小船过河问题学生版高一下
- 格式:doc
- 大小:52.50 KB
- 文档页数:2
小船过河问题问题本质小船渡河是典型的运动的合成问题。
需要理解运动的独立性和等时性原理,掌握合速度与分速度之间的关系。
小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动 v 水(水冲船的运动),和船相对水的运动 v 船(即在静水中的船的运动),船的实际运动 v 是合运动。
基本模型1、 v 水 <v 船时间最少位移最小2、 v 水 >v 船不论船的航向如何,总是被水冲向下游,即无论向哪个方向划船都不能使船头垂直于河,只能尽量使船头不那么斜。
那么怎样才能使漂下的距离B E最短呢?如图v v 船αθ v 水A例 1.小船在 s=200 m 宽的河中横渡 ,水流速度是 2 m/s,船在静水中的航行速度为 4 m/s.求 :(1)小船渡河的最短时间 .(2)要使小船航程最短 ,应该如何航行 ?例 2.河宽 d= 60m,水流速度 v1= 6m/ s,小船在静水中的速度 v2=3m/ s,问:(1) 要使它渡河的时间最短,则小船应如何渡河 ?最短时间是多少 ?(2) 要使它渡河的航程最短,则小船应如何渡河 ?最短的航程是多少 ?例 3.玻璃生产线上,宽 24 m 的成型玻璃板以 6 m/s 的速度连续不断地向前行进,在切割工序处,金刚钻的走刀速度为 10 m/s.为了使割下的玻璃板都成规定尺寸的矩形,金刚钻割刀的轨道应如何控制?切割一次的时间多长?同步练习:1.某人以不变的速度垂直对岸游去,游到中间,水流速度加大,则此人渡河时间比预定时间A.增加 B.减少 C.不变 D.无法确定2.某人以一定速度始终垂直河岸向对岸游去,当河水匀速流动时,他所游过的路程,过河所用的时间与水速的关系是()A.水速大时,路程长,时间长B.水速大时,路程长,时间短C.水速大时,路程长,时间不变D.路程、时间与水速无关3.如图所示, A、 B 为两游泳运动员隔着水流湍急的河流站在两岸边, A 在较下游的位置,且A 的游泳成绩比B 好,现让两人同时下水游泳,要求两人尽快在河中相遇,试问应采用下列哪种方法才能实现()A.A 、 B 均向对方游(即沿虚线方向)而不考虑水流作用B.B 沿虚线向 A 游且 A 沿虚线偏向上游方向游C.A 沿虚线向 B 游且 B 沿虚线偏向上游方向游D. 都应沿虚线偏向下游方向,且 B 比 A 更偏向下游4.在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v1,摩托艇在静水中的航速为v2,战士救人的地点 A 离岸边最近处O 的距离为 d,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为 (d)2d1d2 222A.21B.0 C. D .1 5.某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T2,若船速大于水速,则船速v1与水速v2 之比为()T 2T 2(A)T 2 2T 1 2(B)T 1T 1T 1 (C) T12 T2 2(D) T 26.一条河宽 100 米,船在静水中的速度为 4m/s ,水流速度是 5m/s ,则( )A. 该船可能垂直河岸横渡到对岸B.当船头垂直河岸横渡时,过河所用的时间最短C. 当船头垂直河岸横渡时,船的位移最小,是 100米D. 当船横渡到对岸时, 船沿岸的最小位移是 100 米 7.小河宽为 d ,河水中各点水流速度大小与各点到v 水 kx , k4 v 0d , 较近河岸边的距离成正比,x 是各点到近岸的距离,小船船头垂直河岸渡河,小船划水速度为 v 0,则下列说法中正确的是( )A 、小船渡河的轨迹为曲线dB 、小船到达离河岸2处,船渡河的速度为 2v 0C 、小船渡河时的轨迹为直线和伤员 B 以相同的水平速度匀速运动的同时,悬索将伤员吊起,在某一段时间内, A 、 B 之间的距离以 l = H - t 2(式中 H 为直升机 A 离地面的高度,各物理量的单位均为国际单位制单位 )规律变化,则在这段时间内 ( )A .悬索的拉力等于伤员的重力B .悬索不可能是竖直的C .伤员做加速度大小、方向均不变的曲线运动D .伤员做加速度大小增加的直线运动9.民族运动会上有一个骑射项目,运动员骑在奔弛的马背上,弯弓放箭射向南侧的固定目标。
小船过河问题船速大于水速船速小于水速水速不断变化两船比对问题其他问题中的应用一、船速大于水速情况下的小船过河1.澳大利亚东部遭遇洪灾,当地一辆摩托艇接到救援任务,在一宽度为240m的洪水对面解救被困人员。
摩托艇在静水中的速度为8m/s,洪水的流速为6m/s,则下列说法正确的是()A.摩托艇可以垂直到达正对岸B.摩托艇垂直到达正对岸的时间为30sC.摩托艇到达对面的最短时间为24sD.若摩托艇以最短时间到达洪水对面,则摩托艇沿着洪水流速方向运动了180m2.运动员在河面上做划船运动训练,河水流动的速度v大小不变,方向沿河岸向下游方向,运动员划船的速度方向沿船头方向,大小不变。
如图所示,为五幅描述船过河的航线图,图中虚线表示船运动的实际航线。
下列说法正确的是()A.甲、乙、戊三幅图描绘的航线都可能是符合实际的船过河的航线B.甲图所绘航线是符合实际的,船头保持甲图所示方向航行,船过河时间最短C .丙图所绘航线是符合实际的,船头保持丙图所示方向航行,船过河位移最小D .乙图和戊图所绘航线都是符合实际的,船头保持图示方向航行,船过河位移都可能最小3.随着我国全面进入主汛期,防汛形势十分严峻。
各地区各部门坚持人民至上、生命至上,全力以赴抗洪抢险。
某船积极参加抗洪,已知该船在静水中的最大速度为5m/s 。
现让该船渡过某条河,假设河的两岸是平行线河水流速恒定,河宽d =100m ,船以最短时间渡河,航线与岸的夹角为60°,则( ) A .渡河时间为10s B 53C .实际渡河位移为3D .无论如何调整船头方向,船都无法到达正对岸4.2020年,中国多地遭遇洪涝灾害,在一次抗洪抢险中,甲、乙两名战士驾驶摩托艇救人。
假设江岸是平直的,洪水沿江向下游流去,水流速度为1v ,摩托艇在静水中的航速均为2v ,且12v v <,战士救人的地点离岸边最近处的距离相同。
战士甲用最短时间将人送上岸,战士乙用最短距离将人送上岸,则甲、乙两战士所用时间之比为( )A 22212v v -B 22221v v -C .12v vD 22211v v -二、船速小于水速情况下的小船过河5.一小船渡过一条宽120m 、水流速度为8m/s 的河流,已知船在静水中的速度为6m/s ,下列分析正确的是( )A .小船以最短位移渡河时,时间为20sB .小船渡河的位移大于等于160mC .小船以最短位移渡河时,位移大小为120mD .小船以最短时间渡河时,它的位移大小为160m6.金马河流经温江后河宽逐渐增大,由300米扩至1200米,是温江的一张名片。
高一必修二物理小船过河知识点在高一必修二物理课程中,有一个非常有趣且实用的知识点是小船过河。
这个知识点涉及到船在水流中移动的问题,它不仅可以帮助我们理解物体在流体中移动的原理,还可以引发我们对物理学的思考和探索。
小船过河的问题可以描述如下:一艘小船沿着河岸开始,舵手要将船从一岸移动到对岸,但河水有流动,船必须偏离河道方向一定角度才能到达对岸。
这个问题看似简单,但其中包含了许多物理学的知识和技巧。
首先,我们需要了解流体的运动特性。
河水是一种流体,它具有流动和阻力等特点。
当小船静止时,河水对船的作用力主要来自流动速度的差异。
河水的流速决定了它对船的作用力大小。
如果船静止不动,河水会对船产生一个沿河道方向的推力,这个推力会使船朝下流方向移动。
其次,船的推进力和阻力也是决定船在水流中移动的关键因素。
当船河道方向上推进时,船的推进力等于河水对船的阻力,船就能保持在河道方向上前进。
但是,当船偏离河道方向移动时,船的推进力要超过阻力才能保持前进。
此外,小船过河还涉及到向心力和离心力的平衡问题。
当船偏离河道方向时,向心力和离心力会产生一个平衡,使船能够维持一定的弯曲轨道前进。
向心力使船向中心点移动,而离心力使船向外移动,两者平衡时船能够保持在一定的轨道上。
为了解决小船过河的问题,我们可以通过一些物理学知识和技巧来指导实践。
首先,我们可以利用向心力和离心力的平衡原理,调整船的航向角度。
船的航向角度决定了船偏离河道方向的程度,可以通过调整船的航向角度来平衡向心力和离心力,使船能够保持在一定的轨道上。
此外,我们还可以利用推进力和阻力的平衡原理,调整船的推进力大小,以保持船在水流中的前进速度和方向。
当我们理解了小船过河的物理原理之后,我们就可以应用这些知识来解决实际问题。
例如,在实际操作中,我们可以根据水流的速度和方向,调整舵手的舵盘角度和船的推进力,以确保船能够顺利地过河。
这不仅需要我们对物理知识的理解,还需要我们具备一定的观察力和灵活性。
高一物理曲线运动 小船过河问题
二、小船渡河问题
1、一小船渡河,河宽d=180m ,水流速度 s m v /5.21=,船在静水中的速度为s m v /52=,求
(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?
(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?
2、河宽d =100m ,船在静水中的速度是v 1=4m/s ,水流速度为v 2=5m/s ,求:
⑴ 欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船经过的位移是多大? ⑵ 欲使船航行距离最短,船应怎样渡河?渡河时间多长?
3、在抗洪抢险中战士驾驶摩托艇救人.假设江岸是平直的,洪水水流速度为v 1,摩托艇在静水中的航速为v 2.战士救人的地点A 离岸边最近处O 的距离为d .如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( )
A .21222
v v dv - B .0 C 、2
1v dv D 、12v dv
4.如图所示,一条小船位于200m宽的河的正中点A处,从这里向下游1003m处有一危险区,当时水流速度为 4.0m/s,为了使小船避开危险区沿直线到达对岸,小船在静水中的速度至少是()
A.
33
4
m/s B.
33
8
m/s C.2.0m/s D.4.0m/s。
高一物理小船渡河问题分析试题1.如图所示,MN是流速稳定的河流,河宽一定,小船在静水中的速度为v.现小船自A点渡河,第一次船头沿AB方向,到达对岸的D处;第二次船头沿AC方向,到达对岸E处,若AB与AC跟河岸垂线AD的夹角相等,两次航行的时间分别为tB 、tC,则()A.tB >tCB.tB<tCC.tB =tCD.无法比较tB与tC的大小【答案】C【解析】设合速度沿AB方向上的静水速为v1,设合速度沿AC方向上的静水速为v2,因为v1与河岸的夹角等于于v2与河岸的夹角,因为静水速不变,则v1在垂直于河岸方向上的速度等于v2垂直于河岸方向上的速度,又因为两种情况下小船沿垂直河岸方向的位移相同,所以,故C 正确。
【考点】考查了运动的合成与分解2.一艘小船在静水中的速度为4 m/s,渡过一条宽200 m,水流速度为5 m/s的河流,则该小船A.能到达正对岸B.以最短位移渡河时,位移大小为200mC.渡河的时间可能少于50 sD.以最短时间渡河时,沿水流方向的位移大小为250 m【答案】D【解析】因为船的速度小于河水的速度,故小船不能垂直于河岸过河,故最短位移不可能是200m,选项AB 错误;渡河的最短时间为:,故选项C 错误;以最短时间渡河时,沿水流方向的位移大小为:s=v水tmin="5×50m=250" m,选项D 正确。
【考点】速度的合成及分解。
3.在抗洪抢险中,战士驾驶摩托艇救人。
假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v2。
战士救人的地点A离岸边最近处O的距离为d。
若战士要在最短时间内将人送上岸,则摩托艇登陆的地点离O点的距离为A.B.C.D.0【答案】B【解析】摩托艇要想用最短的时间过河,则船头方向应该指向正对岸,此时过河的时间为,被河水冲下的距离为=,选项B正确。
【考点】运动的合成和分解。
4.某人欲划船渡过一条宽100 m的河,船相对静水速度="5" m/s,水流速度="3" m/s,则A.过河最短时间为20 s B.过河最短时间为25 sC.过河位移最短所用的时间是25 s D.过河位移最短所用的时间是20 s【答案】AC【解析】船头垂直于河岸航行时所用时间最短,此种情况渡河时间为t==s=20s,故A正确B错误;渡河位移最短,船头要偏向上游,此时渡河时间并不最短,结合A分析得,D错误,设船头与河岸夹角为θ,则有,渡河时间为=25s,故本题选AC。
小船过河习题一、夯实基础1.小船以一定的速率垂直河岸向对岸划去,当水流匀速时,它渡河的时间、发生的位移与水速的关系是( )A.水速小时,位移小,时间也小B.水速大时,位移大,时间也大C.水速大时,位移大,但时间不变D.位移、时间大小与水速大小无关2.(多选)已知河水自西向东流动,流速为,1小船在静水中的速度为,2且2>1,用小箭头表示船头的指向及小船在不同时刻的位置,虚线表示小船过河的路径,则下图中可能的是()3.如图所示,河宽200 m,一条小船要将货物从A点运送到河对岸的B点,已知AB连线与河岸的夹角θ=30°,河水的流速v水=5 m/s,小船在静水中的速度至少是()A.2.5 m/sB.3.0 m/sC.5.0 m/sD.4.0 m/s4.船在静水中的速度为 4 m/s,河岸笔直,河宽50 m,适当调整船的行驶方向,使该船运动到河对岸时航程最短,设最短航程为L,下列说法中正确的是()A.当水流速度为 2 m/s时,L为60 mB.当水流速度为 6 m/s时,L为50 mC.当水流速度为 6 m/s时,L为75 mD.当水流速度为 2 m/s时,L为150 m5. 某小船在静水中的速度为 4.0 m/s,要渡过宽度为120 m、水流速度为 5.0 m/s的河流。
下列说法正确的是()A.因为船速小于水速,所以船不能渡过此河B.若船渡河过程中水流速度变小,则渡河时间将变长C.若船渡河所用的时间为30 s,则渡河位移为120 mD.船渡河的最小位移为150 m6.如图所示,小船过河时,船头偏向上游与水流方向成α角,船相对水的速度为v,其航线恰好垂直于河岸,现水流速度稍有增大,为保持航线不变,且准时到达对岸,下列措施中可行的是( )A.减小α角,增大船速v B.增大α角,增大船速vC.减小α角,保持船速v不变 D.增大α角,保持船速v不变7.(多选)一快艇从离岸边100 m远的河流中央向岸边行驶。
小船渡河问题
两种情况:①船速大于水速;②船速小于水速。
两种极值:①渡河最小位移;②渡河最短时间。
【例1】一条宽度为L 的河,水流速度为
水v ,已知船在静水中速度为船v ,那么: (1)怎样渡河时间最短?
(2)若
水船v v >,怎样渡河位移最小? (3)若水船v v <,怎样渡河位移最小,船漂下的距离最短?
【练习1】小河宽为d ,河水中各点水流速度大小与各点到较近河岸边的距离成正比,d
v k kx v 04==,水,x 是各点到近岸的距离,小船船头垂直河岸渡河,小船划水速度为0v ,则下列说法中正确的是( )
A. 小船渡河的轨迹为曲线
B. 小船到达离河岸2
d 处,船渡河的速度为02v C. 小船渡河时的轨迹为直线
D. 小船到达离河岸4/3d 处,船的渡河速度为010v
【练习2】小船过河,船对水的速率保持不变.若船头垂直于河岸向前划行,则经10min 可到达下游120m 处的对岸;若船头指向与上游河岸成θ角向前划行,则经12.5min 可到达正对岸,试问河宽有多少米?
【例2】如图1所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求物体A 的速度。
图1
【练习3】如图所示,在水平地面上做匀速直线运动的汽车,通过定滑轮用轻绳吊起一个物体m,若汽车和物体m在同一时刻的速度分别为v1和v2,则下面说法正确的是( )
A.物体m 做匀速运动且v1=v2
B.物体m 做减速运动且v1<v2
C.物体m 做匀加速运动且v1>v2
D.物体m 做加速运动且v1>v2
【练习4】如图所示,汽车以速度v匀速行驶,当汽车到达P点时,绳子与水平方向的夹角为θ,此时物体M的速度大小为(用v、θ表示)
【练习5】如图所示,纤绳以恒定的速率v,沿水平方向通过定滑轮牵引小船向岸边运动,则船向岸边运动的瞬时速度v0与v的大小关系是:
A、v0>v
B、v0<v
C、v0=v
D、以上答案都不对。
v2
v1
m
θ
v
P
M
v0 θ
v。