【人教版】初一七年级数学下册《7.1.2 平面直角坐标系 1》教案
- 格式:doc
- 大小:1.10 MB
- 文档页数:3
平面直角坐标系教学目标1了解平面直角坐标系的概念,知道平面上的点与有序实数点一一对应。
2能画出平面直角坐标系,写出平面内点的坐标,并能根据点的坐标找点。
1 你知道四川大地震的地理位置吗?北京时间2008年5月12日14时28分,在四川汶川县(北纬31.0度,东经103.4度)发生7.8级地震。
重庆、山西、陕西、湖北等地有震感。
14时35分左右,北京通州发生3.9级地震。
2你了解钓鱼岛的地理位置和价值吗?钓鱼岛,全称“钓鱼台群岛”,日本称为“尖阁列岛”。
位于中国台湾省基隆市东北约92海里的东海海域,是台湾省的附属岛屿,由钓鱼岛、黄尾岛、赤尾岛、南小岛、北小岛、大南小岛、大北小岛和飞濑岛等岛屿组成,总面积约7平方公里。
位于北纬25度至北纬26度,东经121度30分至东经126度四线之间,距基隆102海里,距那霸230海里。
其海域为新三纪沉积盆地,富石油。
据1982年估计当在737亿~1574亿桶。
从上面两个问题你体会到在一个平面内表示一个点的位置要用到几个数?怎样表示平面内点的位置呢?我们这节课来学习这个问题------平面直角坐标系1 引入平面直角坐标系的概念说一说1 谁能告诉我班长在教室里的准确位置?(我新接的班,还不认得学生)2 (1)电影票上怎样应当怎样写,观众才能找到座位呢?(交流)(2)有两张电影票:A :6排3号,B ,3排6号,这两张票中的“6”含义有什么不同呢?(3)如图,怎样表示图中点A、B的位置呢?(估计学生的方法会不同,可能会说第几行第几排,也可能会想到建立直接坐标系)从上面问题引入直接坐标系的概念画两根互相垂直的数轴,一根叫横轴(也叫x轴),另一个根叫纵轴(也叫y轴),它们的交点叫坐标原点,横轴以向右的方向为正方向,纵轴以向上的方向为正方向。
单位一般一致,但也可以不一致。
这样建立的两根数轴叫平面直角坐标系。
记作:Oxy,坐标平面被分成了四个部分,分别叫:第一象限,第二象限,第三象限,第四象限。
新人教版七年级数学下册《平面直角坐标系》教学设计
一.利用已有知识,引入
1.如图,如何说明数轴上点A和点B的地点.
2.依据以下图,你能正确说出各个象棋子的地点吗?
二.明确观点
平面直角坐标系:平面内画两条相互垂直、原点重合的数轴,
构成平面直角坐标系(rectangularcoordinatesystem).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为正
方向;两个坐标轴的交点为平面直角坐标系的原点.
点的坐标:我们用一对有序数对表示平面上的点,这对数叫
坐标.表示方法为(a,b).a是点对应横轴上的数值,b是
点在纵轴上对应的数值.
例1:写出图中A、B、C、D点的坐标.
成立平面直角坐标系后,平面被坐标轴分红四部分,分别叫
第一象限,第二象限,第三象限和第四象限.
你能说出例1中各点在第几象限吗?
例2:在平面直角坐标系中描出以下各点.
A(3,4);B(-1,2);C(-3,-2);D(2,-2)
第1 页
问题1:各象限点的坐标有什么特点?
.深入探究探究:
辨别坐标和点的地点关系,以及由坐标判断两点的关系以及两点所确立的直线的地点关系.
[小结]
1.平面直角坐标系
2.点的坐标及其表示
3.各象限内点的坐标的特点
4.坐标的简单应用?
第2 页。
人教版七年级数学下册7.1.2《平面直角坐标系》教学设计一. 教材分析《平面直角坐标系》是人教版七年级数学下册第七章第一节的内容,主要介绍了平面直角坐标系的定义、各象限内点的坐标特征及坐标轴上的点的坐标特征。
这部分内容是学生学习函数、几何等知识的基础,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
二. 学情分析七年级的学生已具备一定的数学基础,但对于平面直角坐标系的理解和应用还需要通过实例来加强。
学生在学习过程中应能够借助图形直观地理解坐标系,掌握各象限内点的坐标特征,并能够运用坐标系解决实际问题。
三. 教学目标1.知识与技能:理解平面直角坐标系的定义,掌握各象限内点的坐标特征及坐标轴上的点的坐标特征。
2.过程与方法:通过实例分析,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征及坐标轴上的点的坐标特征。
2.难点:坐标系在实际问题中的应用。
五. 教学方法1.情境教学法:通过实例引入坐标系的概念,让学生在实际情境中理解坐标系的含义。
2.合作学习法:引导学生分组讨论,共同探究坐标系的性质,培养学生的合作意识。
3.问题驱动法:提出问题,引导学生思考,激发学生的探究精神。
六. 教学准备1.教学素材:准备相关实例,如图形、图片等,用于导入和巩固环节。
2.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示生活中的实例,如商场地图、停车场示意图等,引导学生思考如何用数学工具表示这些实例中的点。
通过讨论,引入平面直角坐标系的概念。
2.呈现(10分钟)用投影仪展示平面直角坐标系的图形,引导学生观察并总结各象限内点的坐标特征及坐标轴上的点的坐标特征。
教师在黑板上板书各象限内点的坐标特征及坐标轴上的点的坐标特征。
3.操练(10分钟)学生分组讨论,每组选取一个实例,运用坐标系表示实例中的点,并总结坐标系的性质。
人教版数学七年级下册7.1《平面直角坐标系》教学设计一. 教材分析《平面直角坐标系》是初中数学的重要内容,对于学生理解数学的抽象概念,培养空间想象能力有着至关重要的作用。
人教版数学七年级下册7.1节的内容,主要介绍了平面直角坐标系的定义、各象限内点的坐标特征、坐标轴的性质等。
这部分内容是学生学习函数、几何等后续知识的基础,因此,掌握本节课的内容对于学生来说至关重要。
二. 学情分析学生在七年级上学期已经学习了有理数,对数的概念有了一定的理解,但空间想象能力还不够强。
因此,在教学过程中,需要引导学生将已有的数学知识与新的知识相结合,通过实际操作,提高空间想象能力,理解并掌握平面直角坐标系的相关概念。
三. 教学目标1.了解平面直角坐标系的定义,掌握各象限内点的坐标特征。
2.能正确画出简单的平面直角坐标系,并确定给定点在坐标系中的位置。
3.理解坐标轴的性质,能运用坐标系解决实际问题。
四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征。
2.难点:坐标轴的性质,坐标系在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探索,发现问题,解决问题。
2.利用数形结合的思想,让学生在实际操作中感受坐标系的作用。
3.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.准备平面直角坐标系的教具,如PPT、黑板等。
2.准备一些实际问题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如地图上的两点距离、体育比赛中运动员的位置等,引导学生思考如何用数学工具来表示这些位置。
从而引出平面直角坐标系的概念。
2.呈现(10分钟)通过PPT或黑板,呈现平面直角坐标系的定义、各象限内点的坐标特征、坐标轴的性质等。
在呈现过程中,引导学生主动参与,发现问题,解决问题。
3.操练(10分钟)让学生分组进行实际操作,如在坐标系中确定给定点的位置,画出简单的函数图象等。
教师巡回指导,解答学生疑问。
人教版数学七年级下册《7-1-2 平面直角坐标系》教案一. 教材分析《7-1-2 平面直角坐标系》是人教版数学七年级下册的一个重要内容,主要介绍平面直角坐标系的定义、各象限内点的坐标特征以及坐标轴上的点的坐标特征。
本节课的内容是学生进一步学习函数、几何等数学知识的基础,对于培养学生的空间观念和数学思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了平面图形的性质、坐标的概念等知识,具备了一定的数学基础。
但部分学生对于坐标系的理解和运用还不够熟练,对于一些概念和性质的内涵和外延认识不够清晰。
因此,在教学过程中,需要关注学生的个体差异,针对不同学生的学习情况,进行有针对性的引导和讲解。
三. 教学目标1.理解平面直角坐标系的定义,掌握各象限内点的坐标特征以及坐标轴上的点的坐标特征。
2.能够运用坐标系解决一些简单的问题,提高学生的空间观念和数学思维能力。
3.培养学生的合作交流能力,提高学生的数学素养。
四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征以及坐标轴上的点的坐标特征。
2.难点:坐标系在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究平面直角坐标系的性质和应用。
2.利用多媒体课件,直观展示坐标系的建立和各象限内点的坐标特征。
3.采用小组合作交流的方式,让学生在实践中掌握坐标系的运用。
4.以学生为主体,注重发挥教师的主导作用,引导学生主动参与课堂活动。
六. 教学准备1.多媒体课件:制作关于平面直角坐标系的定义、性质和应用的课件。
2.教学素材:准备一些与坐标系相关的实际问题,用于巩固和拓展学生的知识。
3.坐标纸:为学生提供实践操作的机会,加深对坐标系的理解。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中常见的坐标系,如地图、飞机导航等,引导学生对坐标系产生兴趣,激发学生的学习欲望。
2.呈现(10分钟)介绍平面直角坐标系的定义,讲解各象限内点的坐标特征以及坐标轴上的点的坐标特征。
课题名称7.1.2平面直角坐标系(1)科目数学年级七年级任课教师教学内容人教版七年级数学下册第七章第一节第二课时《平面直角坐标系》P65-68。
学情分析“平面直角坐标系”的学习是在学生学习了“数轴”和“有序数对”的基础上学习,为今后用代数方法研究几何问题打下结实基础。
“平面直角坐标系”是学习函数的重要数学工具,本节课的学习必须让学生明确这一点。
教学目标知识与技能:认识并会画平面直角坐标系,能由点的位置写出其坐标;在给定的直角坐标系中能根据坐标描出点,了解点与坐标的一一对应关系。
过程与方法:1.在找点的坐标和通过坐标找点的过程中,发展学生的自学、思考能力。
2.通过“合作交流”等数学活动,培养起合作交流意识与探究精神。
情感态度与价值观:通过同学之间的交流与游戏,激发学生学习数学的兴趣;通过相同的点在不同的坐标系中有不同的坐标的认识,让学生懂得事物是相对的,是变化的辩证唯物主义观。
教学重难点重点:平面直角坐标系及相关概念.难点:会由点的位置写出点的坐标,由点的坐标确定点的位置.教学过程教学活动1 一、情境引入问题1回顾已学内容,回答下列问题:(1)什么是数轴?请画出一条数轴.(2)如图,A,B两点所表示的数分别是什么?在数轴上描出“-3”表示的点.数轴上的点可以用一个数表示,这个数叫做这个点的坐标.例如点A的坐标为-4,点B的坐标为2.反之,已知数轴上点的坐标,这个点的位置就确定了.问题2在数轴上已知点能说出它的坐标,由坐标能在数轴上找到对应点的位置.那么数轴上的点与坐标有怎样的关系?数轴上的点与坐标是“一一对应”的.也就是说,在数轴上每一个点都可以用一个坐标来表示,任何一个坐标都可以在数轴上找到唯一确定的点.教学活动2二、新知探究问题1类似于利用数轴确定直线上点的位置,结合上节课学习的有序数对,回答问题:如图,你能找到一种办法来确定平面内点P的位置吗?点P所在的平面内有一些方格线,利用上节课所学的有序数对,约定“列数在前,排数在后”.如图,点P在“第1列第2排”,记为(1,2).追问在图中,点P记为(1,2),类比点P,你能分别写出点M,N分别记为什么吗?问题3追问2 根据课前查阅的资料,哪位同学能给大家简单介绍平面直角坐标系的产生以及数学家笛卡儿对数学产生的影响吗?问题2如图,学生看书第66,67页后回答下列问题:①说一说组成平面直角坐标系的两条数轴具备什么特征?②什么是横轴?什么是纵轴?什么是坐标原点?③坐标平面被两条坐标轴分成了哪几个部分,分别对应什么象限?平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴.水平的数轴称为x轴或横轴,取向右方向为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向.两坐标轴的交点为平面直角坐标系的原点.建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限.问题3在平面直角坐标系中,能用有序数对来表示图(1)中点A的位置吗?由点A分别向x轴,y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标.注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开.追问1 如图,在平面直角坐标系中,点B,C,D的坐标分别是什么?追问2 如图,在平面直角坐标系中,你能分别写出点A,B,C,D的坐标吗?x轴和y轴上的点的坐标有什么特点?原点的坐标是什么?①x轴上的点的纵坐标为0,一般记为(x,0);②y轴上的点的横坐标为0,一般记为(0,y);③原点O的坐标是(0,0).教学活动3 三、新知应用例在平面直角坐标系中描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(3,0),K(0,-4).描出点A的方法:先在x轴上找出表示4的点,再在y轴上找出表示5的点,过这两个点分别作x轴和y轴的垂线,垂线的交点就是点A.教学活动4 四、课堂练习问题数轴上点与其坐标是什么关系?想一想平面上的点与坐标又是什么关系?数轴上的点与坐标(实数)一一对应.用类比的方法得到平面上的点与坐标(有序实数对)也是一一对应的.。
7.1.2 平面直角坐标系一、教学目标【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念,认识并能画出平面直角坐标系.2.理解各象限内及坐标轴上点的坐标特征.3.用象限或坐标轴说明直角坐标系内点的位置,能根据横、纵坐标的符号确定点的位置.【过程与方法】1.经历建立直角坐标系的过程,进而理解平面直角坐标系的意义.2.通过分析具体特例得到特殊位置点的坐标特征以及有特殊位置关系的点的坐标的特征.3.通过小组学习等活动经历建立坐标系的过程,进一步提高学生应用已有知识与技能的基础上形成新的知识,获得新的技能,以提高解决数学问题的能力.【情感态度与价值观】1.让学生体会到x轴、y轴的关系,进而明白事物之间是相互联系的这一辩证思想,培养耐心细致的良好学习作风.2通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.二、课型新授课三、课时1课时四、教学重难点【教学重点】平面直角坐标系的意义,由坐标找点,由点找坐标.【教学难点】平面直角坐标系内的点与有序数对一一对应的关系.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)神舟九号、七号、六号和五号等卫星发射成功,圆了几代中国人的梦想,让全中国人为之骄傲和自豪!但是你们知道我们的科学家是怎样迅速地找到返回舱着陆的位置的吗?这就要依赖于GPS——卫星全球定位系统”.大家一定觉得很神奇吧!学习了今天的内容,你就会明白其中的奥妙.(二)探索新知1.出示课件4-9,探究平面直角坐标系的有关概念教师问:如何确定直线上点的位置?学生答:在直线上规定了原点、正方向、单位长度就构成了数轴.数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标.例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2.教师问:知道数轴上一点的坐标,能确定这个点的位置吗?学生答:知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了.例如在数轴上,坐标为2的点是B.教师问:如何确定平面上点的位置?如下图:小强、小红、小明家的位置?师生一起解答:利用两个数轴,使这两条数轴互相垂直,可以确定位置,如下图所示:教师问:周末小明和小丽约好一起去图书馆学习.小明告诉小丽,图书馆在中山北路西边50米,人民西路北边30米的位置.小丽能根据小明的提示从左图中找出图书馆的位置吗?学生答:小丽能根据小明的提示从左图中找出图书馆的位置.教师问:小明是怎样描述图书馆的位置的?学生答:利用方向和距离具体确定图书馆的位置.教师问:小明可以省去“西边”和“北边”这几个字吗?学生答:不能,省去“西边”和“北边”这几个字就不能准确找到图书馆了.教师问:如果小明说图书馆在“中山北路西边、人民西路北边”,你能找到吗?学生答:不能找到.教师问:如果小明只说在“中山北路西边50米”,或只说在“人民西路北边30米”,你能找到吗?学生答:不能.学生问:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,能得到什么呢?教师答:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,这样就形成了一个平面直角坐标系.总结点拨:(出示课件10)教师问:在平面直角坐标系中,能用有序数对来表示图中点A的位置吗?学生答:由点A分别向 x轴,y轴作垂线,垂足M在 x轴上的坐标是3,垂足N在 y 轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标.学生问:写有序数对要注意什么呢?在平面内画两条互相垂直的数轴,构成平面直角坐标系.竖直的叫y轴或纵轴;y轴取向上为正方向教师答:注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开.教师问:如图所示,在平面直角坐标系中,点B,C,D的坐标分别是什么?教师依次展示学生答案:学生1答:B(-2,3).学生2答:C(4,-3).学生3答:D(-1,-4).教师总结如下:B(-2,3),C(4,-3),D(-1,-4).教师问:如图,在平面直角坐标系中,你能分别写出点A,B,C,D的坐标吗?教师依次展示学生答案:学生1答:A(4,0).学生2答:B(-2,0).学生3答:C(0,5).学生4答:D(0,-3).教师总结如下:A(4,0),B(-2,0),C(0,5),D(0,-3).教师问:观察上面点的坐标,你发现x轴和y轴上的点的坐标有什么特点?一般如何记录呢?教师依次展示学生答案:学生1答:x轴上的点的纵坐标为0,一般记为(x,0).学生2答:y轴上的点的横坐标为0,一般记为(0,y).教师总结如下:① x轴上的点的纵坐标为0,一般记为(x,0);② y轴上的点的横坐标为0,一般记为(0,y);教师问:观察上面点的平面直角坐标系,你发现原点的坐标有什么特点?一般如何记录呢?学生答:原点O的坐标是(0,0).一般记为(0,0).考点1:确定平面直角坐标系内点的坐标写出下图中的多边形ABCDEF各个顶点的坐标.(出示课件15)师生共同讨论后学生解答:教师依次展示学生答案:学生1答:A(-2,0).学生2答:B(0,-3).学生3答:C(3,-3).学生4答:D(4,0).学生5答:E(3,3).学生6答:F(0,3).教师总结如下:解:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3)出示课件16,学生自主练习后口答,教师订正.3.出示课件17-20,探究平面直角坐标系内点的坐标性质教师问:平面直角坐标系把平面分为了四部分,我们该如何正确识记每一部分呢?学生思考后,师生一同作答:在平面直角坐标系中,两条坐标轴(即横轴和纵轴)把平面分成如图所示的Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域.分别称为第一,二,三,四象限.如下图所示.(出示课件17)学生问:那么x轴和y轴上的点属于哪个象限呢?教师答:坐标轴上的点不属于任何一个象限.教师问:观察坐标系,填写各象限内的点的坐标的特征:教师依次展示学生答案:学生1答:如下图所示:学生2答:如下图所示:学生3答:如下图所示:学生4答:如下图所示:教师总结如下:如下图所示:教师问:不看平面直角坐标系,你能迅速说出A(4,5),B(-2,3),C(-4,-1)D(2.5,-2),E(0,-4)所在的象限吗?教师依次展示学生答案:学生1答:A(4,5)所在的象限是第一象限.学生2答:B(-2,3)所在的象限是第二象限.学生3答:C(-4,-1)所在的象限是第三象限.学生4答:D(2.5,-2)所在的象限是第四象限.学生5答:E(0,-4)在y轴上.教师总结如下:A(4,5)所在的象限是第一象限;B(-2,3)所在的象限是第二象限;C(-4,-1)所在的象限是第三象限; D(2.5,-2)所在的象限是第四象限;E(0,-4)在y轴上.教师问:你的方法又是什么?学生答:根据点的坐标的符号确定点所在的象限.教师问:观察坐标系,填写坐标轴上的点的坐标的特征:学生答:如下表所示:教师问:不看平面直角坐标系,你能迅速说出A(4,0),B(0,3), C(-4,0),E(0,-4),O(0,0)所在的位置吗?教师依次展示学生答案:学生1答:A(4,0)在x轴的正半轴.学生2答:B(0,3)在y轴的正半轴.学生3答:C(-4,0)在x轴的负半轴.学生4答:E(0,-4)在y轴的负半轴.学生5答:O(0,0)在原点.教师总结如下:A(4,0)在x轴的正半轴; B(0,3)在y轴的正半轴;C(-4,0)在x轴的负半轴;E(0,-4)在y轴的负半轴;O(0,0)在原点.教师问:你的确定点的方法又是什么?学生答:根据点的坐标值和符号,在x轴上y的值为0,在y轴上x的值为0,在原点x、y的值都为0.教师问:想一想:坐标平面内的点与有序数对(坐标)是什么关系?教师依次展示学生答案:学生1答:对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应.学生2答:对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.教师总结如下:类似数轴上的点与实数是一一对应的.我们可以得出:①对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应;②反过来,对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.也就是说,坐标平面内的点与有序实数对是一一对应的.考点2:在平面直角坐标系内确定已知点在平面直角坐标系中,描出下列各点,并指出它们分别在哪个象限. A(5,4),B(-3,4),C (-4 ,-1),D(2,-4).(出示课件21)学生独立思考后,师生共同解答.解:如图,先在x 轴上找到表示5的点,再在y 轴上找出表示4 的点,过这两个点分别作x 轴,y 轴的垂线,垂线的交点就是点A. 类似地,其他各点的位置如图所示.点A 在第一象限,点B 在第二象限,点C在第三象限,点D在第四象限.总结点拨:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.出示课件22,学生自主练习后口答,教师订正.考点3:利用平面直角坐标系内点的坐标确定字母的值已知在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.(出示课件23)师生共同分析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组{m>0,m−2>0.解得m>2.答案:m>2.师生共同归纳:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.出示课件24,学生自主练习,教师给出答案。
人教版数学七年级下册《7-1-2 平面直角坐标系》教学设计一. 教材分析《7-1-2 平面直角坐标系》是人教版数学七年级下册的教学内容,本节课的主要内容是让学生了解平面直角坐标系的定义、特点以及坐标系的构成。
通过学习本节课,学生能够理解坐标系在数学和自然科学中的应用,并能够熟练地在坐标系中进行点的表示和线性方程的求解。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,对图形的性质和变换有一定的了解。
但是,学生可能对坐标系的概念和应用比较陌生,因此需要通过实例和操作来帮助学生理解和掌握坐标系的概念。
三. 教学目标1.了解平面直角坐标系的定义和特点,理解坐标系的构成。
2.能够熟练地在坐标系中表示点的位置,求解线性方程。
3.理解坐标系在数学和自然科学中的应用。
四. 教学重难点1.重点:平面直角坐标系的定义和特点,坐标系的构成。
2.难点:坐标系中点的表示和线性方程的求解。
五. 教学方法采用问题驱动的教学方法,通过实例和操作,引导学生主动探究和理解坐标系的概念。
同时,结合小组合作和讨论,提高学生的参与度和合作能力。
六. 教学准备1.教学PPT:包含平面直角坐标系的定义、特点和应用实例。
2.坐标纸:用于学生进行点的表示和线性方程的求解练习。
3.练习题:包括基础题和拓展题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾平面几何的基本知识,如点、线、面的性质和变换。
然后,提出问题:“在平面几何中,我们如何表示一个点的位置?”让学生思考并回答。
2.呈现(10分钟)利用PPT呈现平面直角坐标系的定义、特点和构成。
通过实例和图示,解释坐标系中点的表示方法,如(x, y)坐标表示法。
同时,展示坐标系在自然科学中的应用实例,如物理学中的运动轨迹。
3.操练(10分钟)分发坐标纸给学生,要求他们在坐标纸上表示给定的点,并求解线性方程。
可以提供一些简单的线性方程题目,让学生进行练习。
精品文档,欢迎下载如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!平面直角坐标系理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;能在给定的直角坐标系中,由点的位置写出它的坐标能说出平面直角坐标系,以及横轴、纵轴、原点、坐标的概念。
会画平面直角坐标并能在给定的平面直角坐标系中由点的位置写出它的坐标,以及能根据坐标描出点的位置培养学生操作、观察、分析、猜测和概括等能力,同时渗透数形结合的思想能在给定的直角坐标系中,由点的位置写出它的坐标观看一、创设情景、引入新课我们已经学过数轴,知道数轴上的点与实数一一对应,在建立了数轴之后,我们就可以确定直线上点的位置,如图.数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标.例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2。
反过来,知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了那么,如何确定平面内点的位置呢?二、自主学习、合作探究法国数学家笛卡儿----法国数学家、解析几何的创始人笛卡尔受到了经纬度的启发,引入坐标系,用代数方法解决几何问题。
探究点一:认识平面直角坐标系与平面内点的坐标课件展示平面直角坐标系与平面内的点在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系(简称直角坐标系)。
正方向:数轴向右与向上的方向坐标轴: x轴或横轴:水平的数轴.y轴或纵轴:竖直的数轴.原点:两条数轴的公共原点O.平面上两条互相垂直,原点重合的两条数轴组成平面直角坐标系,水平的数轴叫x轴(横轴),取向右为正方向,竖直的数轴叫y轴(纵轴),取向上为正方向。
两坐标轴的交点是平面直角坐标系的原点。
象限:两条坐标轴把平面分成如图所示的四个部分注意:坐标轴上的点不属于任何象限。
巩固练习如图所示,点A、点B所在的位置是( )A.第二象限,y轴上B.第四象限,y轴上C.第二象限,x轴上D.第四象限,x轴上解析:根据坐标平面的四个象限来判定.点A在第四象限,点B在x轴正半轴上.故选D.方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.探究二:各象限内点的坐标的符号特征:课件展示观察:各象限点坐标符号特点。
人教版七年级数学下册:7.1.2平面直角坐标系教案平面直角坐标系【教学目标】1、领会实际模型中确定位置的方法,认识并能画出平面直角坐标系,知道点的坐标及象限的含义;2、能在给定的直角坐标系中,由点的位置写出它的坐标和由点的坐标指出它的位置;3、经历画坐标系、由点找坐标等过程,发展数形结合意识。
4、通过小故事,数形结合发展简史及作用,渗透数学文化,培养良好的学习、生活品质,并通过学习数学过程介绍中国经典文化。
【教学重点】能在给定的直角坐标系中,由点的位置写出它的坐标和由点的坐标指出它的位置.【教学难点】理解平面内点的坐标的意义【教学过程】一、创设情景,感悟新知1、想一想:在教室里怎样确定一个同学的位置?2、上电影院看电影,电影票上至少要有几个数字才能确定你的位置?3、怎样表示平面内的点的位置?(找一找)小亮:中山北路西边50m,北京西路北边30m。
你能根据小亮的提示从右图中找到音乐喷泉的位置吗?想一想:1、小亮是怎样描述音乐喷泉的位置的?2、小亮可以省去“西边”和“北边”这几个字吗?3、若小亮说在“中山北路西边”和“北京西路北边”,你能找到音乐喷泉吗?4、若小亮只说在“中山北路西边50m”或只说“北京西路北边30m”,你能找到音乐喷泉吗?以上问题,学生研讨、交流,最后形成共识。
二、探索规律,揭示新知1、生活中,我们常要描述各种目标的位置。
如图4-3,如果将北京(东、西)路和中山(南、北)路看成2条互相垂直的数轴,十字路口为它们的公共原点,那么中山北路西边50m可记为-50,北京西路北边30m可记为+30,音乐喷泉的位置就可以用一对实数(-50,30)来描述。
2、那我们数学上又是如何确定位置的呢?一只蜘蛛引发的数学进步!【介绍笛卡尔】著名的法国哲学家、科学家和数学家因将几何坐标体系公式化而被认为是解析几何之父。
他还是西方现代哲学思想的奠基人。
【介绍数学家欧拉发明坐标系的过程】笛卡尔躺在床上静静的思考如何确定事物的位置,这时发现一只苍蝇粘在了蜘蛛网上,蜘蛛迅速的爬过去把它捉住。
7.1.2平面直角坐标系1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;(重点)2.能在给定的直角坐标系中,由点的位置写出它的坐标.(难点)一、情境导入我们已经学过数轴,知道数轴上的点与实数一一对应,在建立了数轴之后,我们就可以确定直线上点的位置,如图.那么,如何确定平面内点的位置呢?二、合作探究探究点一:认识平面直角坐标系与平面内点的坐标【类型一】平面直角坐标系及相关概念如图所示,点A、点B所在的位置是()A.第二象限,y轴上B.第四象限,y轴上C.第二象限,x轴上D.第四象限,x轴上解析:根据坐标平面的四个象限来判定.点A在第四象限,点B在x轴正半轴上.故选D.方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.【类型二】各象限内点的坐标的符号特征平面直角坐标系中有点M(a,b).(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M位于第几象限?解析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab>0知a,b同号,则点M 在第一或第三象限;(3)由a为任意有理数,b<0,则点M在x轴下方.解:(1)点M在第四象限;(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0);(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上.方法总结:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.【类型三】由点到坐标轴的距离确定点的坐标已知点P 到x 轴的距离为2,到y 轴的距离为1.如果过点P 作两坐标轴的垂线,垂足分别在x 轴的正半轴上和y 轴的负半轴上,那么点P 的坐标是( )A .(2,-1)B .(1,-2)C .(-2,-1)D .(1,2)解析:由点P 到x 轴的距离为2,可知点P 的纵坐标的绝对值为2.又因为垂足在y 轴的负半轴上,则纵坐标为-2.由点P 到y 轴的距离为1,可知点P 的横坐标的绝对值为1.又因为垂足在x 轴的正半轴上,则横坐标为1.故点P 的坐标是(1,-2).故选B.易错点拨:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道与“点P 到x 轴的距离”对应的是纵坐标的绝对值,与“点P 到y 轴的距离”对应的是横坐标的绝对值;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P 的坐标有四个.探究点二:在平面直角坐标系内描点已知点A (0,3),B (-1,1),C (-3,2),D (-2,0),E (-3,-2),F (-1,-1),G (0,-3),H (1,-1),I (3,-2),J (2,0),K (3,2),L (1,1).(1)请在图①的平面直角坐标系中,分别描出上述各点,并顺次连接A ,B ,C ,D ,E ,F ,G ,H ,I ,J ,K ,L ,A ;(2)试求(1)中连线围成的图形的面积.解析:(1)依据点的横、纵坐标的定义,分别描出各点并依次连接;(2)连线围成的图形被坐标轴平均分成四部分,故只要求出一个象限中图形的面积,就可求得答案.解:(1)如图②所示;(2)因为连线围成的图形在第一象限中的面积为4,并且图形被坐标轴平均分成四部分,所以图形的总面积为4×4=16.方法总结:所求图形在四个象限的面积相等,所以只需求其中一部分面积即可.探究点三:在坐标系中求图形的面积如图所示的直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (9,0),C (7,5),D (2,7).试确定这个四边形的面积.解析:由于四边形不是规则的四边形,所以可以考虑把它分成三角形或规则的四边形来解决.解:分别过点D 、C 向x 轴作垂线,垂足分别为点E 、F ,则四边形ABCD 被分割为△AED 、△BCF 及梯形CDEF .由各点的坐标可得AE =2,DE =7,EF =5,FB =2,CF =5.∴S 四边形ABCD=S △AED +S 梯形CDEF +S △BCF =12×2×7+12×(7+5)×5+12×5×2=7+30+5=42.方法总结:在直角坐标系中求不规则多边形的面积,一般采用割补法,将其割补为规则图形,从而求出面积.三、板书设计平面直角坐标系⎩⎪⎨⎪⎧定义:原点、坐标轴点的坐标⎩⎪⎨⎪⎧定义与符号特征点的坐标的确定描点通过平面直角坐标系的有关内容的学习,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生学习数学的积极性和好奇心仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹泛土之间找准你真正的位置。
课题:7.1.2平面直角坐标系教学目标:1.理解平面直角坐标系及其相关概念;理解坐标的概念.2.能利用平面直角坐标系表示点的位置,也能根据坐标找到坐标平面上它所表示的点. 重点:平面直角坐标系及相关概念,各象限及坐标轴上点的坐标特征.难点:各象限及坐标轴上点的坐标特征,建立适当的平面直角坐标系,表示平面上点的坐标. 教学流程:一、知识回顾问题:什么是数轴?在数学中,可以用一条直线上的点表示数,这条直线叫做数轴.数轴三要素:原点、正方向、单位长度.强调:实数与数轴上的点是一一对应的关系.答案:点A在数轴上的坐标是-4;数轴上坐标为-4的点是点A点B在数轴上的坐标是2;数轴上坐标为5的点是点A强调:数轴上的点与坐标是一一对应的关系.二、探究1问题:类似于利用数轴确定直线上点的位置,能不能找到一种办法来确定平面内的点的位置吗?追问:能不能将有序数对与数轴结合在一起呢?定义:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称为x轴或横轴,通常向右为正方向;竖直的数轴称为y轴或纵轴,通常向上为正方向;两坐标轴的交点为平面直角坐标系的原点.介绍:法国数学家笛卡儿(1596—1650),受到了经纬度的启发,最早引入坐标系,用代数方法解决几何图形.练习1:下面的平面直角坐标系画的对吗?( ) ( ) ( ) ( ) 答案:不对;对;不对;不对.三、探究2问题:试一试用一个有序数对表示平面内的一个点?强调:A的横坐标是3,纵坐标是4.有序数对(3,4)叫做点A的坐标记作:A(3,4)追问:B的坐标是:(____,____);C的坐标是:(____,____);D的坐标是:(____,____).答案:-3,-4;-1,2;2,-3.练习2:写出下图中点A,B,C,D,E的坐标.解:A(-2,2),B(-4,5),C(5,-4),D(2,3),E(-2,-1)四、探究3问题:如图,在平面直角坐标系中,你能分别写出点A,B,C,D的坐标吗?x轴和y 轴上的点的坐标有什么特点?原点的坐标是什么?答案:A(4,0);B(-3,0);C(0,2);D(0,-3)归纳:x轴上的点的纵坐标为0,一般记为(x,0);y轴上的点的横坐标为0,一般记为(0,y);原点O的坐标是(0,0).练习3:写出下图中点A,B,C,D,E,O的坐标.解:A(1,0);B(0,5);C(3,0);D(-3,0);E(0,-2);O(0,0).五、探究4介绍:坐标平面被两条坐标轴分成了Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分,每个部分称为象限.即:第一象限,第二象限,第三象限,第四象限注意:坐标轴上的点不属于任何象限.例:在平面直角坐标系中描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,-4).追问1:点A到x轴的距离是几个单位长度?点A到y轴的距离是几个单位长度?其它各点呢?追问3:各象限点的坐标符号有特点呢?第一象限:(+,+)第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)强调:平面上的点与坐标(有序实数对)是一一对应的关系.练习4:(1)若点P(a,b)在第四象限内,则a,b的取值范围是____________________;答案:a>0,b<0(2)如果点A(x,y)在第三象限,则点B(-x,y-1)在_________象限;答案:第四(3)点P(m+3,m+1)在直角坐标系的x轴上,则点P坐标为____________.答案:(2,0)六、探究5问题:如图,正方形ABCD的边长为6.如果以点A为原点,AB所在的直线为x轴建立平面直角坐标系,那么y轴在什么位置?写出正方形的顶点A,B,C,D的坐标.答案:A(0,0);B(6,0);C(6,6);D(0,6).追问1:还能另建立一个平面直角坐标系,此时正方形的顶点A,B,C,D的坐标又分别是什么?答案:A(-3,-3);B(3,-3);C(3,3);D(-3,3).追问2:还可以怎么建立平面直角坐标系?七、应用提高1.在平面直角坐标系上,分别描出下列各点,你有什么发现?A(3,2);B(3,-2);C(3,-3);D(3,0);E(3,-5);F(3,4).答案:到y轴的距离都是3个单位长度2.在平面直角坐标系上,分别描出下列各点,你有什么发现?答案:A(3,2);B(4,2);C(1,2);D(-5,2);E(-3,2);F(-1,2).答案:到x轴的距离都是2个单位长度八、体验收获今天我们学习了哪些知识?1.什么是平面直角坐标系?2.平面直角坐标系中一个有序数对可以确定一个点的位置,它与数轴上一个实数确定一个点的位置有什么区别?3.平面直角坐标系内点与坐标之间有什么关系?九、达标测评1.如图所示,请写出A、B、C的坐标:___________________________;答案:A(1,1);B(4,3);C(-3,2).2.若D、E的坐标分别为:(2,-2)、(-2,-3),请在图中标出来;3.原点O的坐标是(___,___),横轴上的点的坐标为(x,___),纵轴上的点的坐标为(___,y)答案:0,0;0;0.。
7.1.2 平面直角坐标系
1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;(重点)
2.能在给定的直角坐标系中,由点的位置写出它的坐标.(难点)
一、情境导入
我们已经学过数轴,知道数轴上的点与实数一一对应,在建立了数轴之后,我们就可以
确定直线上点的位置,如图.
那么,如何确定平面内点的位置呢?
二、合作探究
探究点一:认识平面直角坐标系与平面内点的坐标
【类型一】 平面直角坐标系及相关概念
如图所示,点A 、点B 所在的位置是(
)
A .第二象限,y 轴上
B .第四象限,y 轴上
C .第二象限,x 轴上
D .第四象限,x 轴上
解析:根据坐标平面的四个象限来判定.点A 在第四象限,点B 在x 轴正半轴上.故
选D.
方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
【类型二】 各象限内点的坐标的符号特征
平面直角坐标系中有点M (a ,b ).
(1)当a >0,b <0时,点M 位于第几象限?
(2)当ab >0时,点M 位于第几象限?
(3)当a 为任意有理数,且b <0时,点M 位于第几象限?
解析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab >0知a ,b 同号,则点M
在第一或第三象限;(3)由a 为任意有理数,b <0,则点M 在x 轴下方.
解:(1)点M 在第四象限;
(2)可能在第一象限(a >0,b >0)或者在第三象限(a <0,b <0);
(3)可能在第三象限(a <0,b <0)或者第四象限(a >0,b <0)或者y 轴负半轴上.
方法总结:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)
表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.
变式训练:见《学练优》本课时练习“课后巩固提升”第1题【类型三】由点到坐标轴的距离确定点的坐标
已知点P到x轴的距离为2,到y轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,那么点P的坐标是()
A.(2,-1) B.(1,-2)
C.(-2,-1) D.(1,2)
解析:由点P到x轴的距离为2,可知点P的纵坐标的绝对值为2.又因为垂足在y轴的负半轴上,则纵坐标为-2.由点P到y轴的距离为1,可知点P的横坐标的绝对值为1.又因为垂足在x轴的正半轴上,则横坐标为1.故点P的坐标是(1,-2).故选B.
易错点拨:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道与“点P 到x轴的距离”对应的是纵坐标的绝对值,与“点P到y轴的距离”对应的是横坐标的绝对值;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P的坐标有四个.
变式训练:见《学练优》本课时练习“课后巩固提升”第2题
探究点二:在平面直角坐标系内描点
已知点A(0,3),B(-1,1),C(-3,2),D(-2,0),E(-3,-2),F(-1,-1),G(0,-3),H(1,-1),I(3,-2),J(2,0),K(3,2),L(1,1).
(1)请在图①的平面直角坐标系中,分别描出上述各点,并顺次连接A,B,C,D,E,F,G,H,I,J,K,L,A;
(2)试求(1)中连线围成的图形的面积.
解析:(1)依据点的横、纵坐标的定义,分别描出各点并依次连接;(2)连线围成的图形被坐标轴平均分成四部分,故只要求出一个象限中图形的面积,就可求得答案.解:(1)如图②所示;
(2)因为连线围成的图形在第一象限中的面积为4,并且图形被坐标轴平均分成四部分,所以图形的总面积为4×4=16.
方法总结:所求图形在四个象限的面积相等,所以只需求其中一部分面积即可.
变式训练:见《学练优》本课时练习“课后巩固提升”第8题
探究点三:在坐标系中求图形的面积
如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(9,0),C(7,5),D(2,7).试确定这个四边形的面积.
解析:由于四边形不是规则的四边形,所以可以考虑把它分成三角形或规则的四边形来
解决.
解:分别过点D 、C 向x 轴作垂线,垂足分别为点E 、F ,则四边形ABCD 被分割为△AED 、△BCF 及梯形CDEF .由各点的坐标可得AE =2,DE =7,EF =5,FB =2,CF =5.∴S 四边形ABCD
=S △AED +S 梯形CDEF +S △BCF =12×2×7+12×(7+5)×5+12
×5×2=7+30+5=42. 方法总结:在直角坐标系中求不规则多边形的面积,一般采用割补法,将其割补为规则图形,从而求出面积.
变式训练:见《学练优》本课时练习“课堂达标训练”第9题
三、板书设计
平面直角坐标系⎩⎪⎨⎪⎧定义:原点、坐标轴点的坐标⎩⎪⎨⎪⎧定义与符号特征点的坐标的确定描点
通过平面直角坐标系的有关内容的学习,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生学习数学的积极性和好奇心。