江西省五市八校2017届高三第二次联考数学试题(理)含答案
- 格式:pdf
- 大小:114.71 KB
- 文档页数:5
开始输入tt <2π 3s t =5sin s t =输出s 结束是否高中数学学习材料鼎尚图文*整理制作江西省五市八校2016届高三第二次联考数学(理科)试卷主命题:九江三中 冯连胜 副命题:鄱阳中学 姚铭赣本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.全卷满分150分,考试时间120分钟.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是满足题目要求的。
) 1.设集合{}|215A x x =->,集合{}|lg(6)B x y x ==-,则B A 等于( ) A .()3,6 B .[]3,6 C .(]3,6 D .[)3,62.设i 是虚数单位,若复数5()2a a R i-∈-是纯虚数,则a 的值为( ) A .32- B .-2 C .2 D .323.2016(25)x y +展开式中第1k +项的系数为( )A .20161201625kkk C --B .120171201625k kk C --- C .12016k C - D . 2016201625kkk C -4.已知正数m 是2和8的等比中项,则圆锥曲线221y x m+=的焦点坐标为 ( )A . (3,0)±B . (0,3)±C .(3,0)±或(5,0)±D .(0,3)±或(5,0)±5.等差数列{}n a 的公差0d <且22113a a =,则数列{}n a 的前n 项和n s 有最大值,当n s 取得最大值时的项数n 是( )A .6B .7C .5或6D .6或7 6. 执行右面的程序框图,如果输入的[1,]t π∈-,则输出的S 属于( )A.3[3,]2π- B.3[5,]2π- C.[5,5]- D.[3,5]-7.如右图:网格纸上的小正方形边长都为1,粗线画出的是某几何体的的三视图,则该几何体的体积为( )A.4B.163 C. 203D.8 8.设,a b R ∈,则a b >“”是 ()()a a b b a e e b e e --+>+“”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件9. 已知等腰直角ABC ∆,4AB AC ==,点,P Q 分别在边,AB BC 上,()0PB BQ BC +⋅=,2PM PQ =,0AP AN +=,直线MN 经过ABC ∆的重心,则||AP =( ) A.43 B. 2 C. 83D.1 10. 已知直线1y x =-与双曲线221ax by +=(0,0a b ><)的渐近线交于,A B 两点,且过原点和线段AB 中点的直线的斜率为32-,则b a的值为 ( )A. 32-B.233-C. 932-D. 2327- 11. 函数2016sin xy x =-的图像大致是 ( )A B C D 12. 已知函数21()()ln ()2f x a x xa R =-+∈.在区间(1,)+∞上,函数()f x 的图象恒在直线2y ax =下方,则实数a 的取值范围是( ) A .1(,]2-∞ B .11,22⎡⎤-⎢⎥⎣⎦C .1(,)2+∞D .1(,)2-∞第Ⅱ卷(非选择题90分)本卷包括必考题和选考题两部分.第13-21题为必考题,每个试题考生都必须作答.第22-24题为选考题,学生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分. 13. 若函数1()121x a f x -=++为奇函数,ln 0()0axa x x g x ex >⎧=⎨≤⎩,则不等式()1g x >的解集为 .4.若实数,x y 满足不等式组023010y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则2||z y x =-的最小值是________________. 15. 如图所示的几何体是由正四棱锥和圆柱组合而成,且该几何体内接于球(正四棱锥的顶点都在球面上),正四棱锥底面边长为2,体积为43,则圆柱的体积为 .16.已知数列{}n a 是等差数列,数列{}n b 是等比数列,对一切*n N ∈,都有1n n na b a +=,则数列{}n b 的通项公式为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)设ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,点O 为ABC ∆的外接圆的圆心,若满足2a b c +≥ (1)求角C 的最大值;(2)当角C 取最大值时,已知3a b ==,点P 为ABC ∆外接圆圆弧上一点,若OP xOA yOB =+,求x y ⋅的最大值.18. (本小题满分12分)骨质疏松症被称为"静悄悄的流行病",早期的骨质疏松症患者大多数无明显的症状,针对中学校园的学生在运动中骨折事故频发的现状,教师认为和学生喜欢喝碳酸饮料有关,为了验证猜想,学校组织了一个由学生构成的兴趣小组,联合医院检验科,从高一年级中按分层抽样的方法抽取50名同学 (常喝碳酸饮料的同学30,不常喝碳酸饮料的同学20), 对这50名同学进行骨质检测,检测情况如下表:(单位: 人)有骨质疏松症状无骨质疏松症状 总计常喝碳酸饮料的同学 22 830 不常喝碳酸饮料的同学8 12 20 总计302050(1)能否据此判断有97.5%的把握认为骨质疏松症与喝碳酸饮料有关?(2)现从常喝碳酸饮料且无骨质疏松症状的8名同学中任意抽取两人,对他们今后是否有骨质疏松症状情况进行全程跟踪研究,记甲、 乙两同学被抽到的人数为X , 求X 的分布列及数学期望E (X ) . 附表及公式19.已知菱形ABCD ,2,3AB BAC π=∠=,半圆O 所在平面垂直于平面ABCD ,点P 在半圆弧上. (不同于,B C ).(1) 若PA 与平面ABCD 所成角的正弦值为24,求出点P 的位置; (2)是否存在点P ,使得PC BD ⊥,若存在,求出点P 的位置,若不存在,说明理由.20.给定椭圆C :x 2a 2+y 2b2=1(a >b >0),称圆C 1:x 2+y 2=a 2+b 2为椭圆C 的“伴随圆”. 已知点(2,1)A 是椭圆22:4G x y m +=上的点.(1)若过点(0,10)P 的直线l 与椭圆G 有且只有一个公共点,求l 被椭圆G 的伴随圆1G 所截得的弦长; (2)椭圆G 上的,B C 两点满足1241k k ⋅=-(其中12,k k 是直线,AB AC 的斜率),求证:,,B C O 三点共线.21.对于函数()y F x =,若在其定义域内存在0x ,使得00()1x F x ⋅=成立,则称0x 为函数()F x 的“反比点”.已知函数()ln f x x =,21()(1)12g x x =--(1)求证:函数()f x 具有“反比点”,并讨论函数()f x 的“反比点”个数; (2)若1x ≥时,恒有()(())x f x g x x λ⋅≤+成立,求λ的最小值.请考生在第22-24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)如图,在三角形ABC 中, ACB ∠=90°,CD ⊥AB 于D ,以CD 为直径的圆分别交AC 、BC 于E 、F 。
— 高三理科数学(模拟二)—DC B A z yox2017届江西省南昌市高三年级第二次模拟高考数学(理)试题卷一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{lg(32)}A x y x ==-,2{4}B x x =≤, 则A B =U ( )A. 3{2}2x x -≤<B. {2}<x xC. 3{2}2x x -<< D. {2}≤x x2.若ii 12ia t +=+(i 为虚数单位,,a t R ∈),则t a +等于( ) A. 1- B. 0 C. 1 D. 23.已知随机变量ξ服从正态分布2(,)N μσ,若(2)(6)P P ξξ<=>0.15=,则(24)P ξ≤<等于( )A. 0.3B. 0.35C. 0.5D. 0.7 4.已知函数()f x 在R 上可导,则“0'()0f x =”是“0()f x 为 函数()f x 的极值”的( )A. 充分不必要条件B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件 5.执行如右图程序框图,输出的S 为( )A.17 B. 27 C. 47 D. 676.已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为( )A. 110B. 55C. 50D. 不能确定7.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是1(0,0,0),(1,0,1,(0,1,1),(,1,0)2),绘制该四面体三视图时, 按照如下图所示的方向画正视图,则得到左视图可以为( )12348.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,无宽,高1丈(如图).问它的体积是多少? ”这个问题的答案是()A. 5立方丈B. 6立方丈C.7立方丈 D. 9立方丈9.已知抛物线2:4C y x=,过焦点F的直线与C相交于,P Q两点,且,P Q两点在准线上的投影分别为,M N两点,则MFNS∆=()A.83B.3C.163D.310.函数22sin33([,0)(0,])1441xy xxππ=∈-+U的图像大致是()A. B. C. D.11.若对圆22(1)(1)1x y-+-=上任意一点(,)P x y,|34||349|x y a x y-++--的取值与,x y 无关,则实数a的取值范围是()A. 4a≤- B. 46a-≤≤ C. 4a≤-或6a≥ D. 6a≥12.已知递增数列{}n a对任意*n N∈均满足*,3nn aa N a n∈=,记123(*)nnb a n N-⋅=∈,则数列{}nb的前n项和等于()A. 2n n+ B.121n+- C.1332n n+-D.1332n+-第Ⅱ卷(非选择题部分,共90分)本卷包括必考题和选考题两个部分. 第13题~第21题为必考题,每个考生都必须作答. 第22题~第23题为选考题,考生根据要求作答.二.填空题:本大题共4小题,每小题5分,共20分.13.已知向量(3,4)a=r,(,1)b x=r,若()a b a-⊥r r r,则实数x等于.14.设2521001210(32)x x a a x a x a x-+=++++L,则1a等于.15.已知等腰梯形ABCD中AB//CD,24,60AB CD BAD==∠=︒,双曲线以,A B为焦点,且与线段CD(包括端点C、D)有两个交点,则该双曲线的离心率的取值范围是.—高三理科数学(模拟二)—— 高三理科数学(模拟二)—16.网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2017年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足231x t =-+函数关系式.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是 万元.三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数()2sin sin(+)3f x x x π=⋅.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)锐角ABC ∆的角,,A B C 所对边分别是,,a b c ,角A 的平分线交BC 于D ,直线x A = 是函数()f x图像的一条对称轴,2AD ==,求边a .18.(本小题满分12分)近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从70后和(Ⅰ)根据调查的数据,是否有以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排6名参与调查的70后、80后员工参加.70后员工中有愿意被外派的3人和不愿意被外派的3人报名参加,从中随机选出3人,记选到愿意被外派的人数为x ;80后员工中有愿意被外派的4人和不愿意被外派的2人报名参加,从中随机选出3人,记选到愿意被外派的人数为y,求x y <的概率. (参考公式:2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++).— 高三理科数学(模拟二)—F E D CBAS19.(本小题满分12分)已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,SA SD SB ===E 是棱AD 的中点,点F 在棱SC 上,且SF SC λ=u u u r u u u r,SA //平面BEF .(Ⅰ)求实数λ的值;(Ⅱ)求二面角S BE F --的余弦值.20.(本小题满分12分)如图,椭圆2222:1(0)x y C a b a b +=>>的右顶点为(2,0)A ,左、右焦点分别为1F 、2F ,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点1F (Ⅰ)求椭圆C 的标准方程; (Ⅱ)过点P 且斜率大于12的直线与椭圆交于,M N 两点 (||||PM PN >),若:PAM PBN S S λ∆∆=,求实数λ21.(本小题满分12分)已知函数2()ln(1)f x x x ax bx =--+(,,,a b R a b ∈为常数,e 为自然对数的底数). (Ⅰ)当1a =-时,讨论函数()f x 在区间1(1,1)ee++上极值点的个数; (Ⅱ)当1a =,2b e =+时,对任意的(1,)x ∈+∞都有12()x f x ke <成立,求正实数k 的取值范围.请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程为1x ty =+⎧⎪⎨=⎪⎩(t 为参数).在以坐标原点O 为极点,x 轴非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为24cos sin 40ρρθθ--+=. (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 交于,A B 两点,求||||OA OB ⋅.23.(本小题满分10分)选修4-5:不等式选讲 已知()|23||21|f x x x =+--. (Ⅰ)求不等式()2f x <的解集;(Ⅱ)若存在x R ∈,使得()|32|f x a >-成立,求实数a 的取值范围.2017届江西省南昌市高三年级第二次模拟高考数学(理)参考答案1、D【解析】因为3{lg(32)}{320}{}2A x y x x x x x==-=->=<,{22}B x x=-≤≤.所以{2}A B x x=≤U,故答案选D.2.A【解析】因为ii i i(12i)=i-2t12iat a t t+=⇒+=⋅++,则122taa t=⎧⇒=-⎨=-⎩.所以1t a+=-,故答案选A.3.B【解析】由题意可得10.152(24)0.352Pξ-⨯≤<==,故答案选B.4.C【解析】由“'()0f x=”不可以推出“()f x为函数()f x的极值”,同时由“()f x为函数()f x的极值”可以推出“'()0f x=”,所以“'()0f x=”是“()f x为函数()f x的极值”的必要不充分条件.故答案选C.5、A【解析】考虑进入循环状态,根据程序框图可知,当1i=时,有27S=;当2i=时,有47S=;当3i=时,有17S=;当4i=时,有27S=;当5i=时,有47S=;当6i=时,有17S=;所以可知其循环的周期为3T=,当退出循环结构时632i==⨯,所以输出的17S=,故答案选A.6.B【解析】78111622(6)(7)5a a a d a d a d a-=+-+=+=,1111161111552a aS a+=⨯==.故答案选B.7.B【解析】满足条件的四面体如左图,依题意投影到yOz平面为正投影,所以左(侧)视方向如图所示,所以得到左视图效果如右图,故答案选B.8.A【解析】将该几何体分成一个直三棱柱,两个四棱锥,即113122131523V=⨯⨯⨯+⨯⨯⨯⨯=,故答案选A.9.B【解析】由题意可得直线:3(1)PQ y x=-与抛物线24y x=联解得:231030x x-+=,所以点(3,3)P,123(,33Q-,则23832333MN==MNF∆中,MN边上的—高三理科数学(模拟二)—— 高三理科数学(模拟二)—高2h =,则12233MNF S ∆=⨯⨯=,故答案选B . 方法二:不防设交点P 在x 轴上方,由抛物线焦点弦性质得||||PF PM =,||||QF QN =且1121||||PF QF p +==, ||||||||1||||||||2PM QN PF QF PM QN PF QF --==++,故||4PF =,4||3QF =,所以114||(4)2223MNF S MN p ∆=⨯⨯=⨯+=B . 10.A 【解析】因为函数22sin ()11xy f x x==+可化简为222sin ()1x x f x x =+可知函数为奇函数关于原点对称,可排除答案C ;同时有42224sin 2cos 2cos ''()(1)x x x x x xy f x x ++==+ 3222(2sin cos cos )(1)x x x x x x x ++=+,则当(0,)2x π∈ '()0f x >,可知函数在2x π=处附近单调递增,排除答案B 和D ,故答案选A .11.D 【解析】要使符合题意,则圆上所有点在直线12:340,:3490l x y a l x y -+=--=之间, 因为圆心到直线2l的距离21d ==>且314190⨯-⨯-<,则所有圆心到直线1l的距离11d =≥,且31410a ⨯-⨯+≥,解得6a ≥,故答案选D .12.D 【解析】法一:1133a a a =⇒≤,讨论:若11111a a a a =⇒==,不合;若1223a a =⇒=;若11333a a a a =⇒==,不合;即122,3a a ==,2366a a a =⇒=,所以3699a a a =⇒=,所以6918a a a == ,91827a a a ==,182754a a a ==,275481a a a ==,猜测3nn b =,所以数列{}n b 的前n 项和等于113333132n n ++--=-.故答案选D . 法二:*3,n a n a n a N =⇒∈,结合数列的单调性分析得122,3a a ==,13b =,而3,n a a n =3a na n a a ⇒=,同时3a na n a a =,故33n n a a =,又1221233232333n n n n nb a a a b ----⋅⨯⋅⋅====,数列{}n b 为等比数列,即其前n 项和等于113333132n n ++--=-.故答案选D .二.填空题:本大题共4小题,每小题5分,共20分.13.7【解析】因为(3,3)a b x -=-r r ,所以()a b a -⊥⇒r r r(3)33407x x -⨯+⨯=⇒=,故答 案为7.14.240-【解析】250514255(32)(23)(23)x x C x C x x -+=-+-+L ,所以01411552(3)a C C =-240=-,故答案为240-.15.1,)+∞【解析】双曲线过点C时,212c ABe a CA CB===-,开口越大,离心率越— 高三理科数学(模拟二)—大,故答案为1,)+∞. 16.37.5【解析】由题知213t x =--,(13)x <<,所以月利润:(48)3232ty x x t x=+--- 11163163232t x x x =--=-+--145.5[16(3)]3x x=--+-45.537.5≤-=,当且仅当114x =时取等号,即月最大利润为37.5万元.另解:利润1632t y x =--(利润=12⨯进价- 12⨯安装费-开支),也可留t 作为变量求最值.三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.17.【解析】(Ⅰ)因为21()2sin (sin )cos sin 2f x x x x x x x ==+1112cos 2sin(2)2262x x x π=-+=-+, 令222,262k x k k Z πππππ-≤-≤+∈,解得,63k x k k z ππππ-≤≤+∈,所以递增区间是[,]()63k k k Z ππππ-+∈; (Ⅱ)直线x A =是函数()f x 图像的一条对称轴,则2,6223k A k A k z πππππ-=+⇒=+∈,由02A π<<得到3A π=,所以角6BAD π∠=,由正弦定理得sin sin sin 2BD AD B BAD B =⇒=∠,所以4B π=,53412C ππππ=--=,5561212CDA ππππ∠=--=, 所以2AC AD ==,52cos 12DC AD π=⋅=所以a BD AD =+=.18.【解析】(Ⅰ)222()100(20204020)()()()()60406040n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯ 4004001002.778 2.7065760000⨯⨯=≈>所以有90% 以上的把握认为“是否愿意被外派与年龄有关”(Ⅱ)“x y <”包含:“0,1x y ==”、 “0,2x y ==”、 “0,3x y ==”、 “1,2x y ==”、 “1,3x y ==”、 “2,3x y ==”六个互斥事件且0312334233664(0,1)400C C C C P x y C C ===⨯=,03213342336612(0,2)400C C C C P x y C C ===⨯= 0330334233664(0,3)400C C C C P x y C C ===⨯=,122133423366108(1,2)400C C C C P x y C C ===⨯=— 高三理科数学(模拟二)—12303342336636(1,3)400C C C C P x y C C ===⨯=,21303342336636(2,3)400C C C C P x y C C ===⨯= 所以:412410836362001()4004002P x y +++++<=== .19.【解析】(Ⅰ)连接AC ,设AC BE G =I ,则平面SAC I 平面EFB FG =, //SA Q 平面EFB ,//SA FG ∴, GEA GBC ∆∆Q :,12AG AE GC BC ∴==, 1123SF AG SF SC FC GC ∴==⇒=,13λ∴=;(Ⅱ),2SA SD SE AD SE ==∴⊥=Q ,又2,60AB AD BAD ==∠=︒Q,BE ∴=222SE BE SB ∴+=,SE BE ∴⊥,SE ∴⊥平面ABCD ,以,,EA EB ES 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(1,0,0),(0,0,2)A B S ,平面SEB 的法向量(1,0,0)m EA ==u r u u u r,设平面EFB 的法向量(,,)n x y z =r,则(,,)00n EB x y z y ⊥⇒⋅=⇒=r, (,,)(1,0,2)02n GF n AS x y z x z ⊥⇒⊥⇒⋅-=⇒=r u u u r r u u u r,令1z =,得(2,0,1)n =r,cos ,5||||m n m n m n ⋅∴<>==⋅u r ru r r ur r. 20.【解析】(Ⅰ)因为1BF x ⊥轴,得到点2(,)b B c a--,所以2222221()21a a bb a ac c a b c ⎧==⎧⎪⎪⎪=⇒=⎨⎨+⎪⎪=⎩⎪=+⎩,所以椭圆C 的方程是22143x y +=. (Ⅱ)因为1sin 22(2)112sin 2PAM PBN PA PM APMS PM PM S PN PN PB PN BPN λλλ∆∆⋅⋅∠⋅===⇒=>⋅⋅⋅∠,所以2PM PN λ=-u u u u r u u ur .由(Ⅰ)可知(0,1)P -,设MN 方程:1y kx =-,1122(,),(,)M x y N x y ,联立方程221143y kx x y =-⎧⎪⎨+=⎪⎩得:22(43)880k x kx +--=.即得122122843843k x x k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩(*)— 高三理科数学(模拟二)—又1122(,1),(,1)PM x y PN x y =+=+u u u u r u u u r ,有122x x λ=-,将122x x λ=-代入(*)可得:222(2)1643k k λλ-=+. 因为12k >,有2221616(1,4)3434k k k =∈++, 则2(2)14λλ-<<且2λ>44λ⇒<<+ 综上所述,实数λ的取值范围为(4,4+. 21.【解析】(Ⅰ)1a =-时,'()ln(1)2+1xf x x x b x =-++-,记('()g x f x b =-), 则2232()112'()21(1)(1)x x g x x x x ⋅-=-+=---,3'()02g x x =⇒=, 当13(1,)2x e ∈+时,'()0g x <,3(,1)2x e ∈+时,'()g x 0>,所以当32x =时,()g x 取得极小值6ln 2-,又12(1)2g e e e +=++,1(1)24g e e e+=++,'()0()f x g x b =⇔=-,所以(ⅰ)当6ln 2b -≤-,即ln 26b ≥-时,'()0f x ≥,函数()f x 在区间1(1,1)e e++上无极值点;(ⅱ)当26ln 22b e e -<-<++即22ln 26e b e---<<-时,'()0f x =有两不同解, 函数()f x 在区间1(1,1)e e++上有两个极值点;(ⅲ)当21224e b e e e ++≤-<++即12242e b e e e---<≤---时,'()0f x =有一解, 函数()f x 在区间1(1,1)e e ++上有一个极值点;(ⅳ)当124b e e -≥++即124b e e ≤---时,'()0f x ≤,函数()f x 在区间1(1,1)e e++上无极值点;(Ⅱ)当1,2a b e ==+时,对任意的(1,)x ∈+∞都有12()x f x k e <⋅,即22ln(1)(2)xx x x e x ke --++<,即2ln(1)2x e x x e k x--++<⋅— 高三理科数学(模拟二)—记()ln(1)2h x x x e =--++,2()x e x k xφ=⋅, 由12'()111xh x x x -=-=--,当12x <<时'()0h x >,2x >时,'()0h x <, 所以当2x =时,()h x 取得最大值(2)h e =,又222221(2)22'()x x xk e x e e x x k x x φ--==,当12x <<时'()0x φ<,2x >时,'()0x φ>,所以当2x =时,()x φ取得最小值2ke,所以只需要2ke e <2k ⇒>,即正实数k 的取值范围是(2,)+∞.【解2】(Ⅱ)当1,2a b e ==+时,对任意的(1,)x ∈+∞都有12()x f x k e<⋅,即22ln(1)(2)x x x x e x ke --++< 令2x =,得2k >下证2k >时命题成立.一方面11222x x ke e > …………①另一方面由ln 1x x <-(常见对数不等式)知ln(1)2x x -<-,注意1x >22ln(1)(2)(2)(2)x x x e x x x x e x ex ∴--++<--++=…………②记12()2x h x eex =-,12'()x h x ee =-()1,2,'()0,()x h x h x ∴∈<递减,()2,,'()0,()x h x h x ∈+∞>递增 ()(2)0h x h ∴≥=即122x eex ≥∴由①②可知对任意的(1,)x ∈+∞都有12()x f x k e <⋅, ∴正实数k 的取值范围是(2,)+∞.22.【解析】(Ⅰ)直线l的普通方程是1)y x =-即y =,曲线C的直角坐标方程是22440x y x +--+=即22(2)(3x y -+=;(Ⅱ)直线l 的极坐标方程是3πθ=,代入曲线C 的极坐标方程得:2540ρρ-+=,所以||||||4A B OA OB ρρ⋅==.23.【解析】(Ⅰ)不等式()2f x <等价于32(23)(21)2x x x ⎧<-⎪⎨⎪-++-<⎩或3122(23)(21)2x x x ⎧-≤≤⎪⎨⎪++-<⎩ 或12(23)(21)2x x x ⎧>⎪⎨⎪+--<⎩ ,解得32x <-或302x -≤<,— 高三理科数学(模拟二)— 所以不等式()2f x <的解集是(,0)-∞; (Ⅱ)()|(23)(21)|4f x x x ≤+--=Q ,max ()4f x ∴=,|32|4a ∴-<,解得实数a 的取值范围是2(,2)3-.。
江西省丰、樟、高、宜四市2017届高三联考数学(理)试题一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}2,1=A ,则满足{}3,2,1=B A 的集合B 的个数是 ( )A .1B .3C .4D .82.已知等比数列}{n a 中,各项都是正数,且2312,21,a a a 成等差,则87109a a a a ++= ( ) A .21+B .21-C .223+D .223- 3.若2(sin cos )2x a x dx π-=⎰,则实数a 等于( )A .1-B .1C.D4.已知数列}{n a 的通项公式是22++=kn n a n ,若对于*N n ∈,都有n n a a >+1成立,则实数k 的取值范围是 ( ) A .0>k B .1->k C .2->k D .3->k5.如图在棱长均为2的正四棱锥ABCD P -中,点E 为PC 中点,则下列命题正确的是( ) A .BE 平行面PAD ,且直线BE 到面PADB .BE 平行面PAD ,且直线BE 到面PADC .BE 不平行面PAD ,且BE 与平面PAD 所成角大于6πD .BE 不平行面PAD ,且BE 与面PAD 所成角小于6π 6.函数⎪⎩⎪⎨⎧≤≤+<≤-+=)380(),sin(2)02(,1πϕωx x x kx y 的图像如下图,则( )A .6,21,21πϕω===kB .3,21,21πϕω===kC .6,2,21πϕω==-=kD .3,2,2πϕω==-=k7.已知a =++-)12(log )122(log 27,则=-++)12(log )122(log 27( )A .a +1B .a -1C .aD .a -8.在ABC ∆中,3,2AB BC AC ===,若点O 为ABC ∆的内心,则AO AC ⋅的值为( )A .2B .73C .3D .59.已知函数20114321)(2011432x x x x x x f ++-+-+= ,试问函数()f x 在其定义域内有多少个零点?( )A .0B .1C .2D .310.已知数列}{n a 满足:311=a ,n n n a a a +=+21,用][x 表示不超过x 的最大整数,则 ]111111[201121++++++a a a 的值等于( )A .1B .2C .3D .4二、填空题(本大题共5小题,每小题5分,共25分)11.直线a y 2=与函数1-=xa y (0>a ,且1≠a )的图像有两个公共点,则实数a 的取值范围是 .12.设R a ∈,若函数R x ax e y x ∈+=,有大于零的极值点,则实数a 的取值范围是 . 13.在锐角ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若C baa b c o s 6=+,则A C t a n t a n +BCtan tan = . 14. 已知图中(1)、(2)、(3)分别是一个立体模型的正视图、左视图、俯视图,这个立体模型由若干个棱长为1的小正方体组成,则这个立体模型的体积的所有可能值为 . (1)15.下列给出的四个命题中:①在ABC ∆中,B A ∠<∠的充要条件是B A sin sin <;②在同一坐标系中,函数x y sin =的图像和函数2xy =的图像只有一个公共点; ③函数)1(x f y +=的图像与函数)1(x f y -=的图像关于直线1=x 对称;④在实数数列{}n a 中,已知|1|||,|,1||||,1|||,0123121-=-=-==-n n a a a a a a a 则4321a a a a +++的最大值为2.其中为真命题的是_____________________.(写出所有真命题的序号). 三、解答题:(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(本题满分12分)已知ABC ∆的周长为)12(4+,且A C B sin 2sin sin =+.(1)求边长a 的值;(2)若A S ABC sin 3=∆,求A cos 的值. 17.(本题满分12分)已知函数.3cos )4cos()4sin(32sin )(22---++=x x x x x f ππ(1)求函数)(x f 的最小正周期和单调递减区间; (2)求函数)(x f 在]3625,12[ππ-上的最大值和最小值并指出此时相应的x 的值.18.(本题满分12分)如图所示的几何体是由以正三角形ABC 为底面的直棱柱被平面DEF 所截而得. a AF CE BD AB ====,3,1,2,O 为AB 的中点.(1)当4=a 时,求平面DEF 与平面ABC 的夹角的余弦值; (2)当a 为何值时,在棱DE 上存在点P ,使⊥CP 平面DEF ?19.(本题满分12分)在数列{}n a 中,10a =,13n n n a a +=-+,其中1,2,3n = (1)求数列{}n a 的通项公式; (2)求1nn a a +的最大值.OPFEDCA20.(本小题满分13分)已知函数()1ax x ϕ=+,a 为正常数. (1)若()ln ()f x x x ϕ=+,且92a =,求函数()f x 的单调增区间;(2)若()|ln |()g x x x ϕ=+,且对任意12,(0,2]x x ∈,12x x ≠,都有2121()()1g x g x x x -<--,求a的取值范围.21.(本小题满分14分)函数)0(1)(>+=x xx x f ,数列{}n a 和{}n b 满足:112a =,)(1n n a f a =+,函数)(x f y =的图像在点)))((,(*N n n f n ∈处的切线在y 轴上的截距为n b .(1)求数列{n a }的通项公式; (2)若数列2{}n n n b a a λ-的项中仅5255b a a λ-最小,求λ的取值范围; (3)若函数x x x g -=1)(,令函数,10,11)]()([)(22<<+-⋅+=x xx x g x f x h 数列{}n x 满足:10,211<<=n x x 且)(1n n x h x =+其中n N *∈. 证明:2222311212231()()()n n n n x x x x x x x x x x x x ++---+++….参考答案一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的)题号 1 2 3 4 5 6 7 8 9 10 答案CCADDABDBB二、填空题(本大题共5小题,每小题5分,共25分) 11.210<<a 12.1-<a 13.4 14. 6或7 15.①④ 三、解答题:(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(本题满分12分)解 (1)根据正弦定理,A C B sin 2sin sin =+可化为a c b 2=+. ………3分联立方程组⎪⎩⎪⎨⎧=++=++ac b c b a 2)12(4,解得4=a . ………6分(2)A S ABC sin 3=∆ ,A A bc sin 3sin 21=∴6=∴bc . ………9分 又由(1)可知,24=+c b , 由余弦定理得∴3122)(2cos 22222=--+=-+=bc a bc c b bc a c b A . ………12分 17.(本题满分12分)解:(1)3cos )4cos()4sin(32sin )(22---++=x x x x x f ππ32cos )4(sin 322--+=x x πx x 2cos 2sin 3-=)62sin(2π-=x …………3分所以ππ==22T …………4分 由)(2326222Z k k x k ∈+≤-≤+πππππ得 )(653Z k k x k ∈+≤≤+ππππ所以函数)(x f 的最小正周期为)](65,3[,Z k k k ∈++πππππ单调递减区间为………6分 (2)由(1)有).62sin(2)(π-=x x f因为],3625,12[ππ-∈x 所以]911,3[62πππ-∈-x …………8分y因为.911sin 34sin )3sin(πππ<=-所以当)(,3;3)(,12x f x x f x 函数时当取得最小值函数时ππ=--=取得最大值2…………12分18. (本题满分12分)(1)分别取AB 、DF 的中点O 、G ,连接OC 、OG .以直线OB 、OC 、OG 分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,4==a AF ,则D 、E 、F 的坐标分别为D (1,0,1)、E (0,3,3)、F (-1,0,4),∴DE =(-1,3,2),DF =(-2,0,3) 设平面DEF 的法向量),,(z y x n =,由⎪⎩⎪⎨⎧=+-=⋅=++-=⋅032023z x z y x 得 z y z x 63,23-==,可取)1,63,23(-= …… 3分 平面ABC 的法向量可以取)1,0,0(=m∴10301121491=++==…… 5分 ∴平面DEF 与平面ABC 的夹角的余弦值为1030. ……6分 (2)在(1)的坐标系中,a AF =,=(-1,3,2),=(-2,0,a -1). 因P 在DE 上,设DE DP λ=,则)12,3,1()2,3,1()1,0,1(+-=-+=+=λλλλ∴)12),1(3,1()0,3,0()12,3,1(+--=-+-=-=λλλλλλOC OP CP 于是⊥CP 平面DEF 的充要条件为⎪⎩⎪⎨⎧=+-+--=⋅=++-+-=⋅0)12)(1()1(20)12(2)1(31λλλλλa DF CP由此解得,2,41==a λ 即当a =2时,在DE 上存在靠近D 的第一个四等分点P ,使⊥CP 平面DEF . ……12分19.(本题满分12分)解(1)11113(3)44n n n n a a ++-⋅=--⋅ ………2分从而数列1{3}4n n a -⋅是首项为13344a -=-,公比为1-的等比数列,∴133(1)44n n n a =⋅+-⋅. ………5分(2)当n 为偶数时,11111333314441333333344n n n n n n n a a ++++⋅++===+--⋅- ∴1n n a a +随n 增大而减小,即当n 为偶数时21312n n a a a a +=≤ ………8分当n 为奇数时,11111333314441333333344n n n n n n n a a ++++⋅--===-++⋅+ ∴1n n a a +随n 增大而增大,且11132n n a a +<< ………11分综上,1n n a a +最大值为12……12分 20. (本小题满分13分)解:⑴ 函数)(x f 的定义域为),0(+∞,2221(2)1'()(1)(1)a x a x f x x x x x +-+=-=++,…2分 ∵92a =,令'()0f x >,得2x >,或12x <, ∴函数()f x 的单调增区间为1(0,)2, (2,)+∞。
江西省重点中学盟校2017届高三第二次联考数学(理科)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()2211i i+++的共轭复数的虚部是( ) A .iB .i -C .1-D .12.已知集合{}{}24,13M x x N x x =>=<<,则R N C M ⋂=( ) A .{}21x x -≤< B .{}12x x <≤ C .{}22x x -≤≤ D .{}2x x < 3.下列命题中真命题的个数是( ) ①若p q ⋂是假命题,则q p ,都是假命题;②命题“32,10x R x x ∀∈-+≤”的否定是“32000,10x R x x ∃∈-+>”; ③若1:1,:1p x q x≤<,则p ⌝是q 的充分不必要条件. ④设随机变量X 服从正态分布()3,7N ,若()()11P X C P X C >+=>-,则3=C . A .1B .2C .3D .44.一个几何体的三视图如所示,则该几何体的外接球表面积为( )A .3πB .5πC .10πD .20π5.“更相减损术”是出自《九章算术》的一种求最大公约数的算法,如下框图中若输入的a 、b 分别为198、90,则输出的i 为( )A .3B .4C .5D .66.如图,在边长为2的正方形ABCD 中,M 是AB 的中点,过D M C ,,三点的抛物线与CD围成阴影部分,则向正方形内撒一粒黄豆落在阴影部分的概率是( )A .16B .13C .12D .237.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,为了得到()cos 3g x πω⎛⎫=+ ⎪⎝⎭的图象,则只将()f x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移12π个单位D .向右平移12π个单位8.如果实数y x ,满足关系10200x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,又273x y c x +-≥-恒成立,则c 的取值范围为( )A .9,5⎛⎤-∞ ⎥⎦⎝B .](,3-∞C .)9,5⎡+∞⎢⎣D .[)3,+∞9.将E D C B A ,,,,这5名同学从左至右排成一排,则A 与B 相邻且A 与C 之间恰好有一名同学的排法有( ) A .18B .20C .21D .22 10.若非零向量,a b的夹角为锐角θ,且c o s a b θ= ,则称a 被b “同余”.已知b 被a “同余”,则a b - 在a上的投影是( )A .22a ba-B .222a ba-C .22b aa -D .22a b b-11.已知O 为坐标原点,F 是双曲线()2222:10,0x y C a b a b-=>>的左焦点,B A ,分别为左、右顶点,过点F 做x 轴的垂线交双曲线于点Q P 、,连结PB 交y 轴于点E ,连接AE QF 于点M ,若M 是线段QF 的中点,则双曲线C 的离心率( )A .2B .52C .3D .7212.已知函数()()()23221,2log 2log 4x x f x x g x t =+=-+-,若函数()()()1F x f g x =-在区间⎡⎣上恰有两个不同的零点,则实数t 的取值范围( )A .5,42⎡⎤⎢⎥⎣⎦B .59,22⎡⎫⎪⎢⎣⎭C .94,2⎡⎫⎪⎢⎣⎭D .94,2⎡⎤⎢⎥⎣⎦第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()41,05log ,0x f x x x x ⎧≤⎪=-⎨⎪>⎩则()3f f -=⎡⎤⎣⎦ .14.在多项式()()65121x y ++的展开式中,3xy 项的系数为 .15.已知ABC ∆中,AC AB =,120BAC ∠= ,4=BC ,若点P 是边BC 上的动点,且P到AB ,AC 距离分别为n m ,,则41m n+的最小值为 . 16.已知数列{}n a 中,设()111,31n n a a a n N ++==+∈,若()2312n n n n nb a -=⋅-⋅,n T 是{}n b 的前n 项和,若不等式122n n n T n λ-<+对一切的n N +∈恒成立,则实数λ的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设锐角三角形ABC 的内角C B,A,的对边分别为c b,a,,222=+b a c . (1)求B 的大小;(2)求cos sin A C +的取值范围.18.通过对某城市一天内单次租用共享自行车的时间50分钟到100钟的n 人进行统计,按照租车时间[)50,60,[)60,70,[)70,80,[)80,90,[)90,100分组做出频率分布直方图,并作出租用时间和茎叶图(图中仅列出了时间在[)50,60,[)90,100的数据).(1)求n 的频率分布直方图中的y x ,;(2)从租用时间在80分钟以上(含80分钟)的人数中随机抽取4人,设随机变量X 表示所抽取的4人租用时间在[)80,90内的人数,求随机变量X 的分布列及数学期望. 19.如图,在正四面体ABCD 中,O 是BCD ∆的中心,F E ,分别是AC AB ,上的动点,且(),1BE BA CF CA λλ==- .(1)若OE 平面ACD ,求实数λ的值;(2)若12λ=,正四面体ABCD 的棱长为DEF 和平面BCD 所成的角余弦值.20.已知椭圆()2222:10,0x y C a b a b-=>>右顶点()2,0A ,离心率e =.(1)求椭圆C 的方程;(2)设B 为椭圆上顶点,P 是椭圆C 在第一象限上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,问PMN ∆与PAB ∆面积之差是否为定值?说明理由.21.设常数()20,0,ln x a f x a x xλλ>>=-+.(1)若()f x 在x λ=处取得极小值为0,求λ和a 的值;(2)对于任意给定的正实数λ、a ,证明:存在实数0x ,当0x x >时,()0f x >.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平角直角坐标系xOy 中,以O 为极点,x 轴非负半轴为极轴建立坐标系,曲线M 的极坐标方程为4cos ρθ=,直线l 的参数方程为cos sin x m t y t αα=+⎧⎨=⎩(t 为参数,0απ≤<),射线,,44ππθϕθϕθϕ==+=-与曲线M 交于C B A ,,三点(异于O 点). (1)求证:OB OC OA +;(2)当12πϕ=时,直线l 经过C B ,两点,求m 与α的值23.选修4-5:不等式选讲若关于x 的不等式26ax -<的解集为4833x x ⎧⎫-<<⎨⎬⎩⎭.(1)求a 的值;(2)若1=b江西省重点中学盟校2017届高三第二次联考数学(理科)试卷答案一、选择题1-5:CBCBD 6-10: DAABA 11、12:CC12.答案:C 解析 因为函数1))(()(-=x g f x F 的零点为方程1)4log 2)(log 2(222=-+-t x x f 的根,易知1)0(=f ,所以)0(4log 2)log 2(222f t x x f =-+-,故04log 2)(log 2222=-+-t x x .令t m 2log =,则]23,0[∈m ,问题转化为04222=-+-t m m 在]23,0[∈m 上有两个不同的实解,即4222++-=m m t 在]23,0[∈m 上有两个不同的实解.令4222++-=m m y )230(≤≤m ,则)230(29)21(22≤≤+--=m m y ,29max =y ,结合图像可知)29,4[∈t . 二、填空题13.23-14.120 15.2916.)1,(-∞ 三、解答题17.(1)由ac c a b 3222-+=,根据余弦定理得23cos =B . 又B 为锐角三角形ABC ∆的内角,得6π=B .(2)由(1)知)3sin(3)65sin(cos sin cos ππ+=-+=+A A A C A , 由ABC ∆为锐角三角形且6π=B 知26ππ>+A , 故23ππ<<A .∴65332πππ<+<A ,∴23)3sin(21<+<πA ,∴23)3sin(323<+<πA , 故C A sin cos +的取值范围为)23,23(. 18.解:(1)由题意可知,样本容量004.010502,5010016.08=⨯==⨯=y n ,030.0040.0016.0010.0004.0100.0=----=z .(2)由题意可知,租用时间在)90,80[内的人数为5,租用时间在]100,90[内的人数为2,共7人.抽取的4人中租用时间在)90,80[内的人数X 的可能取值为4,3,2,则723510)2(472225====C C C X P ,743520)3(471235====C C C X P ,71355)4(470245====C C C X P .故720714743722)(=⨯+⨯+⨯=X E . 19.解:(1)取CD 的中点G ,连接AG BG ,,∵O 是正BCD ∆的中心 ∴点O 在BG 上,且2=OGBO, ∵当AG OE ∥时,∥OE 平面ACD , ∴2==OG BO EA BE ∴BA BE 32=,即32=,∴32=λ. (2)当21=λ时,点F E ,分别是AC AB ,的中点. 建立如图所示的空间直角坐标系xyz O -,依题设2=OB ,则)0,1,3(),0,1,3(),22,0,0(),0,2,0(--D C A B ,)2,21,23(),2,1,0(F E -, 则)2,2,3()2,21,23(-==,, 设平面DEF 的法向量为),,(z y x n =则⎪⎩⎪⎨⎧⊥⊥DEn ,∴⎩⎨⎧=+-=+0223033z y x y x ,不妨令1=z ,则)1,52,56(-=, 又平面BCD 的一个法向量为)1,0,0(=.设所求二面角为θ,则33335cos ==θ. 20. 解:⑴依题意得⎪⎪⎩⎪⎪⎨⎧=-==,,23,2222c b a a ca 解得⎩⎨⎧==12b a ,则椭圆C 的方程为1422=+y x .⑵设)0,0)(,(0000>>y x y x P ,则442020=+y x ,)2(2:00--=x x y y PA ,令0=x 得2200--=x y y M ,则2211100---=-==x y y y -BM M M , 11:00+-=x x y y PB ,令0=y 得100--=y x x N ,则121200---=-==y x x x -AN N N , ∴BM AN OB OM AN S S PAB PMN ⋅⋅=-⋅⋅=-∆∆21)(21 222884421224844421)221)(12(21000000000000000020200000=+--+--⋅=+--+--++⋅=------=y x y x y x y x y x y x y x y x y x x y y x .21.xa x x x x a x x x x x f -++=-+-+='2222)(2)()(2)(λλλλ2223222)(2)2()()()2(x x a ax x a x x x x a x x +---+=++-+=λλλλλλλ, ∵0243)(323=='λλλλa -f ,∴λ43=a . 将λ43=a 代入得 22222223)(4)394)(()(43654)(x x x x x x x x x x f +++-=+--+='λλλλλλλλλ 当),0(λ∈x 时,0)(<'x f ,)(x f 递减;),(+∞∈λx 时,0)(>'x f ,)(x f 递增;故当λ=x 时,)(x f 取极小值λλλλln 4321)(-=f , 令0)(=λf ,解得323243,e a e ==λ.(Ⅱ)因为x a x x a xx x a x x x f ln ln ln )(22-->-++-=-+=λλλλλ, 记x a x x h ln )(--=λ,故只需证明:存在实数0x ,当0x x >时,0)(>x h , [方法1] )ln (ln )(x x a x a x x a x x h -+--=--=λλ, 设0,ln >-=x x x y ,则xx x xy 22121-=-='. 易知当4=x 时,02ln 22min >-=y ,故0ln >-=x x y .又由0≥--λx a x 解得:242λ++≥a a x ,即22)24(λ++≥a a x取220)24(λ++=a a x ,则当0x x >时, 恒有0)(>x h .即当0x x >时, 恒有0)(>x f 成立.[方法2] 由x a x x h ln )(--=λ,得:xa x x a x h -=-='1)(, 故)(x h 是区间),(+∞a 上的增函数.令2,,2≥∈=n N n x n ,则2ln 2)2()(an h x h n n --==λ,因为2212)1(1)11(2n n n n nn >-++≥+=, 故有λλ-->--==n a n an h x h nn )2ln (212ln 2)2()(2, 令0)2ln (212≥--λn a n ,解得: 28)4ln (2ln 22λ++≥a a n , 设0n 是满足上述条件的最小正整数,取020n x =,则当0x x >时, 恒有0)(>x h , 即0)(>x f 成立.22.(Ⅰ)由已知:ϕπϕπϕcos 4),4cos(4),4cos(4=-=+=OA OC OB ,∴OA co OC OB 24cos 8)4cos(4)4cos(4==-++=+πϕπϕπϕ.(Ⅱ)当12πϕ=时,点C B,的极角分别为64,34ππϕππϕ-=-=+,代入曲线M 的方程得点C B ,的极径分别为:32)6cos(4,23cos4=-===πρπρC B ,∴点C B ,的直角坐标为:)3,3(),3,1(-C B ,则直线l 的斜率为3-=k , 方程为0323:=-+y x l ,与x 轴交与点)0,2(;由⎩⎨⎧=+=ααsin cos t y t m x l :,知α为其倾斜角,直线过点)0,(m , ∴32,2πα==m . 23. (1) 依题意知34-和38是方程62=-ax 的两个根,则⎪⎪⎩⎪⎪⎨⎧=-=--62386234a a ,∴⎪⎩⎪⎨⎧-==-==23363a a a a 或或,∴3=a . (2)62)4)(11(3)4(33123=+-+≤+-=++-t t t t t t 当且仅当t t =-4,即2=t 时等号成立.。
2017年江西省五市八校联考高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数=()A.1﹣3i B.1+3i C.﹣1+3i D.﹣1﹣3i2.(5分)已知集合,,则(∁R M)∩N=()A.(0,2]B.[0,2]C.∅D.[1,2]3.(5分)已知等比数列{a n}的各项都为正数,且a3,成等差数列,则的值是()A.B.C.D.4.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是()A.B.C.D.5.(5分)在区间[0,2]内随机取出两个数,则这两个数的平方和在区间[0,2]内的概率为()A.B.C.D.6.(5分)执行如图所示的程序框图,则输出的结果是()A.6B.﹣6C.5D.﹣57.(5分)中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a,b,c,三角形的面积S可由公式求得,其中p 为三角形周长的一半,这个公式也被称为海伦﹣秦九韶公式,现有一个三角形的边长满足a+b=12,c=8,则此三角形面积的最大值为()A.B.C.D.8.(5分)设[x]表示不超过x的最大整数,如[1]=1,[0.5]=0,已知函数f(x)=﹣k (x>0),若方程f(x)=0有且仅有3个实根,则实数k的取值范围是()A.B.C.D.9.(5分)某学校高三年级有2个文科班,3个理科班,现每个班指定1人,对各班的卫生进行检查,若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是()A.24B.32C.48D.8410.(5分)倾斜角为的直线l过抛物线y2=ax(a>0)的焦点F,且与抛物线交于点A、B,l交抛物线的准线于点C(B在A、C之间),若,则a=()A.1B.2C.3D.411.(5分)设P是正方体ABCD﹣A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P 到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P()A.仅有一个B.有有限多个C.有无限多个D.不存在12.(5分)若关于x不等式xlnx﹣x3+x2≤ae x恒成立,则实数a的取值范围是()A.[e,+∞)B.[0,+∞)C.D.[1,+∞)二.填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知||=1,||=,且⊥(﹣),则向量与向量的夹角是.14.(5分)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么该企业可获得最大利润是.15.(5分)已知数列{a n}满足a1=,a n+1=(n∈N*),若不等式++t •a n≥0恒成立,则实数t的取值范围是.16.(5分)函数的图象向左平移个单位长度后对应的函数是奇函数,函数.若关于x的方程f(x)+g(x)=﹣2在[0,π)内有两个不同的解α,β,则cos(α﹣β)的值为.三、解答题:本大题共5小题,共70分.解答题写出文字说明、证明过程或演算步骤. 17.(12分)在△ABC中,∠A、∠B、∠C所对边长分别为a、b、c,已知,且.(1)求∠A的大小;(2)若,sin B+sin C=1,求△ABC的面积S.18.(12分)如图,在四面体ABCD中,平面ABC⊥平面BCD,DC⊥BC,,BC=2,AC=1.(1)求证:AB⊥AD;(2)设E是BD的中点,若直线CE与平面ACD的夹角为30°,求四面体ABCD外接球的表面积.19.(12分)春节来临,有农民工兄弟A、B、C、D四人各自通过互联网订购回家过年的火车票,若订票成功即可获得火车票,即他们获得火车票与否互不影响.若A、B、C、D 获得火车票的概率分别是,其中p1>p3,又成等比数列,且A、C两人恰好有一人获得火车票的概率是.(1)求p1,p3的值;(2)若C、D是一家人且两人都获得火车票才一起回家,否则两人都不回家.设X表示A、B、C、D能够回家过年的人数,求X的分布列和期望EX.20.(12分)过点P(a,﹣2)作抛物线C:x2=4y的两条切线,切点分别为A(x1,y1),B(x2,y2).(Ⅰ)证明:x1x2+y1y2为定值;(Ⅱ)记△P AB的外接圆的圆心为点M,点F是抛物线C的焦点,对任意实数a,试判断以PM为直径的圆是否恒过点F?并说明理由.21.(12分)已知函数f(x)=lnx+x2﹣2ax+1(a为常数).(1)讨论函数f(x)的单调性;(2)若存在x0∈(0,1],使得对任意的a∈(﹣2,0],不等式2me a(a+1)+f(x0)>a2+2a+4(其中e为自然对数的底数)都成立,求实数m的取值范围.请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2cos(θ﹣).(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a﹣1|+|x﹣2a|.(Ⅰ)若f(1)<3,求实数a的取值范围;(Ⅱ)若a≥1,x∈R,求证:f(x)≥2.2017年江西省五市八校联考高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数=()A.1﹣3i B.1+3i C.﹣1+3i D.﹣1﹣3i【解答】解:=.故选:A.2.(5分)已知集合,,则(∁R M)∩N=()A.(0,2]B.[0,2]C.∅D.[1,2]【解答】解:∵<1,即﹣1<0,即<0,等价于x(x﹣2)>0,解得x>2或x<0,则M=(﹣∞,0)∪(2,+∞),∴(∁R M)=[0,2],∵N={y|y=}=[0,+∞),∴(∁R M)∩N=[0,2],故选:B.3.(5分)已知等比数列{a n}的各项都为正数,且a3,成等差数列,则的值是()A.B.C.D.【解答】解:设等比数列{a n}的公比为q,且q>0,∵a3,成等差数列,∴,则,化简得,q2﹣q﹣1=0,解得q=,则q=,∴====,故选:A.4.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是()A.B.C.D.【解答】解:该几何体为正方体截去一部分后的四棱锥P﹣ABCD,如图所示,该几何体的俯视图为D.故选:D.5.(5分)在区间[0,2]内随机取出两个数,则这两个数的平方和在区间[0,2]内的概率为()A.B.C.D.【解答】解:将取出的两个数分别用x,y表示,则x,y∈[0,2]要求这两个数的平方和也在区间[0,2]内,即要求0≤x2+y2≤2,故此题可以转化为求0≤x2+y2≤2在区域内的面积比的问题.即由几何知识可得到概率为=;故选:D.6.(5分)执行如图所示的程序框图,则输出的结果是()A.6B.﹣6C.5D.﹣5【解答】解:当i=1时,满足进行循环的条件,执行循环体后,S=﹣1,i=2;当i=2时,满足进行循环的条件,执行循环体后,S=1,i=3;当i=3时,满足进行循环的条件,执行循环体后,S=﹣2,i=4;当i=4时,满足进行循环的条件,执行循环体后,S=2,i=5;当i=5时,满足进行循环的条件,执行循环体后,S=﹣3,i=6;当i=6时,满足进行循环的条件,执行循环体后,S=3,i=7;当i=7时,满足进行循环的条件,执行循环体后,S=﹣4,i=8;当i=8时,满足进行循环的条件,执行循环体后,S=4,i=9;当i=9时,满足进行循环的条件,执行循环体后,S=﹣5,i=10;当i=10时,满足进行循环的条件,执行循环体后,S=5,i=11;当i=11时,不满足进行循环的条件,故输出S值为5,故选:C.7.(5分)中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a,b,c,三角形的面积S可由公式求得,其中p 为三角形周长的一半,这个公式也被称为海伦﹣秦九韶公式,现有一个三角形的边长满足a+b=12,c=8,则此三角形面积的最大值为()A.B.C.D.【解答】解:由题意,p=10,S==≤=8,∴此三角形面积的最大值为8.故选:B.8.(5分)设[x]表示不超过x的最大整数,如[1]=1,[0.5]=0,已知函数f(x)=﹣k (x>0),若方程f(x)=0有且仅有3个实根,则实数k的取值范围是()A.B.C.D.【解答】解:由f(x)=﹣k=0得=k,若x>0,设g(x)=,则当0<x<1,[x]=0,此时g(x)=0,当1≤x<2,[x]=1,此时g(x)=,此时,当2≤x<3,[x]=2,此时g(x)=,此时<g(x)≤1,当3≤x<4,[x]=3,此时g(x)=,此时<g(x)≤1,当4≤x<5,[x]=4,此时g(x)=,此时<g(x)≤1,作出函数g(x)的图象,要使f(x)=﹣k有且仅有三个零点,即函数g(x)=k有且仅有三个零点,则由图象可知<k≤,故选:C.9.(5分)某学校高三年级有2个文科班,3个理科班,现每个班指定1人,对各班的卫生进行检查,若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是()A.24B.32C.48D.84【解答】解:根据题意,分3步进行分析:①、在3个理科班的学生中任选2人,去检查2个文科班,有C32A22=6种情况;②、剩余的1个理科班的学生不能检查本班,只能检查其他的2个理科班,有2种情况,③、将2个文科班学生全排列,安排检查剩下的2个理科班,有A22=2种情况;则不同安排方法的种数6×2×2=24种;故选:A.10.(5分)倾斜角为的直线l过抛物线y2=ax(a>0)的焦点F,且与抛物线交于点A、B,l交抛物线的准线于点C(B在A、C之间),若,则a=()A.1B.2C.3D.4【解答】解:过A和D做AD⊥l,BG⊥l,垂足分别为D和G,准线l交x轴于E,由抛物线的焦点(,0),准线方程x=﹣,则丨EF丨=,且丨BG丨=丨BF丨,由∠AFx=,则∠FCD=,sin∠FCD===,,则丨BG丨=,由2丨EF丨=丨CF丨,即2×=丨BC丨+丨BF丨=+=4,故a=4,故选:D.11.(5分)设P是正方体ABCD﹣A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P 到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P()A.仅有一个B.有有限多个C.有无限多个D.不存在【解答】解:设P是正方体ABCD﹣A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P 到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P是正方体的中心,故选:A.12.(5分)若关于x不等式xlnx﹣x3+x2≤ae x恒成立,则实数a的取值范围是()A.[e,+∞)B.[0,+∞)C.D.[1,+∞)【解答】解:【方法一】设f(x)=xlnx﹣x3+x2,x>0,则f′(x)=lnx+1﹣3x2+2x,且f′(1)=ln1+1﹣3+2=0,∴1是f(x)的极值点,也是最值点;∴f(x)<0恒成立,又x>0时,e x>1恒成立,∴a的取值范围是[0,+∞).【方法二】不等式xlnx﹣x3+x2≤ae x可化为lnx﹣x2+x≤,设f(x)=lnx﹣x2+x,g(x)=,其中x>0;∴f′(x)=﹣2x+1=,令f′(x)=0,解得x=1或x=﹣(舍去),∴x=1时f(x)取得极大值,也是最大值,为0;又g′(x)=a•,令g′(x)=0,解得x=1,∴x=1时g(x)取得极值,也是最值,a≥0时g(x)取得最小值为a;由题意知实数a的取值范围是a≥0.故选:B.二.填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知||=1,||=,且⊥(﹣),则向量与向量的夹角是.【解答】解:设向量与向量的夹角是θ,则由题意可得•(﹣)=﹣=1﹣1××cosθ=0,求得cosθ=,可得θ=,故答案为:.14.(5分)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么该企业可获得最大利润是27万元.【解答】解:设该企业生产甲产品为x吨,乙产品为y吨,则该企业可获得利润为z=5x+3y,且,联立,解得x=3 y=4,由图可知,最优解为P(3,4),∴z的最大值为z=5×3+3×4=27(万元).故答案为:27万元.15.(5分)已知数列{a n}满足a1=,a n+1=(n∈N*),若不等式++t •a n≥0恒成立,则实数t的取值范围是[﹣9,+∞).【解答】解:由数列{a n}满足a1=,a n+1=(n∈N*),两边取倒数可得:﹣=1.∴数列是等差数列,公差为1,首项为2.∴=2+(n﹣1)=n+1,∴a n=.不等式++t•a n≥0化为:t≥﹣.∵+5≥2=4,当且仅当n=2时取等号.∵﹣≤﹣9.∵实数t的取值范围若不等式++t•a n≥0恒成立,∴t≥﹣9.则实数t的取值范围[﹣9,+∞).故答案为:[﹣9,+∞).16.(5分)函数的图象向左平移个单位长度后对应的函数是奇函数,函数.若关于x的方程f(x)+g(x)=﹣2在[0,π)内有两个不同的解α,β,则cos(α﹣β)的值为.【解答】解:函数的图象向左平移个单位长度后,得到y=2sin(2x++Φ)的图象;∵对应的函数是奇函数,∴+Φ=kπ,k∈Z,即Φ=kπ﹣,∴Φ=﹣,即f(x)=2sin(2x﹣).∵函数,关于x的方程f(x)+g(x)=﹣2在[0,π)内有两个不同的解α,β,即2sin(2x﹣)+(2+)cos2x=﹣2在[0,π)内有两个不同的解α,β,即sin2x+cos2x=﹣1 在[0,π)内有两个不同的解α,β,即sin(2x+θ)=﹣1(其中,cosθ=,sinθ=,θ为锐角)在[0,π)内有两个不同的解α,β,即方程sin(2x+θ)=﹣在[0,π)内有两个不同的解α,β.∵x∈[0,π),∴2x+θ∈[θ,2π+θ),∴sin(2α+θ)=﹣,sin(2β+θ)=﹣,∴sinθ=﹣sin(2α+θ)=﹣sin(2β+θ),∴2α+θ=π+θ,2β+θ=2π﹣θ,∴2α﹣2β=﹣π+2θ,α﹣β=θ﹣,∴cos(α﹣β)=cos(θ﹣)=sinθ=,故答案为:.三、解答题:本大题共5小题,共70分.解答题写出文字说明、证明过程或演算步骤. 17.(12分)在△ABC中,∠A、∠B、∠C所对边长分别为a、b、c,已知,且.(1)求∠A的大小;(2)若,sin B+sin C=1,求△ABC的面积S.【解答】解:(1)∵,∴(sin C,sin B cos A)•(b,2c)=0,∴b sin C+2c sin B cos A=0…(2分)由正弦定理得bc+2cb cos A=0…(4分)∵b≠0,c≠0∴…(5分)∵0<A<π∴…(6分)(2)由(1)及余弦定理得a2=b2+c2+bc,得sin2A=sin2B+sin2C+sin B sin C即…(8分)又sin B+sin C=1,解得…(9分)∵∴b=c=2…(11分)∴△ABC的面积…(12分)18.(12分)如图,在四面体ABCD中,平面ABC⊥平面BCD,DC⊥BC,,BC=2,AC=1.(1)求证:AB⊥AD;(2)设E是BD的中点,若直线CE与平面ACD的夹角为30°,求四面体ABCD外接球的表面积.【解答】解:(1)证明:由平面ABC⊥平面BCD,DC⊥BC,得DC⊥平面ABC,∴AB⊥CD…(2分)又由,BC=2,AC=1,得BC2=AB2+AC2,所以AB⊥AC…(4分)故AB⊥平面ADC,所以AB⊥AD…(6分)(2)取AD的中点F,连接EF,则EF∥BA,因为AB⊥平面ADC∴EF⊥平面ADC…(8分)连接FC,则∠ECF=30°,∴…(9分)又∠BAD=∠BCD=90°,所以四面体ABCD的外接球的半径…(11分)故四面体ABCD的外接球的表面积=…(12分)(向量解法酌情给分)19.(12分)春节来临,有农民工兄弟A、B、C、D四人各自通过互联网订购回家过年的火车票,若订票成功即可获得火车票,即他们获得火车票与否互不影响.若A、B、C、D 获得火车票的概率分别是,其中p1>p3,又成等比数列,且A、C两人恰好有一人获得火车票的概率是.(1)求p1,p3的值;(2)若C、D是一家人且两人都获得火车票才一起回家,否则两人都不回家.设X表示A、B、C、D能够回家过年的人数,求X的分布列和期望EX.【解答】解:(1)∵A、C两人恰好有一人获得火车票的概率是,∴…(1分)联立方程组,…(3分)由p1>p3,解得.…(5分)(2)由题意知X的可能取值为0,1,2,3,4,…(6分)…(7分)…(8分)…(9分)…(10分)∴X的分布列为:…(11分)…(12分)20.(12分)过点P(a,﹣2)作抛物线C:x2=4y的两条切线,切点分别为A(x1,y1),B(x2,y2).(Ⅰ)证明:x1x2+y1y2为定值;(Ⅱ)记△P AB的外接圆的圆心为点M,点F是抛物线C的焦点,对任意实数a,试判断以PM为直径的圆是否恒过点F?并说明理由.【解答】解:(Ⅰ)证明:法1:由x2=4y,得,所以.所以直线P A的斜率为.因为点A(x1,y1)和B(x2,y2)在抛物线C上,所以,.所以直线P A的方程为.…(1分)因为点P(a,﹣2)在直线P A上,所以,即.…(2分)同理,.…(3分)所以x1,x2是方程x2﹣2ax﹣8=0的两个根.所以x1x2=﹣8.…(4分)又,…(5分)所以x1x2+y1y2=﹣4为定值.…(6分)法2:设过点P(a,﹣2)且与抛物线C相切的切线方程为y+2=k(x﹣a),…(1分),消去y得x2﹣4kx+4ka+8=0,由△=16k2﹣4(4ak+8)=0,化简得k2﹣ak﹣2=0.…(2分)所以k1k2=﹣2.…(3分)由x2=4y,得,所以.所以直线P A的斜率为,直线PB的斜率为.所以,即x1x2=﹣8.…(4分)又,…(5分)所以x1x2+y1y2=﹣4为定值.…(6分)(Ⅱ)法1:直线P A的垂直平分线方程为,…(7分)由于,,所以直线P A的垂直平分线方程为.①…(8分)同理直线PB的垂直平分线方程为.②…(9分)由①②解得,,所以点.…(10分)抛物线C的焦点为F(0,1),则.由于,…(11分)所以.所以以PM为直径的圆恒过点F.…(12分)另法:以PM为直径的圆的方程为.…(11分)把点F(0,1)代入上方程,知点F的坐标是方程的解.所以以PM为直径的圆恒过点F.…(12分)法2:设点M的坐标为(m,n),则△P AB的外接圆方程为(x﹣m)2+(y﹣n)2=(m﹣a)2+(n+2)2,由于点A(x1,y1),B(x2,y2)在该圆上,则,.两式相减得(x1﹣x2)(x1+x2﹣2m)+(y1﹣y2)(y1+y2﹣2n)=0,①…(7分)由(Ⅰ)知,代入上式得,…(8分)当x1≠x2时,得8a﹣4m+a3﹣2an=0,②假设以PM为直径的圆恒过点F,则,即(﹣m,n﹣1)•(﹣a,﹣3)=0,得ma﹣3(n﹣1)=0,③…(9分)由②③解得,…(10分)所以点.…(11分)当x1=x2时,则a=0,点M(0,1).所以以PM为直径的圆恒过点F.…(12分)21.(12分)已知函数f(x)=lnx+x2﹣2ax+1(a为常数).(1)讨论函数f(x)的单调性;(2)若存在x0∈(0,1],使得对任意的a∈(﹣2,0],不等式2me a(a+1)+f(x0)>a2+2a+4(其中e为自然对数的底数)都成立,求实数m的取值范围.【解答】解:(I)f(x)=lnx+x2﹣2ax+1,f'(x)=+2x﹣2a=,令g(x)=2x2﹣2ax+1,(i)当a≤0时,因为x>0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(ii)当0<a时,因为△≤0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(iii)当a>时,x在(,)时,g(x)<0,函数f(x)单调递减;在区间(0,)和(,+∞)时,g(x)>0,函数f(x)单调递增;(II)由(I)知当a∈(﹣2,0],时,函数f(x)在区间(0,1]上单调递增,所以当x∈(0,1]时,函数f(x)的最大值是f(1)=2﹣2a,对任意的a∈(﹣2,0],都存在x0∈(0,1],使得不等式a∈(﹣2,0],2me a(a+1)+f(x0)>a2+2a+4成立,等价于对任意的a∈(﹣2,0],不等式2me a(a+1)﹣a2+﹣4a﹣2>0都成立,记h(a)=2me a(a+1)﹣a2+﹣4a﹣2,由h(0)>0得m>1,且h(﹣2)≥0得m≤e2,h'(a)=2(a+2)(me a﹣1)=0,∴a=﹣2或a=﹣lnm,∵a∈(﹣2,0],∴2(a+2)>0,①当1<m<e2时,﹣lnm∈(﹣2,0),且a∈(﹣2,﹣lnm)时,h'(a)<0,a∈(﹣lnm,0)时,h'(a)>0,所以h(a)最小值为h(﹣lnm)=lnm﹣(2﹣lnm)>0,所以a∈(﹣2,﹣lnm)时,h(a)>0恒成立;②当m=e2时,h'(a)=2(a+2)(e a+2﹣1),因为a∈(﹣2,0],所以h'(a)>0,此时单调递增,且h(﹣2)=0,所以a∈(﹣2,0],时,h(a)>0恒成立;综上,m的取值范围是(1,e2].请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2cos(θ﹣).(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.【解答】解:(Ⅰ)由直线l的参数方程消去t参数,得x+y﹣4=0,∴直线l的普通方程为x+y﹣4=0.由=.得ρ2=2ρcosθ+2ρsinθ.将ρ2=x2+y2,ρcosθ=x,ρsinθ=y代入上式,得:曲线C的直角坐标方程为x2+y2=2x+2y,即(x﹣1)2+(y﹣1)2=2.(Ⅱ)法1:设曲线C上的点为,则点P到直线l的距离为==当时,∴曲线C上的点到直线l的距离的最大值为;法2:设与直线l平行的直线为l':x+y+b=0.当直线l'与圆C 相切时,得,解得b=0或b=﹣4(舍去).∴直线l'的方程为x+y=0.那么:直线l与直线l'的距离为故得曲线C上的点到直线l 的距离的最大值为.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a﹣1|+|x﹣2a|.(Ⅰ)若f(1)<3,求实数a的取值范围;(Ⅱ)若a≥1,x∈R,求证:f(x)≥2.【解答】解:(Ⅰ)因为f(1)<3,所以|a|+|1﹣2a|<3.①当a≤0时,得﹣a+(1﹣2a)<3,解得,所以;②当时,得a+(1﹣2a)<3,解得a>﹣2,所以;③当时,得a﹣(1﹣2a)<3,解得,所以;综上所述,实数a 的取值范围是.(Ⅱ)因为a≥1,x∈R,所以f(x)=|x+a﹣1|+|x﹣2a|≥|(x+a﹣1)﹣(x﹣2a)|=|3a﹣1|=3a﹣1≥2.第21页(共21页)。
-1012}012}01}-101}-1012} 23B.5A.4C.D.3[+高三年级第二次教学质量检测试题理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,,,,,B={x|-2<x≤2},则A B=A.{-1,,,B.{-1,,C.{-2,,,D.{-2,,,,2.复数2-i1+i对应的点在A.第一象限B.第二象限C.第三象限D.第四象限3.已知向量a=(2,-1),b=(3,x),若a⋅b=3,则x=A.3B.4C.5D.64.已知双曲线x2y2-a b23=1的一条渐近线方程为y=x,则此双曲线的离心率为457445.已知条件p:x-4≤6;条件q:x≤1+m,若p是q的充分不必要条件,则m的取值范围是A.(-∞,-1]B.(-∞,9]C.1,9]D.[9,∞)6.运行如图所示的程序框图,输出的结果S=A.14B.30C.62D.1268.已知α,β是两个不同的平面,l,m,n是不同的直线,下列命题不正确的是A.πA.332D.27.(x-1)n的展开式中只有第5项的二项式系数最大,则展开式中含x2项的系数是xA.56B.35C.-56D.-35...A.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αB.若l//m,l⊂/α,m⊂α,则l//αC.若α⊥β,αβ=l,m⊂α,m⊥l,则m⊥βD.若α⊥β,m⊥α,n⊥β,,则m⊥n9.已知f(x)=sin x+3cos x(x∈R),函数y=f(x+ϕ)的图象关于直线x=0对称,则ϕ的值可以是πππB.C.D.263410.男女生共8人,从中任选3人,出现2个男生,1个女生的概率为1528,则其中女生人数是A.2人B.3人C.2人或3人D.4人11.已知抛物线y2=4x,过焦点F作直线与抛物线交于点A,B(点A在x轴下方),点A与1点A关于x轴对称,若直线AB斜率为1,则直线A B的斜率为12B.3C.12.下列结论中,正确的有①不存在实数k,使得方程x ln x-1x2+k=0有两个不等实根;2②已知△ABC中,a,b,c分别为角A,B,C的对边,且a2+b2=2c2,则角C的最大值为π6;③函数y=ln与y=ln tan x2是同一函数;④在椭圆x2y2+a2b2=1(a>b>0),左右顶点分别为A,B,若P为椭圆上任意一点(不同于A,B),则直线PA与直线PB斜率之积为定值.A.①④B.①③C.①②D.②④13.已知等比数列{a}的前n项和为S,且a+a=5n2414.已知实数x、y满足约束条件⎨y≥2,则z=2x+4y的最大值为______.⎪x+y≤6②若a∈(0,1),则a<a1+11-x是奇函数(第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分.第13题~21题为必考题,每个试题考生都必须做答.第22题、第23题为选考题,考生根据要求做答.二.填空题:本大题共4小题;每小题5分,共20分.5,a+a=,则S=__________.n13246⎧x≥2⎪⎩15.一个几何体的三视图如图所示,则这个几何体的外接球的半径为__________.16.下列命题正确是.(写出所有正确命题的序号)①若奇函数f(x)的周期为4,则函数f(x)的图象关于(2,0)对称;③函数f(x)=ln;三.解答题:本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)在△ABC中,角A、B、C的对边分别为a,b,c,且a=3,b=4,B=A+高三理科数学试题和答案第3页共6页π2., 20 40 60 80 ,(1)求 cos B 的值;(2)求 sin 2 A + sin C 的值.18.(本小题满分 12 分)如图,三棱柱 ABC - A B C 中,侧棱 AA ⊥ 平面 ABC , ∆ABC 为等腰直角三角形,1 1 1 1∠BAC = 90 ,且 AA = AB , E , F 分别是 C C , BC 的中点.1 1(1)求证:平面 AB F ⊥ 平面 AEF ;1(2)求二面角 B - AE - F 的余弦值.119.(本小题满分 12 分)某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0 100],样本数据分组为第一组[0, ),第二组[20, ),第 三组 [40, ),第四组 [60, ),第五组 [80 100].(1)求直方图中 x 的值;(2)如果年上缴税收不少于 60 万元的企业可申请政策优惠,若共抽取企业 1200 家,试估计有多少企业可以申请政策优惠;(3)从所抽取的企业中任选 4 家,这 4 家企业年上缴税收少于 20 万元的家数记为 X ,求 X 的分布列和数学期望.(以直方图中的频率作为概率)= 1(a > b > 0) 经过点 P (2, 2) ,离心率 e = ,直线 l 的方程为 220.(本小题满分 12 分)已知椭圆 C : x 2 y 2+ a 2 b 22 2x = 4 .(1)求椭圆 C 的方程;(2)经过椭圆右焦点 F 的任一直线(不经过点 P )与椭圆交于两点 A , B ,设直线 AB 与l 相交于点 M ,记 P A , PB , PM 的斜率分别为 k , k , k ,问:是否存在常数 λ ,使得1 2 3k + k = λ k ?若存在,求出 λ 的值,若不存在,说明理由.12321.(本小题满分 12 分)已知函数 f ( x ) = ax + ln x ,其中 a 为常数,设 e 为自然对数的底数.(1)当 a = -1 时,求 f ( x ) 的最大值;(2)若 f ( x ) 在区间 (0, e ] 上的最大值为 -3 ,求 a 的值;(3)设 g ( x ) = xf ( x ), 若 a > 0, 对于任意的两个正实数 x , x ( x ≠ x ) ,1 2 1 2证明: 2 g ( x 1 + x 2) < g ( x ) + g ( x ) .1 2请考生在第 22、23 二题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用⎪⎪ 5⎩17.解:(1)∵ B = A + , ∴ A = B -, ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1 分 ==2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分 10 分)选修 4-4:坐标系与参数方程⎧3 x =- t + 2 在直角坐标系 xOy 中,直线 l 的参数方程为 ⎨ ( t 为参数),以原点 O 为极点, x⎪ y = 4 t ⎪5轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为 ρ = a sin θ .(1)若 a = 2 ,求圆 C 的直角坐标方程与直线 l 的普通方程;(2)设直线 l 截圆 C 的弦长等于圆 C 的半径长的 3 倍,求 a 的值.23.(本小题满分 10 分)选修 4-5:不等式选讲已知函数 f ( x ) = 2x -1 + 2x + 5 ,且 f ( x ) ≥ m 恒成立.(1)求 m 的取值范围;(2)当 m 取最大值时,解关于 x 的不等式: x - 3 - 2x ≤ 2m - 8 .高三第二次质量检测理科数学答案一.ADABD CCABC CA二.13.631614.20 15. 61 16.①③ππ2 23 4 又 a = 3, b = 4 ,所以由正弦定理得 ,sin Asin B34所以, ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3 分- cos B sin B所以 -3sin B = 4cos B ,两边平方得 9sin 2 B = 16cos 2 B ,3又 sin 2 B + cos 2 B = 1 ,所以 cos B = ± , ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分5π 3而 B > ,所以 cos B = - . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分2 53 4(2)∵ cos B = - ,∴ sin B = , ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分5 5∴面 ABC ⊥ 面 BB C C..........2 分+ = 则 F (0,0,0) , A ( 22 2 2 2 2 1 ∵ B = A +π2,∴ 2 A = 2 B - π ,∴ sin 2 A = sin(2 B - π ) = - sin 2 B ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分4 3 24= -2sin B cos B = -2 ⨯ ⨯ (- ) = ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分5 5 25又 A + B + C = π ,∴ C = 3π 2- 2 B ,7 24 7 31∴ sin C = - cos 2 B = 1 - cos 2 B = .∴ sin 2 A + sin C = . (12)25 25 25 25分18.解答: (1)证明:∵ F 是等腰直角三角形 ∆ABC 斜边 BC 的中点,∴ AF ⊥ BC .又∵侧棱 AA ⊥ 平面ABC ,11 1∴ AF ⊥ 面 BB 1C 1C , AF ⊥ B 1F .…3 分设 AB = AA = 1 ,则1,EF= , .∴ B F 2 + EF 2 = B E 2 ,∴ B F ⊥ EF ........... 4 分1 11又 AF ⋂ EF = F ,∴ B F ⊥平面 AEF .…1而 B F ⊂ 面 AB F ,故:平面 AB F ⊥ 平面 AEF . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅5 分1 11(2)解:以 F 为坐标原点, FA , FB 分别为 x , y 轴建立空间直角坐标系如图,设 AB = AA = 1 ,12 2 1,0,0) , B (0, - ,1) , E (0, - , ) ,12 2 1 2 2AE = (- , - , ) , AB = (- , ,1) .… ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分2 2 2 2 2由(1)知, B F ⊥平面 AEF ,取平面 AEF 的法向量:12m = FB = (0, ,1) . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分14 4 256 4 4 4 644 4 64 4 4 64设平面 B AE 的法向量为 n = ( x , y , z ) ,1由取 x = 3 ,得 n = (3, -1,2 2) (10),分设二面角 B - AE - F 的大小为θ ,1则 cos θ=|cos <>|=| |= .由图可知θ 为锐角,∴所求二面角 B - AE - F 的余弦值为.… ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12 分119.解答: 解:(I )由直方图可得: 20 ⨯ (x + 0.025 + 0.0065 + 0.003 ⨯ 2) = 1解得 x = 0.0125 .⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 2 分(II )企业缴税收不少于 60 万元的频率 = 0.003 ⨯ 2 ⨯ 20 = 0.12 , ∴1200 ⨯ 0.12 = 144 .∴1200 个企业中有144 个企业可以申请政策优惠.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分(III ) X 的可能取值为 0,1,2,3,4 .由(I )可得:某个企业缴税少于 20 万元的概率 = 0.0125 ⨯ 20 = 0.25 =分1 3 81 1 3 27P ( X = 0) = C 0 ( )0 ( )4 = P ( X = 1) = C 1 ( )1 ( )3 = 41 3 27 1 3 3P ( X = 2) = C 2 ( )2 ( )2 = P ( X = 3) = C 3 ( )3 ( )1 =4 4 14 (5)X0 1 2 3 44 4 256∴ E ( X ) = 0 ⨯ 81+ = 1 ① 又e = , 所以 = = 4, a = 8,b 1 + 2k 2 1 + 2k 2, x x = x - 2 x - 22, k = k = 2k - 2 4 - 2 2P8125627 64 27 64 3 64 1 2561 3 1P ( X = 4) = C 4 ( )4 ( )0 =4...................................... 10 分............. 11 分27 27 3 1+ 1⨯ + 2 ⨯ + 3 ⨯ + 4 ⨯= 1. ....12 分25664 64 64 25620.解:(1)由点 P (2, 2) 在椭圆上得, 4 2 2 c 2 a 2 b 2 2 a 2②由 ①②得 c 2 2 2 = 4 ,故椭圆 C 的方程为 x 2 y 2+ = 1 ……………………..4 分 8 4(2)假设存在常数 λ ,使得 k + k = λ k .1 23由题意可设 AB 的斜率为k , 则直线AB 的方程为 y = k ( x - 2) ③代入椭圆方程x 2 y 2+ = 1 并整理得 (1+ 2k 2 ) x 2 - 8k 2 x + 8k 2 - 8 = 0 8 48k 2 8k 2 - 8设 A ( x , y ), B ( x , y ) ,则有 x + x = ④ ……………6 分 1 1 2 2 1 2 1 2在方程③中,令 x = 4 得, M (4,2 k ) ,从而 k = y 1 - 2 y 2 - 21 2 1,3 2= k - .又因为 A 、F 、B 共线,则有 k = k AF = k BF ,即有y当 a = -1 时, f ( x ) = - x + ln x , f ' ( x ) = -1 + 1①若 a ≥ - ,则 f ' ( x ) ≥ 0 ,从而 f ( x ) 在 (0, e ] 上是增函数,y1=2= k ……………8 分x - 2x - 21 2所以 k + k = 1 2 y - 2 y - 2 1 + 2 x - 2 x - 21 2= y y 1 11 +2 - 2( + )x - 2 x - 2 x - 2 x - 2 1 2 1 2= 2k - 2x 1 + x 2 - 4x x - 2( x + x ) + 41 212⑤ ……………10 分将④代入⑤得 k + k = 2k - 2 1 2 8k 2- 41 + 2k2 8k 2 - 8 8k 2- 2 + 41 + 2k2 1 + 2k 2= 2k - 2 ,又 k = k - 32 2 ,所以 k + k = 2k 1 2 3 . 故存在常数 λ = 2 符合题意…………12 分21.【解答】解:(1)易知 f ( x ) 定义域为 (0, +∞) ,1 - x= ,x x令 f ' ( x ) = 0 ,得 x = 1 .当 0 < x < 1 时, f ' ( x ) > 0 ;当 x > 1 时, f ' ( x ) < 0 . (2)分∴ f ( x ) 在 (0,1) 上是增函数,在 (1,+∞) 上是减函数.f ( x )max= f (1) = -1.∴函数 f ( x ) 在 (0, +∞) 上的最大值为 -1 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分(2)∵ f '( x ) = a + 1 1 1, x ∈ (0, e ], ∈ [ , +∞) .x x e1e∴ f ( x )max= f (e ) = ae + 1 ≥ 0 ,不合题意. ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分11② 若 a < - ,则由 f ' ( x ) > 0 ⇒ a +ex> 0 ,即 0 < x < -1a11由 f ' ( x ) < 0 ⇒ a +< 0 ,即 - < x ≤ e . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分xa从而 f ( x ) 在 (0, - ) 上增函数,在 (- (3)法一:即证 2a ( x + x 2) + 2( 12 )ln( 222 2 x 2 x21 1a a, e ) 为减函数∴ f ( x ) max 1 1 = f (- ) = -1 + ln(- ) a a1 1令 -1 + ln(- ) = -3 ,则 ln(- ) = -2a a∴- 11= e -2 -e 2 < -a ,即 a = -e 2.∵ e ,∴ a = -e 2 为所求 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分1 1 x + x x + x2 2 22 ) ≤ ax 2 + ax 2 + x ln x + x ln x 1 2 1 1 222a ( x + x ( x + x )21 2 )2 - ax 2 - ax 2 = a ⋅[ 1 21 2- x 2 - x 2 ]1 2( x - x )2= -a 1 2 2< 0 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 9 分另一方面,不妨设 x < x ,构造函数1 2k ( x ) = ( x + x )ln(1x + x12) - x ln x - x ln x ( x > x )1 1 1x + xx + x则 k ( x ) = 0 ,而 k ' ( x ) = ln 1 - ln x = ln 1 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分1x + x由 0 < x < x 易知 0 < 11< 1 , 即 k ' ( x ) < 0 , k ( x ) 在 ( x , +∞) 上为单调递减且连续, 1x + x故 k ( x ) < 0 ,即 ( x + x )ln( 11) < x ln x + x ln x 1 1相加即得证⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12 分1法二: g ' ( x ) = 2ax + 1 + ln x , g '' ( x ) = 2a + > 0.........9 分x故 g ' ( x ) 为增函数,不妨令 x > x 21令 h ( x ) = g ( x ) + g ( x ) - 2 g (1x + x12)( x > x )1h ' ( x ) = g '(x ) - g ' (x + x12) ......... 10 分易知 x > x + x x + x1 , 故h ' ( x ) = g '(x ) - g ' ( 12 2) > 0 (11)分而 h ( x ) = 0 , 知 x > x 时, h ( x ) > 0112(2)圆 C : x 2 + y - a ⎫2∴圆心 C 到直线的距离 d = 2- 8 得 a = 32 或 a = 32 ⎪ -4 x - 4, x < - 523.解 (1) f (x) = ⎨6, - 5⎩ 4 x + 4, x > 22 ≤ x ≤ ⎩3 - x - 2 x ≤4 ⎧ 3 ≤ x < 3 .所以,原不等式的解集为 ⎨⎧x x ≥ - ⎬ .故 h ( x ) > 0 , 即 2 g ( x 1 + x 2) < g ( x ) + g ( x )21 2 (12)分22.解 (1) a = 2 时,圆 C 的直角坐标方程为 x 2 + (y -1)2 = 1 ;直线 l 的普通方程为 4 x + 3 y - 8 = 0 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分⎛⎪ = ⎝ 2 ⎭a 2 4 ,直线 l : 4 x + 3 y - 8 = 0 ,∵直线 l 截圆 C 的弦长等于圆 C 的半径长的 3 倍,3a1 a5 = 2 ⨯ 2 ,11 .⎧2 ⎪1 ⎪2 ≤ x ≤ 2 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 2 分⎪1 ⎪ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分当 - 5 12 时,函数有最小值 6 ,所以 m ≤ 6 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分另解:∵ 2x -1 + 2x + 5 ≥ (2x -1) - (2x + 5) = -6 = 6 .∴ m ≤ 6 .(2)当 m 取最大值 6 时,原不等式等价于 x - 3 - 2x ≤ 4 ,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分等价于 ⎨ x ≥ 3 ⎩ x - 3 - 2x ≤ 4 ⎧ x < 3 ,或 ⎨,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分可得 x ≥ 3 或 - 11 ⎫ ⎩ 3 ⎭⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分。
江西省重点中学盟校2017届高三第二次联考数学(理科)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()2211i i+++的共轭复数的虚部是( ) A .iB .i -C .1-D .12.已知集合{}{}24,13M x x N x x =>=<<,则R N C M ⋂=( ) A .{}21x x -≤< B .{}12x x <≤ C .{}22x x -≤≤ D .{}2x x < 3.下列命题中真命题的个数是( ) ①若p q ⋂是假命题,则q p ,都是假命题;②命题“32,10x R x x ∀∈-+≤”的否定是“32000,10x R x x ∃∈-+>”; ③若1:1,:1p x q x≤<,则p ⌝是q 的充分不必要条件. ④设随机变量X 服从正态分布()3,7N ,若()()11P X C P X C >+=>-,则3=C . A .1B .2C .3D .44.一个几何体的三视图如所示,则该几何体的外接球表面积为( )A .3πB .5πC .10πD .20π5.“更相减损术”是出自《九章算术》的一种求最大公约数的算法,如下框图中若输入的a 、b 分别为198、90,则输出的i 为( )A .3B .4C .5D .66.如图,在边长为2的正方形ABCD 中,M 是AB 的中点,过D M C ,,三点的抛物线与CD 围成阴影部分,则向正方形内撒一粒黄豆落在阴影部分的概率是( )A .16B .13C .12D .237.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,为了得到()cos 3g x πω⎛⎫=+ ⎪⎝⎭的图象,则只将()f x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移12π个单位D .向右平移12π个单位8.如果实数y x ,满足关系10200x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,又273x y c x +-≥-恒成立,则c 的取值范围为( )A .9,5⎛⎤-∞ ⎥⎦⎝B .](,3-∞C .)9,5⎡+∞⎢⎣D .[)3,+∞9.将E D C B A ,,,,这5名同学从左至右排成一排,则A 与B 相邻且A 与C 之间恰好有一名同学的排法有( ) A .18B .20C .21D .22 10.若非零向量,a b 的夹角为锐角θ,且c o s a bθ=,则称a 被b “同余”.已知b 被a “同余”,则a b -在a 上的投影是( ) A .22a b a- B .222a b a- C .22b a a- D .22a b b-11.已知O 为坐标原点,F 是双曲线()2222:10,0x y C a b a b-=>>的左焦点,B A ,分别为左、右顶点,过点F 做x 轴的垂线交双曲线于点Q P 、,连结PB 交y 轴于点E ,连接AE QF 于点M ,若M 是线段QF 的中点,则双曲线C 的离心率( )A .2B .52C .3D .7212.已知函数()()()23221,2log 2log 4x x f x x g x t =+=-+-,若函数()()()1F xf g x =-在区间⎡⎣上恰有两个不同的零点,则实数t 的取值范围( ) A .5,42⎡⎤⎢⎥⎣⎦B .59,22⎡⎫⎪⎢⎣⎭C .94,2⎡⎫⎪⎢⎣⎭D .94,2⎡⎤⎢⎥⎣⎦第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()41,05log ,0x f x x x x ⎧≤⎪=-⎨⎪>⎩则()3f f -=⎡⎤⎣⎦ .14.在多项式()()65121x y ++的展开式中,3xy 项的系数为 .15.已知ABC ∆中,AC AB =,120BAC ∠=,4=BC ,若点P 是边BC 上的动点,且P到AB ,AC 距离分别为n m ,,则41m n+的最小值为 . 16.已知数列{}n a 中,设()111,31n n a a a n N ++==+∈,若()2312n n n n nb a -=⋅-⋅,n T 是{}n b 的前n 项和,若不等式122n n n T n λ-<+对一切的n N +∈恒成立,则实数λ的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设锐角三角形ABC 的内角C B,A,的对边分别为c b,a,,222=+b a c . (1)求B 的大小;(2)求cos sin A C +的取值范围.18.通过对某城市一天内单次租用共享自行车的时间50分钟到100钟的n 人进行统计,按照租车时间[)50,60,[)60,70,[)70,80,[)80,90,[)90,100分组做出频率分布直方图,并作出租用时间和茎叶图(图中仅列出了时间在[)50,60,[)90,100的数据).(1)求n 的频率分布直方图中的y x ,;(2)从租用时间在80分钟以上(含80分钟)的人数中随机抽取4人,设随机变量X 表示所抽取的4人租用时间在[)80,90内的人数,求随机变量X 的分布列及数学期望. 19.如图,在正四面体ABCD 中,O 是BCD ∆的中心,F E ,分别是AC AB ,上的动点,且(),1BE BA CF CA λλ==-.(1)若OE 平面ACD ,求实数λ的值;(2)若12λ=,正四面体ABCD 的棱长为DEF 和平面BCD 所成的角余弦值.20.已知椭圆()2222:10,0x y C a b a b-=>>右顶点()2,0A ,离心率e =.(1)求椭圆C 的方程;(2)设B 为椭圆上顶点,P 是椭圆C 在第一象限上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,问PMN ∆与PAB ∆面积之差是否为定值?说明理由.21.设常数()20,0,ln x a f x a x xλλ>>=-+.(1)若()f x 在x λ=处取得极小值为0,求λ和a 的值;(2)对于任意给定的正实数λ、a ,证明:存在实数0x ,当0x x >时,()0f x >.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平角直角坐标系xOy 中,以O 为极点,x 轴非负半轴为极轴建立坐标系,曲线M 的极坐标方程为4cos ρθ=,直线l 的参数方程为cos sin x m t y t αα=+⎧⎨=⎩(t 为参数,0απ≤<),射线,,44ππθϕθϕθϕ==+=-与曲线M 交于C B A ,,三点(异于O 点).(1)求证:OB OC +=;(2)当12πϕ=时,直线l 经过C B ,两点,求m 与α的值23.选修4-5:不等式选讲若关于x 的不等式26ax -<的解集为4833x x ⎧⎫-<<⎨⎬⎩⎭.(1)求a 的值;(2)若1=b江西省重点中学盟校2017届高三第二次联考数学(理科)试卷答案一、选择题1-5:CBCBD 6-10: DAABA 11、12:CC12.答案:C 解析 因为函数1))(()(-=x g f x F 的零点为方程1)4log 2)(log 2(222=-+-t x x f 的根,易知1)0(=f ,所以)0(4log 2)log 2(222f t x x f =-+-,故04log 2)(log 2222=-+-t x x .令t m 2log =,则]23,0[∈m ,问题转化为04222=-+-t m m 在]23,0[∈m 上有两个不同的实解,即4222++-=m m t 在]23,0[∈m 上有两个不同的实解.令4222++-=m m y )230(≤≤m ,则)230(29)21(22≤≤+--=m m y ,29max =y ,结合图像可知)29,4[∈t . 二、填空题13.23-14.120 15.2916.)1,(-∞ 三、解答题17.(1)由ac c a b 3222-+=,根据余弦定理得23cos =B . 又B 为锐角三角形ABC ∆的内角,得6π=B .(2)由(1)知)3sin(3)65sin(cos sin cos ππ+=-+=+A A A C A , 由ABC ∆为锐角三角形且6π=B 知26ππ>+A , 故23ππ<<A .∴65332πππ<+<A ,∴23)3sin(21<+<πA ,∴23)3sin(323<+<πA , 故C A sin cos +的取值范围为)23,23(. 18.解:(1)由题意可知,样本容量004.010502,5010016.08=⨯==⨯=y n ,030.0040.0016.0010.0004.0100.0=----=z .(2)由题意可知,租用时间在)90,80[内的人数为5,租用时间在]100,90[内的人数为2,共7人.抽取的4人中租用时间在)90,80[内的人数X 的可能取值为4,3,2,则723510)2(472225====C C C X P ,743520)3(471235====C C C X P ,71355)4(470245====C C C X P .故720714743722)(=⨯+⨯+⨯=X E . 19.解:(1)取CD 的中点G ,连接AG BG ,,∵O 是正BCD ∆的中心 ∴点O 在BG 上,且2=OGBO, ∵当AG OE ∥时,∥OE 平面ACD , ∴2==OG BO EA BE ∴BA BE 32=,即32=,∴32=λ. (2)当21=λ时,点F E ,分别是AC AB ,的中点. 建立如图所示的空间直角坐标系xyz O -,依题设2=OB ,则)0,1,3(),0,1,3(),22,0,0(),0,2,0(--D C A B ,)2,21,23(),2,1,0(F E -, 则)2,2,3()2,21,23(-==DE EF ,, 设平面DEF 的法向量为),,(z y x n =则⎪⎩⎪⎨⎧⊥⊥DEn ,∴⎩⎨⎧=+-=+0223033z y x y x ,不妨令1=z ,则)1,52,56(-=, 又平面BCD 的一个法向量为)1,0,0(=.设所求二面角为θ,则33335cos ==θ. 20. 解:⑴依题意得⎪⎪⎩⎪⎪⎨⎧=-==,,23,2222c b a a ca 解得⎩⎨⎧==12b a ,则椭圆C 的方程为1422=+y x .⑵设)0,0)(,(0000>>y x y x P ,则442020=+y x ,)2(2:00--=x x y y PA ,令0=x 得2200--=x y y M ,则2211100---=-==x y y y -BM M M , 11:00+-=x x y y PB ,令0=y 得100--=y x x N ,则121200---=-==y x x x -AN N N , ∴BM AN OB OM AN S S PAB PMN ⋅⋅=-⋅⋅=-∆∆21)(21 222884421224844421)221)(12(21000000000000000020200000=+--+--⋅=+--+--++⋅=------=y x y x y x y x y x y x y x y x y x x y y x .21.xax x x x a x x x x x f -++=-+-+='2222)(2)()(2)(λλλλ 2223222)(2)2()()()2(x x a ax x a x x x x a x x +---+=++-+=λλλλλλλ, ∵0243)(323=='λλλλa -f ,∴λ43=a . 将λ43=a 代入得 22222223)(4)394)(()(43654)(x x x x x x x x x x f +++-=+--+='λλλλλλλλλ 当),0(λ∈x 时,0)(<'x f ,)(x f 递减;),(+∞∈λx 时,0)(>'x f ,)(x f 递增;故当λ=x 时,)(x f 取极小值λλλλln 4321)(-=f , 令0)(=λf ,解得323243,e a e ==λ.(Ⅱ)因为x a x x a xx x a x x x f ln ln ln )(22-->-++-=-+=λλλλλ, 记x a x x h ln )(--=λ,故只需证明:存在实数0x ,当0x x >时,0)(>x h , [方法1] )ln (ln )(x x a x a x x a x x h -+--=--=λλ, 设0,ln >-=x x x y ,则xx x xy 22121-=-='. 易知当4=x 时,02ln 22min >-=y ,故0ln >-=x x y .又由0≥--λx a x 解得:242λ++≥a a x ,即22)24(λ++≥a a x 取220)24(λ++=a a x ,则当0x x >时, 恒有0)(>x h . 即当0x x >时, 恒有0)(>x f 成立.[方法2] 由x a x x h ln )(--=λ,得:xax x a x h -=-='1)(, 故)(x h 是区间),(+∞a 上的增函数.令2,,2≥∈=n N n x n, 则2ln 2)2()(an h x h nn--==λ,因为2212)1(1)11(2n n n n n n >-++≥+=, 故有λλ-->--==n a n an h x h n n )2ln (212ln 2)2()(2, 令0)2ln (212≥--λn a n ,解得: 28)4ln (2ln 22λ++≥a a n , 设0n 是满足上述条件的最小正整数,取020nx =,则当0x x >时, 恒有0)(>x h , 即0)(>x f 成立.22.(Ⅰ)由已知:ϕπϕπϕcos 4),4cos(4),4cos(4=-=+=OA OC OB ,∴OA co OC OB 24cos 8)4cos(4)4cos(4==-++=+πϕπϕπϕ.(Ⅱ)当12πϕ=时,点C B,的极角分别为64,34ππϕππϕ-=-=+,代入曲线M 的方程得点C B ,的极径分别为:32)6cos(4,23cos4=-===πρπρC B ,∴点C B ,的直角坐标为:)3,3(),3,1(-C B ,则直线l 的斜率为3-=k , 方程为0323:=-+y x l ,与x 轴交与点)0,2(; 由⎩⎨⎧=+=ααsin cos t y t m x l :,知α为其倾斜角,直线过点)0,(m ,∴32,2πα==m . 23. (1) 依题意知34-和38是方程62=-ax 的两个根,则全优试卷⎪⎪⎩⎪⎪⎨⎧=-=--62386234a a ,∴⎪⎩⎪⎨⎧-==-==23363a a a a 或或,∴3=a . (2)62)4)(11(3)4(33123=+-+≤+-=++-t t t t t t 当且仅当t t =-4,即2=t 时等号成立.。
NCS20170607项目第二次模拟测试卷理科数学参考答案及评分标准一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.二.填空题:本大题共4小题,每小题5分,共20分.13.7 14.240- 15.1,)+∞ 16.37.5 三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.17.【解析】(Ⅰ)因为21()2sin (sin )cos sin 2f x x x x x x x ==+ 1112cos 2sin(2)22262x x x π=-+=-+ (3)分 令222,262k x k k Z πππππ-≤-≤+∈,解得,63k x k k z ππππ-≤≤+∈,所以递增区间是[,]()63k k k Z ππππ-+∈; (6)分(Ⅱ)直线x A =是函数()f x 图像的一条对称轴, 则2,6223k A k A k z πππππ-=+⇒=+∈,由02A π<<得到3A π=, …………8分所以在ABD ∆中,6BAD π∠=,由正弦定理得sin sin sin 2BD AD B BAD B =⇒=∠, 由(0,)2B π∈,所以4B π=,53412C ππππ=--=,5561212CDA ππππ∠=--=, (10)分所以2AC AD ==, 所以在ABC ∆中,有2sin 60sin 45BC ACa BC ︒︒=⇒===. …………12分18.【解析】(Ⅰ)222()100(20204020)()()()()60406040n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯ 400400100 2.778 2.7065760000⨯⨯=≈>所以有90% 以上的把握认为“是否愿意外派与年龄有关” …………5分(Ⅱ)“x y <”包含:“0,1x y ==”、 “0,2x y ==”、 “0,3x y ==”、 “1,2x y ==”、 “1,3x y ==”、 “2,3x y ==”六个互斥事件 …………6分且0312334233664(0,1)400C C C C P x y C C ===⨯=,03213342336612(0,2)400C C C C P x y C C ===⨯= 0330334233664(0,3)400C C C C P x y C C ===⨯=,122133423366108(1,2)400C C C C P x y C C ===⨯= 12303342336636(1,3)400C C C C P x y C C ===⨯=,21303342336636(2,3)400C C C C P x y C C ===⨯= 所以:412410836362001()4004002P x y +++++<=== . (12)分19.【解析】(Ⅰ)连接AC ,设AC BE G = ,则平面SAC 平面EFB FG =,SA //平面EFB ,SA ∴//FG , …………3分GEA ∆ ∽GBC ∆,12AG AE GC BC ∴==,1123SF AG SF SC FC GC ∴==⇒=,13λ∴=;…………6分(Ⅱ),2SA SD SE AD SE ==∴⊥= ,又2,60AB AD BAD ==∠=︒,BE ∴=222SE BE SB ∴+=,SE BE ∴⊥,SE ∴⊥平面ABCD , (8)分以,,EA EB ES 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(1,0,0),(0,0,2)A B S ,平面SEB 的法向量(1,0,0)m EA ==,设平面EFB 的法向量(,,)n x y z =,则(,,)00n EB x y z y ⊥⇒⋅=⇒=, (,,)(1,0,2)02n GF n AS x y z x z ⊥⇒⊥⇒⋅-=⇒=,令1z =,得(2,0,1)n =,cos ,5||||m n m n m n ⋅∴<>==⋅. …………12分20.【解析】(Ⅰ)因为1BF x ⊥轴,得到点2(,)b B c a--, …………2分所以2222221()21a a bb a ac c a b c ⎧==⎧⎪⎪⎪=⇒=⎨⎨+⎪⎪=⎩⎪=+⎩,所以椭圆C 的方程是22143x y +=. …………5分(Ⅱ)因为1sin 22(2)112sin 2PAM PBNPA PM APMS PM PM S PN PN PB PN BPN λλλ∆∆⋅⋅∠⋅===⇒=>⋅⋅⋅∠ (6)分所以2P M P N λ=-.由(Ⅰ)可知(0,1)P -,设MN 方程:1y kx =-,1122(,),(,)M x y N x y ,联立方程221143y kx x y=-⎧⎪⎨+=⎪⎩得:22(43)880k x kx +--=.即得122122843843k x x k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩(*) 又1122(,1),(,1)PM x y PN x y =+=+ ,有122x x λ=-, (7)分将122x x λ=-代入(*)可得:222(2)1643k k λλ-=+. …………8分因为12k >,有2221616(1,4)3434k k k =∈++, …………9分则2(2)14λλ-<<且2λ>44λ⇒<<+ (没考虑到2λ>扣1分) (11)分综上所述,实数λ的取值范围为(4,4+. …………12分注:若考生直接以两个极端位置分析得出答案,只给结果2分. 21.【解析】(Ⅰ)1a =-时,'()ln(1)2+1xf x x x b x =-++-,记('()g x f x b =-), 则2232()112'()21(1)(1)x x g x x x x ⋅-=-+=---,3'()02g x x =⇒=, …………2分 当13(1,)2x e ∈+时,'()0g x <,3(,1)2x e ∈+时,'()g x 0>,所以当32x =时,()g x 取得极小值6ln 2-,又12(1)2g e e e +=++,1(1)24g e e e+=++,'()0()f x g x b =⇔=-,所以(ⅰ)当6l n2b -≤-,即ln 26b ≥-时,'()0f x ≥,函数()f x 在区间1(1,1)e e++上无极值点;(ⅱ)当26ln 22b e e -<-<++即22ln 26e b e---<<-时,'()0f x =有两不同解,函数()f x 在区间1(1,1)e e++上有两个极值点;(ⅲ)当21224e b e e e ++≤-<++即12242e b e e e---<≤---时,'()0f x =有一解,函数()f x 在区间1(1,1)e e++上有一个极值点;(ⅳ)当124b e e -≥++即124b e e≤---时,'()0f x ≤,函数()f x 在区间1(1,1)e e++上 无极值点; (每错一个讨论扣1分) (6)分(Ⅱ)当1,2a b e ==+时,对任意的(1,)x ∈+∞都有12()x f x k e <⋅,即22ln(1)(2)x x x x e x ke --++<,即2ln(1)2x ex x e k x--++<⋅ …………7分记()ln(1)2h x x x e =--++,2()x e x k xφ=⋅, 由12'()111x h x x x -=-=--,当12x <<时'()0h x >,2x >时,'()0h x <, 所以当2x =时,()h x 取得最大值(2)h e =, (9)分又222221(2)22'()x x x k e x e e x x k x x φ--==,当12x <<时'()0x φ<,2x >时,'()0x φ>,所以当2x =时,()x φ取得最小值2ke, (11)分所以只需要2kee <2k ⇒>,即正实数k 的取值范围是(2,)+∞. …………12分22.【解析】(Ⅰ)直线l的普通方程是1)y x -即y = …………2分曲线C的直角坐标方程是22440x y x +--+=即22(2)(3x y -+= …5分(Ⅱ)直线l 的极坐标方程是3πθ=,代入曲线C 的极坐标方程得:2540ρρ-+=,所以||||||4A B OA OB ρρ⋅==. …………10分23.【解析】(Ⅰ)不等式()2f x <等价于32(23)(21)2x x x ⎧<-⎪⎨⎪-++-<⎩或3122(23)(21)2x x x ⎧-≤≤⎪⎨⎪++-<⎩ 或12(23)(21)2x x x ⎧>⎪⎨⎪+--<⎩,解得32x <-或302x -≤<, 所以不等式()2f x <的解集是(,0)-∞; (5)分(Ⅱ)()|(23)(21)|4f x x x ≤+--= ,max ()4f x ∴=, …………7分|32|4a ∴-<,解得实数a 的取值范围是2(,2)3-. (10)分。
江西省重点中学2017届高三数学第二次联考试题 理第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数2(1)1i z i+=-(i 是虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知全集U R =,集合2{|560}A x x x =--≤,集合2{|log (3)1}B x x =-≤,则()U A C B =( )A .[1,3](5,6]- B .[1,3)(5,6]- C .(5,6] D .∅3.下列函数中,在其定义域内既是奇函数又是增函数的是( ) A. 1y x =B. tan y x =C. 1lg 1x y x+=- D. 2xy = 4. 已知数列{}n a 为等差数列,数列{}n b 为等比数列,且满足20172018a a π+=,2204b =,则24033139tana ab b +=( )A .-1B .2C .1D 5.将x y cos =的图象上的所有点的纵坐标不变,横坐标缩小到原来的一半,然后再将所得图象向左平移4π个单位长度,则最后所得图象的解析式为( ) A. cos 24y x π⎛⎫=+ ⎪⎝⎭ B. cos 24x y π⎛⎫=+ ⎪⎝⎭C. sin 2y x =D. x y 2sin -=6. 若双曲线22221(0,0)x y a b a b-=>>的渐近线将圆222440x y x y +--+=平分,则双曲线的离心率为( )A .3BC D 7.如图,一竖立在水平地面上的圆锥形物体的母线长为3m ,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥表面爬行一周后回到点P 处,若该小虫爬行的最短路程为,则圆锥底面圆的半径等于( ) A . 1mB .32m C .43m D .2m 8.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,则一开始输入的x 的值为( )A .34 B .78 C .1516D .4 9. 给出下列四个命题: ①若样本数据1210,,,x x x 的方差为16,则数据121021,21,,21x x x ---的方差为64;②“平面向量,a b 夹角为锐角,则a b ⋅>0”的逆命题为真命题;③命题“(,0)x ∀∈-∞,均有1xe x >+”的否定是“0(,0)x ∃∈-∞,使得0x e ≤01x +”;④1a =-是直线10x ay -+=与直线210x a y +-=平行的必要不充分条件. 其中正确的命题个数是( ) A .1B .2C .3D .410.一个几何体的三视图如图所示,则该几何体外接球的表面积为( ) A.28π B. 32π C.112π3D.36π11.记“点(,)M x y 满足22x y a +≤(0a >)”为事件A ,记“(,)M x y 满足105240220x y x y x y -+≥⎧⎪--≤⎨⎪++≥⎩”为事件B ,若(|)1P B A =,则实数a 的最大值为( )A .12B .45C .1D .1312.定义在[0,)+∞上的函数()f x满足2()()xf x f x e '+=,1()2f =,其中)(x f '是函数()f x 的导函数,若对任意正数a ,b 都有22211(sin )64ab f a e b θ≤++,则θ的取值范围侧视图俯视图234442244正视图。
江西省各地2017届高三最新考试数学理试题分类汇编复数与推理2017.02一、复数1、(红色七校2017届高三第二次联考)若复数z=(a ∈R ,i 是虚数单位)是纯虚数,则|a +2i |等于( )A .2B .2C .4D .82、(赣吉抚七校2017届高三阶段性教学质量监测考试(二))已知i 为虚数单位,a R ∈,若()()11a a i +-+是纯虚数,则a 的值为( ) A .1-或1 B .1 C .1- D .33、(南昌市三校(南昌一中、南昌十中、南铁一中)2017届高三第四次联考)在复平面内,复数21ii-+(i 是虚数单位)对应的点位于( ) A. 第四象限 B. 第三象限 C. 第二象限 D.第一象限 4、(赣州市2017届高三上学期期末考试)已知复数2ia i+-(其中a R ∈,i 为虚数单位)是纯虚数,则a i +的模为( )A .52 B .5 D 5、(上饶市2017届高三第一次模拟考试)设复数311z i=+,则z 的共轭复数是( ) A .1B .1i +C .1i -+D .1i -6、(江西省师大附中、临川一中2017届高三1月联考)若复数11iz i+=-,z 为z 的共轭复数,则()2017z= ( )A. iB. i -C. 20172i - D. 20172i7、(新余市2017高三上学期期末考试)复数31iZ i+=-(i 为虚数单位)在复平面内对应的点位于( )A.第一象限B. 第二象限C. 第三象限D. 第四象限8、(江西省重点中学协作体2017届高三下学期第一次联考)若复数z 满足(1)2i z i +=-,则复数z 在复平面内对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限9、(江西师范大学附属中学2017届高三12月月考)若复数43(cos )(sin )i 55z θθ=-+-是纯虚数(i 为虚数单位),则tan ()4πθ-的值为A .7-B .17-C .7D .7-或17-10、(南昌市八一中学2017届高三2月测试)已知复数(1+)z i i =(i 为虚数单位),则复数z 在复平面上所对应的点位于 ( )A .第一象限B .第二象限C .第三象限D. 第四象限11、(上高县第二中学2017届高三下学期开学考试(第七次))已知复数满足()1z =(为虚数单位),则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限参考答案1、B2、B3、A4、B5、D6、B7、A8、D9、A 10、B 11、A二、推理 1、(赣吉抚七校2017届高三阶段性教学质量监测考试(二))将正整数12分解成两个正整数的乘积有112 2 6 34⨯⨯⨯,,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解.当p q ⨯(p q ≤且* p q ∈N ,)是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如()12431f =-=.数列(){}3n f 的前100项和为 . 2、(南昌市三校(南昌一中、南昌十中、南铁一中)2017届高三第四次联考)如果)(x f 的定义域为R ,对于定义域内的任意x ,存在实数a 使得)()(x f a x f -=+成立, 则称此函数具有“)(a P 性质”. 给出下列命题: ①函数x ysin =具有“)(a P 性质”;②若奇函数)(x f y =具有“)2(P 性质”,且1)1(=f ,则(2015)1f =;③若函数)(x f y =具有“(4)P 性质”, 图象关于点(10),成中心对称,且在(1,0)-上单调递减,则)(x f y =在(2,1)--上单调递减,在(1,2)上单调递增;④若不恒为零的函数)(x f y =同时具有“)0(P 性质”和 “(3)P 性质”,且函数)(x g y =对R x x ∈∀21,,都有1212|()()||()()|f x f x g x g x -≥-成立,则函数)(x g y =是周期函数.其中正确的是(写出所有正确命题的编号).3、(江西师范大学附属中学2017届高三12月月考)在计算“1223(1)n n ⨯+⨯+++ ”时,某同学学到了如下一种方法: 先改写第k 项:(1)k k +=1[(1)(2)(1)(1)]3k k k k k k ++--+ 由此得112(123012)3⨯=⨯⨯-⨯⨯.123(234123)3⨯=⨯⨯-⨯⨯.............1(1)[(1)(2)(1)(1)]3n n n n n n n n +=++--+.相加,得1×2+2×3+...+n (n+1)1(1)(2)3n n n =++类比上述方法,请你计算“1×2×3+2×3×4++ (1)(2)n n n ++”,其结果是__________. (结果写出关于n 的一次因式....的积..的形式) 4、(南昌市八一中学2017届高三2月测试)如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,則第20行从左至右的第4个数字应是 .(14题图)参考答案 1、答案:5031-解析:当n 为偶数时,()30nf =,当n 为奇数时,()11122233323n n n n f +--=-=⨯,所以()01249501002333331S =++++=-…. 2、①③④ 3、)3)(2)(1(41+++n n n n 4、194。
2017年江西省五市八校联考高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数=()A.1﹣3i B.1+3i C.﹣1+3i D.﹣1﹣3i2.已知集合,,则(∁R M)∩N=()A.(0,2] B.[0,2]C.∅D.[1,2]3.已知等比数列{a n}的各项都为正数,且a3,成等差数列,则的值是()A.B.C.D.4.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是()A.B.C.D.5.在区间[0,2]内随机取出两个数,则这两个数的平方和在区间[0,2]内的概率为()A.B.C.D.6.执行如图所示的程序框图,则输出的结果是()A.6 B.﹣6 C.5 D.﹣57.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a,b,c,三角形的面积S可由公式求得,其中p为三角形周长的一半,这个公式也被称为海伦﹣秦九韶公式,现有一个三角形的边长满足a+b=12,c=8,则此三角形面积的最大值为()A.B.C.D.8.设[x]表示不超过x的最大整数,如[1]=1,[0.5]=0,已知函数f(x)=﹣k(x>0),若方程f(x)=0有且仅有3个实根,则实数k的取值范围是()A.B.C.D.9.某学校高三年级有2个文科班,3个理科班,现每个班指定1人,对各班的卫生进行检查,若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是()A.24 B.32 C.48 D.8410.倾斜角为的直线l过抛物线y2=ax(a>0)的焦点F,且与抛物线交于点A、B,l交抛物线的准线于点C(B在A、C之间),若,则a=()A.1 B.2 C.3 D.411.设P是正方体ABCD﹣A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P 到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P()A.仅有一个B.有有限多个C.有无限多个D.不存在12.若关于x不等式xlnx﹣x3+x2≤ae x恒成立,则实数a的取值范围是()A.[e,+∞)B.[0,+∞)C.D.[1,+∞)二.填空题:本大题共4小题,每小题5分,共20分.13.已知||=1,||=,且⊥(﹣),则向量与向量的夹角是.14.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么该企业可获得最大利润是.15.已知数列{a n}满足a1=,a n+1=(n∈N*),若不等式++t•a n ≥0恒成立,则实数t的取值范围是.16.函数的图象向左平移个单位长度后对应的函数是奇函数,函数.若关于x的方程f(x)+g(x)=﹣2在[0,π)内有两个不同的解α,β,则cos(α﹣β)的值为.三、解答题:本大题共5小题,共70分.解答题写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,∠A、∠B、∠C所对边长分别为a、b、c,已知,且.(1)求∠A的大小;(2)若,sinB+sinC=1,求△ABC的面积S.18.(12分)如图,在四面体ABCD中,平面ABC⊥平面BCD,DC⊥BC,,BC=2,AC=1.(1)求证:AB⊥AD;(2)设E是BD的中点,若直线CE与平面ACD的夹角为30°,求四面体ABCD 外接球的表面积.19.(12分)春节来临,有农民工兄弟A、B、C、D四人各自通过互联网订购回家过年的火车票,若订票成功即可获得火车票,即他们获得火车票与否互不影响.若A、B、C、D获得火车票的概率分别是,其中p1>p3,又成等比数列,且A、C两人恰好有一人获得火车票的概率是.(1)求p1,p3的值;(2)若C、D是一家人且两人都获得火车票才一起回家,否则两人都不回家.设X表示A、B、C、D能够回家过年的人数,求X的分布列和期望EX.20.(12分)过点P(a,﹣2)作抛物线C:x2=4y的两条切线,切点分别为A (x1,y1),B(x2,y2).(Ⅰ)证明:x1x2+y1y2为定值;(Ⅱ)记△PAB的外接圆的圆心为点M,点F是抛物线C的焦点,对任意实数a,试判断以PM为直径的圆是否恒过点F?并说明理由.21.(12分)已知函数f(x)=lnx+x2﹣2ax+1(a为常数).(1)讨论函数f(x)的单调性;(2)若存在x0∈(0,1],使得对任意的a∈(﹣2,0],不等式2me a(a+1)+f(x0)>a2+2a+4(其中e为自然对数的底数)都成立,求实数m的取值范围.请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2cos(θ﹣).(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a﹣1|+|x﹣2a|.(Ⅰ)若f(1)<3,求实数a的取值范围;(Ⅱ)若a≥1,x∈R,求证:f(x)≥2.2017年江西省五市八校联考高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数=()A.1﹣3i B.1+3i C.﹣1+3i D.﹣1﹣3i【考点】A5:复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:=.故选:A.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.2.已知集合,,则(∁R M)∩N=()A.(0,2] B.[0,2]C.∅D.[1,2]【考点】1H:交、并、补集的混合运算.【分析】先化简集合M,N求出M的补集,找出M补集与N的交集即可【解答】解:∵<1,即﹣1<0,即<0,等价于x(x﹣2)>0,解得x >2或x<0,则M=(﹣∞,0)∪(2,+∞),∴(∁R M)=[0,2],∵N={y|y=}=[0,+∞),∴(∁R M)∩N=[0,2],故选:B【点评】本题考查分式不等式的解法,考查集合的交、补运算,属于中档题.3.已知等比数列{a n}的各项都为正数,且a3,成等差数列,则的值是( )A .B .C .D .【考点】88:等比数列的通项公式.【分析】设等比数列{a n }的公比为q ,且q >0,由题意和等差中项的性质列出方程,由等比数列的通项公式化简后求出q ,由等比数列的通项公式化简所求的式子,化简后即可求值.【解答】解:设等比数列{a n }的公比为q ,且q >0,∵a 3,成等差数列,∴,则,化简得,q 2﹣q ﹣1=0,解得q=, 则q=,∴====,故选A . 【点评】本题考查等比数列的通项公式,以及等差中项的性质的应用,属于基础题.4.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是( )A .B .C .D .【考点】L7:简单空间图形的三视图.【分析】该几何体为正方体截去一部分后的四棱锥P﹣ABCD,作出图形,可得结论.【解答】解:该几何体为正方体截去一部分后的四棱锥P﹣ABCD,如图所示,该几何体的俯视图为D.故选:D.【点评】本题考查棱锥体积的计算,考查三视图,考查数形结合的数学思想,比较基础.5.在区间[0,2]内随机取出两个数,则这两个数的平方和在区间[0,2]内的概率为()A.B.C.D.【考点】CF:几何概型.【分析】首先分析题目求这两个数的平方和也在区间[0,2]内的概率,可以联想到用几何的方法求解,利用面积的比值直接求得结果.【解答】解:将取出的两个数分别用x,y表示,则x,y∈[0,2]要求这两个数的平方和也在区间[0,2]内,即要求0≤x2+y2≤2,故此题可以转化为求0≤x2+y2≤2在区域内的面积比的问题.即由几何知识可得到概率为=;故选:D.【点评】此题考查等可能时间概率的问题,利用几何概型的方法解决本题,概率知识在高考中难度有所下降,对利用古典概型和几何概型的基本方法要熟练掌握.6.执行如图所示的程序框图,则输出的结果是()A.6 B.﹣6 C.5 D.﹣5【考点】EF:程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当i=1时,满足进行循环的条件,执行循环体后,S=﹣1,i=2;当i=2时,满足进行循环的条件,执行循环体后,S=1,i=3;当i=3时,满足进行循环的条件,执行循环体后,S=﹣2,i=4;当i=4时,满足进行循环的条件,执行循环体后,S=2,i=5;当i=5时,满足进行循环的条件,执行循环体后,S=﹣3,i=6;当i=6时,满足进行循环的条件,执行循环体后,S=3,i=7;当i=7时,满足进行循环的条件,执行循环体后,S=﹣4,i=8;当i=8时,满足进行循环的条件,执行循环体后,S=4,i=9;当i=9时,满足进行循环的条件,执行循环体后,S=﹣5,i=10;当i=10时,满足进行循环的条件,执行循环体后,S=5,i=11;当i=11时,不满足进行循环的条件,故输出S值为5,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.7.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a,b,c,三角形的面积S可由公式求得,其中p为三角形周长的一半,这个公式也被称为海伦﹣秦九韶公式,现有一个三角形的边长满足a+b=12,c=8,则此三角形面积的最大值为()A.B.C.D.【考点】EL:秦九韶算法.【分析】由题意,p=10,S==,利用基本不等式,即可得出结论.【解答】解:由题意,p=10,S==≤=8,∴此三角形面积的最大值为8.故选B.【点评】本题考查面积的计算,考查基本不等式的运用,属于中档题.8.设[x]表示不超过x的最大整数,如[1]=1,[0.5]=0,已知函数f(x)=﹣k(x>0),若方程f(x)=0有且仅有3个实根,则实数k的取值范围是()A.B.C.D.【考点】54:根的存在性及根的个数判断.【分析】由f(x)=0得=k,令g(x)=,作出g(x)的图象,利用数形结合即可得到k的取值范围.【解答】解:由f(x)=﹣k=0得=k,若x>0,设g(x)=,则当0<x<1,[x]=0,此时g(x)=0,当1≤x<2,[x]=1,此时g(x)=,此时,当2≤x<3,[x]=2,此时g(x)=,此时<g(x)≤1,当3≤x<4,[x]=3,此时g(x)=,此时<g(x)≤1,当4≤x<5,[x]=4,此时g(x)=,此时<g(x)≤1,作出函数g(x)的图象,要使f(x)=﹣k有且仅有三个零点,即函数g(x)=k有且仅有三个零点,则由图象可知<k≤,故选:C.【点评】本题主要考查函数零点的应用,根据函数和方程之间的关系构造函数g (x),利用数形结合是解决本题的关键.难度较大.9.某学校高三年级有2个文科班,3个理科班,现每个班指定1人,对各班的卫生进行检查,若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是()A.24 B.32 C.48 D.84【考点】D8:排列、组合的实际应用.【分析】根据题意,分3步进行分析:①、在3个理科班的学生中任选2人,去检查2个文科班,②、剩余的1个理科班的学生去检查其他的2个理科班,③、将2个文科班学生安排检查剩下的2个理科班,分别求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分3步进行分析:①、在3个理科班的学生中任选2人,去检查2个文科班,有C32A22=6种情况;②、剩余的1个理科班的学生不能检查本班,只能检查其他的2个理科班,有2种情况,③、将2个文科班学生全排列,安排检查剩下的2个理科班,有A22=2种情况;则不同安排方法的种数6×2×2=24种;故选:A.【点评】本题考查排列、组合的综合运用,涉及分步和分类计数原理,关键是依据题意,进行分步分析.10.倾斜角为的直线l过抛物线y2=ax(a>0)的焦点F,且与抛物线交于点A、B,l交抛物线的准线于点C(B在A、C之间),若,则a=()A.1 B.2 C.3 D.4【考点】KN:直线与抛物线的位置关系.【分析】求得焦点即准线方程.根据三角形的相似关系,求得2丨EF丨=丨CF 丨,根据抛物线的定义,即可求得a的值.【解答】解:过A和D做AD⊥l,BG⊥l,垂足分别为D和G,准线l交x轴于E,由抛物线的焦点(,0),准线方程x=﹣,则丨EF丨=,且丨BG丨=丨BF丨,由∠AFx=,则∠FCD=,sin∠FCD===,,则丨BG丨=,由2丨EF丨=丨CF丨,即2×=丨BC丨+丨BF丨=+=4,故a=4,故选:D.【点评】本题考查抛物线的定义,直线与抛物线的位置关系,相似三角形的性质,考查计算能力,数形结合思想,属于中档题.11.设P是正方体ABCD﹣A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P 到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P()A.仅有一个B.有有限多个C.有无限多个D.不存在【考点】MK:点、线、面间的距离计算.【分析】设P是正方体ABCD﹣A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P是正方体的中心,即可得出结论.【解答】解:设P是正方体ABCD﹣A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P是正方体的中心,故选A.【点评】本题考查点面距离,考查学生分析解决问题的能力,比较基础.12.若关于x不等式xlnx﹣x3+x2≤ae x恒成立,则实数a的取值范围是()A.[e,+∞)B.[0,+∞)C.D.[1,+∞)【考点】3R:函数恒成立问题.【分析】x∈R时,e x>0恒成立,把不等式xlnx﹣x3+x2≤ae x化为a≥;设f(x)=,x∈(0,+∞);求出f(x)的最大值即可得出a的取值范围.【解答】解:x∈R时,e x>0恒成立,∴关于x不等式xlnx﹣x3+x2≤ae x化为a≥;设f(x)=,其中x∈(0,+∞);则f′(x)=,设g(x)=lnx+1﹣xlnx+x3﹣4x2+2x,其中x∈(0,+∞);则g′(x)=﹣lnx﹣1+3x2﹣8x+2=3x2﹣8x+1+﹣lnx<0,∴g(x)是单调减函数,且g(1)=0,∴x=1时,f(x)取得最大值0,∴实数a的取值范围是[0,+∞).故选:B.【点评】本题考查了不等式恒成立问题,也考查了利用导数研究函数的单调性与求最值问题,是综合题.二.填空题:本大题共4小题,每小题5分,共20分.13.已知||=1,||=,且⊥(﹣),则向量与向量的夹角是.【考点】9S:数量积表示两个向量的夹角.【分析】由条件利用两个向量垂直的性质、两个向量的数量积的定义求得cosθ的值,可得向量与向量的夹角θ的值.【解答】解:设向量与向量的夹角是θ,则由题意可得•(﹣)=﹣=1﹣1××cosθ=0,求得cosθ=,可得θ=,故答案为:.【点评】本题主要考查两个向量的数量积的定义,两个向量垂直的性质,属于基础题.14.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么该企业可获得最大利润是27万元.【考点】7D:简单线性规划的应用.【分析】先设该企业生产甲产品为x吨,乙产品为y吨,列出约束条件,再根据约束条件画出可行域,设z=5x+3y,再利用z的几何意义求最值,只需求出直线z=5x+3y过可行域内的点时,从而得到z值即可.【解答】解:设该企业生产甲产品为x吨,乙产品为y吨,则该企业可获得利润为z=5x+3y,且,联立,解得x=3 y=4,由图可知,最优解为P(3,4),∴z的最大值为z=5×3+3×4=27(万元).故答案为:27万元.【点评】在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件⇒②由约束条件画出可行域⇒③分析目标函数Z与直线截距之间的关系⇒④使用平移直线法求出最优解⇒⑤还原到现实问题中.=(n∈N*),若不等式++t•a n 15.已知数列{a n}满足a1=,a n+1≥0恒成立,则实数t的取值范围是[﹣9,+∞).【考点】8H:数列递推式.【分析】由数列{a n}满足a1=,a n+1=(n∈N*),两边取倒数可得:﹣=1.利用等差数列的通项公式即可得出a n.不等式++t•a n≥0化为:t≥﹣.再利用基本不等式的性质即可得出.【解答】解:由数列{a n}满足a1=,a n+1=(n∈N*),两边取倒数可得:﹣=1.∴数列是等差数列,公差为1,首项为2.∴=2+(n﹣1)=n+1,∴a n=.不等式++t•a n≥0化为:t≥﹣.∵+5≥2=4,当且仅当n=2时取等号.∵﹣≤﹣9.∵实数t的取值范围若不等式++t•a n≥0恒成立,∴t≥﹣9.则实数t的取值范围[﹣9,+∞).故答案为:[﹣9,+∞).【点评】本题考查了等差数列的通项公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.16.函数的图象向左平移个单位长度后对应的函数是奇函数,函数.若关于x的方程f(x)+g(x)=﹣2在[0,π)内有两个不同的解α,β,则cos(α﹣β)的值为.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,利用三角函数的图象,可得sin(2α+θ)=﹣,sin(2β+θ)=﹣,从而得到2α+θ=π+θ,2β+θ=2π﹣θ,进而得到cos(α﹣β)=cos(θ﹣)=sinθ的值.【解答】解:函数的图象向左平移个单位长度后,得到y=2sin(2x++Φ)的图象;∵对应的函数是奇函数,∴ +Φ=kπ,k∈Z,即Φ=kπ﹣,∴Φ=﹣,即f(x)=2sin(2x﹣).∵函数,关于x的方程f(x)+g(x)=﹣2在[0,π)内有两个不同的解α,β,即2sin(2x﹣)+(2+)cos2x=﹣2在[0,π)内有两个不同的解α,β,即sin2x+cos2x=﹣1 在[0,π)内有两个不同的解α,β,即sin(2x+θ)=﹣1(其中,cosθ=,sinθ=,θ为锐角)在[0,π)内有两个不同的解α,β,即方程sin(2x+θ)=﹣在[0,π)内有两个不同的解α,β.∵x∈[0,π),∴2x+θ∈[θ,2π+θ),∴sin(2α+θ)=﹣,sin(2β+θ)=﹣,∴2α+θ=π+θ,2β+θ=2π﹣θ,∴2α﹣2β=﹣π+2θ,α﹣β=θ﹣,cos(α﹣β)=cos(θ﹣)=sinθ=,故答案为:.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性,诱导公式,正弦函数的定义域和值域,属于基础题.三、解答题:本大题共5小题,共70分.解答题写出文字说明、证明过程或演算步骤.17.(12分)(2017•江西二模)在△ABC中,∠A、∠B、∠C所对边长分别为a、b、c,已知,且.(1)求∠A的大小;(2)若,sinB+sinC=1,求△ABC的面积S.【考点】HR:余弦定理;9R:平面向量数量积的运算.【分析】(1)根据,可得bsinC+2csinBcosA=0,由正弦定理得bc+2cbcosA=0,进而得出.(2)由(1)及余弦定理得a2=b2+c2+bc,了由正弦定理可得sin2A=sin2B+sin2C+sinBsinC,化简整理再利用三角形面积计算公式即可得出.【解答】解:(1)∵,∴(sinC,sinBcosA)•(b,2c)=0,∴bsinC+2csinBcosA=0…(2分)由正弦定理得bc+2cbcosA=0…(4分)∵b≠0,c≠0∴…∵0<A<π∴…(6分)(2)由(1)及余弦定理得a2=b2+c2+bc,得sin2A=sin2B+sin2C+sinBsinC即…(8分)又sinB+sinC=1,解得…(9分)∵∴b=c=2…(11分)∴△ABC的面积…(12分)【点评】本题考查了正弦定理余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.18.(12分)(2017•江西二模)如图,在四面体ABCD中,平面ABC⊥平面BCD,DC⊥BC,,BC=2,AC=1.(1)求证:AB⊥AD;(2)设E是BD的中点,若直线CE与平面ACD的夹角为30°,求四面体ABCD 外接球的表面积.【考点】MI:直线与平面所成的角;LG:球的体积和表面积;LR:球内接多面体.【分析】(1)证明DC⊥BC,AB⊥CD,推出AB⊥AC,然后证明AB⊥平面ADC,得到AB⊥AD.(2)取AD的中点F,连接EF,则EF∥BA,证明EF⊥平面ADC,连接FC,说明∠ECF=30°,求出以四面体ABCD的外接球的半径然后求解即可.【解答】解:(1)证明:由平面ABC⊥平面BCD,DC⊥BC,得DC⊥平面ABC,∴AB⊥CD…(2分)又由,BC=2,AC=1,得BC2=AB2+AC2,所以AB⊥AC…(4分)故AB⊥平面ADC,所以AB⊥AD…(6分)(2)取AD的中点F,连接EF,则EF∥BA,因为AB⊥平面ADC∴EF⊥平面ADC…(8分)连接FC,则∠ECF=30°,∴…(9分)又∠BAD=∠BCD=90°,所以四面体ABCD的外接球的半径…(11分)故四面体ABCD的外接球的表面积=…(12分)(向量解法酌情给分)【点评】本题考查直线与平面垂直的判定定理的应用,几何体的外接球的表面积的求法,直线与平面所成角的应用,考查空间想象能力以及计算能力.19.(12分)(2017•甘肃二模)春节来临,有农民工兄弟A、B、C、D四人各自通过互联网订购回家过年的火车票,若订票成功即可获得火车票,即他们获得火车票与否互不影响.若A、B、C、D获得火车票的概率分别是,其中p1>p3,又成等比数列,且A、C两人恰好有一人获得火车票的概率是.(1)求p1,p3的值;(2)若C、D是一家人且两人都获得火车票才一起回家,否则两人都不回家.设X表示A、B、C、D能够回家过年的人数,求X的分布列和期望EX.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)由A、C两人恰好有一人获得火车票的概率是,列出方程组,能求出p1,p3的值.(2)由题意知X的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出X的分布列和EX.【解答】解:(1)∵A、C两人恰好有一人获得火车票的概率是,∴…(1分)联立方程组,…(3分)由p1>p3,解得.…(2)由题意知X的可能取值为0,1,2,3,4,…(6分)…(7分)…(8分)…(9分)…(10分)∴X的分布列为:…(11分)…(12分)【点评】本题考查古典概型及应用,考查概率的计算,考查计数原理,考查离散型随机变量的分布列、数学期望的求法及应用,解答本题的关键是正确理解离散型随机变量的分布列的性质,是中档题.20.(12分)(2017•江西二模)过点P(a,﹣2)作抛物线C:x2=4y的两条切线,切点分别为A(x1,y1),B(x2,y2).(Ⅰ)证明:x1x2+y1y2为定值;(Ⅱ)记△PAB的外接圆的圆心为点M,点F是抛物线C的焦点,对任意实数a,试判断以PM为直径的圆是否恒过点F?并说明理由.【考点】KN:直线与抛物线的位置关系.【分析】(Ⅰ)求导,求得直线PA的方程,将P代入直线方程,求得,同理可知.则x1,x2是方程x2﹣2ax﹣8=0的两个根,则由韦达定理求得x1x2,y1y2的值,即可求证x1x2+y1y2为定值;设切线方程,代入抛物线方程,由△=0,则k1k2=﹣2,分别求得切线方程,代入即可求证x1x2+y1y2为定值;(Ⅱ)直线PA的垂直平分线方程为,同理求得直线PB的垂直平分线方程,求得M坐标,抛物线C的焦点为F(0,1),则,则.则以PM为直径的圆恒过点F.【解答】解:(Ⅰ)证明:法1:由x2=4y,得,所以.所以直线PA的斜率为.因为点A(x1,y1)和B(x2,y2)在抛物线C上,所以,.所以直线PA的方程为.…(1分)因为点P(a,﹣2)在直线PA上,所以,即.…(2分)同理,.…(3分)所以x1,x2是方程x2﹣2ax﹣8=0的两个根.所以x1x2=﹣8.…(4分)又,…所以x1x2+y1y2=﹣4为定值.…(6分)法2:设过点P(a,﹣2)且与抛物线C相切的切线方程为y+2=k(x﹣a),…(1分),消去y得x2﹣4kx+4ka+8=0,由△=16k2﹣4(4ak+8)=0,化简得k2﹣ak﹣2=0.…(2分)所以k1k2=﹣2.…(3分)由x2=4y,得,所以.所以直线PA的斜率为,直线PB的斜率为.所以,即x1x2=﹣8.…(4分)又,…所以x1x2+y1y2=﹣4为定值.…(6分)(Ⅱ)法1:直线PA的垂直平分线方程为,…(7分)由于,,所以直线PA的垂直平分线方程为.①…(8分)同理直线PB的垂直平分线方程为.②…(9分)由①②解得,,所以点.…(10分)抛物线C的焦点为F(0,1),则.由于,…(11分)所以.所以以PM为直径的圆恒过点F.…(12分)另法:以PM为直径的圆的方程为.…(11分)把点F(0,1)代入上方程,知点F的坐标是方程的解.所以以PM为直径的圆恒过点F.…(12分)法2:设点M的坐标为(m,n),则△PAB的外接圆方程为(x﹣m)2+(y﹣n)2=(m﹣a)2+(n+2)2,由于点A(x1,y1),B(x2,y2)在该圆上,则,.两式相减得(x1﹣x2)(x1+x2﹣2m)+(y1﹣y2)(y1+y2﹣2n)=0,①…(7分)由(Ⅰ)知,代入上式得,…(8分)当x1≠x2时,得8a﹣4m+a3﹣2an=0,②假设以PM为直径的圆恒过点F,则,即(﹣m,n﹣1)•(﹣a,﹣3)=0,得ma﹣3(n﹣1)=0,③…(9分)由②③解得,…(10分)所以点.…(11分)当x1=x2时,则a=0,点M(0,1).所以以PM为直径的圆恒过点F.…(12分)【点评】本题考查直线与抛物线的位置关系,考查中点坐标公式,韦达定理的应用,考查利用导数求抛物线的切线方程,考查计算能力,属于中档题.21.(12分)(2017•江西二模)已知函数f(x)=lnx+x2﹣2ax+1(a为常数).(1)讨论函数f(x)的单调性;(2)若存在x0∈(0,1],使得对任意的a∈(﹣2,0],不等式2me a(a+1)+f(x0)>a2+2a+4(其中e为自然对数的底数)都成立,求实数m的取值范围.【考点】6K:导数在最大值、最小值问题中的应用;3E:函数单调性的判断与证明;7E:其他不等式的解法.【分析】(1)求出函数的导函数,对二次函数中参数a进行分类讨论,判断函数的单调区间;(2)根据(1),得出f(x0)的最大值,问题可转化为对任意的a∈(﹣2,0],不等式2me a(a+1)﹣a2+﹣4a﹣2>0都成立,构造函数h(a)=2me a(a+1)﹣a2+﹣4a﹣2,根据题意得出m的范围,由h(0)>0得m>1,且h(﹣2)≥0得m≤e2,利用导函数,对m进行区间内讨论,求出m的范围.【解答】解:(I)f(x)=lnx+x2﹣2ax+1,f'(x)=+2x﹣2a=,令g(x)=2x2﹣2ax+1,(i)当a≤0时,因为x>0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(ii)当0<a时,因为△≤0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(iii)当a>时,x在(,)时,g(x)<0,函数f(x)单调递减;在区间(0,)和(,+∞)时,g(x)>0,函数f(x)单调递增;(II)由(I)知当a∈(﹣2,0],时,函数f(x)在区间(0,1]上单调递增,所以当x∈(0,1]时,函数f(x)的最大值是f(1)=2﹣2a,对任意的a∈(﹣2,0],都存在x0∈(0,1],使得不等式a∈(﹣2,0],2me a(a+1)+f(x0)>a2+2a+4成立,等价于对任意的a∈(﹣2,0],不等式2me a(a+1)﹣a2+﹣4a﹣2>0都成立,记h(a)=2me a(a+1)﹣a2+﹣4a﹣2,由h(0)>0得m>1,且h(﹣2)≥0得m≤e2,h'(a)=2(a+2)(me a﹣1)=0,∴a=﹣2或a=﹣lnm,∵a∈(﹣2,0],∴2(a+2)>0,①当1<m<e2时,﹣lnm∈(﹣2,0),且a∈(﹣2,﹣lnm)时,h'(a)<0,a∈(﹣lnm,0)时,h'(a)>0,所以h(a)最小值为h(﹣lnm)=lnm﹣(2﹣lnm)>0,所以a∈(﹣2,﹣lnm)时,h(a)>0恒成立;②当m=e2时,h'(a)=2(a+2)(e a+2﹣1),因为a∈(﹣2,0],所以h'(a)>0,此时单调递增,且h(﹣2)=0,所以a∈(﹣2,0],时,h(a)>0恒成立;综上,m的取值范围是(1,e2].【点评】考查了导函数的应用和利用构造函数的方法,对存在问题进行转化,根据导函数解决实际问题.请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(2017•江西二模)在直角坐标系xOy中,直线l的参数方程为(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2 cos(θ﹣).(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(Ⅰ)将直线l的参数方程消去t参数,可得直线l的普通方程,将ρcosθ=x,ρsinθ=y,ρ2=x2+y2,带入ρ=2cos(θ﹣)可得曲线C的直角坐标方程.(Ⅱ)法一:设曲线C上的点为,点到直线的距离公式建立关系,利用三角函数的有界限可得最大值.法二:设与直线l平行的直线为l':x+y+b=0,当直线l'与圆C相切时,得,点到直线的距离公式可得最大值.【解答】解:(Ⅰ)由直线l的参数方程消去t参数,得x+y﹣4=0,∴直线l的普通方程为x+y﹣4=0.由=.得ρ2=2ρcosθ+2ρsinθ.将ρ2=x2+y2,ρcosθ=x,ρsinθ=y代入上式,得:曲线C的直角坐标方程为x2+y2=2x+2y,即(x﹣1)2+(y﹣1)2=2.(Ⅱ)法1:设曲线C上的点为,则点P到直线l的距离为==当时,∴曲线C上的点到直线l的距离的最大值为;法2:设与直线l平行的直线为l':x+y+b=0.当直线l'与圆C相切时,得,解得b=0或b=﹣4(舍去).∴直线l'的方程为x+y=0.那么:直线l与直线l'的距离为故得曲线C上的点到直线l的距离的最大值为.【点评】本题考查点的极坐标和直角坐标的互化,以及利用平面几何知识解决最值问题.[选修4-5:不等式选讲]23.(2017•成都四模)已知函数f(x)=|x+a﹣1|+|x﹣2a|.(Ⅰ)若f(1)<3,求实数a的取值范围;(Ⅱ)若a≥1,x∈R,求证:f(x)≥2.【考点】R5:绝对值不等式的解法;R4:绝对值三角不等式.【分析】(Ⅰ)通过讨论a的范围得到关于a的不等式,解出取并集即可;(Ⅱ)基本基本不等式的性质证明即可.【解答】解:(Ⅰ)因为f(1)<3,所以|a|+|1﹣2a|<3.①当a≤0时,得﹣a+(1﹣2a)<3,解得,所以;②当时,得a+(1﹣2a)<3,解得a>﹣2,所以;③当时,得a﹣(1﹣2a)<3,解得,所以;综上所述,实数a的取值范围是.(Ⅱ)因为a≥1,x∈R,所以f(x)=|x+a﹣1|+|x﹣2a|≥|(x+a﹣1)﹣(x﹣2a)|=|3a﹣1|=3a﹣1≥2.【点评】本题考查了解绝对值不等式问题,考查绝对值的意义,是一道中档题.。
江西省五市八校2017届高三数学下学期第二次联考试题 文数学试题分为(Ⅰ)(Ⅱ)卷,共23个小题。
满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A x R ==∈,{1,}B m =,若A B ⊆,则m 的值为()A .3B .1-C .1-或3D .32.已知i 为虚数单位,若复数i z i ⋅=-,则||z =()A .1BCD .23.右边程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n”表示m 除以n 的余数),若输入的m ,n 分别为325,125,则输出的m =()A .0B .5C .25D .45 4.下列函数中,y 的最小值为4的是( )A .4y x x=+B.223y x x =-++ C .4sin (0)sin y x x xπ=+<< D .4x x y e e -=+5. 锐角ABC ∆ABC ∆面积的取值范围为()A .B .⎫⎪⎝⎭C .[1,3)D .⎝⎦ 6.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则2811b b b ⋅⋅等于( )A .1B .2C .4D .87.已知正三棱锥错误!未找到引用源。
的外接球的半径为错误!未找到引用源。
,且球心在点错误!未找到引用源。
所确定的平面上,则三棱锥的表面积是( ) A .错误!未找到引用源。
绝密★启用前上饶县2017年普通高等学校招生全国统一考试仿真卷理科数学(二)本试题卷共5页,24题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑.2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2017怀仁一中]已知集合{01}M=,,则满足{012}M N=,,的集合N的个数是( )A .2B .3C .4D .8 【答案】C【解析】由题意得{2}{012}N ⊆⊆,,,因此集合N 的个数是224=个,选C .2.[2017湖北七校]已知复数1z i =-(i 为虚数单位),则22zz -的共轭复数是( )A .13i -B .13i +C .13i -+D .13i -- 【答案】A【解析】因为22222(1)(1)2=1+312i z i i iz i +-=--=+-,所以其共轭复数是13i -,选A .3.[2017怀仁一中]已知向量OA ,OB 的夹角为60°,||||2OA OB ==,若2OC OA OB =+,则ABC △为()A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 【答案】C【解析】22()()()()AB AC OB OA OC OA OB OA OA OB OB OA ⋅=-⋅-=-⋅+=-=22220-=,所以ABC △为直角三角形,选C .4.[2017南固一中]若一条直线与一个平面成72°角,则这条直线与这个平面内经过斜足的直线所成角中最大角等于( ) A .72° B .90° C .108° D .180° 【答案】B【解析】根据最小角定理可知,平面的斜线与其在平面的射影所成的角是线面角,斜线与射影所成的角是斜线与平面中的所有线所成的角中的最小角,根据本题直线与平面成72°角,所以线与平面内经过斜足的直线所成角的取值范围是72°θ≤≤90°,所以最大角是90°,故选B .5.[2017临川一中]某空间几何体的三视图如图所示,则该几何体的体积为( )A .73B .83-πC .83D .73-π【答案】B【解析】由三视图中提供的数据信息和几何特征可知该几何体是一个四棱锥去掉一半圆锥的组合体,其体积1182221333V π-π=⨯⨯⨯-⨯=,应选答案B .6.[2017云师附中]已知函数()|sin |cos f x x x =⋅,则下列说法正确的是( )A .()f x 的图象关于直线2x π=对称B .()f x 的周期为πC .若12|()||()|f x f x =,则122()xx k k =+π∈ZD .()f x 在区间3[]44ππ,上单调递减【答案】D【解析】由已知,函数()f x 在区间[02]π,上的解析式为:1sin 22ππ2π2()()1sin 2π2π2π2π2x k x k f x k x k x k ⎧+⎪⎪=∈⎨⎪-+<+⎪⎩Z ,≤≤,≤,且()f x 是偶函数,故函数的图象关于直线π()x k k =∈Z ,对称,故A 错误;()f x 的周期为2π,故B 错误;函数|()|f x 的周期为π2,若12|()||()|f x f x =,则12π()2k x x k =+∈Z ,故C 错误;()f x 在区间π3π[]44,上单调递减,故D 正确;故选D .7.[2017皖南八校]中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”愿意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如6613用算筹表示就是,则9117用算筹可表示为( )A .B .C .D .【答案】A【解析】由定义知: 千位9为横式;百位1为纵式;十位1为横式;个位7为纵式,选A8.[2017南固一中]函数cos y x x =+的大致图像是( )A .B .C .D .【答案】B【解析】当0x =时,1y =,所以排除A ,当π2x =时,函数图像应和y x=相交,所以排除D ,函数图像偶函数,所以排除C ,满足条件的只有B ,故选B .9.[2017安徽百校论坛]已知约束条件30230x y x y x a +-⎧⎪-+⎨⎪⎩≥≥≤,表示的可行域为D ,其中1a >,点()00,x y D ∈,点(),m n D ∈.若003x y -与1n m +的最小值相等,则实数a 等于( )A .54B .32 C .2D .3【答案】C【解析】作出可行域,则取点()1,2时,003x y -取最小值1.1n m +表示经过可行域内一点(),m n 与点()0,1-的直线的斜率,当取直线30x y +-=与x a =的交点坐标(),3a a -时,1n m +取最小值,即41aa -=,得2a =.故选C .10.[2017重庆联考]定义在R 上的函数()f x 的导函数为()f x ',且满足(2)()f x f x -=,()1f x x '<-,若12122x x x x +><,,则()A .12()()f x f x < B .12()()f x f x =C .12()()f x f x > D .1()f x 与2()f x 的大小不能确定【答案】C【解析】由题设可知函数()y f x =的图像关于直线1x =成轴对称,且当1x <是增函数,当1x >时是减函数,因为12x x <,且122x x +>,所以12()()f x f x <,应选C .11.[2017怀仁一中]数列{}n a 满足128a =,23333a =,(0)n a >,22121n n n a a a ---=22121(2)n n n a a n a ++-≥,则2017a =()A .364B .264C .132D .3332【答案】B【解析】因为222211222221111112(2)n n n nn n n n na a a a n a a a a a -+-+-+--=⇒+=≥,所以数列21{}n a 成等差数列,公差为2221111a a -=,因此20172017222017111201612048064a a a a =+⨯=>⇒=,,选B .12.[2017湖南十三校]设F 为抛物线2:2C ypx =的焦点,过F 且倾斜角为60°的直线交曲线C 于A ,B 两点(B 点在第一象限,A 点在第四象限),O 为坐标原点,过A 作C 的准线的垂线,垂足为M ,则||OB 与||OM 的比为( ) AB .2C .3D .4【答案】C【解析】抛物线2:2C y px =的焦点(0)2p F ,,准线为2px =-,设直线:)2pAB y x =-,联立抛物线方程,消去x ,2220py -=,设1122()()A x y B x y ,,,,则12y p y ==,1()2pM y -,,则||6OM p ===,||OB p ====,即有||3||OB OM =,故选C .第Ⅱ卷本卷包括必考题和选考题两部分。