数学模型1-1线性规划模型
- 格式:pdf
- 大小:117.67 KB
- 文档页数:4
线性规划的数学模型线性规划是一种数学模型,被广泛应用于许多领域。
本文将介绍线性规划的数学模型的重要性和应用领域,并简要说明线性规划的定义和基本概念。
线性规划是一种优化问题的数学表述,其目的是在给定的约束条件下,找到使目标函数达到最大或最小的变量值。
线性规划的主要特点是目标函数和约束条件均为线性关系。
线性规划在工程、经济、物流、运输等领域都有广泛的应用。
它可以用来解决资源分配、生产计划、成本最小化、效益最大化等问题。
线性规划的数学模型可以通过建立目标函数和约束条件的数学表达式来表示。
这篇文档将深入探讨线性规划的数学模型,并介绍一些常见的线性规划应用案例。
通过了解线性规划的数学模型,读者可以更好地理解其背后的原理和应用。
希望本文能对读者在研究和实践中解决实际问题时提供帮助和指导。
本文将讨论如何构建线性规划模型,包括确定决策变量、目标函数和约束条件,以及如何将实际问题转化为数学模型。
决策变量在构建线性规划模型时,首先需要确定决策变量。
决策变量是用来表示决策问题中需要决定的未知量。
它们的取值将影响函数的输出结果。
在确定决策变量时,需要考虑问题的具体情况,并确保决策变量具有明确的定义和可行的取值范围。
目标函数确定决策变量后,下一步是确定目标函数。
目标函数是线性规划模型中需要最大化或最小化的函数。
它通常与问题的目标密切相关,并且能够量化问题的目标。
在确定目标函数时,需要考虑问题的特点和要求,确保目标函数能够准确地度量问题的目标。
约束条件除了目标函数,线性规划模型还包括一系列约束条件。
约束条件是对决策变量的限制和要求,用于限定决策变量的取值范围。
约束条件可以是等式或不等式,它们对问题的解产生了限制和约束。
在确定约束条件时,需要将问题的限制条件转化为数学形式,并确保约束条件与实际问题相符合。
实际问题转化为数学模型最后,将实际问题转化为数学模型是构建线性规划模型的关键步骤。
这需要理解问题的要求和限制,并将其转化为决策变量、目标函数和约束条件的数学表达式。
第一章 线性规划模型线性规划(Linear Programming )是数学规划的一个重要组成部分,是最优化与运筹学理论中的一个重要分支和常用的方法,是最优化理论的基础性内容。
第一节 线性规划问题及其数学模型一、问题的提出在生产管理和经营活动中经常提出一类问题,即如何利用有限的人力、物力、财力等资源,以便得到最好的经济效果。
例1 生产计划问题某工厂在计划期内要安排生产Ⅰ、Ⅱ的两种产品,已知生产单位产品所需的设备台时,A 、B 两种原材料的消耗以及每件产品可获得的利润如下表所示。
问应如何安排生产计划使该工厂获利最多?解:设12,x x 分别表示在计划期内生产产品Ⅰ、Ⅱ的产量。
由于资源的限制,所以有:机器设备的限制条件: 1228x x +≤原材料A 的限制条件: 1416x ≤(称为资源约束条件) 原材料B 的限制条件: 2412x ≤同时,产品Ⅰ、Ⅱ的产量不能是负数,所以有120,0x x ≥≥(称为变量的非负约束)。
显然,在满足上述约束条件下的变量取值,均能构成可行方案,且有许许多多。
而工厂的目标是在不超过所有资源限量的条件下,如何确定产量12,x x 以得到最大的利润,即使目标函数1223z x x =+的值达到最大。
综上所述,该生产计划安排问题可用以下数学模型表示:例2 运输问题某公司经销某种产品,三个产地和四个销地的产量、销量、单位运价如下表所示。
问在保证产销平衡的条解:(1)决策变量:设(1,2,3;1,2,3,4)ij x i j ==为从产地i 运到销地j 的运量(2)目标函数:总运费最小3411min ij iji j z c x===∑∑(3)约束条件: 产量约束 销量约束 非负约束 模型为:二、线性规划问题的模型上述几例所提出的问题,可归结为在变量满足线性约束条件下,求使线性目标函数值最大或最小的问题。
它们具有以下共同的特征。
(1)每个问题都可用一组决策变量12(,,,)n x x x 表示某一方案,其具体的值就代表一个具体方案。
九个基本经济数学模型:1、边际分析模型:边际成本:设成本函数为:C=C(q) (q是产量)则边际成本:表示产量为q时生产1个单位产品所花费的成本。
边际收益:设需求函数为P=P(q) (q是产量,P是价格)则收益函数为:R=R(q)=q﹒p(q)边际收益为:表示销售量为q时销售1个单位产品所增加的收入。
边际利润:设利润函数L=L(q)=R (q)-C(q) 则边际利润ML=L’(q)= 边际利润ML=L’(q)表示销售量为q时销售点1个单位产品的所增加的利润。
2、弹性分析模型:需求价格弹性:设需求函数q=q(p),q是需求量,P是价格。
则需求价格弹性:当价格上升百分之一时,需求量减少百分之一;当价格下降百分之一时,需求量上升百分之一需求收入弹性:需求量是收入的(单增)函数,q=q(R),q是需求量,R是收入,则需求收入弹性当收入增加百分之一时,需求量增加百分之;当收入减少百分之一时,需求量减少百分之3、最大利润模型:设总利润L=L(q)=R(q)-C(q)L(q)取得最大利润的必要条件:L(q)取得最大利润的充分条件:4、最优批量模型:(其中:T总成本,Q为每批产量,S为产品的调整准备成本,A为全年产量)得5、线性回归方程:模型设变量x与y存在线性关系,y=ax+b,对n 项实验得n对数据(x1、y1), (x2、y2),………(xn、yn)。
可求出则y=ax+b6、线性规划数学模型:1 2 1式称为目标函数,2式称为约束条件x1、x2………, xn称为决策变量,满足2式的一组变量值称为线性规划问题的可行解,使1式达到最大(小)值的可行解称为最大解。
7、投入产出数学模型:投入产出表(略)产出分配平衡方程:(i=1,2,…...,n)投入构成平衡方程:(j=1,2,…...,n)是直接消耗系数设则投入产出数学模型完全消耗系数: 有:8、风险型决策数学模型:1期望值准则如果用A表示各行动方案的集合,N表示各自然状态的集合,P是各状态出现的概率向量,M 是益损值的矩阵,即这时,则决策实质就是求向量E(A)的最大元或最小元对应的行动方案。
第一章线性规划及单纯形法1、一般线性规划问题的数学模型问题的提出在生产管理的经营活动中,通常需要对“有限的资源”寻求“最佳”的利用或分配方式。
任何资源,如劳动力、原材料、设备或资金等都是有限的。
因此,必须进行合理的配置,寻求最佳的利用方式。
由此可以把有限资源的合理配置归纳为两类问题:一类是如何合理地使用有限的资源,使生产经营的效益达到最大;另一类是在生产或经营的任务确定的条件下如何合理地组织生产,安排经营活动,使所消耗的资源数最少。
这是最常见的两类规划问题。
与规划问题有关的数学模型由两部分组成:一部分是约束条件,反映了有限资源对生产经营活动的种种约束,或者生产经营必须完成的任务,另一部分是目标函数,反映生产经营在有限资源条件下希望达到的生产或经营的目标。
例1 常山机器厂生产甲、乙两种产品。
这两种产品都要分别在A、B、C三种不同设备上加工。
按工艺材料规定,生产每件产品甲需占用各设备分别为2小时、4小时、0小时,生产每件产品乙需占用各设备分别为2小时、0小时、5小时。
已知各设备计划期内用于生产这两种产品的能力分别为12小时、16小时、15小时,又知每生产一件甲产品企业能获得2元利润,每生产一件乙产品企业能获得3元利润,问该企业应安排生产两种产品各多少件,使总的利润收入为最大?解:为更加直观理解题意,把上述问题转化为如下表格假定用x1和x2分别表示甲、乙两种产品在计划期内的产量。
因设备A在计划期内的可用时间为12小时,不允许超过,于是有2x1+2x2≤12。
对设备B、C也可列出类似的不等式:4x1≤16,5x2≤15。
企业的目标实在各种设备能力允许的条件下,使总的利润收入z=2x1+3x2为最大。
所以可归结为:约束于s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤≤+0,1551641222212121x x x x x x 使 z=2x 1+3x 2→max这是一个将生产安排问题抽象为在满足一组约束条件的限制下,寻求变量xl 和x2的决策值,使目标函数达到最大值的数学规划问题。
第1章线性规划Chapter 1 Linear Programming本章内容提要线性规划是运筹学的重要内容。
本章介绍线性规划数学模型、线性规划的基本概念以及求解线性规划数学模型的专门软件——Lingo。
学习本章要求掌握以下内容:⏹线性规划模型的结构。
包括:决策变量,目标函数,约束条件。
⏹线性规划的标准形式,非标准形式转化为标准形式⏹线性规划的基本概念。
包括:约束直线,可行域,可行解,凸集,极点,目标函数等值线,最优解⏹线性规划的软件求解。
包括:lingo软件简介,lingo软件求解规划问题§1.1 线性规划1.1.1 线性规划线性规划(LinearProgramming,LP)是运筹学中最重要的一种系统优化方法。
它的理论和算法已十分成熟,应用领域十分广泛,通常研究资源的最优利用、设备最佳运行等问题。
例如,当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多、利润最大)。
还包括生产计划,物资调运,资源优化配置,物料配方,任务分配,经济规划等问题。
随着计算机硬件和软件技术的发展,目前用微型计算机就可以求解大规模的规划问题。
Lingo软件就是其中的代表软件之一。
在本章中,我们将介绍线性规划的基本概念,线性规划在经济分析中的应用。
§1.2 线性规划问题线性规划问题由目标函数、约束条件以及变量的非负约束三部分组成。
根据实际问题的条件和要求,可以建立线性规划问题数学模型。
下面列举五种最常见的线性规划问题的类型。
1.2.1 生产计划问题例1.1某工厂拥有A、B、C三种类型的设备,生产甲、乙、丙、丁四种产品。
每件产品在生产中需要占用的设备机时数,每件产品可以获得的利润以及三种设备可利用的时数如下表所示:表1-1用线性规划制订使总利润最大的生产计划。
设变量x i为第i种产品的生产件数(i=1,2,3,4),目标函数z为相应的生产计划可以获得的总利润。
线性规划模型简介线性规划(Linear Programming, LP)是数学规划的一种重要分支,它旨在寻找一组线性方程的最佳解。
线性规划模型广泛应用于运筹学、经济学、管理学等领域,具有较强的实践意义。
基本概念目标函数在线性规划模型中,目标函数是线性方程组中的一个方程,用于表示要优化的目标。
通常情况下,线性规划问题有两类目标:最小化目标和最大化目标。
最小化目标函数的线性规划问题称为“最小化问题”,最大化目标函数的线性规划问题称为“最大化问题”。
约束条件线性规划的约束条件是一个线性方程组,用于限制解的可行域。
约束条件可以是等式约束或不等式约束。
等式约束要求线性方程组的解满足给定的等式关系,不等式约束要求线性方程组的解满足给定的不等式关系。
可行解在线性规划问题中,可行解是满足所有约束条件的解。
可行解是问题的解空间中的一个点。
最优解最优解是在线性规划模型中要求得的解,它是使目标函数取得最大(或最小)值的可行解。
线性规划问题的一般形式线性规划问题可以用以下一般形式表示:max/min Z = c^T * xsubject to:Ax <= bx >= 0其中,Z是目标函数的值,c是目标函数的系数向量,x是决策变量向量。
A是约束条件矩阵,b是约束条件的右侧常数列。
线性规划模型的求解方法线性规划模型可以通过多种方法来求解,常见的方法有: 1. 单纯形法(Simplex Method):单纯形法是一种迭代求解线性规划问题的方法。
该方法通过逐步移动顶点来搜索可行解空间,直到找到最优解。
2. 内点法(Interior Point Method):内点法是一种直接求解线性规划问题的方法。
该方法利用内点理论,在可行解空间内搜索最优解。
3. 分支定界法(Branch-and-Bound Method):分支定界法将线性规划问题划分为多个子问题,并通过剪枝策略逐步缩小搜索范围,直到找到最优解。
4. 整数规划算法(Integer Programming Algorithms):当线性规划问题的决策变量要求为整数时,可以使用整数规划算法进行求解。