. 3.(2021·山东烟台期中)已知函数f (x )=ax+2ex +1(a ∈R ). (1)若函数f (x )在区间(1,+∞)上单调递增,求实数a 的取值范围; (2)当a ≠0时,讨论函数g (x )=f (x )-a-3的零点个数,并给予证明.4.(2021·山西太原三模)已知函数f (x )=a ln x-14x 2+b-ln 2的图象在点(2,f (2))处的切线方程为y=-12x+1. (1)求f (x )的单调区间;(2)设x 1,x 2(x 1<x 2)是函数g (x )=f (x )-m 的两个零点,求证:x 2-x 1<32-4m.5.(2021·广东佛山期末)已知函数f (x )=ln x-mx 有两个零点. (1)求m 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:f'(x 1+x 2)<0.6.(2021·山东实验中学模拟)已知函数f (x )=2e x sin x (e 是自然对数的底数). (1)求f (x )的单调区间;(2)记g (x )=f (x )-ax ,0<a<6,试讨论g (x )在区间(0,π)上的零点个数(参考数据:e π2≈4.8).答案及解析1.解 (1)f'(x )=x 3+53x 2-83x e x =x3(3x+8)(x-1)e x ,因为x ∈[-1,+∞),所以函数f'(x )的零点为0和1. 所以当0<x<1时,f'(x )<0; 当x>1或-1≤x<0时,f'(x )>0.所以f (x )的单调递减区间为(0,1),单调递增区间为[-1,0),(1,+∞).(2)由(1)知,f (x )在区间[-1,2]上的极大值为f (0)=0,极小值为f (1)=-e3.因为f (-1)=-73e ,f (-1)f (1)=7e 2<72.72<1,所以f (1)<f (-1)<0.f (2)=8e 23,由g (x )=0,得f (x )=a.故当a<-e3或a>8e 23时,g (x )的零点个数为0; 当a=-e 3或0<a ≤8e 23时,g (x )的零点个数为1;当-e3<a<-73e 或a=0时,g (x )的零点个数为2; 当-73e ≤a<0时,g (x )的零点个数为3. 2.(1)解 函数f (x )的定义域为(0,+∞),f'(x )=2xa −2x =2x 2-2aax. 当a<0时,f'(x )<0,所以f (x )在区间(0,+∞)上单调递减,所以f (x )在区间(0,+∞)上无极值;当a>0时,若x ∈(0,√a ),f'(x )<0,f (x )在区间(0,√a )上单调递减.若x ∈(√a ,+∞),f'(x )>0,f (x )在区间(√a ,+∞)上单调递增,故f (x )在区间(0,+∞)上的极小值为f (√a )=1-2ln √a =1-ln a ,无极大值. (2)证明 当a=4时,f (x )=x 24-2ln x.由(1)知,f (x )在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,x=2是函数f (x )的极值点.又x 1,x 2为函数f (x )的零点,所以0<x 1<2<x 2,要证x 1+x 2>4,只需证x 2>4-x 1.∵f (4-x 1)=(4-x 1)24-2ln(4-x 1)=x 124-2x 1+4-2ln(4-x 1),又f (x 1)=x 124-2ln x 1=0,∴f (4-x 1)=2ln x 1-2x 1+4-2ln(4-x 1). 令h (x )=2ln x-2x+4-2ln(4-x )(0<x<2),则h'(x )=2x -2+24-x=2(x -2)2x (4-x )>0,∴h (x )在区间(0,2)上单调递增,∴h(x)<h(2)=0,∴f(4-x1)<0=f(x2),又4-x1>2,x2>2,∴4-x1<x2,即x1+x2>4得证.3.解(1)f'(x)=a-2e x.由题意得f'(x)≥0,即a≥2e x在区间(1,+∞)上恒成立.当x∈(1,+∞)时,2e x∈0,2e,所以a≥2e.故实数a的取值范围为2e,+∞.(2)当a<0时,函数g(x)有且只有一个零点; 当a>0时,函数g(x)有两个零点.证明如下:由已知得g(x)=ax+2e x-a-2,则g'(x)=a-2e x=ae x-2e x.当a<0时,g'(x)<0,所以函数g(x)单调递减.又g(0)=-a>0,g(1)=2e-2<0,故函数g(x)有且只有一个零点.当a>0时,令g'(x)<0,得x<ln 2a,令g'(x)>0,得x>ln2a,所以函数g(x)在区间-∞,ln2a上单调递减,在区间ln 2a,+∞上单调递增,而g(ln2a)=a ln2a−2a<0,g(a+2a)=2ea+2a>0.由于x>ln x,所以a+2a>2a>ln2a,所以g(x)在区间ln2a,a+2a上存在一个零点.又g ln2a2+a+2=a a-ln a2+a+22,且ln2a2+a+2<ln2a,设h(a)=a-ln a2+a+22,则h'(a)=1-2a+1 a2+a+2=a2-a+1a2+a+2>0在区间(0,+∞)上恒成立,故h(a)在区间(0,+∞)上单调递增.而h(0)=0,所以h(a)>0在区间(0,+∞)上恒成立,所以g ln2a2+a+2>0,所以g(x)在区间ln2a2+a+2,ln2a上存在一个零点.综上所述,当a<0时,函数g(x)有且只有一个零点; 当a>0时,函数g(x)有两个零点.4.(1)解由题可知,函数f(x)的定义域为(0,+∞),f'(x)=ax −12x,又函数f(x)的图象在点(2,f(2))处的切线方程为y=-12x+1,所以{f(2)=0,f'(2)=-12,即{aln2-1+b-ln2=0,a2-1=-12,解得{a=1,b=1,所以f(x)=ln x-14x2+1-ln 2,f'(x)=1x−12x=2-x22x,当x∈(0,√2)时,f'(x)>0;当x∈(√2,+∞)时,f'(x)<0,所以函数f(x)的单调递增区间为(0,√2),单调递减区间为(√2,+∞).(2)证明由(1)得f(x)=ln x-14x2+1-ln 2(x>0),且f(x)在区间(0,√2)上单调递增,在区间[√2,+∞)上单调递减,由题意得f(x1)=f(x2)=m,且0<x1<√2<x2,∴x2-x1-32+4m=x2-x1-32+2(f(x2)+f(x1))=2ln x2+x2-12x22+2ln x1-x1-12x12+52-4ln 2.令t1(x)=2ln x+x-12x2,x>√2,则t1'(x)=(x+1)(x-2)-x,令t1'(x)>0,得√2<x<2;令t1'(x)<0,得x>2,∴t1(x)在区间(√2,2]上单调递增,在区间(2,+∞)上单调递减,∴t1(x)≤t1(2)=2ln 2.令t2(x)=2ln x-x-12x2,0<x<√2,则t2'(x)=(x+2)(x-1)-x,令t2'(x)>0,得0<x<1;令t2'(x)<0,得1<x<√2,∴t2(x)在区间(0,1)上单调递增,在区间[1,√2)上单调递减,∴t2(x)≤t2(1)=-32,∴x2-x1-32+4m≤t1(2)+t2(1)+52-4ln 2=1-2ln 2<0.∴x2-x1<32-4m.5.(1)解f'(x)=1x -m=1-mxx(x>0),当m≤0时,f'(x)>0,则f(x)在区间(0,+∞)上单调递增,至多有一个零点;当m>0时,若0<x<1m,则f'(x)>0,f(x)在区间0,1m上单调递增;若x>1m,则f'(x)<0,f(x)在区间1m,+∞上单调递减,∴f(x)在x=1m 处取得最大值,由题意得f(1m)=-ln m-1>0得0<m<1e,此时,有1m2>1 m >e>1,而f(1)=-m<0,f(1m2)=-2ln m-1m<0,∴由零点存在定理可知,f (x )在区间1,1m 和1m ,1m 2上各有一个零点.综上所述,m 的取值范围是0,1e .(2)证明 ∵x 1,x 2是f (x )的两个零点,不妨设x 1>x 2>0,∴ln x 1-mx 1=0①,ln x 2-mx 2=0②,①-②得ln x 1-ln x 2=mx 1-mx 2,即有m=ln x 1-ln x2x 1-x 2,由f'(x )=1x -m ,有f'(x 1+x 2)=1x 1+x 2-m=1x 1+x 2−ln x 1-ln x 2x 1-x 2, ∴要证f'(x 1+x 2)<0,即证ln x 1-ln x 2x 1-x 2>1x 1+x 2, 即证ln x 1-ln x 2>x 1-x2x 1+x 2,即证ln x1x 2−x 1x 2-1x 1x 2+1>0,即证ln x 1x 2+2x 1x 2+1-1>0,令x1x 2=t>1,设φ(t )=ln t+2t+1-1(t>1),则φ'(t )=t 2+1t (t+1)2>0,∴φ(t )在区间(1,+∞)上单调递增,则φ(t )>φ(1)=0, ∴f'(x 1+x 2)<0得证.6.解 (1)函数f (x )=2e x sin x 的定义域为R .f'(x )=2e x (sin x+cos x )=2√2e x sin x+π4.由f'(x )>0,得sin x+π4>0,可得2k π<x+π4<2k π+π(k ∈Z ),解得2k π-π4<x<2k π+3π4(k ∈Z ),由f'(x )<0,得sin x+π4<0,可得2k π+π<x+π4<2k π+2π(k ∈Z ),解得2k π+3π4<x<7π4+2k π(k ∈Z ).所以f (x )的单调递增区间为-π4+2k π,3π4+2k π(k ∈Z ),单调递减区间为3π4+2k π,7π4+2k π(k ∈Z ).(2)由已知g (x )=2e x sin x-ax ,所以g'(x )=2e x (sin x+cos x )-a ,令h (x )=g'(x ),则h'(x )=4e x cos x.因为x ∈(0,π),所以当x ∈0,π2时,h'(x )>0;当x∈π2,π时,h'(x)<0,所以h(x)在区间0,π2上单调递增,在区间π2,π上单调递减,即g'(x)在区间0,π2上单调递增,在区间π2,π上单调递减.g'(0)=2-a,g'(π2)=2eπ2-a>0,g'(π)=-2eπ-a<0.①当2-a≥0,即0<a≤2时,g'(0)≥0,所以∃x0∈π2,π,使得g'(x0)=0,所以当x∈(0,x0)时,g'(x)>0;当x∈(x0,π)时,g'(x)<0,所以g(x)在区间(0,x0)上单调递增,在区间(x0,π)上单调递减.因为g(0)=0,所以g(x0)>0.因为g(π)=-aπ<0,所以由零点存在定理可得,此时g(x)在区间(0,π)上仅有一个零点.②当2-a<0,即2<a<6时,g'(0)<0,所以∃x1∈0,π2,x2∈π2,π,使得g'(x1)=0,g'(x2)=0,且当x∈(0,x1),x∈(x2,π)时,g'(x)<0;当x∈(x1,x2)时,g'(x)>0.所以g(x)在区间(0,x1)和(x2,π)上单调递减,在区间(x1,x2)上单调递增.因为g(0)=0,所以g(x1)<0,因为g(π2)=2eπ2−π2a>2eπ2-3π>0,所以g(x2)>0,因为g(π)=-aπ<0,由零点存在定理可得,g(x)在区间(x1,x2)和(x2,π)内各有一个零点,即此时g(x)在区间(0,π)上有两个零点.综上所述,当0<a≤2时,g(x)在区间(0,π)上仅有一个零点;当2<a<6时,g(x)在区间(0,π)上有两个零点.。
第3课时 利用导数研究函数零点问题1.已知函数f(x)=a+√x ln x(a∈R).(1)求f(x)的单调区间;(2)试求f(x)的零点个数,并证明你的结论.解析 (1)函数f(x)的定义域是(0,+∞),f '(x)=(√x )'ln x+√x ·1x =√x (lnx+2)2x. 令f '(x)>0,解得x>e -2,令f '(x)<0,解得0<x<e -2,所以f(x)在(0,e -2)上递减,在(e -2,+∞)上递增.(2)由(1)得f(x)min =f(e -2)=a-2e ,显然a>2e 时, f(x)>0,无零点,a=2e 时, f(x)=0,有1个零点,a<2e 时, f(x)<0,有2个零点.2.(2018课标全国Ⅱ,21,12分)已知函数f(x)=13x 3-a(x 2+x+1). (1)若a=3,求f(x)的单调区间;(2)证明: f(x)只有一个零点.解析 (1)当a=3时, f(x)=13x 3-3x 2-3x-3, f '(x)=x 2-6x-3.令f '(x)=0,解得x=3-2√3或x=3+2√3.当x∈(-∞,3-2√3)∪(3+2√3,+∞)时, f '(x)>0;当x∈(3-2√3,3+2√3)时, f '(x)<0.故f(x)在(-∞,3-2√3),(3+2√3,+∞)单调递增,在(3-2√3,3+2√3)单调递减.(2)证明:由于x 2+x+1>0,所以f(x)=0等价于x 3x 2+x+1-3a=0.设g(x)=x 3x 2+x+1-3a,则g'(x)=x 2(x 2+2x+3)(x 2+x+1)2≥0,仅当x=0时g'(x)=0,所以g(x)在(-∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a-1)=-6a 2+2a-13=-6(a -16)2-16<0, f(3a+1)=13>0,故f(x)有一个零点.综上, f(x)只有一个零点.3.(2018重庆调研)设函数f(x)=-x 2+ax+ln x(a∈R).(1)当a=-1时,求函数f(x)的单调区间;(2)设函数f(x)在[13,3]上有两个零点,求实数a 的取值范围. 解析 (1)函数f(x)的定义域为(0,+∞),当a=-1时,f '(x)=-2x-1+1x =-2x 2-x+1x ,令f '(x)=0,得x=12(负值舍去), 当0<x<12时, f '(x)>0,当x>12时, f '(x)<0,∴f(x)的单调递增区间为(0,12),单调递减区间为(12,+∞).(2)令f(x)=-x 2+ax+ln x=0,得a=x-lnx x , 令g(x)=x-lnxx ,其中x∈[13,3],则g'(x)=1-1x·x -lnx x 2=x 2+lnx -1x 2,令g'(x)=0,得x=1,当13≤x<1时,g'(x)<0,当1<x≤3时,g'(x)>0,∴g(x)的单调递减区间为[13,1),单调递增区间为(1,3], ∴g(x)min =g(1)=1,由于函数f(x)在[13,3]上有两个零点,g (13)=3ln 3+13,g(3)=3-ln33,3ln 3+13>3-ln33,∴实数a 的取值范围是(1,3-ln33].4.(2019贵州贵阳模拟)已知函数f(x)=kx-ln x(k>0).(1)若k=1,求f(x)的单调区间;(2)(一题多解)若函数f(x)有且只有一个零点,求实数k 的值;(3)比较e 3与3e 的大小.解析 (1)k=1,f(x)=x-ln x,定义域为(0,+∞),则f '(x)=1-1x ,由f '(x)>0得x>1,由f '(x)<0得0<x<1.∴f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞).(2)解法一:由题意知kx-ln x=0仅有一个实根,由kx-ln x=0得k=lnx x (x>0), 令g(x)=lnxx (x>0),则g'(x)=1-lnx x ,当x=e时,g'(x)=0;当0<x<e时,g'(x)>0;当x>e时,g'(x)<0.∴g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,∴g(x)max =g(e)=1e.当x→+∞时,g(x)→0.又k>0,∴要使f(x)仅有一个零点,则k=1e.解法二:f(x)=kx-ln x,则f '(x)=k-1x =kx-1x(x>0,k>0).当x=1k 时,f '(x)=0;当0<x<1k时,f '(x)<0;当x>1k时, f '(x)>0.∴f(x)在(0,1k )上单调递减,在(1k,+∞)上单调递增,∴f(x)min =f(1k)=1-ln 1k,∵f(x)有且只有一个零点,∴1-ln 1k =0,即k=1e.解法三:∵k>0,∴函数f(x)有且只有一个零点即为直线y=kx与曲线y=ln x相切,设切点为(x0,y),由y=ln x得y'=1x,∴{k=1x0,y0=kx0,y0=ln x0,∴k=1e,x 0=e,y=1,∴实数k的值为1e.(3)由(1)(2)知lnxx ≤1e,即xe≥ln x,当且仅当x=e时,取“=”,令x=3,得3e>ln 3,即ln e3>eln 3=ln3e,∴e3>3e.。
专题层级快练 3.3.3利用导数研究函数的零点一、单项选择题1.若a>1e,则方程lnx-ax=0的实根的个数为()A.0个B.1个C.2个D.无穷多个2.已知函数f(x)的定义域为[-1,4],部分对应值如下表:f(x)的导函数y=f′(x)的图象如图所示.当1<a<2时,函数y=f(x)-a的零点的个数为()A.1B.2C.3D.43.(2021·山东高考实战演练仿真卷)若关于x的方程2x3-3x2+a=0在区间[-2,2]上仅有一个实根,则实数a的取值范围为()A.[-4,0]B.(1,28]C.[-4,0)∪(1,28]D.[-4,0)∪(1,28)二、解答题4.已知f(x)=ax2(a∈R),g(x)=2lnx.(1)讨论函数h(x)=f(x)-g(x)的单调性;(2)若方程f(x)=g(x)在区间[2,e]上有两个不相等的解,求a的取值范围.5.(2021·东北四校联考)已知f(x)=1x+e xe-3,F(x)=lnx+e xe-3x+2.(1)判断f(x)在(0,+∞)上的单调性;(2)判断函数F(x)在(0,+∞)上零点的个数.6.(2020·课标全国Ⅰ,文)已知函数f(x)=e x-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.7.(2021·山东潍坊十月月考)设函数f(x)=x2-(a-2)·x-alnx.(1)求函数f(x)的单调区间;(2)若函数f(x)有两个零点,求正整数a的最小值.8.已知函数f(x)=(2-a)(x-1)-2lnx(a∈R).(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)a的取值范围.3.3.3利用导数研究函数的零点参考答案1.答案A 解析由于方程lnx -ax =0等价于lnx x=a(x >0).设f(x)=lnx x .∵f ′(x)=1x ·x -lnx x2=1-lnx x 2(x >0),令f ′(x)=0,得x =e ,∴f(x)在(0,e)上单调递增,在(e ,+∞)上单调递减.∴f(x)的最大值为f(e)=1e.∴f(x)=lnx x ≤1e(当且仅当x =e 时,等号成立).∵a>1e,∴原方程无实根.故选A.2.答案D 解析根据导函数图象,知2是函数的极小值点,函数y =f(x)的大致图象如图所示.由于f(0)=f(3)=2,1<a<2,所以y =f(x)-a 的零点个数为4.3.答案C 解析设f(x)=2x 3-3x 2+a ,可得f ′(x)=6x 2-6x =6x(x -1),x ∈[-2,2],令f ′(x)≥0,可得-2≤x ≤0或1≤x ≤2,令f ′(x)<0,可得0<x<1,可得函数f(x)的单调递增区间为[-2,0],[1,2],单调递减区间为(0,1),由函数f(x)在区间[-2,2]上仅有一个零点,f(-2)=a -28,f(0)=a ,f(1)=a -1,f(2)=a +4,若f(0)=a =0,则f(x)=x 2(2x -3),显然不符合题意,故f(0)≠0,(-2)=a -28≤0(0)=a>0(1)=a -1>00)=a<0,2)=a +4≥0,可得1<a ≤28或-4≤a<0.故选C.4.答案(1)当a>0时,h(x)1a ,+∞a ≤0时,h(x)在(0,+∞)上单调递减(2)ln22,解析(1)h(x)=ax 2-2lnx ,其定义域为(0,+∞),所以h ′(x)=2ax -2x =2(ax 2-1)x(x >0).①当a >0时,由ax 2-1>0,得x >1a ,由ax 2-1<0,得0<x <1a,故当a >0时,h(x)在区间(1a ,+∞)上单调递增,在区间(0,1a )上单调递减.②当a ≤0时,h ′(x)<0(x >0)恒成立.故当a ≤0时,h(x)在(0,+∞)上单调递减.(2)原式等价于方程a =2lnx x 2在区间[2,e]上有两个不相等的解.令φ(x)=2lnx x 2,由φ′(x)=2x (1-2lnx )x4易知,φ(x)在[2,e)上为增函数,在(e ,e]上为减函数,则φ(x)max =φ(e)=1e,而φ(e)=2e 2,φ(2)=ln22.由φ(e)-φ(2)=2e 2-ln22=4-e 2ln22e 2=lne 4-ln2e 22e2<0,所以φ(e)<φ(2).所以φ(x)min =φ(e),如图可知φ(x)=a 有两个不相等的解时,需ln22≤a <1e.即f(x)=g(x)在[2,e]上有两个不相等的解时a 的取值范围为ln22,5.答案(1)f(x)在(0,1)上单调递减,在(1,+∞)上单调递增(2)3个解析(1)f ′(x)=-1x 2+e x e =x 2e x -e ex2,令f ′(x)>0,解得x >1,令f ′(x)<0,解得0<x <1,所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.(2)F ′(x)=1x +e x e-3=f(x)(x >0),由(1)得f(x)min =f(1)=-1,则∃x 1,x 2,满足0<x 1<1<x 2,使得f(x)在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0,即F(x)在(0,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增,而F(1)=0,x→0时,F(x)→-∞,x→+∞时,F(x)→+∞,画出函数F(x)的草图,如图所示.故F(x)在(0,+∞)上的零点有3个.6.答案(1)f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增(2)1e,+∞解析(1)当a=1时,f(x)=e x-x-2,则f′(x)=e x-1.当x<0时,f′(x)<0;当x>0时,f′(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)f′(x)=e x-a.当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)上单调递增,故f(x)至多存在1个零点,不合题意.当a>0时,由f′(x)=0可得x=lna.当x∈(-∞,lna)时,f′(x)<0;当x∈(lna,+∞)时,f′(x)>0.所以f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增.故当x=lna时,f(x)取得最小值,最小值为f(lna)=-a(1+lna).(ⅰ)若0<a≤1e,则f(lna)≥0,f(x)在(-∞,+∞)上至多存在1个零点,不合题意.(ⅱ)若a>1e,则f(lna)<0.由于f(-2)=e-2>0,所以f(x)在(-∞,lna)上存在唯一零点.由(1)知,当x>2时,e x-x-2>0,所以当x>4且x>2ln(2a)时,f(x)=e x2·e x2-a(x+2)>e ln(2a)x2+2-a(x+2)=2a>0.故f(x)在(lna,+∞)上存在唯一零点.从而f(x)在(-∞,+∞)上有两个零点.综上,a的取值范围是1e,+∞7.答案(1)见解析(2)3解析(1)f′(x)=2x-(a-2)-a x=2x2-(a-2)x-ax=(2x-a)(x+1)x(x>0).当a≤0时,f′(x)>0,函数f(x)在区间(0,+∞)上单调递增,所以,函数f(x)的单调递增区间为(0,+∞),无单调递减区间.当a>0时,由f ′(x)>0,得x>a 2;由f ′(x)<0,得0<x<a 2,所以,函数f(x)(2)由(1)知,如果函数f(x)有两个零点,则a>0,且,这是因为当x →0或x →+∞时均有f(x)→+∞.所以-a 2+4a -4aln a 2<0,即a +4ln a 2-4>0,令h(a)=a +4ln a 2-4,可知h(a)在区间(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln 32-1=ln 8116-1>0,所以存在a 0∈(2,3),使h(a 0)=0.当a>a 0时,h(a)>0;当0<a<a 0时,h(a)<0.所以,满足条件的最小正整数a =3.8.答案(1)单调递减区间为(0,2),单调递增区间为(2,+∞)(2)[2-3ln3,+∞)解析(1)当a =1时,f(x)=x -1-2lnx ,定义域为(0,+∞),则f ′(x)=1-2x =x -2x ,由f ′(x)>0,得x >2,由f ′(x)<0,得0<x <2.故f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)因为f(x)<0故要使函数f(x)只要对任意的x f(x)>0恒成立,即对x a >2-2lnxx -1恒成立.令h(x)=2-2lnx x -1,x 则h ′(x)=2lnx +2x -2(x -1)2,再令m(x)=2lnx +2x -2,x则m′(x)=-2(1-x)x2<0,故m(x)于是m(x)>4-2ln3>0.从而h′(x)>0,于是h(x)所以h(x)<2-3ln3,所以a的取值范围为[2-3ln3,+∞).。
第5课时 利用导数研究函数的零点问题考点1 讨论函数的零点个数——综合性(2021·海口模拟)已知函数f(x)=.(1)判断f(x)的单调性,并比较2 0202 021与2 0212 020的大小;(2)若函数g(x)=(x-2)2+x(2f(x)-1),其中≤a≤,判断g(x)的零点的个数,并说明理由.参考数据:ln 2≈0.693.解:(1)函数f(x)=,定义域是(0,+∞),故f′(x)=.令f′(x)>0,解得0<x<e;令f′(x)<0,解得x>e,故f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,则f(2 020)>f(2 021),即>,故2 021ln 2 020>2 020ln 2 021,故ln 2 0202 021>ln 2 0212 020,故2 0202 021>2 0212 020.(2)因为g(x)=(x2-4x+4)+2ln x-x,所以g′(x)=ax+-2a-1=.令g′(x)=0,解得x=2或x=,①当a=时,则g′(x)=≥0,g(x)在(0,+∞)上单调递增,且g(2)=2ln 2-2<0,g(6)=2ln 6-2>0,故g(2)g(6)<0,故存在x0∈(2,6),使得g(x0)=0,故g(x)在(0,+∞)上只有1个零点;②当<a<时,则<2,则g(x)在上单调递增,在上单调递减,在(2,+∞)上单调递增,故g(x)在(0,+∞)上有极小值g(2),g(2)=2ln 2-2<0,有极大值g=2a--2ln a-2,且g(2)=2ln 2-2<0,g(6)=8a+2ln 6-6>2ln 6-2>0,故g(2)g(6)<0,故存在x1∈(2,6),使得g(x1)=0,故g(x)在(2,+∞)上只有1个零点,另一方面令h(a)=g=2a--2ln a-2,h′(a)=2+-=2>0,所以h(a)在上单调递增,所以h(a)<h=e--2-2ln <0,则g<0,故g(x)在上没有零点.综上:当≤a≤时,g(x)只有1个零点.已知函数f(x)=x-(e为自然常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)设a∈R,讨论函数g(x)=x-ln x-f(x)的零点个数.解:(1)f(x)=x-,则f′(x)=.因为f(x)在(0,+∞)上单调递增,所以f′(x)≥0在(0,+∞)上恒成立.记φ(x)=e x+ax-a,则φ(x)≥0在(0,+∞)上恒成立,φ′(x)=e x+a.当a≥-1时,φ′(x)=e x+a>1+a≥0,即φ(x)在(0,+∞)上单调递增,所以φ(x)>φ(0)=1-a≥0,所以-1≤a≤1;当a<-1时,令φ′(x)=e x+a=0,解得x=ln(-a).当0<x<ln(-a)时,φ′(x)<0,φ(x)在(0,ln(-a))上单调递减;当x>ln(-a)时,φ′(x)>0,φ(x)在(ln(-a),+∞)上单调递增,所以φ(x)≥φ(ln(-a))=-2a+a ln(-a)≥0,解得-e2≤a<-1.综上可得,实数a的取值范围是[-e2,1].(2)g(x)=x-ln x-f(x)=-ln x(x>0),令g(x)=0,得a=(x>0).令h(x)=,则h′(x)=,当x∈(0,1]时,ln x≤0,x-1≤0,所以h′(x)≥0,h(x)单调递增;当x∈(1,+∞)时,h′(x)>0,h(x)单调递增.所以h(x)在(0,+∞)单调递增,又h(x)=∈R,a∈R,所以y=a与h(x)=的图象只有一个交点,所以a∈R,g(x)只有唯一一个零点.考点2 由函数的零点个数求参数的范围——综合性(2022·湖南模拟)已知函数f(x)=x3+3a(x+1)(a∈R).(1)讨论f(x)的单调性;(2)若函数g(x)=f(x)-x ln x-3a在上有两个不同的零点,求a的取值范围.解:(1)f′(x)=3x2+3a.①当a≥0时,f′(x)≥0,f(x)在R上单调递增;②当a<0时,令f′(x)>0,解得x<-或x>,令f′(x)<0,解得-<x<,所以f(x)在(-∞,-),(,+∞)上单调递增,在(-,)上单调递减.综上,当a≥0时,f(x)在R上单调递增;当a<0时,f(x)在(-∞,-),(,+∞)上单调递增,在(-,)上单调递减.(2)g(x)=x3+3ax-x ln x,依题意,x3+3ax-x ln x=0在上有两个不同的解,即3a=ln x-x2在上有两个不同的解.设h(x)=ln x-x2,x∈,则h′(x)=-2x=.当x∈时,h′(x)≥0,h(x)单调递增;当x∈时,h′(x)<0,h(x)单调递减,所以h(x)max=h=-ln 2-,且h=-ln 2-,h(2)=ln 2-4,h>h(2),所以-ln 2-≤3a<-ln 2-,所以-ln 2-≤a<-ln 2-,即实数a的取值范围为.已知函数f(x)=x2+ax+1-,a∈R.(1)若f(x)在(0,1)上单调递减,求a的取值范围;(2)设函数g(x)=f(x)-x-a-1,若g(x)在(1,+∞)上无零点,求整数a的最小值.解:(1)由题知f′(x)=2x+a+≤0在(0,1)上恒成立,即a≤-2x恒成立.令h(x)=-2x,则h′(x)=-2=-2>0,所以h(x)在(0,1)上单调递增,所以a≤h(x)min=h(0)=1.故a的取值范围是(-∞,1].(2)由已知x>1,假设g(x)=0⇔-a=x+,记φ(x)=x+,则φ′(x)=1+.令φ′(x)>0,解得x>1+,所以φ(x)在(1,1+)上单调递减,在(1+,+∞)上单调递增,φ(1+)=1++=1+=1+∈(2,3),由题知-a=φ(x)在(1,+∞)内无解,故-a<φ(1+)<3,所以a>-φ(1+),所以整数a的最小值为-2.考点3 函数极值点的偏移问题——综合性(2021·新高考全国Ⅰ卷)已知函数f(x)=x(1-ln x).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<+<e.(1)解:函数f(x)的定义域为(0,+∞),又f′(x)=1-ln x-1=-ln x,当x∈(0,1)时,f′(x)>0,当x∈(1,+∞)时,f′(x)<0,故f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)证明:因为b ln a-a ln b=a-b,故b(ln a+1)=a(ln b+1),即=,故f =f .设=x1,=x2,由(1)可知不妨设0<x1<1,x2>1.因为x∈(0,1)时,f(x)=x(1-ln x)>0,x∈(e,+∞)时,f(x)=x(1-ln x)<0,故1<x2<e.先证:x1+x2>2,若x2≥2,x1+x2>2必成立.若x2<2,要证x1+x2>2,即证x1>2-x2,而0<2-x2<1,故即证f(x1)>f(2-x2),即证f(x2)>f(2-x2),其中1<x2<2.设g(x)=f(x)-f(2-x),1<x<2,则g′(x)=f′(x)+f′(2-x)=-ln x-ln(2-x)=-ln[x(2-x)].因为1<x<2,故0<x(2-x)<1,故-ln x(2-x)>0,所以g′(x)>0,故g(x)在(1,2)上单调递增,所以g(x)>g(1)=0,故f(x)>f(2-x),即f(x2)>f(2-x2)成立,所以x1+x2>2成立,综上,x1+x2>2成立.设x2=tx1,则t>1,结合=,=x1,=x2,可得x1(1-ln x1)=x2(1-ln x2),即1-ln x1=t(1-ln t-ln x1),故ln x1=,要证x1+x2<e,即证(t+1)x1<e,即证ln (t+1)+ln x1<1,即证ln (t+1)+<1,即证(t-1)ln (t+1)-t ln t<0.令S(t)=(t-1)ln (t+1)-t ln t,t>1,则S′(t)=ln (t+1)+-1-ln t=ln -.先证明一个不等式:ln(x+1)≤x.设u(x)=ln(x+1)-x,则u′(x)=-1=,当-1<x<0时,u′(x)>0;当x>0时,u′(x)<0,故u(x)在(-1,0)上为增函数,在(0,+∞)上为减函数,故u(x)ma x=u(0)=0,故ln(x+1)≤x成立.由上述不等式可得当t>1时,ln ≤<,故S′(t)<0恒成立,故S(t)在(1,+∞)上为减函数,故S(t)<S(1)=0,故(t-1)ln (t+1)-t ln t<0成立,即x1+x2<e成立.综上所述,2<+<e.对称化构造是解决极值点偏移问题的方法,该方法可分为以下三步:已知函数f(x)=ln x-ax有两个零点x1,x2(x1<x2).(1)求实数a的取值范围;(2)求证:x1·x2>e2.(1)解:f′(x)=-a=(x>0),①若a≤0,则f′(x)>0,不符合题意.②若a>0,令f′(x)=0,解得x=.当x∈时,f′(x)>0;当x∈时,f′(x)<0.由题意知f(x)有两个零点的必要条件为f(x)=ln x-ax的极大值f=ln -1>0,解得0<a<.显然e∈,f(e)=1-a e<0,∈,f=2ln-.设t=>e,g(t)=2ln t-t,g′(t)=-1<0,所以g(t)在(e,+∞)上单调递减,g(t)<g(e)=2-e<0,即f <0.所以实数a的取值范围为.(2)证明:因为f(1)=-a<0,所以1<x1<<x2.构造函数H(x)=f-f=ln -ln -2ax,0<x<.H′(x)=+-2a=>0,所以H(x)在上单调递增,故H(x)>H(0)=0,即f >f.由1<x1<<x2,知-x1>,故f(x2)=f(x1)=f <f=f.因为f(x)在上单调递减,所以x2>-x1,即x1+x2>.故ln (x1x2)=ln x1+ln x2=a(x1+x2)>2,即x1·x2>e2.拓展考点 隐零点求解问题已知函数f(x)=ax2-ax-x ln x,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.(1)解:f(x)的定义域为(0,+∞),设g(x)=ax-a-ln x,则f(x)=xg(x),f(x)≥0等价于g(x)≥0.因为g(1)=0,g(x)≥0,故g′(1)=0,而g′(x)=a-,g′(1)=a-1=0,得a=1.若a=1,则g′(x)=1-.当0<x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增,所以x=1是g(x)的极小值点,故g(x)≥g(1)=0.综上,a=1.(2)证明:由(1)知f(x)=x2-x-x ln x,f′(x)=2x-2-ln x(x>0).设h(x)=2x-2-ln x,h′(x)=2-.当x∈时,h′(x)<0;当x∈时,h′(x)>0,所以h(x)在上单调递减,在上单调递增.又h(e-2)>0,h<0,h(1)=0,所以h(x)在上有唯一零点x0,在上有唯一零点1,且当x∈(0,x0)时,h(x)>0;当x∈(x0,1)时,h(x)<0;当x∈(1,+∞)时,h(x)>0.因为f′(x)=h(x),所以x=x0是f(x)的唯一极大值点.由f′(x0)=0得ln x0=2(x0-1),故f(x0)=x0(1-x0).由x0∈得f(x0)<.因为x=x0是f(x)在(0,1)上的最大值点,由e-1∈(0,1),f′(e-1)≠0得f(x0)>f(e-1)=e-2,所以e-2<f(x0)<2-2.设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)·f′(x)+x+1>0,求k的最大值.解:(1)当a≤0时,f(x)的单调递增区间是(-∞,+∞),无单调递减区间;当a>0时,函数f(x)的单调递减区间是(-∞,ln a),单调递增区间是(ln a,+∞).(解答过程略)(2)由题设可得(x-k)(e x-1)+x+1>0,即k<x+(x>0)恒成立.令g(x)=+x(x>0),得g′(x)=+1=(x>0).由(1)的结论可知,函数h(x)=e x-x-2(x>0)是增函数.又因为h(1)<0,h(2)>0,所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点),且eα=α+2.当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,所以g(x)min=g(α)=+α.又eα=α+2且α∈(1,2),则g(x)min=g(α)=1+α∈(2,3),所以k的最大值为2.1.按导函数零点能否精确求解可以把零点分为两类:1.已知函数f(x)=e x-a-eln(e x+a),若关于x的不等式f(x)≥0恒成立,求实数a的取值范围.解:由函数f(x)=e x-a-eln(e x+a),求得定义域为,对函数求导可得:f′(x)=e x-,则存在一个x0,使得f′(x0)=0,且-<x<x0时,f′(x)<0,x>x0时,f′(x)>0,则f(x)≥f(x0)=e x0-a-eln(e x0+a)=-a-e·ln e=e x0+-2e-a=e x0+a+-2e-2a.因为e x0+a+≥2e,所以f(x0)≥2e-2e-2a=-2a≥0,则a≤0,所以实数a的取值范围为(-∞,0].2.已知函数f(x)=.(1)求函数f(x)的零点及单调区间;(2)求证:曲线y=存在斜率为6的切线,且切点的纵坐标y0<-1.(1)解:函数f(x)的零点为e.函数f(x)的单调递增区间为(e,+∞),单调递减区间为(0,e).(解答过程略)(2)证明:要证曲线y=存在斜率为6的切线,即证y′==6有解,等价于1-ln x-6x2=0在x>0时有解.构造辅助函数g(x)=1-ln x-6x2(x>0),g′(x)=--12x<0,函数g(x)在(0,+∞)上单调递减,且g(1)=-5<0,g=1+ln 2->0,所以∃x0∈,使得g(x0)=1-ln x0-6x=0.即证明曲线y=存在斜率为6的切线.设切点坐标为,则y===-6x0,x0∈.令h(x)=-6x,x∈,由h(x)在区间上单调递减,则h(x)<h=-1,.所以y0<-1求证:x1x2>e2(e为自然对数的底数).[四字程序]思路参考:转化为证明ln x1+ln x2>2,根据x1,x2是方程f′(x)=0的根建立等量关系.令t=,将ln x1+ln x2变形为关于t的函数,将ln x1+ln x2>2转化为关于t的不等式进行证明.证明:欲证x1x2>e2,需证ln x1+ln x2>2.若f(x)有两个极值点x1,x2,则函数f′(x)有两个零点.又f′(x)=ln x-mx(x>0),所以x1,x2是方程f′(x)=0的两个不等实根.于是,有解得m=.另一方面,由得ln x2-ln x1=m(x2-x1),从而得=,于是,ln x1+ln x2==.又0<x1<x2,设t=,则t>1.因此,ln x1+ln x2=,t>1.要证ln x1+ln x2>2,即证>2,t>1.即当t>1时,有ln t>.设函数h(t)=ln t-,t>1,则h′(t)=-=≥0,所以,h(t)为(1,+∞)上的增函数.又h(1)=0,因此,h(t)>h(1)=0.于是,当t>1时,有ln t>.所以ln x1+ln x2>2成立,即x1x2>e2.思路参考:将证明x1x2>e2转化为证明x1>.依据x1,x2是方程f′(x)=0的两个不等实根,构造函数g(x)=,结合函数g(x)的单调性,只需证明g(x2)=g(x1)<g.证明:由x1,x2是方程f′(x)=0的两个不等实根,且f′(x)=ln x-mx(x>0),所以mx1=ln x1,mx2=ln x2.令g(x)=,g(x1)=g(x2),由于g′(x)=,因此,g(x)在(0,e)上单调递增,在(e,+∞)上单调递减.又x1<x2,所以0<x1<e<x2.令h(x)=g(x)-g(x∈(0,e)),h′(x)=>0,故h(x)在(0,e)上单调递增,故h(x)<h(e)=0,即g(x)<g.令x=x1,则g(x2)=g(x1)<g.因为x2,∈(e,+∞),g(x)在(e,+∞)上单调递减,所以x2>,即x1x2>e2.思路参考:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞),推出=e t1-t2.将证明x1x2>e2转化为证明t1+t2>2,引入变量k=t1-t2<0构建函数进行证明.证明:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞).由得⇒=e t1-t2.设k=t1-t2<0,则t1=,t2=.欲证x1x2>e2,需证ln x1+ln x2>2.即只需证明t1+t2>2,即>2⇔k(1+e k)<2(e k-1)⇔k(1+e k)-2(e k-1)<0.设g(k)=k(1+e k)-2(e k-1)(k<0),则g′(k)=k e k-e k+1.令m(k)=k e k-e k+1,则m′(k)=k e k<0,故g′(k)在(-∞,0)上单调递减,故g′(k)>g′(0)=0,故g(k)在(-∞,0)上单调递增,因此g(k)<g(0)=0,命题得证.思路参考:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞),推出=e t1-t2.将证明x1x2>e2转化为证明t1+t2>2,引入变量=k∈(0,1)构建函数进行证明.证明:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞).由得⇒=e t1-t2.设=k∈(0,1),则t1=,t2=.欲证x1x2>e2,需证ln x1+ln x2>2,即只需证明t1+t2>2,即>2⇔ln k<⇔ln k-<0.设g(k)=ln k-(k∈(0,1)),g′(k)=>0,故g(k)在(0,1)上单调递增,因此g(k)<g(1)=0,命题得证.1.本题考查应用导数研究极值点偏移问题,基本解题方法是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.2.基于课程标准,解答本题一般需要具有良好的转化与化归能力、运算求解能力、逻辑思维能力.本题的解答体现了逻辑推理、数学运算的核心素养.3.基于高考数学评价体系,本题涉及函数与方程、不等式、导数的计算与应用等知识,渗透着函数与方程、转化与化归、分类讨论等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养中起到了积极的作用.已知函数f(x)=x ln x-2ax2+x,a∈R.(1)若f(x)在(0,+∞)内单调递减,求实数a的取值范围;(2)若函数f(x)有两个极值点分别为x1,x2,证明:x1+x2>.(1)解:f′(x)=ln x+2-4ax.因为f(x)在(0,+∞)内单调递减,所以f′(x)=ln x+2-4ax≤0在(0,+∞)内恒成立,即4a≥+在(0,+∞)内恒成立.令g(x)=+,则g′(x)=.所以,当0<x<时,g′(x)>0,即g(x)在内单调递增;当x>时,g′(x)<0,即g(x)在内单调递减.所以g(x)的最大值为g=e,所以实数a的取值范围是.(2)证明:若函数f(x)有两个极值点分别为x1,x2,则f′(x)=ln x+2-4ax=0在(0,+∞)内有两个不等根x1,x2.由(1),知0<a<.由两式相减,得ln x1-ln x2=4a(x1-x2).不妨设0<x1<x2,则<1,所以要证明x1+x2>,只需证明<,即证明>ln x1-ln x2,亦即证明>ln.令函数h(x)=-ln x,0<x<1,所以h′(x)=<0,即函数h(x)在(0,1)内单调递减.所以当x∈(0,1)时,有h(x)>h(1)=0,所以>ln x,即不等式>ln成立.综上,x1+x2>,命题得证.。
考点21利用导数研究函数的零点(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现【核心题型】题型一 利用函数性质研究函数的零点利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.【例题1】(2024·全国·模拟预测)若函数()e 2xf x x a =-+-有两个零点,则实数a 的取值范围是( )A .(],1-¥B .(],0-¥C .(),0¥-D .(),1-¥【变式1】(2024·陕西西安·一模)若不等式e ln 2x x x a x -+³-恒成立,则实数a 的取值范围为.【变式2】(2024·全国·模拟预测)已知函数2()(2)ln f x x a x a x =-++,a ÎR .(1)讨论()f x 的单调性;(2)设2e ()()(1)2(1)ln xg x f x x a x a a x x =-+-+-+-,若()g x 存在两个不同的零点1x ,2x ,且12x x <.(i )证明:2e 1a >+;(ii )证明:22142121a a x x a ---<-.【变式3】(2024·辽宁·三模)已知()()211e 2xf x x ax =-+.(1)讨论函数()f x 的单调性;(2)当0a >时,证明:函数()f x 有且仅有两个零点12,x x ,且120x x +<.题型二 数形结合法研究函数的零点含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围或判断零点个数.【例题2】(2024·北京房山·一模)若函数(]()ln ln(1),,0()1,0,exx x f x x ¥¥ì-Î-ï=íÎ+ïî,则函数()()g x f x x c =++零点的个数为( )A .1B .2C .1或2D .1或3【变式1】(2024·全国·模拟预测)已知函数3e ,111(),()11,12xx x f x g x x a x x x ì>-ïï+==++íï+£-ïî.若(())0g f x =有三个不同的根,则a 的取值范围为 .【变式2】(2024·陕西西安·模拟预测)已知函数()()e 1xf x ax a =--ÎR .(1)若函数()f x 在点()()1,1f 处的切线与直线2e 10x y ++=垂直,求a 的值;(2)当(]0,2x Î时,讨论函数()()ln F x f x x x =-零点的个数.【变式3】(2024·河北邯郸·二模)已知函数()()e ,ln xf x mxg x x m x =-=-.(1)是否存在实数m ,使得()f x 和()g x 在()0,¥+上的单调区间相同?若存在,求出m 的取值范围;若不存在,请说明理由.(2)已知12,x x 是()f x 的零点,23,x x 是()g x 的零点.①证明:e m >,②证明:31231e x x x <<.题型三 构造函数法研究函数的零点涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间内的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围【例题3】(2023·吉林通化·模拟预测)已知函数()()232()23f x x x ax b =+-+满足:①定义域为R ;②142b <<;③有且仅有两个不同的零点1x ,2x ,则1211+x x 的取值范围是( )A .(2,1)--B .11,2æö--ç÷èøC .1,12æöç÷èøD .(1,2)【变式1】(2024·河北沧州·模拟预测)已知函数2()e 2ln x f x ax x x a =---,则( )A .当1a =时,()f x 有极小值B .当1a =时,()f x 有极大值C .若()0f x ³,则1a =D .函数()f x 的零点最多有1个【变式2】(2024·全国·模拟预测)设函数()()2ln f x x ax x a =-++ÎR .(1)若1a =,求函数()f x 的单调区间;(2)设函数()f x 在1,e e éùêúëû上有两个零点,求实数a 的取值范围.(其中e 是自然对数的底数)【变式3】(2024·广东·二模)已知()()21122ln ,02f x ax a x x a =+-->.(1)求()f x 的单调区间;(2)函数()f x 的图象上是否存在两点()()1122,,,A x y B x y (其中12x x ¹),使得直线AB 与函数()f x 的图象在1202x x x +=处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【课后强化】基础保分练一、单选题1.(2023·四川资阳·模拟预测)将函数()1cos e xf x x =-在()0,¥+上的所有极值点按照由小到大的顺序排列,得到数列{}n x (其中*n ÎN ),则( )A .11ππ22n n x n æöæö-<<+ç÷ç÷èøèøB .1πn n x x +-<C .()121πn n x x n ++>-D .(){}1πn x n --为递减数列2.(23-24高三上·湖北荆门·阶段练习)()22e 5x f x x =-的零点的个数为( )A .0B .1C .2D .33.(2023·四川成都·二模)若指数函数x y a =(0a >且1a ¹)与幂函数5y x =的图象恰好有两个不同的交点,则实数a 的取值范围是( )A .e5e ,¥æö+ç÷èøB .e51,e æöç÷èøC .e 51,e æöæöç÷ç÷ç÷èøèøD .e 51,e æöç÷èø4.(2023·全国·模拟预测)已知函数1522ln 4()e 4ln(4)e 2x a a xx f x x x -+-=++-++存在零点,则实数a 的值为( )A .2-B .15ln24-C .3-D .15ln34-二、多选题5.(2024·全国·模拟预测)已知函数()31f x x ax =-+,a ÎR ,则( )A .若()f x 有极值点,则0a £B .当1a =时,()f x 有一个零点C .()()2f x f x =--D .当1a =时,曲线()y f x =上斜率为2的切线是直线21y x =-6.(2024·辽宁抚顺·三模)已知定义在R 上的奇函数()f x 连续,函数()f x 的导函数为()f x ¢.当0x >时,()()()cos sin e f x x f x x f x ¢>+×¢,其中e 为自然对数的底数,则( )A .()f x 在R 上为减函数B .当0x >时,()0f x <C .π3π22f f æöæö>ç÷ç÷èøèøD .()f x 在R 上有且只有1个零点三、填空题7.(2024·内蒙古包头·一模)已知函数()()32340f x kx x k k =-+>,若()f x 存在唯一的零点,则k 的取值范围是 .8.(2024·四川成都·模拟预测)若函数()2e 2x m f x x x =--在()1,2x Î-上有2个极值点,则实数m 的取值范围是 .四、解答题9.(2024·浙江绍兴·模拟预测)已知()e xf x a x =-,()cosg x x =.(1)讨论()f x 的单调性.(2)若0x ∃使得()()00f x g x =,求参数a 的取值范围.10.(2024·宁夏固原·一模)已知函数()()ln 11(0)f x ax x a =++>.(1)求()f x 的最小值;(2)若()f x 有两个零点,求a 的取值范围.11.(2024·全国·模拟预测)已知函数1()e (0)x f x x a x =->,且()f x 有两个相异零点12,x x .(1)求实数a 的取值范围.(2)证明:122eax x +>.12.(2024·湖北黄石·三模)已知函数()ln f x x x m =-+有两个零点1x ,2x .(1)求实数m 的取值范围;(2)如果1212x x x <£,求此时m 的取值范围.综合提升练一、单选题1.(2023·湖南·模拟预测)有甲、乙两个物体同时从A 地沿着一条固定路线运动,甲物体的运动路程1s (千米)与时间t (时)的关系为()121ts t =-,乙物体运动的路程2s (千米)与时间t (时)的关系为()23s t t =,当甲、乙再次相遇时,所用的时间t (时)属于区间( )A .()2,3B .()3,4C .()4,5D .()5,62.(23-24高三上·海南省直辖县级单位·阶段练习)函数()sin 2f x x x =+-的零点所在的大致区间为( )A .()0,1B .()1,2C .()2,3D .()3,43.(2024·全国·模拟预测)若函数()e ln 2x f x x x x a =--+-有两个零点,则实数a 的取值范围是( )A .(],1-¥B .(],0-¥C .(),0¥-D .(),1-¥4.(23-24高三下·江西·阶段练习)函数()|2||ln |f x x m x =--有且只有一个零点,则m 的取值可以是( )A .2B .1C .3D .e5.(2024·陕西汉中·二模)已知函数3232,0()ln ,0x x x x f x x x ì---£=í>î,()()g x f x mx =-有4个零点,则m 的取值范围为( )A .11(,4eB .1(2,0]{}e -U C .1(2,0]{}4-U D .11(,0](,)4e-¥U 6.(2024·全国·模拟预测)已知函数()2xf x kx b =--恰有一个零点0x ,且0b k >>,则0x 的取值范围为( )A .1ln2,ln2-æö-¥ç÷èøB .ln2,1ln2æö-¥ç÷-èøC .1ln2,ln2-æö+¥ç÷èøD .ln2,1ln2æö+¥ç÷-èø7.(2024·贵州贵阳·一模)已知函数()e ,0e ,0x a xf x x x -ì+>ï=íï<î,若方程()e 0f x x +=存在三个不相等的实根,则实数a 的取值范围是( )A .(),e -¥B .(),e -¥-C .(),2e -¥-D .(),2e -¥8.(2024·陕西·二模)已知()0f x ³,且0x >时,()()22cos f x x f x =×,则下列选项正确的是( )A .()2x f x f æö>ç÷èøB .当()ππ2x k k ¹+ÎZ 时,()()2tan 2f x xf x £C .若2π42πf æö=ç÷èø,()()22sin x f x g x x=为常函数,则()1f x =在区间()0,1内仅有1个根D .若()11f =,则()2827f <二、多选题9.(2024·辽宁·三模)已知函数()()1ln ,ln ,f x ax x g x a x a x=-=+为实数,下列说法正确的是( )A .当1a =时,则()f x 与()g x 有相同的极值点和极值B .存在R a Î,使()f x 与()g x 的零点同时为2个C .当()0,1a Î时,()()1f x g x -£对[]1,e x Î恒成立D .若函数()()f x g x -在[]1,e 上单调递减,则a 的取值范围为2,e æù-¥çúèû10.(2024·河北唐山·一模)已知函数()331f x x x =-+,则( )A .直线32y x =-是曲线()y f x =的切线B .()f x 有两个极值点C .()f x 有三个零点D .存在等差数列{}n a ,满足()155k k f a ==å11.(2024·全国·模拟预测)已知函数()(1)ln f x x x =-,2()g x x =,下列命题正确的是( )A .若()()()H x f x g x =-,则()H x 有且只有一个零点B .若()()()f x H xg x =,则()H x 在定义域上单调,且最小值为0C .若()()()H x f x g x ¢=-,则()H x 有且只有两个零点D .若()()(||)g x H x f x ¢=,则()H x 为奇函数三、填空题12.(2023·四川内江·模拟预测)若函数()e x f x kx =-有两个零点,则k 的取值范围为 .13.(2024·四川泸州·二模)若函数1()ln ef x x x a =-+有零点,则实数a 的取值范围是 .14.(2024·广东佛山·二模)若函数()ln e ln e x xa xf x x x a x=+--(R a Î)有2个不同的零点,则实数a 的取值范围是 .四、解答题15.(23-24高三上·河南·期末)已知函数()ln(1)sin f x a x x x =+-.(1)若0a =,求曲线()y f x =在点ππ,22f æöæöç÷ç÷èøèø处的切线方程;(2)若1a =,研究函数()f x 在(]1,0x Î-上的单调性和零点个数.16.(2024·四川泸州·三模)已知函数1(e )x ax f x =-(0a >),(1)讨论函数()f x 的零点个数;(2)若|()ln |x x x f x >+恒成立,求函数()f x 的零点0x 的取值范围.17.(2024·四川·模拟预测)已知函数()2211e ,2exf x ax x x a =--³.(1)讨论函数()f x 的单调性;(2)当0x >时,求证:()21ln 12f x x x ³--.18.(2024·北京朝阳·一模)已知函数()()()1e R xf x ax a =-Î.(1)讨论()f x 的单调性;(2)若关于x 的不等式()()1f x a x >-无整数解,求a 的取值范围.19.(2024·全国·模拟预测)已知函数()(0,1)x f x a a a =>¹,函数()log (0,1)a g x x a a =>¹.(1)当e a =时,讨论函数()()()h x f x g x =的单调性;(2)当01a <<时,求函数()()()S x f x g x =-的零点个数.拓展冲刺练一、单选题1.(2024·云南·模拟预测)已知函数()e ln x f x x x x a =---,若()0f x =在()0,e x Î有实数解,则实数a 的取值范围是( )A .[)0,¥+B .1,e ¥éö+÷êëøC .[)1,+¥D .[)e,+¥2.(2024·浙江杭州·模拟预测)若函数()ln f x x x x x a =-+-有且仅有两个零点,则a 的取值范围是( )A .()1,00,e e æö-Èç÷èøB .()2,00,e e æö-Èç÷èøC .()2,00,3e æö-Èç÷èøD .()1,00,3e æö-Èç÷èø3.(2024·四川成都·二模)函数()()e sin ,π,x f x a x x =+Î-+¥,下列说法不正确的是( )A .当1a =-时,()0f x >恒成立B .当1a =时,()f x 存在唯一极小值点0xC .对任意()0,a f x >在()π,x Î-+¥上均存在零点D .存在()0,a f x <在()π,x Î-+¥上有且只有一个零点4.(2024·甘肃武威·模拟预测)已知函数()4ln 12f x ax a x æö=--+ç÷èø有3个零点,则实数a 的取值范围是( )A .()1,+¥B .()2,+¥C .(),1-¥-D .(),2-¥-二、多选题5.(2024·重庆·一模)已知函数()32e 2x f x x x ax =+--,则()f x 在()0,¥+有两个不同零点的充分不必要条件可以是( )A .e 2e 1a -<<-B .e 1e a -<<C .e e 1a <<+D .e 1e 2a +<<+6.(2024·黑龙江哈尔滨·二模)已知函数()(1)ln 1f x m x x x =+-+,下列说法正确的有( )A .当12m =时,则()y f x =在(0,)+¥上单调递增B .当1m =时,函数()y f x =有唯一极值点C .若函数()y f x =只有两个不等于1的零点12,x x ,则必有121x x ×=D .若函数()y f x =有三个零点,则102m <<三、填空题7.(2023·湖北·一模)若函数21ln(21),2()12,2x x f x x x a x ì->ïï=íï--+£ïî在1x =处的切线与()f x 的图像有三个公共点,则a 的取值范围 .8.(2023·河南·模拟预测)已知函数()32f x x bx cx c =+++有三个零点,且它们的和为0,则b c -的取值范围是 .四、解答题9.(2024·北京丰台·二模)已知函数()()222ln 0f x a x x a =+¹.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若函数()f x 有两个零点,求a 的取值范围.10.(2024·全国·模拟预测)已知函数()cos ln(1)f x x x =++.(1)求证:()f x 在π1,2æö-ç÷èø上有唯一的极大值点;(2)若()1f x ax £+恒成立,求a 的值;(3)求证:函数()()g x f x x =-有两个零点.。
2021届高考数学一轮复习第二篇函数导数及其应用第11节第五课时利用导数研究函数零点专题训练理新人教版202108102203【选题明细表】知识点、方法题号利用函数图象研究函数零点1,5利用函数性质研究函数零点2,3构造函数研究函数零点 4解:先求函数f(x)的单调区间,令f′(x)=3x2-3=0,解得x=±1,当x<-1或x>1时,f′(x)>0,当-1<x<1时,f′(x)<0,因此在(-∞,-1)和(1,+∞)上,f(x)=x3-3x单调递增,在(-1,1)上,f(x)=x3-3x单调递减,f(-1)=2, f(1)=-2,由此能够作出f(x)=x3-3x的草图(如图).由图可知,当且仅当-2<a<2时,直线y=a与函数f(x)=x3-3x的图象有三个互不相同的公共点.因此,a的取值范畴为(-2,2).2.(2021·云南临沧)设函数f(x)=bx3- (2b+1)x2+6x+a(b>0).(1)求f(x)的单调区间;(2)设b=1,若方程f(x)=0有且只有一个实根,求a的取值范畴.解:(1)f′(x)=3bx2-3(2b+1)x+6=3(x-2)(bx-1),令f′(x)=0得x=2或x=,①当<2即b>时,f(x)在(-∞,)和(2,+∞)上递增,在(,2)上递减.②当>2即0<b<时,f(x)在(-∞,2)和(,+∞)上递增,在(2,)上递减.③当=2即b=时,f′(x)= (x-2)2≥0,因此f(x)在R上递增.(2)b=1时,f(x)=x3-x2+6x+a,因此f′(x) =3x2-9x+6=3(x-2)(x-1),因此f(x)在(-∞,1)和(2,+∞)上递增,在(1,2)上递减,因此f(x)在x=2处取得极小值,在x=1处取得极大值,因此依题意只需f(2)>0或f(1)<0即可,f(2)=2+a>0或f(1)= +a<0,因此a>-2或a<-.因此a的取值范畴为(-∞,-)∪(-2,+∞).3.导学号 38486074已知函数f(x)=x-ae x,a∈R.(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线的方程;(2)若曲线y=f(x)与x轴有且只有一个交点,求a的取值范畴.解:(1)当a=1时,f(x)=x-e x,f′(x)=1-e x.当x=0时,y=-1,又f′(0)=0,因此曲线y=f(x)在点(0,f(0))处的切线方程为y=-1.(2)由f(x)= x-ae x,得f′(x)=1-ae x.当a≤0时,f′(x)>0,现在f(x)在R上单调递增.f(a)=a-ae a=a(1-e a)≤0,f(1)=1-ae>0,f(a)·f(1)<0,由零点存在性定理,当a≤0时,曲线y=f(x)与x轴有且只有一个交点.当a>0时,令f′(x)=0,得x=-ln a.f(x)与f′(x)在区间(-∞,+∞)上的情形如表:x (-∞,-ln a) -ln a (-ln a,+∞) f′(x) + 0 -f(x) ↗极大值↘则有f(-ln a)=0,即-ln a-ae-ln a=0,解得a=.综上所述,曲线y=f(x)与x轴有且只有一个交点时,a的取值范畴为{a︱a≤0或a=}.4.(2021·广东深圳一模)已知三次函数f(x)=x3+bx2+cx+d(a,b,c∈R)过点(3,0),且函数f(x)在点(0,f(0))处的切线恰好是直线y=0.(1)求函数f(x)的解析式;(2)设函数g(x)=9x+m-1,若函数y=f(x)-g(x)在区间[-2,1]上有两个零点,求实数m的取值范畴.解:(1)f′(x)=3x2+2bx+c,由已知条件得,解得b=-3,c=d=0,因此f(x)=x3-3x2.(2)由已知条件得,f(x)-g(x)=0在[-2,1]上有两个不同的解;即x3-3x2-9x-m+1=0在区间[-2,1]上有两个不同的解,即m=x3-3x2-9x+1在[-2,1]上有两个不同的解.令h(x)=x3-3x2-9x+1,h′(x)=3x2-6x-9,x∈[-2,1],解3x2-6x-9>0得-2≤x<-1,解3x2-6x-9<0得-1<x≤1,因此h(x)max=h(-1)=6,又f(-2)=-1,f(1)=-10,因此h(x)min=-10.因此m=h(x)在区间[-2,1]上有两个不同的解,因此-1≤m<6.因此实数m的取值范畴是[-1,6).5.(2021·沈阳一模)函数f(x)=ax+xln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范畴. 解:(1)f′(x)=a+ln x+1,因为f′(1)=a+1=0,解得a=-1,当a=-1时,f(x)=-x+xln x,即f′(x)=ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.因此f(x)在x=1处取得极小值,f(x)的增区间为(1,+∞),减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+1图象上有两个不同的交点,由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,由题意得,m+1>-1,即m>-2, ①当0<x<e时,f(x)=x(-1+ln x)<0,当x>e时,f(x)>0;当x>0且x→0时,f(x)→0;当x→+∞时,明显f(x)→+∞.由图象可知,m+1<0,即m<-1,②由①②可得-2<m<-1,因此m的取值范畴为(-2,-1).。
第五课时 利用导数研究函数零点问题【学习目标】1.零点问题主要是利用转化的数学思想,把函数的零点问题转化为方程解的个数问题,再转化为两个函数图像交点的个数问题;2.已知方程有解求参数范围问题可转化为函数的值域问题.3.本专题主要研究运用数形结合思想探究函数零点问题. 【预习单】 知识归纳总结1. 借单调性,结合零点定理2. 数形结合,利用图像交点3. 构造函数,研究函数性质【活动单】例1 已知函数f(x)=13x 3-12()a +1x 2+ax ,设a>1, 试讨论函数f(x)在区间[0,a +1]内零点的个数.练习:已知函数f(x)=ax 3-3x 2+1,若f(x)存在唯一的零点x 0,且x 0>0,求a 的取值范围.例2 已知函数f (x )=13x 3-a (x 2+x +1).证明:f (x )只有一个零点.例3 已知函数f(x)=⎩⎪⎨⎪⎧4x -x 2,x ≥0,-3x ,x<0,若函数g(x)=|f(x)|-3x +b 有三个零点,则实数b 的取值范围为 .练习:已知k 为常数,函数f(x)=⎩⎨⎧x +2x +1,x ≤0,||ln x ,x>0,若关于x 的方程f(x)=kx +2有且只有四个不同的解,则实数k 的取值集合为_ .【巩固单】1. 设y =f(x)是定义在R 上的可导偶函数,且f (2)=2,若当x <0时,f ′(x )+2f (x )x <0,则函数g (x )=f (x )-1x 2的零点个数为( ) A. 0 B. 1 C. 2 D. 0或22. 若函数f(x)=-2x 3+2tx 2+1存在唯一的零点,则实数t 的取值范围为_________________.3. 已知函数f(x)=x 3+ax 2+c -a(a ∈R ,c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是()-∞,-3∪⎝⎛⎭⎫1,32∪⎝⎛⎭⎫32,+∞,求c 的值.4. 设函数f(x)=(x +1)ln x ,g(x)=x 2e x ,是否存在自然数k , 使得方程f(x)=g(x)在(k ,k +1)内存在唯一的根?5.已知函数f(x)=x 2+2x -3,g(x)=k ln xx ,且函数f(x)与g(x)的图像在x =1处的切线相同.(1)求k 的值;(2)令F(x)=⎩⎨⎧||f (x ),x ≤1,g (x ),x>1,若函数y =F(x)-m 存在3个零点,求实数m 的取值范围.6. 已知函数f(x)=(2-a)(x -1)-2ln x(a ∈R ,e 为自然对数的底数).若函数f (x )在⎝⎛⎭⎫0,12上无零点,求a的最小值.第五课时 利用导数研究函数零点问题【学习目标】1.零点问题主要是利用转化的数学思想,把函数的零点问题转化为方程解的个数问题,再转化为两个函数图像交点的个数问题;2.已知方程有解求参数范围问题可转化为函数的值域问题.3.本专题主要研究运用数形结合思想探究函数零点问题. 【预习单】 知识归纳总结高考数学卷及模考试题的填空压轴题较多以分段函数为载体,考查方程的根或函数的零点问题,对同学们转化能力要求较高,用导数的方法研究函数的性质是常见手段,每每伴随着数形结合,参变分离等手段. 解决此类问题的难点:①是函数形式的有效选择;②函数与方程的相互转化;③数形结合思想的灵活运用.1. 借单调性,结合零点定理函数是否有零点,有几个零点,先求导得函数的单调性,再利用零点的存在性定理,结合图像判断就一目了然了.2. 数形结合,利用图像交点有的函数图像比较复杂,不易画出来,要研究其零点问题,可以适当移项,将它转化为两个函数,通过画出简图、观察其交点的个数,再通过数的运算求出函数的极值或参数的范围等,是利用数形结合解决问题的. 尤其对于某些填空题,利用数形结合思想进行合理转化,优越性较为明显.3. 构造函数,研究函数性质对于求函数的零点、确定方程的根和由函数零点求参数的取值范围等问题,可以通过方程、函数的相互关系,构造函数,借助导数来研究函数的性质、刻画函数的图像. 其中,零点存在定理是解题的重要依据,转化与化归与数形结合是两个重要的数学思想.解决含参问题是考查利用导数研究函数的常见题型,可以根据题目的结构实施等价变形,往往是通过参变分离,将原问题转化为恒成立或存在性问题,当然,解决问题的复杂性,又需要转化为新的函数、借助图形来处理. 而转化的等价性是易错点,严谨规范的数学表达是得分点.值得注意的是,求函数的零点、求参数的范围、运用导数解决实际问题是函数应用的延伸,所以结合其它知识综合考查用导数求解零点问题在每年的高考试题中都有体现. 有时思路清晰了,但如何根据式子结构合理代换、减少变量、进行合理运算是解答成功的关键(如巩固训练3).【活动单】考点1 研究函数性质 运用零点定理例1 已知函数f(x)=13x 3-12()a +1x 2+ax ,设a>1,试讨论函数f(x)在区间[0,a +1]内零点的个数.【解】 f′(x)=x 2-(a +1)x +a =(x -1)(x -a),当a>1时,函数f(x)在(0,1)和(a ,a +1)上单调递增,在(1,a)上单调递减,又f(0)=0, f ()a =12a 2-16a 3,f(a +1)=-16(a +1)(a 2-4a +1),解不等式f(a)>0得0<a <3, 由于a >1,故1<a<3,解不等式f(a +1)>0且a >1得1<a<2+3, ∴1<a<3时,f(x)在区间[0,a +1]内有一个零点; a =3时,f(x)在区间[0,a +1]内有两个零点;3<a ≤2+3时,f(x)在区间[0,a +1]内有三个零点;a>2+3时, f(x)在区间[0,a +1]内有两个零点.【点评】 本题为含参三次函数的零点讨论问题,明确导函数f′(x)=x 2-(a +1)x +a =(x -1)(x -a)的符号是关键,确定分类标准,即讨论a 与1的大小关系,获得单调区间,结合零点存在定理,通过区间端点值的情况研究获得零点情况. 解答时易出现概念不清晰,分类标准模糊等失误.变式训练已知函数f(x)=ax 3-3x 2+1,若f(x)存在唯一的零点x 0,且x 0>0,则a 的取值范围是__a <-2__. 【解析】 ①当a =0时,-3x 2+1=0时,x =±33,∴此时不符合题意;②当a>0时,f ′(x)=3ax 2-6x =3x(ax -2),当f′(x)>0时,解得x>2a 或x<0,则f(x)在(-∞,0)上单调递增,∵f(0)=1,f(-1)=-a -2<0,则存在一零点在(-∞,0)上,∴此时不符合题意; ③当a<0时,当f′(x)>0时,解得2a <x<0,f ′(x)<0时,解得x<2a 或x>0,∴函数f(x)在(-∞,2a )单调递减,在(2a ,0)上单调递增,在(0,+∞)上单调递减, 若f(x)在R 上存在唯一的零点x 0,且x 0>0,则f (2a )=8a 2-12a 2+1>0,即-4a 2+1>0, 整理得a 2>4,解得a <-2或a >2(舍去). 综上所述,当a <-2时满足题意例2 已知函数f (x )=13x 3-a (x 2+x +1).证明:f (x )只有一个零点. 证明 由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0, 所以g (x )在(-∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a -1)=-6a 2+2a -13=-6⎝⎛⎭⎫a -162-16<0,f (3a +1)=13>0,故f (x )有一个零点. 综上,f (x )只有一个零点.考点2 实施灵活转化 依据数形结合例3 已知函数f(x)=⎩⎪⎨⎪⎧4x -x 2,x ≥0,-3x ,x<0,若函数g(x)=|f(x)|-3x +b 有三个零点,则实数b 的取值范围为__(-∞,-6)∪(-14,0]__.【解析】 函数g(x)=|f(x)|-3x +b 有三个零点⇔方程g(x)=0有三个不同的实根 ⇔函数y =|f(x)|图像与直线y =3x -b 有三个不同的交点. 画出图形. 当直线y =3x -b 与y =-3x (x<0)相切时,b =-6; 当直线y =3x -b 与y =4x -x 2(0≤x ≤4)相切时,b =-14;直线y =3x -b 与y =x 2-4x(x>4)有三个不同的交点, 由图可知实数b 的取值范围为(-∞,-6)∪(-14,0].【点评】 函数的零点问题和对应方程的根以及函数图像的交点具有等价性,解题中要学会灵活转化,把握基本函数的图像,通过数形结合来解题. 数形结合往往是定性分析和定量计算并存,对临界状态(切线)的研究要结合动态变化的一般规律.变式训练已知k 为常数,函数f(x)=⎩⎨⎧x +2x +1,x ≤0,||ln x ,x>0,若关于x 的方程f(x)=kx +2有且只有四个不同的解,则实数k 的取值集合为__⎩⎨⎧⎭⎬⎫1e 3∪(-e ,-1)__.【解析】 作出函数f(x)=⎩⎨⎧x +2x +1,x ≤0,||ln x ,x>0和函数y =kx +2的图像,过点A(0,2)分别作曲线C 1:y =ln x(x >1),C 2:y =-ln x(0<x <1),C 3:y =x +2x +1(-1<x <0)的切线,对应的斜率分别为1e 3,-1,-e ,由图像可知:当函数f(x)=⎩⎨⎧x +2x +1,x ≤0,||ln x ,x>0和函数y =kx +2的图像有4个不同的公共点时,对应的k 的取值范围为k =1e 3或-e <k <-1,∴当f(x)=kx +2有4个不同的解时,对应的k 的取值范围为⎩⎨⎧⎭⎬⎫1e 3∪(-e ,-1).【巩固单】1. 设y =f(x)是定义在R 上的可导偶函数,且f (2)=2,若当x <0时,f ′(x )+2f (x )x <0,则函数g (x )=f (x )-1x 2的零点个数为(C )A. 0B. 1C. 2D. 0或2【解析】 当x <0时,f ′(x )+2f (x )x =xf ′(x )+2f (x )x <0,则xf ′(x )+2f (x )>0, 构造函数h (x )=x 2f (x ),则h ′(x )=2xf (x )+x 2f ′(x )=x []2f (x )+xf ′(x ),则当x <0时,h ′(x )=x []2f (x )+xf ′(x )<0,∴函数y =h (x )在()-∞,0上为减函数, 由于函数y =f (x )为偶函数,则函数y =h (x )也为偶函数, ∴函数y =h (x )在()0,+∞上为增函数, ∵f (2)=2,∴h ()-2=h (2)=4f (2)=8,又h (0)=0,∴函数y =h (x )与直线y =1的交点个数为2.故选C.2. 若函数f(x)=-2x 3+2tx 2+1存在唯一的零点,则实数t 的取值范围为__⎝⎛⎭⎫-32,+∞__.【解析】 ∵f(x)=-2x 3+2tx 2+1存在唯一的零点,则f(x)在R 上为单调函数或极小值大于0或极大值小于0,又∵f ′(x )=-6x 2+4tx =-6x ⎝⎛⎭⎫x -2t 3,且f (0)=1,∴只能是f (x )的极小值大于0或在R 上为单调函数. 当t >0时,极小值为f (0)=1;当t =0时,f (x )在R 上单调递减;当t <0时,极小值为f ⎝⎛⎭⎫2t 3=8t 327+1>0,即t >-32,综上,t ∈⎝⎛⎭⎫-32, +∞.3. 已知函数f(x)=x 3+ax 2+c -a(a ∈R ,c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是()-∞,-3∪⎝⎛⎭⎫1,32∪⎝⎛⎭⎫32,+∞,求c 的值.【解】 ∵f (x )=x 3+ax 2+c -a ,∴f ′(x )=3x 2+2ax ,令f ′(x )=0,可得x =0或x =-2a3. 则函数f (x )有三个不同的零点等价于f (0)·f ⎝⎛⎭⎫-2a 3=(c -a )(427a 3+c -a )<0(a ≠0), ∴a >0时,-427a 3<c -a <0或a <0时,0<c -a <-427a 3,即a >0时,427a 3-a +c >0或a <0时,427a 3-a +c <0,设g ()a =427a 3-a +c ,∵函数f (x )有三个不同的零点时,a 的取值范围恰好是()-∞,-3∪⎝⎛⎭⎫1,32∪⎝⎛⎭⎫32,+∞,∴在(-∞,-3)上,g (a )<0且在⎝⎛⎭⎫1,32∪⎝⎛⎭⎫32,+∞上g (a )>0均恒成立,∴g (-3)=c -1≤0且g ⎝⎛⎭⎫32=c -1≥0,∴c =1,此时f (x )=x 3+ax 2+1-a =(x +1)[x 2+(a -1)x +1-a ],∵函数有三个零点, ∴x 2+(a -1)x +1-a 有两个异于-1的不等实根,∴Δ=(a -1)2-4(1-a )>0且(-1)2-(a -1)+1-a ≠0,计算得出a ∈()-∞,-3∪⎝⎛⎭⎫1,32∪⎝⎛⎭⎫32,+∞,综上c =1.4. 设函数f(x)=(x +1)ln x ,g(x)=x 2e x ,是否存在自然数k ,使得方程f(x)=g(x)在(k ,k +1)内存在唯一的根?如果存在,求出k 的值;如果不存在,请说明理由.【解】 当k =1时,方程f(x)=g(x)在(1,2)内存在唯一的根. 理由如下: 设h(x)=f(x)-g(x)=(x +1)ln x -x 2e x ,当x ∈(0,1]时,h(x)<0. 又h(2)=3ln 2-4e 2=ln 8-4e 2>1-1=0, ∴存在x 0∈(1,2),使h(x 0)=0. ∵h ′(x)=ln x +1x +1+x (x -2)e x , ∴当x ∈(1,2)时,h ′(x)>1-1e >0;当x ∈[2,+∞)时,h ′(x)>0,∴当x ∈(1,+∞)时,h(x)单调递增, ∴当k =1时,方程f(x)=g(x)在(1,2)内存在唯一的根.5.已知函数f(x)=x 2+2x -3,g(x)=k ln xx ,且函数f(x)与g(x)的图像在x =1处的切线相同.(1)求k 的值;(2)令F(x)=⎩⎨⎧||f (x ),x ≤1,g (x ),x>1,若函数y =F(x)-m 存在3个零点,求实数m 的取值范围. 【解】 (1) 由f(x)=x 2+2x -3,得f′(x)=2x +2,则f′(1)=4,又f(1)=0,∴f(x)在x =1处的切线方程为y =4x -4.又∵函数f(x)与g(x)的图像在x =1处的切线相同,g ′(x)=k ()1-ln x x 2,∴g ′(1)=k =4. (2)令F(x)=⎩⎨⎧||f (x ),x ≤1,g (x ),x>1⇒ ⎩⎪⎨⎪⎧||x 2+2x -3,x ≤1,4ln x x ,x>1,当x>1时,F(x)=4ln x x ,F ′(x)=4-4ln x x ,令F′(x)=0,得x =e ,得函数F(x)在x =e 处取极大值为4e ,当x →+∞时,图像趋近于x 轴.∴函数F(x)的大致图像如图所示,由图可知若函数y =F(x)-m 存在3个零点,则实数m 的取值范围是⎝⎛⎭⎫4e ,4.6. 已知函数f(x)=(2-a)(x -1)-2ln x(a ∈R ,e 为自然对数的底数).(1)当a =1时,求f (x )的单调区间;(2)若函数f (x )在⎝⎛⎭⎫0,12上无零点,求a 的最小值.【解】 (1)当a =1时,f (x )=x -1-2ln x ,f ′(x )=1-2x ,由f ′(x )>0,得x >2;由f ′(x )<0,得0<x <2.故f (x )的单调减区间为(0,2],单调增区间为(2,+∞).(2)由于f (x )<0在⎝⎛⎭⎫0,12上不可能恒成立(x →0时,f (x )→+∞),故要使函数f (x )在⎝⎛⎭⎫0,12上无零点,只要对任意的x ∈⎝⎛⎭⎫0,12,f (x )>0恒成立,即对x ∈⎝⎛⎭⎫0,12,a >2-2ln x x -1恒成立.令l (x )=2-2ln x x -1,x ∈⎝⎛⎭⎫0,12,则l ′(x )=-2x ()x -1-2ln x ()x -12=2ln x +2x -2()x -12再令m (x )=2ln x +2x -2,x ∈⎝⎛⎭⎫0,12,m ′(x )=-2x 2+2x =-2()1-x x 2<0,m (x )在⎝⎛⎭⎫0,12上为减函数,于是m (x )>m ⎝⎛⎭⎫12=2-2ln2>0,从而l ′(x )>0,于是l (x )在⎝⎛⎭⎫0,12上为增函数,l (x )<l ⎝⎛⎭⎫12=2-4ln2,故要使a >2-2ln x x -1恒成立,只要a ∈[2-4ln2,+∞).综上若函数f (x )在(0,12)上无零点,则a 的最小值为2-4ln2.【点评】 本题紧扣住“函数f (x )在⎝⎛⎭⎫0,12上无零点”的概念,将函数f (x )在⎝⎛⎭⎫0,12上无零点转化为两类:一是f (x )<0在⎝⎛⎭⎫0,12上恒成立,二是f (x )>0在⎝⎛⎭⎫0,12上恒成立,之后又通过参变分离进行第二次转化. 已知零点情况求解含参问题,常规思路是通过参变分离,转化为恒成立或存在性问题,要注意过程中的等价变形.。
2021年高考理科数学一轮复习:题型全归纳与高效训练突破 专题3.6 高考解答题热点题型(三)利用导数探究函数的零点问题目录一、题型全归纳 (1)题型一 判断、证明或讨论函数零点的个数 ..................................................................................................... 1 题型二 已知零点存在情况求参数范围............................................................................................................. 2 题型三 函数零点性质研究 ................................................................................................................................ 3 二、高效训练突破 (4)一、题型全归纳题型一 判断、证明或讨论函数零点的个数【题型要点】判断函数零点个数的3种方法【例1】(2020年新课标全国三卷)设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【例2】(2019·高考全国卷Ⅰ)已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数,证明:(1)f ′(x )在区间⎪⎭⎫⎝⎛-2,1π存在唯一极大值点; (2)f (x )有且仅有2个零点.题型二 已知零点存在情况求参数范围【题型要点】解决此类问题常从以下两个方面考虑(1)根据区间上零点的个数情况,估计出函数图象的大致形状,从而推导出导数需要满足的条件,进而求出参数满足条件.(2)先求导,通过求导分析函数的单调情况,再依据函数在区间内的零点情况,推导出函数本身需要满足的条件,此时,由于函数比较复杂,常常需要构造新函数,通过多次求导,层层推理得解. 【例1】(2020·重庆调研)设函数f (x )=-x 2+ax +ln x (a ∈R ). (1)当a =-1时,求函数f (x )的单调区间;(2)设函数f (x )在⎥⎦⎤⎢⎣⎡3,31上有两个零点,求实数a 的取值范围.【例2】已知函数f (x )=e x -ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .题型三 函数零点性质研究【题型要点】本题型包括两个方向:一是与函数零点性质有关的问题(更多涉及构造函数法);二是可以转化为函数零点的函数问题(更多涉及整体转化、数形结合等方法技巧).能够利用等价转换构造函数法求解的问题常涉及参数的最值、曲线交点、零点的大小关系等.求解时一般先通过等价转换,将已知转化为函数零点问题,再构造函数,然后利用导数研究函数的单调性、极值、最值等,并结合分类讨论,通过确定函数的零点达到解决问题的目的. 【例1】 (2019·高考全国卷Ⅰ)已知函数f (x )=ln x -x +1x -1.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线y =e x 的切线.【例2】已知函数f (x )=12x 2+(1-a )x -a ln x ,a ∈R .(1)若f (x )存在极值点为1,求a 的值;(2)若f (x )存在两个不同的零点x 1,x 2,求证:x 1+x 2>2.二、高效训练突破1.已知函数f (x )=e x -ax2.(1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .2.(2020·武汉调研)已知函数f (x )=e x -ax -1(a ∈R )(e =2.718 28…是自然对数的底数). (1)求f (x )的单调区间;(2)讨论g (x )=f (x )(x -12)在区间[0,1]上零点的个数.3.(2020·长春市质量监测(二))已知函数f (x )=e x +bx -1(b ∈R ). (1)讨论f (x )的单调性;(2)若方程f (x )=ln x 有两个实数根,求实数b 的取值范围.4.(2020·江西八所重点中学联考)已知函数f (x )=12ax -a +1-ln xx (其中a 为常数,且a ∈R ).(1)若函数f (x )为减函数,求实数a 的取值范围;(2)若函数f (x )有两个不同的零点,求实数a 的取值范围,并说明理由.5.(2020·唐山模拟)已知函数f (x )=x 22-4ax +a ln x +3a 2+2a (a >0).(1)讨论f (x )的单调性;(2)若f (x )有两个极值点x 1,x 2,当a 变化时,求f (x 1)+f (x 2)的最大值.6.(2019·全国卷Ⅰ)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.7.(2020年新课标全国一卷)已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.8.(2020年新课标全国三卷)已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.2021年高考理科数学一轮复习:题型全归纳与高效训练突破 专题3.6 高考解答题热点题型(三)利用导数探究函数的零点问题目录一、题型全归纳 (1)题型一 判断、证明或讨论函数零点的个数 ..................................................................................................... 1 题型二 已知零点存在情况求参数范围............................................................................................................. 2 题型三 函数零点性质研究 ................................................................................................................................ 3 二、高效训练突破 (4)一、题型全归纳题型一 判断、证明或讨论函数零点的个数【题型要点】判断函数零点个数的3种方法【例1】(2020年新课标全国三卷)设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【答案】(1)34b =-;(2)证明见解析 【解析】(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭则34b =-; (2)由(1)可得33()4f x x x c =-+, '2311()33()()422f x x x x =-=+-, 令'()0f x >,得12x >或21x <-;令'()0f x <,得1122x -<<, 所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+, 若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或(1)0f <,即14c >或14c <-. 当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x , 即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0x ',即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1.【例2】(2019·高考全国卷Ⅰ)已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数,证明:(1)f ′(x )在区间⎪⎭⎫⎝⎛-2,1π存在唯一极大值点; (2)f (x )有且仅有2个零点.【证明】 (1)设g (x )=f ′(x ),则g (x )=cos x -11+x ,g ′(x )=-sin x +1(1+x )2.当x ∈⎪⎭⎫⎝⎛-2,1π时,g ′(x )单调递减,而g ′(0)>0,⎪⎭⎫ ⎝⎛'2πg <0,可得g ′(x )在⎪⎭⎫ ⎝⎛-2,1π有唯一零点,设为α.则当x ∈(-1,α)时,g ′(x )>0;当x ∈⎪⎭⎫⎝⎛2,πα时,g ′(x )<0. 所以g (x )在(-1,α)单调递增,在⎪⎭⎫⎝⎛2,πα单调递减, 故g (x )在⎪⎭⎫⎝⎛-2,1π存在唯一极大值点,即f ′(x )在⎪⎭⎫ ⎝⎛-2,1π存在唯一极大值点. (2)f (x )的定义域为(-1,+∞).(∈)当x ∈(-1,0]时,由(1)知,f ′(x )在(-1,0)单调递增,而f ′(0)=0,所以当x ∈(-1,0)时,f ′(x )<0, 故f (x )在(-1,0)单调递减.又f (0)=0,从而x =0是f (x )在(-1,0]的唯一零点.(∈)当x ∈⎥⎦⎤ ⎝⎛2,0π时,由(1)知,f ′(x )在(0,α)单调递增,在⎪⎭⎫ ⎝⎛2,πα单调递减,而f ′(0)=0,⎪⎭⎫⎝⎛'2πf <0,所以存在β∈⎪⎭⎫⎝⎛2,πα,使得f ′(β)=0,且当x ∈(0,β)时,f ′(x )>0;当x ∈⎪⎭⎫⎝⎛2,πβ时,f ′(x )<0.故f (x )在(0,β)单调递增,在⎪⎭⎫⎝⎛2,πβ单调递减.又f (0)=0,⎪⎭⎫⎝⎛2πf =1-ln ⎪⎭⎫ ⎝⎛+21π>0,所以当x ∈⎥⎦⎤ ⎝⎛2,0π时,f (x )>0.从而f (x )在⎥⎦⎤⎝⎛2,0π有零点.(∈)当x ∈⎥⎦⎤⎝⎛2,2ππ时,f ′(x )<0,所以f (x )在⎪⎭⎫⎝⎛ππ,2单调递减.而⎪⎭⎫ ⎝⎛2πf >0,f (π)<0,所以f (x )在⎥⎦⎤⎝⎛2,2ππ有唯一零点.(∈)当x ∈()π,+∞时,ln(x +1)>1,所以f (x )<0,从而f (x )在(π,+∞)没有零点. 综上,f (x )有且仅有2个零点.题型二 已知零点存在情况求参数范围【题型要点】解决此类问题常从以下两个方面考虑(1)根据区间上零点的个数情况,估计出函数图象的大致形状,从而推导出导数需要满足的条件,进而求出参数满足条件.(2)先求导,通过求导分析函数的单调情况,再依据函数在区间内的零点情况,推导出函数本身需要满足的条件,此时,由于函数比较复杂,常常需要构造新函数,通过多次求导,层层推理得解. 【例1】(2020·重庆调研)设函数f (x )=-x 2+ax +ln x (a ∈R ). (1)当a =-1时,求函数f (x )的单调区间;(2)设函数f (x )在⎥⎦⎤⎢⎣⎡3,31上有两个零点,求实数a 的取值范围.【解】(1)函数f (x )的定义域为(0,+∞), 当a =-1时,f ′(x )=-2x -1+1x =-2x 2-x +1x ,令f ′(x )=0,得x =12(负值舍去).当0<x <12时,f ′(x )>0.当x >12时,f ′(x )<0,所以f (x )的单调递增区间为⎪⎭⎫ ⎝⎛21,0,单调递减区间为⎪⎭⎫⎝⎛+∞,21.。