晶硅太阳能电池制造工艺---工艺流程以及工序简介24页PPT
- 格式:ppt
- 大小:2.77 MB
- 文档页数:24
晶硅单结电池-概述说明以及解释1.引言1.1 概述晶硅单结电池是一种基于晶体硅材料制造的太阳能电池,它利用光的能量转化为电能。
晶硅单结电池具有高效转化太阳能的特点,被广泛应用于太阳能发电系统中。
晶硅单结电池的工作原理基于光电效应。
当光线照射到晶硅单结电池的表面时,光子会激发晶体硅中的电子。
这些被激发的电子会从材料中释放出来,并在电场的作用下形成电流。
通过将两个不同掺杂的硅层连接在一起,形成一个p-n结。
当光子通过p-n结时,会产生电子和空穴对,并形成电流。
这样,晶硅单结电池就能将太阳能转化为电能。
制备晶硅单结电池的方法具有一定的复杂性。
首先,需要选择高质量的硅材料作为基底。
然后,通过在硅基底上加热和涂覆一层掺杂层,形成p-n结。
接下来,使用电子束蒸发或物理气相沉积等技术,在硅基底上镀上金属电极,以提供电流的输出通路。
最后,通过对制备好的晶硅单结电池进行分选和封装,保证其性能和稳定性。
晶硅单结电池在太阳能领域具有广泛的应用前景。
它可以作为光伏组件,广泛应用于屋顶太阳能发电系统、太阳能道路照明系统、太阳能灯饰等领域。
由于其高效能转换和长时间稳定工作的特点,晶硅单结电池也被用于航天器、卫星等领域的能源供应。
对于晶硅单结电池的展望,人们正在不断研究改进其制备工艺和提高其转换效率。
还有一些新型太阳能电池技术的出现,如多晶硅电池、钙钛矿太阳能电池等,对晶硅单结电池提出了一些竞争。
然而,晶硅单结电池作为已经商业化和应用广泛的太阳能电池技术,预计仍将持续发展和完善,为人类的清洁能源需求做出更大贡献。
1.2文章结构文章结构部分的内容可以包括以下内容:2. 文章结构本文共分为三个部分,即引言、正文和结论。
2.1 引言部分介绍了本文要讨论的主题——晶硅单结电池,并包含了概述、文章结构和目的三个小节。
2.2 正文部分着重介绍了晶硅单结电池的原理和制备方法,通过对其原理进行深入剖析和对制备方法进行介绍,使读者对晶硅单结电池有一个全面的了解。
晶体硅太阳能电池生产工艺流程图电池片工艺流程说明:(1)清洗、制绒:首先用化学碱(或酸)腐蚀硅片,以去除硅片表面机械损伤层,并进行硅片表面织构化,形成金字塔结构的绒面从而减少光反射。
现在常用的硅片的厚度在180μm 左右。
去除硅片表面损伤层是太阳能电池制造的第一道常规工序。
(2)甩干:清洗后的硅片使用离心甩干机进行甩干。
(3)扩散、刻蚀:多数厂家都选用P型硅片来制作太阳能电池,一般用POCl3液态源作为扩散源。
扩散设备可用横向石英管或链式扩散炉,进行磷扩散形成P-N结。
扩散的最高温度可达到850-900℃。
这种方法制出的PN结均匀性好,方块电阻的不均匀性小于10%,少子寿命大于10 微秒。
扩散过程遵从如下反应式:4POCl3+3O2(过量)→ 2P2O5+2Cl2(气)2P2O5+5Si → 5SiO2 + 4P 腐蚀磷硅玻璃和等离子刻蚀边缘电流通路,用化学方法除去扩散生成的副产物。
SiO2 与HF生成可溶于水的SiF62-,从而使硅表面的磷硅玻璃(掺P2O5的SiO2)溶解,化学反应为:SiO2+6HF → H2(SiF6)+2H2O(4)减反射膜沉积:采用等离子体增强型化学气相沉积(PECVD: Plasma Enhanced Chemical Vapor Deposition) 技术在电池表面沉积一层氮化硅减反射膜,不仅可以减少光的反射,而且由于在制备SiNx 减反射膜过程中有大量的氢原子进入,因此也起到了很好的表面钝化和体钝化的效果。
这是因为对于具有大量晶界的多晶硅材料而言,晶界的悬挂键被饱和,降低了复合中心的原因。
由于表面钝化和体钝化作用明显,就可以降低对制作太阳能电池材料的要求。
由于增强了对光的吸收,氢原子对太阳能电池起到很好的表面和体内钝化作用,从而提高了电池的短路电流和开路电压。
(5)印刷、烧结:为了从电池上获取电流,一般在电池的正、背两面制作电极。
正面栅网电极的形式和厚度要求一方面要有高的透过率,另一方面要保证栅网电极有一个尽可能低的接触电阻。
毕业论文题目晶体硅太阳能电池表面PECVD淀积SiN减反射膜工艺研究目录摘要 (1)绪论 (3)第一章 PECVD淀积氮化硅薄膜的基本原理 (6)1.1化学气相淀积技术 (6)1.2 PECVD原理和结构 (6)1.3 PECVD薄膜淀积的微观过程 (8)1.4 PECVD淀积氮化硅的性质 (9)1.5表面钝化与体钝化 (9)第二章实验 (11)2.1 PECVD设备简介 (11)2.2 PECVD设备操作流程 (13)2.3 SiN 减反射膜PECVD淀积工艺流程 (13)2.4最佳薄膜厚度和折射率的理论计算 (13)2.5 理论实验总结 (15)结束语 (16)参考文献 (17)晶体硅太阳能电池表面PECVD淀积SiN减反射膜工艺研究摘要等离子增强化学气相淀积氮化硅减反射薄膜已经普遍应用于光伏工业中,其目的是在晶体硅太阳能电池表面形成减反射薄膜,同时达到了良好的钝化作用。
氮化硅膜的厚度和折射率对电池性能都有重要的影响。
探索最佳的工艺条件来制备最佳的薄膜具有重要意义。
本课题是利用Roth&Rau的SiNA设备进行淀积氮化硅薄膜的实验,介绍了几种工艺参数对薄膜生长的影响,获得了生长氮化硅薄膜的最佳工艺条件,制作出了高质量的氮化硅薄膜。
实验中使用了椭偏仪对样品进行膜厚以及折射率的测量。
关键词:等离子增强化学气相淀积,氮化硅薄膜,太阳能电池,光伏效应,钝化ABSTRACTSiN Film plasma-enhanced chemical vapor deposition (PECVD) is widely used in P-V industry as an antireflection thinfilm on the surface of crystal silicon solar cell. In addition this process takes advantage of an exellent passivation effect. Both the thickness and refractive index of the SiN film make important influences to the performance of solar cells. So it is very important to find the best process parameters to deposit the best film. In this paper, the experiment of SiN film deposition was completed with the equipment named SiNA produced by Roth&Rau. The influence of the parameters to the gowth of the film was introduced based on the experiment, and the best parameters to produce the top-quality SiN film were obtainted. The Spectroscopic ellipsometry was used to test the thickness and refractive index of the samples during the experiment.Key words:PECVD, SiN film, solar cell, photovoltaic effect, passivation第一章绪论从2003年开始,全球化石能源的缺乏引发了能源价格不断攀升,可再生能源也因此得到了更多的重视,太阳能光伏行业迎来了发展的春天。
提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。
晶体硅太阳能电池的制造工艺流程说明如下:
(1)切片:采用多线切割,将硅棒切割成正方形的硅片.
(2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。
(3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面.
(4) 磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为0.3-0。
5um.
(5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。
(6)去除背面PN+结。
常用湿法腐蚀或磨片法除去背面PN+结.
(7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。
先制作下电极,然后制作上电极.铝浆印刷是大量采用的工艺方法。
(8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。
制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3,SiO ,Si3N4 ,TiO2 ,Ta2O5等。
工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等.
(9)烧结:将电池芯片烧结于镍或铜的底板上。
(10)测试分档:按规定参数规范,测试分类.
由此可见,太阳能电池芯片的制造采用的工艺方法与半导体器件基本相同,生产的工艺设备也基本相同,但工艺加工精度远低于集成电路芯片的制造要求,这为太阳能电池的规模生产提供了有利条件。
晶体硅太阳能电池专业班级:机械设计制造及其自动化13秋*名:***学号: *************报告时间: 2015年12月晶体硅太阳能电池摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。
人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。
光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。
本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。
关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势前言“开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。
而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。
大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。
通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在!一、晶体硅太阳能电池工作原理太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。
在纯净的硅晶体中,自由电子和空穴的数目相等。
如果在硅晶体中掺入能够俘获电子的硼、铝、镓或铟等杂质元素,就构成了P型半导体,如果在硅晶体中掺入能够释放电子的磷、砷或锑等杂质元素,就构成了N型半导体。
太阳能电池组件生产的主要工艺流程:测试分选→单片焊接→串联焊接→叠层→中间测试→层压→装框注胶→清洗→最终测试(1)测试分选电池片分选主要是为了检出不合格的电池片,同时,电池片的颜色一般呈蓝褐色、蓝紫色、蓝色、浅兰色等几种不同档次的蓝色,对电池片进行颜色分选并分档放置,保证单个组件所用到的电池片为同档次的颜色,从而使单个组件生产出来后颜色外观美观,各电池单片之间无明显色差现象。
若电池片不经过色差分选就直接做组件,做出来的组件外表颜色“参差不齐”,不美观。
因此,为了保证电池片的质量、外观和生产顺利高效率的运行,通过初选将缺角、栅线印刷不良、裂片、色差等电池片筛选出来。
在标准测试环境(温度25±2℃、湿度≤60%RH、光强1000±50W)下,绘制I-V曲线图,根据电池片的开路电压Voc、短路电流Isc、工作最佳功率Pm、工作最佳电压Vm、工作最佳电流Im、填充因子FF、转换效率n等指标把电池电性参数相近的电池分到一类,之后根据生产、工艺的数据分析要求,和客户的分档要求,对电池片进行测试并分档。
(2)单片焊接单片焊接将汇流带焊接到电池正面(负极)的主栅线上,从上至下,匀速焊接。
单片焊接的目的是将连接带(锡铜合金带)平直地焊接到电池片的主栅线上,要求保证电气和机械连接良好,外观光亮;焊带的长度约为电池边长的2倍,多出的焊带在串联焊接时与后面的电池片的背面电极相连。
(3)串联焊接背面焊接是将电池片接在一起形成一个电池片的串组,电池的定位主要靠一个膜具板,上面有放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经是设计好的,不同规格的组件使用不同的模板,操作者使用电烙铁和连接带(锡铜合金带)将单片焊接好的电池片的正面电极(负极)焊接到另一片的背面电极(正极)上,以此类推,依次将电池片串接在一起,并在组件串的正负极焊接出为叠层时准备的引线。
(4)叠层背面串接好且经过检验合格后,将电池片串、钢化玻璃和切割好的EVA 、背板(TPT)按照一定的层次敷设好,玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。
第一章晶体硅太阳电池的基本原理和制造工艺流程晶体硅太阳电池已经成为当今光伏工业的主流,随着单晶硅、多晶硅太阳电池工厂的新近投资,这种作用还将持续下去[1]。
从1954年Chapin,Fuller和Pearson研制成功硅PN结太阳电池以来,这一利用p-n结光伏效应工作的器件经过半个世纪的改进和演变,发展成为具有多种几何结构和相应的制造流程的一类太阳电池产品。
到目前为止,尽管被称为“第二代光伏器件”的薄膜太阳(CdTe、CIS、非晶硅、微晶硅、多晶硅、硅-锗合金电池也取得了进展,但在短期内仍然无法替代晶体硅太阳电池。
关于太阳电池的基本特性,Hovel已作出了全面的论述[2]。
我们按照太阳电池的器件结构、硅p-n 结太阳电池的基本工作原理到一般的制造工艺流程的顺序进行介绍。
1. 晶体硅太阳电池的器件结构晶体硅太阳电池的基本结构见图1.,它由扩散法在表面形成的浅PN结,正面欧姆接触栅格电极,覆盖于整个背面的欧姆接触电极以及正面减反射膜构成。
图1. 硅PN结太阳电池基本结构图2. PERT太阳电池结构高效率晶体硅太阳电池则有着更为复杂的结构和制造流程,如钝化发射极太阳电池PESC (passivated emitter solar cell ,钝化发射极和背面太阳电池PERC (passivated emitter and rear cell,钝化发射结背面点接触太阳电池PERL (passivated emitter, rear locally-diffused cells,钝化发射极背面全扩散太阳电池PERT (passivatedemitter, rear totally-diffused cells,具有本征层的(a-Si/ (c-Si异质结太阳电池(HIT TM 电池,倾斜蒸发电极MIS-n+p 太阳电池OECO(obliquely-evaporated-contact,V型机械刻槽埋栅电极太阳电池(Buried Contact Solar Cell with V-grooved surface,背面接触电极太阳电池(Backside Contact Solar Cell等等。
本技术晶硅太阳能电池背面电极银浆及制备方法,配方:银粉45~55wt%,纳米复合金属氧化物1~3wt%,无机玻璃粉3~10wt%,有机载体32~51wt%。
制备有机载体:将有机溶剂加入容器中,加入有机树脂,升温至80~100℃,降温到40~50℃下加入表面活性剂,过滤得到有机载体;制备无机玻璃粉:原料混匀,进行熔炼,取出后水淬、粉碎、球磨、过筛,干燥后过筛得到无机玻璃粉;制备浆料:将银粉、无机玻璃粉、纳米复合金属氧化物和有机载体混合,调成糊状,研磨得到晶硅太阳能电池背面电极银浆。
与以往浆料相比,该浆料具有更低的银含量,成本低,应用到太阳能电池上光电转化效率最高可达18.07%。
技术要求1. 一种晶硅太阳能电池背面电极银浆,其特征在于包含以下重量百分比成分:银粉45~55wt%,纳米复合金属氧化物1~3wt%,无机玻璃粉3~10wt%,有机载体32~51 wt%。
2.根据权利要求1所述的一种晶硅太阳能电池背面电极银浆,其特征在于:所述纳米复合金属氧化物为铋-锆复合氧化物纳米颗粒,粒径为20~100纳米,氧化锆与氧化铋的摩尔比例为1:2~1:8。
3.根据权利要求1所述的一种晶硅太阳能电池背面电极银浆,其特征在于:所述银粉的平均粒径D50:1.0~3.0μm。
4.根据权利要求1所述的一种晶硅太阳能电池背面电极银浆,其特征在于:所述无机玻璃粉包含以下重量百分比成分:二氧化硅 9~15wt%,氧化铋40~60 wt%,氧化钡20~25 wt%,氧化锌2~12 wt%,氧化硼6~15 wt%,氧化锂1~8wt%。
5.根据权利要求1所述的一种晶硅太阳能电池背面电极银浆,其特征在于:所述有机载体包含以下重量百分比成分:有机树脂2~15wt%,有机溶剂80~95 wt %,表面活性剂:0.5~5 wt %。
6.根据权利要求5所述的一种晶硅太阳能电池背面电极银浆,其特征在于:所述有机树脂为乙基纤维素、硝酸纤维素、醇酸树脂中的一种或几种。
晶体硅太阳能电池的扩散工艺研究摘要近年来,太阳能电池的技术已经取得了很大的进展,很可能成为未来主要电力来源之一,因此研究太阳能电池尤其其光电转化效率有极其重要的意义。
扩散制作p-n结是晶体硅太阳电池的核心,是电池质量好坏的关键之一。
本文所研究的主要问题是低成本晶体硅太阳电池在工业化生产中的扩散制作p-n结工艺。
太阳电池制作中的工艺优化也是非常重要的。
对于扩散工序而言,确保高效电池的高产能面临的最大问题在于如何保障扩散的均匀性,优化扩散的均匀性主要采取温区补偿技术。
论文针对影响扩散均匀性的因素多且关联复杂等特点,重点对难于控制的气氛场因素进行系统实验研究,在气体流量、均流设计、炉内温度等方面提出了较好的优化实验方法,通过将实验方法应用于工业生产,扩散均匀性得到了非常好的控制。
从扩散均匀性对太阳电池电性能的影响角度,本论文通过实验分析了电池表面不同扩散均匀性对填充因子FF、并联电阻Rsh、串联电阻Rs、开路电压Uoc和转换效率Eff的影响。
验证了通过改善扩散工艺提高太阳能电池的转换效率具有广阔的发展前景。
关键词:晶体硅太阳能电池,扩散工艺,均匀性,转换效率The Diffudion Technology of Crystalline Silicon Solar CellABSTRACTSolar cell technology has made great progress, it might be called the main power source of the future, the study of solar cells in particular, the photoelectric conversion efficiency is extremely important.Diffusion mading p-n junction is the core of crystalline silicon solar cells, and is one of the key to the good and bad quality of the battery. The main problem of this paper is the low-cost industrial production of crystalline silicon solar c ells in the production of p-n junction in the diffusion process.Optimization of solar cell production process is also very important. For the diffusion process, the biggest problem to ensure high efficient battery capacity is how to protect the spread of uniformity, optimization of the uniformity of spread mainly take the temperature compensation technology.In this paper,experiment methods are adopted for optimizing diffusion uniform by analyzing diffusion air-flowing environment.the air-flowing environment,which is comprised of quartz boat,quartz block,SiC paddle etc,is controlled difficultly.good experimental method of optimization is proposed in gas flow, current design, the furnace temperature and other aspects , by experimental methods appling to industrial production, the proliferation of uniformity has been very good control.From the proliferation of uniformity on the electrical properties of solar angle, this paper experimentally analyzed the proliferation of different cell surface uniformity in the fill factor FF, shunt resistance Rsh, series resistance Rs, the open circuit voltage Uoc and conversion efficiency of Eff . Proved that by improving the diffusion process to improve the conversion efficiency of solar cells has broad prospects for development.KEY WORDS: crystalline silicon solar cells,diffusion technology, uniformity, efficiency目录第一章绪论 0§1.1太阳能电池的应用领域 0§1.2 我国光伏产业发展的状态及趋势 (1)§1.2.1我国光伏产业的现状 (1)§1.2.2 光伏产业发展中的瓶颈与危机 (2)§1.3 本论文研究内容与研究意义 (2)第二章太阳能电池的制造工艺及工作原理 (4)§2.1常规晶体硅太阳电池结构 (4)§2.2 晶体硅太阳能电池生产工艺 (4)§2.2.1 制绒 (5)§2.2.2 扩散制p-n结 (5)§2.2.3去除边缘p-n结和去磷硅玻璃 (6)§2.2.4 镀膜 (6)§2.2.5 丝网印刷电极 (7)§2.2.6 烧结 (7)§2.3 硅PN结太阳电池的基本工作原理 (8)§2.3.1光生伏特效应 (8)§2.3.2 I-V特性 (9)第三章扩散制作P-N结 (13)§3.1 扩散的基本原理 (13)§3.1.1 扩散的基本知识 (13)§3.1.2 液态源磷扩散原理 (14)§3.2 液态源扩散设备 (15)§3.2.1设备的主要性能指标 (15)§3.2.2设备主要构成 (16)§3.3 扩散参数 (17)§3.3扩散方法和工艺条件的选择 (19)§3.4 扩散质量的检验 (20)§3.4.1表面质量检验 (20)§3.4.2 方块电阻的检验 (20)第四章晶体硅太阳电池的扩散工艺实验与研究 (22)§4.1工艺气体流量对炉内温度的影响 (23)§4.2废气排放位置对炉口均匀性的影响 (24)§4.3 排风量大小对炉口均匀性的影响 (25)§4.4均流板分流设计对扩散片内片间均匀性的影响 (25)§4.5 扩散片内片间均匀性调节实验 (26)§4.5.1 扩散炉温对方阻阻值的影响 (28)§4.5.2调整扩散炉温改善片间扩散的均匀性 (29)§4.6 扩散均匀性对太阳能电池性能的影响 (31)结论 (33)参考文献 (34)致谢 (35)第一章绪论1954年出现了现在的硅太阳能电池的第一代产品。